xref: /openbmc/linux/arch/mips/kvm/emulate.c (revision c34b26b9)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: Instruction/Exception emulation
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11 
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/ktime.h>
15 #include <linux/kvm_host.h>
16 #include <linux/vmalloc.h>
17 #include <linux/fs.h>
18 #include <linux/memblock.h>
19 #include <linux/random.h>
20 #include <asm/page.h>
21 #include <asm/cacheflush.h>
22 #include <asm/cacheops.h>
23 #include <asm/cpu-info.h>
24 #include <asm/mmu_context.h>
25 #include <asm/tlbflush.h>
26 #include <asm/inst.h>
27 
28 #undef CONFIG_MIPS_MT
29 #include <asm/r4kcache.h>
30 #define CONFIG_MIPS_MT
31 
32 #include "interrupt.h"
33 #include "commpage.h"
34 
35 #include "trace.h"
36 
37 /*
38  * Compute the return address and do emulate branch simulation, if required.
39  * This function should be called only in branch delay slot active.
40  */
41 static int kvm_compute_return_epc(struct kvm_vcpu *vcpu, unsigned long instpc,
42 				  unsigned long *out)
43 {
44 	unsigned int dspcontrol;
45 	union mips_instruction insn;
46 	struct kvm_vcpu_arch *arch = &vcpu->arch;
47 	long epc = instpc;
48 	long nextpc;
49 	int err;
50 
51 	if (epc & 3) {
52 		kvm_err("%s: unaligned epc\n", __func__);
53 		return -EINVAL;
54 	}
55 
56 	/* Read the instruction */
57 	err = kvm_get_badinstrp((u32 *)epc, vcpu, &insn.word);
58 	if (err)
59 		return err;
60 
61 	switch (insn.i_format.opcode) {
62 		/* jr and jalr are in r_format format. */
63 	case spec_op:
64 		switch (insn.r_format.func) {
65 		case jalr_op:
66 			arch->gprs[insn.r_format.rd] = epc + 8;
67 			fallthrough;
68 		case jr_op:
69 			nextpc = arch->gprs[insn.r_format.rs];
70 			break;
71 		default:
72 			return -EINVAL;
73 		}
74 		break;
75 
76 		/*
77 		 * This group contains:
78 		 * bltz_op, bgez_op, bltzl_op, bgezl_op,
79 		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
80 		 */
81 	case bcond_op:
82 		switch (insn.i_format.rt) {
83 		case bltz_op:
84 		case bltzl_op:
85 			if ((long)arch->gprs[insn.i_format.rs] < 0)
86 				epc = epc + 4 + (insn.i_format.simmediate << 2);
87 			else
88 				epc += 8;
89 			nextpc = epc;
90 			break;
91 
92 		case bgez_op:
93 		case bgezl_op:
94 			if ((long)arch->gprs[insn.i_format.rs] >= 0)
95 				epc = epc + 4 + (insn.i_format.simmediate << 2);
96 			else
97 				epc += 8;
98 			nextpc = epc;
99 			break;
100 
101 		case bltzal_op:
102 		case bltzall_op:
103 			arch->gprs[31] = epc + 8;
104 			if ((long)arch->gprs[insn.i_format.rs] < 0)
105 				epc = epc + 4 + (insn.i_format.simmediate << 2);
106 			else
107 				epc += 8;
108 			nextpc = epc;
109 			break;
110 
111 		case bgezal_op:
112 		case bgezall_op:
113 			arch->gprs[31] = epc + 8;
114 			if ((long)arch->gprs[insn.i_format.rs] >= 0)
115 				epc = epc + 4 + (insn.i_format.simmediate << 2);
116 			else
117 				epc += 8;
118 			nextpc = epc;
119 			break;
120 		case bposge32_op:
121 			if (!cpu_has_dsp) {
122 				kvm_err("%s: DSP branch but not DSP ASE\n",
123 					__func__);
124 				return -EINVAL;
125 			}
126 
127 			dspcontrol = rddsp(0x01);
128 
129 			if (dspcontrol >= 32)
130 				epc = epc + 4 + (insn.i_format.simmediate << 2);
131 			else
132 				epc += 8;
133 			nextpc = epc;
134 			break;
135 		default:
136 			return -EINVAL;
137 		}
138 		break;
139 
140 		/* These are unconditional and in j_format. */
141 	case jal_op:
142 		arch->gprs[31] = instpc + 8;
143 		fallthrough;
144 	case j_op:
145 		epc += 4;
146 		epc >>= 28;
147 		epc <<= 28;
148 		epc |= (insn.j_format.target << 2);
149 		nextpc = epc;
150 		break;
151 
152 		/* These are conditional and in i_format. */
153 	case beq_op:
154 	case beql_op:
155 		if (arch->gprs[insn.i_format.rs] ==
156 		    arch->gprs[insn.i_format.rt])
157 			epc = epc + 4 + (insn.i_format.simmediate << 2);
158 		else
159 			epc += 8;
160 		nextpc = epc;
161 		break;
162 
163 	case bne_op:
164 	case bnel_op:
165 		if (arch->gprs[insn.i_format.rs] !=
166 		    arch->gprs[insn.i_format.rt])
167 			epc = epc + 4 + (insn.i_format.simmediate << 2);
168 		else
169 			epc += 8;
170 		nextpc = epc;
171 		break;
172 
173 	case blez_op:	/* POP06 */
174 #ifndef CONFIG_CPU_MIPSR6
175 	case blezl_op:	/* removed in R6 */
176 #endif
177 		if (insn.i_format.rt != 0)
178 			goto compact_branch;
179 		if ((long)arch->gprs[insn.i_format.rs] <= 0)
180 			epc = epc + 4 + (insn.i_format.simmediate << 2);
181 		else
182 			epc += 8;
183 		nextpc = epc;
184 		break;
185 
186 	case bgtz_op:	/* POP07 */
187 #ifndef CONFIG_CPU_MIPSR6
188 	case bgtzl_op:	/* removed in R6 */
189 #endif
190 		if (insn.i_format.rt != 0)
191 			goto compact_branch;
192 		if ((long)arch->gprs[insn.i_format.rs] > 0)
193 			epc = epc + 4 + (insn.i_format.simmediate << 2);
194 		else
195 			epc += 8;
196 		nextpc = epc;
197 		break;
198 
199 		/* And now the FPA/cp1 branch instructions. */
200 	case cop1_op:
201 		kvm_err("%s: unsupported cop1_op\n", __func__);
202 		return -EINVAL;
203 
204 #ifdef CONFIG_CPU_MIPSR6
205 	/* R6 added the following compact branches with forbidden slots */
206 	case blezl_op:	/* POP26 */
207 	case bgtzl_op:	/* POP27 */
208 		/* only rt == 0 isn't compact branch */
209 		if (insn.i_format.rt != 0)
210 			goto compact_branch;
211 		return -EINVAL;
212 	case pop10_op:
213 	case pop30_op:
214 		/* only rs == rt == 0 is reserved, rest are compact branches */
215 		if (insn.i_format.rs != 0 || insn.i_format.rt != 0)
216 			goto compact_branch;
217 		return -EINVAL;
218 	case pop66_op:
219 	case pop76_op:
220 		/* only rs == 0 isn't compact branch */
221 		if (insn.i_format.rs != 0)
222 			goto compact_branch;
223 		return -EINVAL;
224 compact_branch:
225 		/*
226 		 * If we've hit an exception on the forbidden slot, then
227 		 * the branch must not have been taken.
228 		 */
229 		epc += 8;
230 		nextpc = epc;
231 		break;
232 #else
233 compact_branch:
234 		/* Fall through - Compact branches not supported before R6 */
235 #endif
236 	default:
237 		return -EINVAL;
238 	}
239 
240 	*out = nextpc;
241 	return 0;
242 }
243 
244 enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
245 {
246 	int err;
247 
248 	if (cause & CAUSEF_BD) {
249 		err = kvm_compute_return_epc(vcpu, vcpu->arch.pc,
250 					     &vcpu->arch.pc);
251 		if (err)
252 			return EMULATE_FAIL;
253 	} else {
254 		vcpu->arch.pc += 4;
255 	}
256 
257 	kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
258 
259 	return EMULATE_DONE;
260 }
261 
262 /**
263  * kvm_get_badinstr() - Get bad instruction encoding.
264  * @opc:	Guest pointer to faulting instruction.
265  * @vcpu:	KVM VCPU information.
266  *
267  * Gets the instruction encoding of the faulting instruction, using the saved
268  * BadInstr register value if it exists, otherwise falling back to reading guest
269  * memory at @opc.
270  *
271  * Returns:	The instruction encoding of the faulting instruction.
272  */
273 int kvm_get_badinstr(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
274 {
275 	if (cpu_has_badinstr) {
276 		*out = vcpu->arch.host_cp0_badinstr;
277 		return 0;
278 	} else {
279 		return kvm_get_inst(opc, vcpu, out);
280 	}
281 }
282 
283 /**
284  * kvm_get_badinstrp() - Get bad prior instruction encoding.
285  * @opc:	Guest pointer to prior faulting instruction.
286  * @vcpu:	KVM VCPU information.
287  *
288  * Gets the instruction encoding of the prior faulting instruction (the branch
289  * containing the delay slot which faulted), using the saved BadInstrP register
290  * value if it exists, otherwise falling back to reading guest memory at @opc.
291  *
292  * Returns:	The instruction encoding of the prior faulting instruction.
293  */
294 int kvm_get_badinstrp(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
295 {
296 	if (cpu_has_badinstrp) {
297 		*out = vcpu->arch.host_cp0_badinstrp;
298 		return 0;
299 	} else {
300 		return kvm_get_inst(opc, vcpu, out);
301 	}
302 }
303 
304 /**
305  * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
306  * @vcpu:	Virtual CPU.
307  *
308  * Returns:	1 if the CP0_Count timer is disabled by either the guest
309  *		CP0_Cause.DC bit or the count_ctl.DC bit.
310  *		0 otherwise (in which case CP0_Count timer is running).
311  */
312 int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
313 {
314 	struct mips_coproc *cop0 = vcpu->arch.cop0;
315 
316 	return	(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
317 		(kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
318 }
319 
320 /**
321  * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
322  *
323  * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
324  *
325  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
326  */
327 static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
328 {
329 	s64 now_ns, periods;
330 	u64 delta;
331 
332 	now_ns = ktime_to_ns(now);
333 	delta = now_ns + vcpu->arch.count_dyn_bias;
334 
335 	if (delta >= vcpu->arch.count_period) {
336 		/* If delta is out of safe range the bias needs adjusting */
337 		periods = div64_s64(now_ns, vcpu->arch.count_period);
338 		vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
339 		/* Recalculate delta with new bias */
340 		delta = now_ns + vcpu->arch.count_dyn_bias;
341 	}
342 
343 	/*
344 	 * We've ensured that:
345 	 *   delta < count_period
346 	 *
347 	 * Therefore the intermediate delta*count_hz will never overflow since
348 	 * at the boundary condition:
349 	 *   delta = count_period
350 	 *   delta = NSEC_PER_SEC * 2^32 / count_hz
351 	 *   delta * count_hz = NSEC_PER_SEC * 2^32
352 	 */
353 	return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
354 }
355 
356 /**
357  * kvm_mips_count_time() - Get effective current time.
358  * @vcpu:	Virtual CPU.
359  *
360  * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
361  * except when the master disable bit is set in count_ctl, in which case it is
362  * count_resume, i.e. the time that the count was disabled.
363  *
364  * Returns:	Effective monotonic ktime for CP0_Count.
365  */
366 static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
367 {
368 	if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
369 		return vcpu->arch.count_resume;
370 
371 	return ktime_get();
372 }
373 
374 /**
375  * kvm_mips_read_count_running() - Read the current count value as if running.
376  * @vcpu:	Virtual CPU.
377  * @now:	Kernel time to read CP0_Count at.
378  *
379  * Returns the current guest CP0_Count register at time @now and handles if the
380  * timer interrupt is pending and hasn't been handled yet.
381  *
382  * Returns:	The current value of the guest CP0_Count register.
383  */
384 static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
385 {
386 	struct mips_coproc *cop0 = vcpu->arch.cop0;
387 	ktime_t expires, threshold;
388 	u32 count, compare;
389 	int running;
390 
391 	/* Calculate the biased and scaled guest CP0_Count */
392 	count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
393 	compare = kvm_read_c0_guest_compare(cop0);
394 
395 	/*
396 	 * Find whether CP0_Count has reached the closest timer interrupt. If
397 	 * not, we shouldn't inject it.
398 	 */
399 	if ((s32)(count - compare) < 0)
400 		return count;
401 
402 	/*
403 	 * The CP0_Count we're going to return has already reached the closest
404 	 * timer interrupt. Quickly check if it really is a new interrupt by
405 	 * looking at whether the interval until the hrtimer expiry time is
406 	 * less than 1/4 of the timer period.
407 	 */
408 	expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
409 	threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
410 	if (ktime_before(expires, threshold)) {
411 		/*
412 		 * Cancel it while we handle it so there's no chance of
413 		 * interference with the timeout handler.
414 		 */
415 		running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
416 
417 		/* Nothing should be waiting on the timeout */
418 		kvm_mips_callbacks->queue_timer_int(vcpu);
419 
420 		/*
421 		 * Restart the timer if it was running based on the expiry time
422 		 * we read, so that we don't push it back 2 periods.
423 		 */
424 		if (running) {
425 			expires = ktime_add_ns(expires,
426 					       vcpu->arch.count_period);
427 			hrtimer_start(&vcpu->arch.comparecount_timer, expires,
428 				      HRTIMER_MODE_ABS);
429 		}
430 	}
431 
432 	return count;
433 }
434 
435 /**
436  * kvm_mips_read_count() - Read the current count value.
437  * @vcpu:	Virtual CPU.
438  *
439  * Read the current guest CP0_Count value, taking into account whether the timer
440  * is stopped.
441  *
442  * Returns:	The current guest CP0_Count value.
443  */
444 u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
445 {
446 	struct mips_coproc *cop0 = vcpu->arch.cop0;
447 
448 	/* If count disabled just read static copy of count */
449 	if (kvm_mips_count_disabled(vcpu))
450 		return kvm_read_c0_guest_count(cop0);
451 
452 	return kvm_mips_read_count_running(vcpu, ktime_get());
453 }
454 
455 /**
456  * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
457  * @vcpu:	Virtual CPU.
458  * @count:	Output pointer for CP0_Count value at point of freeze.
459  *
460  * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
461  * at the point it was frozen. It is guaranteed that any pending interrupts at
462  * the point it was frozen are handled, and none after that point.
463  *
464  * This is useful where the time/CP0_Count is needed in the calculation of the
465  * new parameters.
466  *
467  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
468  *
469  * Returns:	The ktime at the point of freeze.
470  */
471 ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
472 {
473 	ktime_t now;
474 
475 	/* stop hrtimer before finding time */
476 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
477 	now = ktime_get();
478 
479 	/* find count at this point and handle pending hrtimer */
480 	*count = kvm_mips_read_count_running(vcpu, now);
481 
482 	return now;
483 }
484 
485 /**
486  * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
487  * @vcpu:	Virtual CPU.
488  * @now:	ktime at point of resume.
489  * @count:	CP0_Count at point of resume.
490  *
491  * Resumes the timer and updates the timer expiry based on @now and @count.
492  * This can be used in conjunction with kvm_mips_freeze_timer() when timer
493  * parameters need to be changed.
494  *
495  * It is guaranteed that a timer interrupt immediately after resume will be
496  * handled, but not if CP_Compare is exactly at @count. That case is already
497  * handled by kvm_mips_freeze_timer().
498  *
499  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
500  */
501 static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
502 				    ktime_t now, u32 count)
503 {
504 	struct mips_coproc *cop0 = vcpu->arch.cop0;
505 	u32 compare;
506 	u64 delta;
507 	ktime_t expire;
508 
509 	/* Calculate timeout (wrap 0 to 2^32) */
510 	compare = kvm_read_c0_guest_compare(cop0);
511 	delta = (u64)(u32)(compare - count - 1) + 1;
512 	delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
513 	expire = ktime_add_ns(now, delta);
514 
515 	/* Update hrtimer to use new timeout */
516 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
517 	hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
518 }
519 
520 /**
521  * kvm_mips_restore_hrtimer() - Restore hrtimer after a gap, updating expiry.
522  * @vcpu:	Virtual CPU.
523  * @before:	Time before Count was saved, lower bound of drift calculation.
524  * @count:	CP0_Count at point of restore.
525  * @min_drift:	Minimum amount of drift permitted before correction.
526  *		Must be <= 0.
527  *
528  * Restores the timer from a particular @count, accounting for drift. This can
529  * be used in conjunction with kvm_mips_freeze_timer() when a hardware timer is
530  * to be used for a period of time, but the exact ktime corresponding to the
531  * final Count that must be restored is not known.
532  *
533  * It is gauranteed that a timer interrupt immediately after restore will be
534  * handled, but not if CP0_Compare is exactly at @count. That case should
535  * already be handled when the hardware timer state is saved.
536  *
537  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is not
538  * stopped).
539  *
540  * Returns:	Amount of correction to count_bias due to drift.
541  */
542 int kvm_mips_restore_hrtimer(struct kvm_vcpu *vcpu, ktime_t before,
543 			     u32 count, int min_drift)
544 {
545 	ktime_t now, count_time;
546 	u32 now_count, before_count;
547 	u64 delta;
548 	int drift, ret = 0;
549 
550 	/* Calculate expected count at before */
551 	before_count = vcpu->arch.count_bias +
552 			kvm_mips_ktime_to_count(vcpu, before);
553 
554 	/*
555 	 * Detect significantly negative drift, where count is lower than
556 	 * expected. Some negative drift is expected when hardware counter is
557 	 * set after kvm_mips_freeze_timer(), and it is harmless to allow the
558 	 * time to jump forwards a little, within reason. If the drift is too
559 	 * significant, adjust the bias to avoid a big Guest.CP0_Count jump.
560 	 */
561 	drift = count - before_count;
562 	if (drift < min_drift) {
563 		count_time = before;
564 		vcpu->arch.count_bias += drift;
565 		ret = drift;
566 		goto resume;
567 	}
568 
569 	/* Calculate expected count right now */
570 	now = ktime_get();
571 	now_count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
572 
573 	/*
574 	 * Detect positive drift, where count is higher than expected, and
575 	 * adjust the bias to avoid guest time going backwards.
576 	 */
577 	drift = count - now_count;
578 	if (drift > 0) {
579 		count_time = now;
580 		vcpu->arch.count_bias += drift;
581 		ret = drift;
582 		goto resume;
583 	}
584 
585 	/* Subtract nanosecond delta to find ktime when count was read */
586 	delta = (u64)(u32)(now_count - count);
587 	delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
588 	count_time = ktime_sub_ns(now, delta);
589 
590 resume:
591 	/* Resume using the calculated ktime */
592 	kvm_mips_resume_hrtimer(vcpu, count_time, count);
593 	return ret;
594 }
595 
596 /**
597  * kvm_mips_write_count() - Modify the count and update timer.
598  * @vcpu:	Virtual CPU.
599  * @count:	Guest CP0_Count value to set.
600  *
601  * Sets the CP0_Count value and updates the timer accordingly.
602  */
603 void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
604 {
605 	struct mips_coproc *cop0 = vcpu->arch.cop0;
606 	ktime_t now;
607 
608 	/* Calculate bias */
609 	now = kvm_mips_count_time(vcpu);
610 	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
611 
612 	if (kvm_mips_count_disabled(vcpu))
613 		/* The timer's disabled, adjust the static count */
614 		kvm_write_c0_guest_count(cop0, count);
615 	else
616 		/* Update timeout */
617 		kvm_mips_resume_hrtimer(vcpu, now, count);
618 }
619 
620 /**
621  * kvm_mips_init_count() - Initialise timer.
622  * @vcpu:	Virtual CPU.
623  * @count_hz:	Frequency of timer.
624  *
625  * Initialise the timer to the specified frequency, zero it, and set it going if
626  * it's enabled.
627  */
628 void kvm_mips_init_count(struct kvm_vcpu *vcpu, unsigned long count_hz)
629 {
630 	vcpu->arch.count_hz = count_hz;
631 	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
632 	vcpu->arch.count_dyn_bias = 0;
633 
634 	/* Starting at 0 */
635 	kvm_mips_write_count(vcpu, 0);
636 }
637 
638 /**
639  * kvm_mips_set_count_hz() - Update the frequency of the timer.
640  * @vcpu:	Virtual CPU.
641  * @count_hz:	Frequency of CP0_Count timer in Hz.
642  *
643  * Change the frequency of the CP0_Count timer. This is done atomically so that
644  * CP0_Count is continuous and no timer interrupt is lost.
645  *
646  * Returns:	-EINVAL if @count_hz is out of range.
647  *		0 on success.
648  */
649 int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
650 {
651 	struct mips_coproc *cop0 = vcpu->arch.cop0;
652 	int dc;
653 	ktime_t now;
654 	u32 count;
655 
656 	/* ensure the frequency is in a sensible range... */
657 	if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
658 		return -EINVAL;
659 	/* ... and has actually changed */
660 	if (vcpu->arch.count_hz == count_hz)
661 		return 0;
662 
663 	/* Safely freeze timer so we can keep it continuous */
664 	dc = kvm_mips_count_disabled(vcpu);
665 	if (dc) {
666 		now = kvm_mips_count_time(vcpu);
667 		count = kvm_read_c0_guest_count(cop0);
668 	} else {
669 		now = kvm_mips_freeze_hrtimer(vcpu, &count);
670 	}
671 
672 	/* Update the frequency */
673 	vcpu->arch.count_hz = count_hz;
674 	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
675 	vcpu->arch.count_dyn_bias = 0;
676 
677 	/* Calculate adjusted bias so dynamic count is unchanged */
678 	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
679 
680 	/* Update and resume hrtimer */
681 	if (!dc)
682 		kvm_mips_resume_hrtimer(vcpu, now, count);
683 	return 0;
684 }
685 
686 /**
687  * kvm_mips_write_compare() - Modify compare and update timer.
688  * @vcpu:	Virtual CPU.
689  * @compare:	New CP0_Compare value.
690  * @ack:	Whether to acknowledge timer interrupt.
691  *
692  * Update CP0_Compare to a new value and update the timeout.
693  * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
694  * any pending timer interrupt is preserved.
695  */
696 void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
697 {
698 	struct mips_coproc *cop0 = vcpu->arch.cop0;
699 	int dc;
700 	u32 old_compare = kvm_read_c0_guest_compare(cop0);
701 	s32 delta = compare - old_compare;
702 	u32 cause;
703 	ktime_t now = ktime_set(0, 0); /* silence bogus GCC warning */
704 	u32 count;
705 
706 	/* if unchanged, must just be an ack */
707 	if (old_compare == compare) {
708 		if (!ack)
709 			return;
710 		kvm_mips_callbacks->dequeue_timer_int(vcpu);
711 		kvm_write_c0_guest_compare(cop0, compare);
712 		return;
713 	}
714 
715 	/*
716 	 * If guest CP0_Compare moves forward, CP0_GTOffset should be adjusted
717 	 * too to prevent guest CP0_Count hitting guest CP0_Compare.
718 	 *
719 	 * The new GTOffset corresponds to the new value of CP0_Compare, and is
720 	 * set prior to it being written into the guest context. We disable
721 	 * preemption until the new value is written to prevent restore of a
722 	 * GTOffset corresponding to the old CP0_Compare value.
723 	 */
724 	if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta > 0) {
725 		preempt_disable();
726 		write_c0_gtoffset(compare - read_c0_count());
727 		back_to_back_c0_hazard();
728 	}
729 
730 	/* freeze_hrtimer() takes care of timer interrupts <= count */
731 	dc = kvm_mips_count_disabled(vcpu);
732 	if (!dc)
733 		now = kvm_mips_freeze_hrtimer(vcpu, &count);
734 
735 	if (ack)
736 		kvm_mips_callbacks->dequeue_timer_int(vcpu);
737 	else if (IS_ENABLED(CONFIG_KVM_MIPS_VZ))
738 		/*
739 		 * With VZ, writing CP0_Compare acks (clears) CP0_Cause.TI, so
740 		 * preserve guest CP0_Cause.TI if we don't want to ack it.
741 		 */
742 		cause = kvm_read_c0_guest_cause(cop0);
743 
744 	kvm_write_c0_guest_compare(cop0, compare);
745 
746 	if (IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
747 		if (delta > 0)
748 			preempt_enable();
749 
750 		back_to_back_c0_hazard();
751 
752 		if (!ack && cause & CAUSEF_TI)
753 			kvm_write_c0_guest_cause(cop0, cause);
754 	}
755 
756 	/* resume_hrtimer() takes care of timer interrupts > count */
757 	if (!dc)
758 		kvm_mips_resume_hrtimer(vcpu, now, count);
759 
760 	/*
761 	 * If guest CP0_Compare is moving backward, we delay CP0_GTOffset change
762 	 * until after the new CP0_Compare is written, otherwise new guest
763 	 * CP0_Count could hit new guest CP0_Compare.
764 	 */
765 	if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta <= 0)
766 		write_c0_gtoffset(compare - read_c0_count());
767 }
768 
769 /**
770  * kvm_mips_count_disable() - Disable count.
771  * @vcpu:	Virtual CPU.
772  *
773  * Disable the CP0_Count timer. A timer interrupt on or before the final stop
774  * time will be handled but not after.
775  *
776  * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
777  * count_ctl.DC has been set (count disabled).
778  *
779  * Returns:	The time that the timer was stopped.
780  */
781 static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
782 {
783 	struct mips_coproc *cop0 = vcpu->arch.cop0;
784 	u32 count;
785 	ktime_t now;
786 
787 	/* Stop hrtimer */
788 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
789 
790 	/* Set the static count from the dynamic count, handling pending TI */
791 	now = ktime_get();
792 	count = kvm_mips_read_count_running(vcpu, now);
793 	kvm_write_c0_guest_count(cop0, count);
794 
795 	return now;
796 }
797 
798 /**
799  * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
800  * @vcpu:	Virtual CPU.
801  *
802  * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
803  * before the final stop time will be handled if the timer isn't disabled by
804  * count_ctl.DC, but not after.
805  *
806  * Assumes CP0_Cause.DC is clear (count enabled).
807  */
808 void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
809 {
810 	struct mips_coproc *cop0 = vcpu->arch.cop0;
811 
812 	kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
813 	if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
814 		kvm_mips_count_disable(vcpu);
815 }
816 
817 /**
818  * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
819  * @vcpu:	Virtual CPU.
820  *
821  * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
822  * the start time will be handled if the timer isn't disabled by count_ctl.DC,
823  * potentially before even returning, so the caller should be careful with
824  * ordering of CP0_Cause modifications so as not to lose it.
825  *
826  * Assumes CP0_Cause.DC is set (count disabled).
827  */
828 void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
829 {
830 	struct mips_coproc *cop0 = vcpu->arch.cop0;
831 	u32 count;
832 
833 	kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
834 
835 	/*
836 	 * Set the dynamic count to match the static count.
837 	 * This starts the hrtimer if count_ctl.DC allows it.
838 	 * Otherwise it conveniently updates the biases.
839 	 */
840 	count = kvm_read_c0_guest_count(cop0);
841 	kvm_mips_write_count(vcpu, count);
842 }
843 
844 /**
845  * kvm_mips_set_count_ctl() - Update the count control KVM register.
846  * @vcpu:	Virtual CPU.
847  * @count_ctl:	Count control register new value.
848  *
849  * Set the count control KVM register. The timer is updated accordingly.
850  *
851  * Returns:	-EINVAL if reserved bits are set.
852  *		0 on success.
853  */
854 int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
855 {
856 	struct mips_coproc *cop0 = vcpu->arch.cop0;
857 	s64 changed = count_ctl ^ vcpu->arch.count_ctl;
858 	s64 delta;
859 	ktime_t expire, now;
860 	u32 count, compare;
861 
862 	/* Only allow defined bits to be changed */
863 	if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
864 		return -EINVAL;
865 
866 	/* Apply new value */
867 	vcpu->arch.count_ctl = count_ctl;
868 
869 	/* Master CP0_Count disable */
870 	if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
871 		/* Is CP0_Cause.DC already disabling CP0_Count? */
872 		if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
873 			if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
874 				/* Just record the current time */
875 				vcpu->arch.count_resume = ktime_get();
876 		} else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
877 			/* disable timer and record current time */
878 			vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
879 		} else {
880 			/*
881 			 * Calculate timeout relative to static count at resume
882 			 * time (wrap 0 to 2^32).
883 			 */
884 			count = kvm_read_c0_guest_count(cop0);
885 			compare = kvm_read_c0_guest_compare(cop0);
886 			delta = (u64)(u32)(compare - count - 1) + 1;
887 			delta = div_u64(delta * NSEC_PER_SEC,
888 					vcpu->arch.count_hz);
889 			expire = ktime_add_ns(vcpu->arch.count_resume, delta);
890 
891 			/* Handle pending interrupt */
892 			now = ktime_get();
893 			if (ktime_compare(now, expire) >= 0)
894 				/* Nothing should be waiting on the timeout */
895 				kvm_mips_callbacks->queue_timer_int(vcpu);
896 
897 			/* Resume hrtimer without changing bias */
898 			count = kvm_mips_read_count_running(vcpu, now);
899 			kvm_mips_resume_hrtimer(vcpu, now, count);
900 		}
901 	}
902 
903 	return 0;
904 }
905 
906 /**
907  * kvm_mips_set_count_resume() - Update the count resume KVM register.
908  * @vcpu:		Virtual CPU.
909  * @count_resume:	Count resume register new value.
910  *
911  * Set the count resume KVM register.
912  *
913  * Returns:	-EINVAL if out of valid range (0..now).
914  *		0 on success.
915  */
916 int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
917 {
918 	/*
919 	 * It doesn't make sense for the resume time to be in the future, as it
920 	 * would be possible for the next interrupt to be more than a full
921 	 * period in the future.
922 	 */
923 	if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
924 		return -EINVAL;
925 
926 	vcpu->arch.count_resume = ns_to_ktime(count_resume);
927 	return 0;
928 }
929 
930 /**
931  * kvm_mips_count_timeout() - Push timer forward on timeout.
932  * @vcpu:	Virtual CPU.
933  *
934  * Handle an hrtimer event by push the hrtimer forward a period.
935  *
936  * Returns:	The hrtimer_restart value to return to the hrtimer subsystem.
937  */
938 enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
939 {
940 	/* Add the Count period to the current expiry time */
941 	hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
942 			       vcpu->arch.count_period);
943 	return HRTIMER_RESTART;
944 }
945 
946 enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
947 {
948 	struct mips_coproc *cop0 = vcpu->arch.cop0;
949 	enum emulation_result er = EMULATE_DONE;
950 
951 	if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
952 		kvm_clear_c0_guest_status(cop0, ST0_ERL);
953 		vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
954 	} else if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
955 		kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
956 			  kvm_read_c0_guest_epc(cop0));
957 		kvm_clear_c0_guest_status(cop0, ST0_EXL);
958 		vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
959 
960 	} else {
961 		kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
962 			vcpu->arch.pc);
963 		er = EMULATE_FAIL;
964 	}
965 
966 	return er;
967 }
968 
969 enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
970 {
971 	kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
972 		  vcpu->arch.pending_exceptions);
973 
974 	++vcpu->stat.wait_exits;
975 	trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
976 	if (!vcpu->arch.pending_exceptions) {
977 		kvm_vz_lose_htimer(vcpu);
978 		vcpu->arch.wait = 1;
979 		kvm_vcpu_block(vcpu);
980 
981 		/*
982 		 * We we are runnable, then definitely go off to user space to
983 		 * check if any I/O interrupts are pending.
984 		 */
985 		if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
986 			kvm_clear_request(KVM_REQ_UNHALT, vcpu);
987 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
988 		}
989 	}
990 
991 	return EMULATE_DONE;
992 }
993 
994 static void kvm_mips_change_entryhi(struct kvm_vcpu *vcpu,
995 				    unsigned long entryhi)
996 {
997 	struct mips_coproc *cop0 = vcpu->arch.cop0;
998 	struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
999 	int cpu, i;
1000 	u32 nasid = entryhi & KVM_ENTRYHI_ASID;
1001 
1002 	if (((kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID) != nasid)) {
1003 		trace_kvm_asid_change(vcpu, kvm_read_c0_guest_entryhi(cop0) &
1004 				      KVM_ENTRYHI_ASID, nasid);
1005 
1006 		/*
1007 		 * Flush entries from the GVA page tables.
1008 		 * Guest user page table will get flushed lazily on re-entry to
1009 		 * guest user if the guest ASID actually changes.
1010 		 */
1011 		kvm_mips_flush_gva_pt(kern_mm->pgd, KMF_KERN);
1012 
1013 		/*
1014 		 * Regenerate/invalidate kernel MMU context.
1015 		 * The user MMU context will be regenerated lazily on re-entry
1016 		 * to guest user if the guest ASID actually changes.
1017 		 */
1018 		preempt_disable();
1019 		cpu = smp_processor_id();
1020 		get_new_mmu_context(kern_mm);
1021 		for_each_possible_cpu(i)
1022 			if (i != cpu)
1023 				set_cpu_context(i, kern_mm, 0);
1024 		preempt_enable();
1025 	}
1026 	kvm_write_c0_guest_entryhi(cop0, entryhi);
1027 }
1028 
1029 enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
1030 {
1031 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1032 	struct kvm_mips_tlb *tlb;
1033 	unsigned long pc = vcpu->arch.pc;
1034 	int index;
1035 
1036 	index = kvm_read_c0_guest_index(cop0);
1037 	if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
1038 		/* UNDEFINED */
1039 		kvm_debug("[%#lx] TLBR Index %#x out of range\n", pc, index);
1040 		index &= KVM_MIPS_GUEST_TLB_SIZE - 1;
1041 	}
1042 
1043 	tlb = &vcpu->arch.guest_tlb[index];
1044 	kvm_write_c0_guest_pagemask(cop0, tlb->tlb_mask);
1045 	kvm_write_c0_guest_entrylo0(cop0, tlb->tlb_lo[0]);
1046 	kvm_write_c0_guest_entrylo1(cop0, tlb->tlb_lo[1]);
1047 	kvm_mips_change_entryhi(vcpu, tlb->tlb_hi);
1048 
1049 	return EMULATE_DONE;
1050 }
1051 
1052 /**
1053  * kvm_mips_invalidate_guest_tlb() - Indicates a change in guest MMU map.
1054  * @vcpu:	VCPU with changed mappings.
1055  * @tlb:	TLB entry being removed.
1056  *
1057  * This is called to indicate a single change in guest MMU mappings, so that we
1058  * can arrange TLB flushes on this and other CPUs.
1059  */
1060 static void kvm_mips_invalidate_guest_tlb(struct kvm_vcpu *vcpu,
1061 					  struct kvm_mips_tlb *tlb)
1062 {
1063 	struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
1064 	struct mm_struct *user_mm = &vcpu->arch.guest_user_mm;
1065 	int cpu, i;
1066 	bool user;
1067 
1068 	/* No need to flush for entries which are already invalid */
1069 	if (!((tlb->tlb_lo[0] | tlb->tlb_lo[1]) & ENTRYLO_V))
1070 		return;
1071 	/* Don't touch host kernel page tables or TLB mappings */
1072 	if ((unsigned long)tlb->tlb_hi > 0x7fffffff)
1073 		return;
1074 	/* User address space doesn't need flushing for KSeg2/3 changes */
1075 	user = tlb->tlb_hi < KVM_GUEST_KSEG0;
1076 
1077 	preempt_disable();
1078 
1079 	/* Invalidate page table entries */
1080 	kvm_trap_emul_invalidate_gva(vcpu, tlb->tlb_hi & VPN2_MASK, user);
1081 
1082 	/*
1083 	 * Probe the shadow host TLB for the entry being overwritten, if one
1084 	 * matches, invalidate it
1085 	 */
1086 	kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi, user, true);
1087 
1088 	/* Invalidate the whole ASID on other CPUs */
1089 	cpu = smp_processor_id();
1090 	for_each_possible_cpu(i) {
1091 		if (i == cpu)
1092 			continue;
1093 		if (user)
1094 			set_cpu_context(i, user_mm, 0);
1095 		set_cpu_context(i, kern_mm, 0);
1096 	}
1097 
1098 	preempt_enable();
1099 }
1100 
1101 /* Write Guest TLB Entry @ Index */
1102 enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
1103 {
1104 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1105 	int index = kvm_read_c0_guest_index(cop0);
1106 	struct kvm_mips_tlb *tlb = NULL;
1107 	unsigned long pc = vcpu->arch.pc;
1108 
1109 	if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
1110 		kvm_debug("%s: illegal index: %d\n", __func__, index);
1111 		kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
1112 			  pc, index, kvm_read_c0_guest_entryhi(cop0),
1113 			  kvm_read_c0_guest_entrylo0(cop0),
1114 			  kvm_read_c0_guest_entrylo1(cop0),
1115 			  kvm_read_c0_guest_pagemask(cop0));
1116 		index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
1117 	}
1118 
1119 	tlb = &vcpu->arch.guest_tlb[index];
1120 
1121 	kvm_mips_invalidate_guest_tlb(vcpu, tlb);
1122 
1123 	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
1124 	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
1125 	tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
1126 	tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
1127 
1128 	kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
1129 		  pc, index, kvm_read_c0_guest_entryhi(cop0),
1130 		  kvm_read_c0_guest_entrylo0(cop0),
1131 		  kvm_read_c0_guest_entrylo1(cop0),
1132 		  kvm_read_c0_guest_pagemask(cop0));
1133 
1134 	return EMULATE_DONE;
1135 }
1136 
1137 /* Write Guest TLB Entry @ Random Index */
1138 enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
1139 {
1140 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1141 	struct kvm_mips_tlb *tlb = NULL;
1142 	unsigned long pc = vcpu->arch.pc;
1143 	int index;
1144 
1145 	index = prandom_u32_max(KVM_MIPS_GUEST_TLB_SIZE);
1146 	tlb = &vcpu->arch.guest_tlb[index];
1147 
1148 	kvm_mips_invalidate_guest_tlb(vcpu, tlb);
1149 
1150 	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
1151 	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
1152 	tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
1153 	tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
1154 
1155 	kvm_debug("[%#lx] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
1156 		  pc, index, kvm_read_c0_guest_entryhi(cop0),
1157 		  kvm_read_c0_guest_entrylo0(cop0),
1158 		  kvm_read_c0_guest_entrylo1(cop0));
1159 
1160 	return EMULATE_DONE;
1161 }
1162 
1163 enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
1164 {
1165 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1166 	long entryhi = kvm_read_c0_guest_entryhi(cop0);
1167 	unsigned long pc = vcpu->arch.pc;
1168 	int index = -1;
1169 
1170 	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
1171 
1172 	kvm_write_c0_guest_index(cop0, index);
1173 
1174 	kvm_debug("[%#lx] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
1175 		  index);
1176 
1177 	return EMULATE_DONE;
1178 }
1179 
1180 /**
1181  * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
1182  * @vcpu:	Virtual CPU.
1183  *
1184  * Finds the mask of bits which are writable in the guest's Config1 CP0
1185  * register, by userland (currently read-only to the guest).
1186  */
1187 unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
1188 {
1189 	unsigned int mask = 0;
1190 
1191 	/* Permit FPU to be present if FPU is supported */
1192 	if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
1193 		mask |= MIPS_CONF1_FP;
1194 
1195 	return mask;
1196 }
1197 
1198 /**
1199  * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
1200  * @vcpu:	Virtual CPU.
1201  *
1202  * Finds the mask of bits which are writable in the guest's Config3 CP0
1203  * register, by userland (currently read-only to the guest).
1204  */
1205 unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
1206 {
1207 	/* Config4 and ULRI are optional */
1208 	unsigned int mask = MIPS_CONF_M | MIPS_CONF3_ULRI;
1209 
1210 	/* Permit MSA to be present if MSA is supported */
1211 	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
1212 		mask |= MIPS_CONF3_MSA;
1213 
1214 	return mask;
1215 }
1216 
1217 /**
1218  * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
1219  * @vcpu:	Virtual CPU.
1220  *
1221  * Finds the mask of bits which are writable in the guest's Config4 CP0
1222  * register, by userland (currently read-only to the guest).
1223  */
1224 unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
1225 {
1226 	/* Config5 is optional */
1227 	unsigned int mask = MIPS_CONF_M;
1228 
1229 	/* KScrExist */
1230 	mask |= 0xfc << MIPS_CONF4_KSCREXIST_SHIFT;
1231 
1232 	return mask;
1233 }
1234 
1235 /**
1236  * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
1237  * @vcpu:	Virtual CPU.
1238  *
1239  * Finds the mask of bits which are writable in the guest's Config5 CP0
1240  * register, by the guest itself.
1241  */
1242 unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
1243 {
1244 	unsigned int mask = 0;
1245 
1246 	/* Permit MSAEn changes if MSA supported and enabled */
1247 	if (kvm_mips_guest_has_msa(&vcpu->arch))
1248 		mask |= MIPS_CONF5_MSAEN;
1249 
1250 	/*
1251 	 * Permit guest FPU mode changes if FPU is enabled and the relevant
1252 	 * feature exists according to FIR register.
1253 	 */
1254 	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1255 		if (cpu_has_fre)
1256 			mask |= MIPS_CONF5_FRE;
1257 		/* We don't support UFR or UFE */
1258 	}
1259 
1260 	return mask;
1261 }
1262 
1263 enum emulation_result kvm_mips_emulate_CP0(union mips_instruction inst,
1264 					   u32 *opc, u32 cause,
1265 					   struct kvm_vcpu *vcpu)
1266 {
1267 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1268 	enum emulation_result er = EMULATE_DONE;
1269 	u32 rt, rd, sel;
1270 	unsigned long curr_pc;
1271 
1272 	/*
1273 	 * Update PC and hold onto current PC in case there is
1274 	 * an error and we want to rollback the PC
1275 	 */
1276 	curr_pc = vcpu->arch.pc;
1277 	er = update_pc(vcpu, cause);
1278 	if (er == EMULATE_FAIL)
1279 		return er;
1280 
1281 	if (inst.co_format.co) {
1282 		switch (inst.co_format.func) {
1283 		case tlbr_op:	/*  Read indexed TLB entry  */
1284 			er = kvm_mips_emul_tlbr(vcpu);
1285 			break;
1286 		case tlbwi_op:	/*  Write indexed  */
1287 			er = kvm_mips_emul_tlbwi(vcpu);
1288 			break;
1289 		case tlbwr_op:	/*  Write random  */
1290 			er = kvm_mips_emul_tlbwr(vcpu);
1291 			break;
1292 		case tlbp_op:	/* TLB Probe */
1293 			er = kvm_mips_emul_tlbp(vcpu);
1294 			break;
1295 		case rfe_op:
1296 			kvm_err("!!!COP0_RFE!!!\n");
1297 			break;
1298 		case eret_op:
1299 			er = kvm_mips_emul_eret(vcpu);
1300 			goto dont_update_pc;
1301 		case wait_op:
1302 			er = kvm_mips_emul_wait(vcpu);
1303 			break;
1304 		case hypcall_op:
1305 			er = kvm_mips_emul_hypcall(vcpu, inst);
1306 			break;
1307 		}
1308 	} else {
1309 		rt = inst.c0r_format.rt;
1310 		rd = inst.c0r_format.rd;
1311 		sel = inst.c0r_format.sel;
1312 
1313 		switch (inst.c0r_format.rs) {
1314 		case mfc_op:
1315 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1316 			cop0->stat[rd][sel]++;
1317 #endif
1318 			/* Get reg */
1319 			if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1320 				vcpu->arch.gprs[rt] =
1321 				    (s32)kvm_mips_read_count(vcpu);
1322 			} else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1323 				vcpu->arch.gprs[rt] = 0x0;
1324 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1325 				kvm_mips_trans_mfc0(inst, opc, vcpu);
1326 #endif
1327 			} else {
1328 				vcpu->arch.gprs[rt] = (s32)cop0->reg[rd][sel];
1329 
1330 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1331 				kvm_mips_trans_mfc0(inst, opc, vcpu);
1332 #endif
1333 			}
1334 
1335 			trace_kvm_hwr(vcpu, KVM_TRACE_MFC0,
1336 				      KVM_TRACE_COP0(rd, sel),
1337 				      vcpu->arch.gprs[rt]);
1338 			break;
1339 
1340 		case dmfc_op:
1341 			vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1342 
1343 			trace_kvm_hwr(vcpu, KVM_TRACE_DMFC0,
1344 				      KVM_TRACE_COP0(rd, sel),
1345 				      vcpu->arch.gprs[rt]);
1346 			break;
1347 
1348 		case mtc_op:
1349 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1350 			cop0->stat[rd][sel]++;
1351 #endif
1352 			trace_kvm_hwr(vcpu, KVM_TRACE_MTC0,
1353 				      KVM_TRACE_COP0(rd, sel),
1354 				      vcpu->arch.gprs[rt]);
1355 
1356 			if ((rd == MIPS_CP0_TLB_INDEX)
1357 			    && (vcpu->arch.gprs[rt] >=
1358 				KVM_MIPS_GUEST_TLB_SIZE)) {
1359 				kvm_err("Invalid TLB Index: %ld",
1360 					vcpu->arch.gprs[rt]);
1361 				er = EMULATE_FAIL;
1362 				break;
1363 			}
1364 			if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1365 				/*
1366 				 * Preserve core number, and keep the exception
1367 				 * base in guest KSeg0.
1368 				 */
1369 				kvm_change_c0_guest_ebase(cop0, 0x1ffff000,
1370 							  vcpu->arch.gprs[rt]);
1371 			} else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1372 				kvm_mips_change_entryhi(vcpu,
1373 							vcpu->arch.gprs[rt]);
1374 			}
1375 			/* Are we writing to COUNT */
1376 			else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1377 				kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1378 				goto done;
1379 			} else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1380 				/* If we are writing to COMPARE */
1381 				/* Clear pending timer interrupt, if any */
1382 				kvm_mips_write_compare(vcpu,
1383 						       vcpu->arch.gprs[rt],
1384 						       true);
1385 			} else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1386 				unsigned int old_val, val, change;
1387 
1388 				old_val = kvm_read_c0_guest_status(cop0);
1389 				val = vcpu->arch.gprs[rt];
1390 				change = val ^ old_val;
1391 
1392 				/* Make sure that the NMI bit is never set */
1393 				val &= ~ST0_NMI;
1394 
1395 				/*
1396 				 * Don't allow CU1 or FR to be set unless FPU
1397 				 * capability enabled and exists in guest
1398 				 * configuration.
1399 				 */
1400 				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1401 					val &= ~(ST0_CU1 | ST0_FR);
1402 
1403 				/*
1404 				 * Also don't allow FR to be set if host doesn't
1405 				 * support it.
1406 				 */
1407 				if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1408 					val &= ~ST0_FR;
1409 
1410 
1411 				/* Handle changes in FPU mode */
1412 				preempt_disable();
1413 
1414 				/*
1415 				 * FPU and Vector register state is made
1416 				 * UNPREDICTABLE by a change of FR, so don't
1417 				 * even bother saving it.
1418 				 */
1419 				if (change & ST0_FR)
1420 					kvm_drop_fpu(vcpu);
1421 
1422 				/*
1423 				 * If MSA state is already live, it is undefined
1424 				 * how it interacts with FR=0 FPU state, and we
1425 				 * don't want to hit reserved instruction
1426 				 * exceptions trying to save the MSA state later
1427 				 * when CU=1 && FR=1, so play it safe and save
1428 				 * it first.
1429 				 */
1430 				if (change & ST0_CU1 && !(val & ST0_FR) &&
1431 				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1432 					kvm_lose_fpu(vcpu);
1433 
1434 				/*
1435 				 * Propagate CU1 (FPU enable) changes
1436 				 * immediately if the FPU context is already
1437 				 * loaded. When disabling we leave the context
1438 				 * loaded so it can be quickly enabled again in
1439 				 * the near future.
1440 				 */
1441 				if (change & ST0_CU1 &&
1442 				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1443 					change_c0_status(ST0_CU1, val);
1444 
1445 				preempt_enable();
1446 
1447 				kvm_write_c0_guest_status(cop0, val);
1448 
1449 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1450 				/*
1451 				 * If FPU present, we need CU1/FR bits to take
1452 				 * effect fairly soon.
1453 				 */
1454 				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1455 					kvm_mips_trans_mtc0(inst, opc, vcpu);
1456 #endif
1457 			} else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1458 				unsigned int old_val, val, change, wrmask;
1459 
1460 				old_val = kvm_read_c0_guest_config5(cop0);
1461 				val = vcpu->arch.gprs[rt];
1462 
1463 				/* Only a few bits are writable in Config5 */
1464 				wrmask = kvm_mips_config5_wrmask(vcpu);
1465 				change = (val ^ old_val) & wrmask;
1466 				val = old_val ^ change;
1467 
1468 
1469 				/* Handle changes in FPU/MSA modes */
1470 				preempt_disable();
1471 
1472 				/*
1473 				 * Propagate FRE changes immediately if the FPU
1474 				 * context is already loaded.
1475 				 */
1476 				if (change & MIPS_CONF5_FRE &&
1477 				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1478 					change_c0_config5(MIPS_CONF5_FRE, val);
1479 
1480 				/*
1481 				 * Propagate MSAEn changes immediately if the
1482 				 * MSA context is already loaded. When disabling
1483 				 * we leave the context loaded so it can be
1484 				 * quickly enabled again in the near future.
1485 				 */
1486 				if (change & MIPS_CONF5_MSAEN &&
1487 				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1488 					change_c0_config5(MIPS_CONF5_MSAEN,
1489 							  val);
1490 
1491 				preempt_enable();
1492 
1493 				kvm_write_c0_guest_config5(cop0, val);
1494 			} else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1495 				u32 old_cause, new_cause;
1496 
1497 				old_cause = kvm_read_c0_guest_cause(cop0);
1498 				new_cause = vcpu->arch.gprs[rt];
1499 				/* Update R/W bits */
1500 				kvm_change_c0_guest_cause(cop0, 0x08800300,
1501 							  new_cause);
1502 				/* DC bit enabling/disabling timer? */
1503 				if ((old_cause ^ new_cause) & CAUSEF_DC) {
1504 					if (new_cause & CAUSEF_DC)
1505 						kvm_mips_count_disable_cause(vcpu);
1506 					else
1507 						kvm_mips_count_enable_cause(vcpu);
1508 				}
1509 			} else if ((rd == MIPS_CP0_HWRENA) && (sel == 0)) {
1510 				u32 mask = MIPS_HWRENA_CPUNUM |
1511 					   MIPS_HWRENA_SYNCISTEP |
1512 					   MIPS_HWRENA_CC |
1513 					   MIPS_HWRENA_CCRES;
1514 
1515 				if (kvm_read_c0_guest_config3(cop0) &
1516 				    MIPS_CONF3_ULRI)
1517 					mask |= MIPS_HWRENA_ULR;
1518 				cop0->reg[rd][sel] = vcpu->arch.gprs[rt] & mask;
1519 			} else {
1520 				cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1521 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1522 				kvm_mips_trans_mtc0(inst, opc, vcpu);
1523 #endif
1524 			}
1525 			break;
1526 
1527 		case dmtc_op:
1528 			kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1529 				vcpu->arch.pc, rt, rd, sel);
1530 			trace_kvm_hwr(vcpu, KVM_TRACE_DMTC0,
1531 				      KVM_TRACE_COP0(rd, sel),
1532 				      vcpu->arch.gprs[rt]);
1533 			er = EMULATE_FAIL;
1534 			break;
1535 
1536 		case mfmc0_op:
1537 #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1538 			cop0->stat[MIPS_CP0_STATUS][0]++;
1539 #endif
1540 			if (rt != 0)
1541 				vcpu->arch.gprs[rt] =
1542 				    kvm_read_c0_guest_status(cop0);
1543 			/* EI */
1544 			if (inst.mfmc0_format.sc) {
1545 				kvm_debug("[%#lx] mfmc0_op: EI\n",
1546 					  vcpu->arch.pc);
1547 				kvm_set_c0_guest_status(cop0, ST0_IE);
1548 			} else {
1549 				kvm_debug("[%#lx] mfmc0_op: DI\n",
1550 					  vcpu->arch.pc);
1551 				kvm_clear_c0_guest_status(cop0, ST0_IE);
1552 			}
1553 
1554 			break;
1555 
1556 		case wrpgpr_op:
1557 			{
1558 				u32 css = cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1559 				u32 pss =
1560 				    (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1561 				/*
1562 				 * We don't support any shadow register sets, so
1563 				 * SRSCtl[PSS] == SRSCtl[CSS] = 0
1564 				 */
1565 				if (css || pss) {
1566 					er = EMULATE_FAIL;
1567 					break;
1568 				}
1569 				kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1570 					  vcpu->arch.gprs[rt]);
1571 				vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1572 			}
1573 			break;
1574 		default:
1575 			kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1576 				vcpu->arch.pc, inst.c0r_format.rs);
1577 			er = EMULATE_FAIL;
1578 			break;
1579 		}
1580 	}
1581 
1582 done:
1583 	/* Rollback PC only if emulation was unsuccessful */
1584 	if (er == EMULATE_FAIL)
1585 		vcpu->arch.pc = curr_pc;
1586 
1587 dont_update_pc:
1588 	/*
1589 	 * This is for special instructions whose emulation
1590 	 * updates the PC, so do not overwrite the PC under
1591 	 * any circumstances
1592 	 */
1593 
1594 	return er;
1595 }
1596 
1597 enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
1598 					     u32 cause,
1599 					     struct kvm_vcpu *vcpu)
1600 {
1601 	int r;
1602 	enum emulation_result er;
1603 	u32 rt;
1604 	struct kvm_run *run = vcpu->run;
1605 	void *data = run->mmio.data;
1606 	unsigned int imme;
1607 	unsigned long curr_pc;
1608 
1609 	/*
1610 	 * Update PC and hold onto current PC in case there is
1611 	 * an error and we want to rollback the PC
1612 	 */
1613 	curr_pc = vcpu->arch.pc;
1614 	er = update_pc(vcpu, cause);
1615 	if (er == EMULATE_FAIL)
1616 		return er;
1617 
1618 	rt = inst.i_format.rt;
1619 
1620 	run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1621 						vcpu->arch.host_cp0_badvaddr);
1622 	if (run->mmio.phys_addr == KVM_INVALID_ADDR)
1623 		goto out_fail;
1624 
1625 	switch (inst.i_format.opcode) {
1626 #if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
1627 	case sd_op:
1628 		run->mmio.len = 8;
1629 		*(u64 *)data = vcpu->arch.gprs[rt];
1630 
1631 		kvm_debug("[%#lx] OP_SD: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
1632 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1633 			  vcpu->arch.gprs[rt], *(u64 *)data);
1634 		break;
1635 #endif
1636 
1637 	case sw_op:
1638 		run->mmio.len = 4;
1639 		*(u32 *)data = vcpu->arch.gprs[rt];
1640 
1641 		kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1642 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1643 			  vcpu->arch.gprs[rt], *(u32 *)data);
1644 		break;
1645 
1646 	case sh_op:
1647 		run->mmio.len = 2;
1648 		*(u16 *)data = vcpu->arch.gprs[rt];
1649 
1650 		kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1651 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1652 			  vcpu->arch.gprs[rt], *(u16 *)data);
1653 		break;
1654 
1655 	case sb_op:
1656 		run->mmio.len = 1;
1657 		*(u8 *)data = vcpu->arch.gprs[rt];
1658 
1659 		kvm_debug("[%#lx] OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1660 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1661 			  vcpu->arch.gprs[rt], *(u8 *)data);
1662 		break;
1663 
1664 	case swl_op:
1665 		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1666 					vcpu->arch.host_cp0_badvaddr) & (~0x3);
1667 		run->mmio.len = 4;
1668 		imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1669 		switch (imme) {
1670 		case 0:
1671 			*(u32 *)data = ((*(u32 *)data) & 0xffffff00) |
1672 					(vcpu->arch.gprs[rt] >> 24);
1673 			break;
1674 		case 1:
1675 			*(u32 *)data = ((*(u32 *)data) & 0xffff0000) |
1676 					(vcpu->arch.gprs[rt] >> 16);
1677 			break;
1678 		case 2:
1679 			*(u32 *)data = ((*(u32 *)data) & 0xff000000) |
1680 					(vcpu->arch.gprs[rt] >> 8);
1681 			break;
1682 		case 3:
1683 			*(u32 *)data = vcpu->arch.gprs[rt];
1684 			break;
1685 		default:
1686 			break;
1687 		}
1688 
1689 		kvm_debug("[%#lx] OP_SWL: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1690 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1691 			  vcpu->arch.gprs[rt], *(u32 *)data);
1692 		break;
1693 
1694 	case swr_op:
1695 		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1696 					vcpu->arch.host_cp0_badvaddr) & (~0x3);
1697 		run->mmio.len = 4;
1698 		imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1699 		switch (imme) {
1700 		case 0:
1701 			*(u32 *)data = vcpu->arch.gprs[rt];
1702 			break;
1703 		case 1:
1704 			*(u32 *)data = ((*(u32 *)data) & 0xff) |
1705 					(vcpu->arch.gprs[rt] << 8);
1706 			break;
1707 		case 2:
1708 			*(u32 *)data = ((*(u32 *)data) & 0xffff) |
1709 					(vcpu->arch.gprs[rt] << 16);
1710 			break;
1711 		case 3:
1712 			*(u32 *)data = ((*(u32 *)data) & 0xffffff) |
1713 					(vcpu->arch.gprs[rt] << 24);
1714 			break;
1715 		default:
1716 			break;
1717 		}
1718 
1719 		kvm_debug("[%#lx] OP_SWR: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1720 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1721 			  vcpu->arch.gprs[rt], *(u32 *)data);
1722 		break;
1723 
1724 	case sdl_op:
1725 		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1726 					vcpu->arch.host_cp0_badvaddr) & (~0x7);
1727 
1728 		run->mmio.len = 8;
1729 		imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1730 		switch (imme) {
1731 		case 0:
1732 			*(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff00) |
1733 					((vcpu->arch.gprs[rt] >> 56) & 0xff);
1734 			break;
1735 		case 1:
1736 			*(u64 *)data = ((*(u64 *)data) & 0xffffffffffff0000) |
1737 					((vcpu->arch.gprs[rt] >> 48) & 0xffff);
1738 			break;
1739 		case 2:
1740 			*(u64 *)data = ((*(u64 *)data) & 0xffffffffff000000) |
1741 					((vcpu->arch.gprs[rt] >> 40) & 0xffffff);
1742 			break;
1743 		case 3:
1744 			*(u64 *)data = ((*(u64 *)data) & 0xffffffff00000000) |
1745 					((vcpu->arch.gprs[rt] >> 32) & 0xffffffff);
1746 			break;
1747 		case 4:
1748 			*(u64 *)data = ((*(u64 *)data) & 0xffffff0000000000) |
1749 					((vcpu->arch.gprs[rt] >> 24) & 0xffffffffff);
1750 			break;
1751 		case 5:
1752 			*(u64 *)data = ((*(u64 *)data) & 0xffff000000000000) |
1753 					((vcpu->arch.gprs[rt] >> 16) & 0xffffffffffff);
1754 			break;
1755 		case 6:
1756 			*(u64 *)data = ((*(u64 *)data) & 0xff00000000000000) |
1757 					((vcpu->arch.gprs[rt] >> 8) & 0xffffffffffffff);
1758 			break;
1759 		case 7:
1760 			*(u64 *)data = vcpu->arch.gprs[rt];
1761 			break;
1762 		default:
1763 			break;
1764 		}
1765 
1766 		kvm_debug("[%#lx] OP_SDL: eaddr: %#lx, gpr: %#lx, data: %llx\n",
1767 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1768 			  vcpu->arch.gprs[rt], *(u64 *)data);
1769 		break;
1770 
1771 	case sdr_op:
1772 		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1773 					vcpu->arch.host_cp0_badvaddr) & (~0x7);
1774 
1775 		run->mmio.len = 8;
1776 		imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1777 		switch (imme) {
1778 		case 0:
1779 			*(u64 *)data = vcpu->arch.gprs[rt];
1780 			break;
1781 		case 1:
1782 			*(u64 *)data = ((*(u64 *)data) & 0xff) |
1783 					(vcpu->arch.gprs[rt] << 8);
1784 			break;
1785 		case 2:
1786 			*(u64 *)data = ((*(u64 *)data) & 0xffff) |
1787 					(vcpu->arch.gprs[rt] << 16);
1788 			break;
1789 		case 3:
1790 			*(u64 *)data = ((*(u64 *)data) & 0xffffff) |
1791 					(vcpu->arch.gprs[rt] << 24);
1792 			break;
1793 		case 4:
1794 			*(u64 *)data = ((*(u64 *)data) & 0xffffffff) |
1795 					(vcpu->arch.gprs[rt] << 32);
1796 			break;
1797 		case 5:
1798 			*(u64 *)data = ((*(u64 *)data) & 0xffffffffff) |
1799 					(vcpu->arch.gprs[rt] << 40);
1800 			break;
1801 		case 6:
1802 			*(u64 *)data = ((*(u64 *)data) & 0xffffffffffff) |
1803 					(vcpu->arch.gprs[rt] << 48);
1804 			break;
1805 		case 7:
1806 			*(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff) |
1807 					(vcpu->arch.gprs[rt] << 56);
1808 			break;
1809 		default:
1810 			break;
1811 		}
1812 
1813 		kvm_debug("[%#lx] OP_SDR: eaddr: %#lx, gpr: %#lx, data: %llx\n",
1814 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1815 			  vcpu->arch.gprs[rt], *(u64 *)data);
1816 		break;
1817 
1818 #ifdef CONFIG_CPU_LOONGSON64
1819 	case sdc2_op:
1820 		rt = inst.loongson3_lsdc2_format.rt;
1821 		switch (inst.loongson3_lsdc2_format.opcode1) {
1822 		/*
1823 		 * Loongson-3 overridden sdc2 instructions.
1824 		 * opcode1              instruction
1825 		 *   0x0          gssbx: store 1 bytes from GPR
1826 		 *   0x1          gsshx: store 2 bytes from GPR
1827 		 *   0x2          gsswx: store 4 bytes from GPR
1828 		 *   0x3          gssdx: store 8 bytes from GPR
1829 		 */
1830 		case 0x0:
1831 			run->mmio.len = 1;
1832 			*(u8 *)data = vcpu->arch.gprs[rt];
1833 
1834 			kvm_debug("[%#lx] OP_GSSBX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1835 				  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1836 				  vcpu->arch.gprs[rt], *(u8 *)data);
1837 			break;
1838 		case 0x1:
1839 			run->mmio.len = 2;
1840 			*(u16 *)data = vcpu->arch.gprs[rt];
1841 
1842 			kvm_debug("[%#lx] OP_GSSSHX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1843 				  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1844 				  vcpu->arch.gprs[rt], *(u16 *)data);
1845 			break;
1846 		case 0x2:
1847 			run->mmio.len = 4;
1848 			*(u32 *)data = vcpu->arch.gprs[rt];
1849 
1850 			kvm_debug("[%#lx] OP_GSSWX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1851 				  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1852 				  vcpu->arch.gprs[rt], *(u32 *)data);
1853 			break;
1854 		case 0x3:
1855 			run->mmio.len = 8;
1856 			*(u64 *)data = vcpu->arch.gprs[rt];
1857 
1858 			kvm_debug("[%#lx] OP_GSSDX: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
1859 				  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1860 				  vcpu->arch.gprs[rt], *(u64 *)data);
1861 			break;
1862 		default:
1863 			kvm_err("Godson Extended GS-Store not yet supported (inst=0x%08x)\n",
1864 				inst.word);
1865 			break;
1866 		}
1867 		break;
1868 #endif
1869 	default:
1870 		kvm_err("Store not yet supported (inst=0x%08x)\n",
1871 			inst.word);
1872 		goto out_fail;
1873 	}
1874 
1875 	vcpu->mmio_needed = 1;
1876 	run->mmio.is_write = 1;
1877 	vcpu->mmio_is_write = 1;
1878 
1879 	r = kvm_io_bus_write(vcpu, KVM_MMIO_BUS,
1880 			run->mmio.phys_addr, run->mmio.len, data);
1881 
1882 	if (!r) {
1883 		vcpu->mmio_needed = 0;
1884 		return EMULATE_DONE;
1885 	}
1886 
1887 	return EMULATE_DO_MMIO;
1888 
1889 out_fail:
1890 	/* Rollback PC if emulation was unsuccessful */
1891 	vcpu->arch.pc = curr_pc;
1892 	return EMULATE_FAIL;
1893 }
1894 
1895 enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
1896 					    u32 cause, struct kvm_vcpu *vcpu)
1897 {
1898 	struct kvm_run *run = vcpu->run;
1899 	int r;
1900 	enum emulation_result er;
1901 	unsigned long curr_pc;
1902 	u32 op, rt;
1903 	unsigned int imme;
1904 
1905 	rt = inst.i_format.rt;
1906 	op = inst.i_format.opcode;
1907 
1908 	/*
1909 	 * Find the resume PC now while we have safe and easy access to the
1910 	 * prior branch instruction, and save it for
1911 	 * kvm_mips_complete_mmio_load() to restore later.
1912 	 */
1913 	curr_pc = vcpu->arch.pc;
1914 	er = update_pc(vcpu, cause);
1915 	if (er == EMULATE_FAIL)
1916 		return er;
1917 	vcpu->arch.io_pc = vcpu->arch.pc;
1918 	vcpu->arch.pc = curr_pc;
1919 
1920 	vcpu->arch.io_gpr = rt;
1921 
1922 	run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1923 						vcpu->arch.host_cp0_badvaddr);
1924 	if (run->mmio.phys_addr == KVM_INVALID_ADDR)
1925 		return EMULATE_FAIL;
1926 
1927 	vcpu->mmio_needed = 2;	/* signed */
1928 	switch (op) {
1929 #if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
1930 	case ld_op:
1931 		run->mmio.len = 8;
1932 		break;
1933 
1934 	case lwu_op:
1935 		vcpu->mmio_needed = 1;	/* unsigned */
1936 		/* fall through */
1937 #endif
1938 	case lw_op:
1939 		run->mmio.len = 4;
1940 		break;
1941 
1942 	case lhu_op:
1943 		vcpu->mmio_needed = 1;	/* unsigned */
1944 		fallthrough;
1945 	case lh_op:
1946 		run->mmio.len = 2;
1947 		break;
1948 
1949 	case lbu_op:
1950 		vcpu->mmio_needed = 1;	/* unsigned */
1951 		fallthrough;
1952 	case lb_op:
1953 		run->mmio.len = 1;
1954 		break;
1955 
1956 	case lwl_op:
1957 		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1958 					vcpu->arch.host_cp0_badvaddr) & (~0x3);
1959 
1960 		run->mmio.len = 4;
1961 		imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1962 		switch (imme) {
1963 		case 0:
1964 			vcpu->mmio_needed = 3;	/* 1 byte */
1965 			break;
1966 		case 1:
1967 			vcpu->mmio_needed = 4;	/* 2 bytes */
1968 			break;
1969 		case 2:
1970 			vcpu->mmio_needed = 5;	/* 3 bytes */
1971 			break;
1972 		case 3:
1973 			vcpu->mmio_needed = 6;	/* 4 bytes */
1974 			break;
1975 		default:
1976 			break;
1977 		}
1978 		break;
1979 
1980 	case lwr_op:
1981 		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1982 					vcpu->arch.host_cp0_badvaddr) & (~0x3);
1983 
1984 		run->mmio.len = 4;
1985 		imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1986 		switch (imme) {
1987 		case 0:
1988 			vcpu->mmio_needed = 7;	/* 4 bytes */
1989 			break;
1990 		case 1:
1991 			vcpu->mmio_needed = 8;	/* 3 bytes */
1992 			break;
1993 		case 2:
1994 			vcpu->mmio_needed = 9;	/* 2 bytes */
1995 			break;
1996 		case 3:
1997 			vcpu->mmio_needed = 10;	/* 1 byte */
1998 			break;
1999 		default:
2000 			break;
2001 		}
2002 		break;
2003 
2004 	case ldl_op:
2005 		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
2006 					vcpu->arch.host_cp0_badvaddr) & (~0x7);
2007 
2008 		run->mmio.len = 8;
2009 		imme = vcpu->arch.host_cp0_badvaddr & 0x7;
2010 		switch (imme) {
2011 		case 0:
2012 			vcpu->mmio_needed = 11;	/* 1 byte */
2013 			break;
2014 		case 1:
2015 			vcpu->mmio_needed = 12;	/* 2 bytes */
2016 			break;
2017 		case 2:
2018 			vcpu->mmio_needed = 13;	/* 3 bytes */
2019 			break;
2020 		case 3:
2021 			vcpu->mmio_needed = 14;	/* 4 bytes */
2022 			break;
2023 		case 4:
2024 			vcpu->mmio_needed = 15;	/* 5 bytes */
2025 			break;
2026 		case 5:
2027 			vcpu->mmio_needed = 16;	/* 6 bytes */
2028 			break;
2029 		case 6:
2030 			vcpu->mmio_needed = 17;	/* 7 bytes */
2031 			break;
2032 		case 7:
2033 			vcpu->mmio_needed = 18;	/* 8 bytes */
2034 			break;
2035 		default:
2036 			break;
2037 		}
2038 		break;
2039 
2040 	case ldr_op:
2041 		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
2042 					vcpu->arch.host_cp0_badvaddr) & (~0x7);
2043 
2044 		run->mmio.len = 8;
2045 		imme = vcpu->arch.host_cp0_badvaddr & 0x7;
2046 		switch (imme) {
2047 		case 0:
2048 			vcpu->mmio_needed = 19;	/* 8 bytes */
2049 			break;
2050 		case 1:
2051 			vcpu->mmio_needed = 20;	/* 7 bytes */
2052 			break;
2053 		case 2:
2054 			vcpu->mmio_needed = 21;	/* 6 bytes */
2055 			break;
2056 		case 3:
2057 			vcpu->mmio_needed = 22;	/* 5 bytes */
2058 			break;
2059 		case 4:
2060 			vcpu->mmio_needed = 23;	/* 4 bytes */
2061 			break;
2062 		case 5:
2063 			vcpu->mmio_needed = 24;	/* 3 bytes */
2064 			break;
2065 		case 6:
2066 			vcpu->mmio_needed = 25;	/* 2 bytes */
2067 			break;
2068 		case 7:
2069 			vcpu->mmio_needed = 26;	/* 1 byte */
2070 			break;
2071 		default:
2072 			break;
2073 		}
2074 		break;
2075 
2076 #ifdef CONFIG_CPU_LOONGSON64
2077 	case ldc2_op:
2078 		rt = inst.loongson3_lsdc2_format.rt;
2079 		switch (inst.loongson3_lsdc2_format.opcode1) {
2080 		/*
2081 		 * Loongson-3 overridden ldc2 instructions.
2082 		 * opcode1              instruction
2083 		 *   0x0          gslbx: store 1 bytes from GPR
2084 		 *   0x1          gslhx: store 2 bytes from GPR
2085 		 *   0x2          gslwx: store 4 bytes from GPR
2086 		 *   0x3          gsldx: store 8 bytes from GPR
2087 		 */
2088 		case 0x0:
2089 			run->mmio.len = 1;
2090 			vcpu->mmio_needed = 27;	/* signed */
2091 			break;
2092 		case 0x1:
2093 			run->mmio.len = 2;
2094 			vcpu->mmio_needed = 28;	/* signed */
2095 			break;
2096 		case 0x2:
2097 			run->mmio.len = 4;
2098 			vcpu->mmio_needed = 29;	/* signed */
2099 			break;
2100 		case 0x3:
2101 			run->mmio.len = 8;
2102 			vcpu->mmio_needed = 30;	/* signed */
2103 			break;
2104 		default:
2105 			kvm_err("Godson Extended GS-Load for float not yet supported (inst=0x%08x)\n",
2106 				inst.word);
2107 			break;
2108 		}
2109 		break;
2110 #endif
2111 
2112 	default:
2113 		kvm_err("Load not yet supported (inst=0x%08x)\n",
2114 			inst.word);
2115 		vcpu->mmio_needed = 0;
2116 		return EMULATE_FAIL;
2117 	}
2118 
2119 	run->mmio.is_write = 0;
2120 	vcpu->mmio_is_write = 0;
2121 
2122 	r = kvm_io_bus_read(vcpu, KVM_MMIO_BUS,
2123 			run->mmio.phys_addr, run->mmio.len, run->mmio.data);
2124 
2125 	if (!r) {
2126 		kvm_mips_complete_mmio_load(vcpu, run);
2127 		vcpu->mmio_needed = 0;
2128 		return EMULATE_DONE;
2129 	}
2130 
2131 	return EMULATE_DO_MMIO;
2132 }
2133 
2134 #ifndef CONFIG_KVM_MIPS_VZ
2135 static enum emulation_result kvm_mips_guest_cache_op(int (*fn)(unsigned long),
2136 						     unsigned long curr_pc,
2137 						     unsigned long addr,
2138 						     struct kvm_vcpu *vcpu,
2139 						     u32 cause)
2140 {
2141 	int err;
2142 
2143 	for (;;) {
2144 		/* Carefully attempt the cache operation */
2145 		kvm_trap_emul_gva_lockless_begin(vcpu);
2146 		err = fn(addr);
2147 		kvm_trap_emul_gva_lockless_end(vcpu);
2148 
2149 		if (likely(!err))
2150 			return EMULATE_DONE;
2151 
2152 		/*
2153 		 * Try to handle the fault and retry, maybe we just raced with a
2154 		 * GVA invalidation.
2155 		 */
2156 		switch (kvm_trap_emul_gva_fault(vcpu, addr, false)) {
2157 		case KVM_MIPS_GVA:
2158 		case KVM_MIPS_GPA:
2159 			/* bad virtual or physical address */
2160 			return EMULATE_FAIL;
2161 		case KVM_MIPS_TLB:
2162 			/* no matching guest TLB */
2163 			vcpu->arch.host_cp0_badvaddr = addr;
2164 			vcpu->arch.pc = curr_pc;
2165 			kvm_mips_emulate_tlbmiss_ld(cause, NULL, vcpu);
2166 			return EMULATE_EXCEPT;
2167 		case KVM_MIPS_TLBINV:
2168 			/* invalid matching guest TLB */
2169 			vcpu->arch.host_cp0_badvaddr = addr;
2170 			vcpu->arch.pc = curr_pc;
2171 			kvm_mips_emulate_tlbinv_ld(cause, NULL, vcpu);
2172 			return EMULATE_EXCEPT;
2173 		default:
2174 			break;
2175 		}
2176 	}
2177 }
2178 
2179 enum emulation_result kvm_mips_emulate_cache(union mips_instruction inst,
2180 					     u32 *opc, u32 cause,
2181 					     struct kvm_vcpu *vcpu)
2182 {
2183 	enum emulation_result er = EMULATE_DONE;
2184 	u32 cache, op_inst, op, base;
2185 	s16 offset;
2186 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2187 	unsigned long va;
2188 	unsigned long curr_pc;
2189 
2190 	/*
2191 	 * Update PC and hold onto current PC in case there is
2192 	 * an error and we want to rollback the PC
2193 	 */
2194 	curr_pc = vcpu->arch.pc;
2195 	er = update_pc(vcpu, cause);
2196 	if (er == EMULATE_FAIL)
2197 		return er;
2198 
2199 	base = inst.i_format.rs;
2200 	op_inst = inst.i_format.rt;
2201 	if (cpu_has_mips_r6)
2202 		offset = inst.spec3_format.simmediate;
2203 	else
2204 		offset = inst.i_format.simmediate;
2205 	cache = op_inst & CacheOp_Cache;
2206 	op = op_inst & CacheOp_Op;
2207 
2208 	va = arch->gprs[base] + offset;
2209 
2210 	kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
2211 		  cache, op, base, arch->gprs[base], offset);
2212 
2213 	/*
2214 	 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
2215 	 * invalidate the caches entirely by stepping through all the
2216 	 * ways/indexes
2217 	 */
2218 	if (op == Index_Writeback_Inv) {
2219 		kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
2220 			  vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
2221 			  arch->gprs[base], offset);
2222 
2223 		if (cache == Cache_D) {
2224 #ifdef CONFIG_CPU_R4K_CACHE_TLB
2225 			r4k_blast_dcache();
2226 #else
2227 			switch (boot_cpu_type()) {
2228 			case CPU_CAVIUM_OCTEON3:
2229 				/* locally flush icache */
2230 				local_flush_icache_range(0, 0);
2231 				break;
2232 			default:
2233 				__flush_cache_all();
2234 				break;
2235 			}
2236 #endif
2237 		} else if (cache == Cache_I) {
2238 #ifdef CONFIG_CPU_R4K_CACHE_TLB
2239 			r4k_blast_icache();
2240 #else
2241 			switch (boot_cpu_type()) {
2242 			case CPU_CAVIUM_OCTEON3:
2243 				/* locally flush icache */
2244 				local_flush_icache_range(0, 0);
2245 				break;
2246 			default:
2247 				flush_icache_all();
2248 				break;
2249 			}
2250 #endif
2251 		} else {
2252 			kvm_err("%s: unsupported CACHE INDEX operation\n",
2253 				__func__);
2254 			return EMULATE_FAIL;
2255 		}
2256 
2257 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
2258 		kvm_mips_trans_cache_index(inst, opc, vcpu);
2259 #endif
2260 		goto done;
2261 	}
2262 
2263 	/* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
2264 	if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
2265 		/*
2266 		 * Perform the dcache part of icache synchronisation on the
2267 		 * guest's behalf.
2268 		 */
2269 		er = kvm_mips_guest_cache_op(protected_writeback_dcache_line,
2270 					     curr_pc, va, vcpu, cause);
2271 		if (er != EMULATE_DONE)
2272 			goto done;
2273 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
2274 		/*
2275 		 * Replace the CACHE instruction, with a SYNCI, not the same,
2276 		 * but avoids a trap
2277 		 */
2278 		kvm_mips_trans_cache_va(inst, opc, vcpu);
2279 #endif
2280 	} else if (op_inst == Hit_Invalidate_I) {
2281 		/* Perform the icache synchronisation on the guest's behalf */
2282 		er = kvm_mips_guest_cache_op(protected_writeback_dcache_line,
2283 					     curr_pc, va, vcpu, cause);
2284 		if (er != EMULATE_DONE)
2285 			goto done;
2286 		er = kvm_mips_guest_cache_op(protected_flush_icache_line,
2287 					     curr_pc, va, vcpu, cause);
2288 		if (er != EMULATE_DONE)
2289 			goto done;
2290 
2291 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
2292 		/* Replace the CACHE instruction, with a SYNCI */
2293 		kvm_mips_trans_cache_va(inst, opc, vcpu);
2294 #endif
2295 	} else {
2296 		kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
2297 			cache, op, base, arch->gprs[base], offset);
2298 		er = EMULATE_FAIL;
2299 	}
2300 
2301 done:
2302 	/* Rollback PC only if emulation was unsuccessful */
2303 	if (er == EMULATE_FAIL)
2304 		vcpu->arch.pc = curr_pc;
2305 	/* Guest exception needs guest to resume */
2306 	if (er == EMULATE_EXCEPT)
2307 		er = EMULATE_DONE;
2308 
2309 	return er;
2310 }
2311 
2312 enum emulation_result kvm_mips_emulate_inst(u32 cause, u32 *opc,
2313 					    struct kvm_vcpu *vcpu)
2314 {
2315 	union mips_instruction inst;
2316 	enum emulation_result er = EMULATE_DONE;
2317 	int err;
2318 
2319 	/* Fetch the instruction. */
2320 	if (cause & CAUSEF_BD)
2321 		opc += 1;
2322 	err = kvm_get_badinstr(opc, vcpu, &inst.word);
2323 	if (err)
2324 		return EMULATE_FAIL;
2325 
2326 	switch (inst.r_format.opcode) {
2327 	case cop0_op:
2328 		er = kvm_mips_emulate_CP0(inst, opc, cause, vcpu);
2329 		break;
2330 
2331 #ifndef CONFIG_CPU_MIPSR6
2332 	case cache_op:
2333 		++vcpu->stat.cache_exits;
2334 		trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
2335 		er = kvm_mips_emulate_cache(inst, opc, cause, vcpu);
2336 		break;
2337 #else
2338 	case spec3_op:
2339 		switch (inst.spec3_format.func) {
2340 		case cache6_op:
2341 			++vcpu->stat.cache_exits;
2342 			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
2343 			er = kvm_mips_emulate_cache(inst, opc, cause,
2344 						    vcpu);
2345 			break;
2346 		default:
2347 			goto unknown;
2348 		}
2349 		break;
2350 unknown:
2351 #endif
2352 
2353 	default:
2354 		kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
2355 			inst.word);
2356 		kvm_arch_vcpu_dump_regs(vcpu);
2357 		er = EMULATE_FAIL;
2358 		break;
2359 	}
2360 
2361 	return er;
2362 }
2363 #endif /* CONFIG_KVM_MIPS_VZ */
2364 
2365 /**
2366  * kvm_mips_guest_exception_base() - Find guest exception vector base address.
2367  *
2368  * Returns:	The base address of the current guest exception vector, taking
2369  *		both Guest.CP0_Status.BEV and Guest.CP0_EBase into account.
2370  */
2371 long kvm_mips_guest_exception_base(struct kvm_vcpu *vcpu)
2372 {
2373 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2374 
2375 	if (kvm_read_c0_guest_status(cop0) & ST0_BEV)
2376 		return KVM_GUEST_CKSEG1ADDR(0x1fc00200);
2377 	else
2378 		return kvm_read_c0_guest_ebase(cop0) & MIPS_EBASE_BASE;
2379 }
2380 
2381 enum emulation_result kvm_mips_emulate_syscall(u32 cause,
2382 					       u32 *opc,
2383 					       struct kvm_vcpu *vcpu)
2384 {
2385 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2386 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2387 	enum emulation_result er = EMULATE_DONE;
2388 
2389 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2390 		/* save old pc */
2391 		kvm_write_c0_guest_epc(cop0, arch->pc);
2392 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2393 
2394 		if (cause & CAUSEF_BD)
2395 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2396 		else
2397 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2398 
2399 		kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
2400 
2401 		kvm_change_c0_guest_cause(cop0, (0xff),
2402 					  (EXCCODE_SYS << CAUSEB_EXCCODE));
2403 
2404 		/* Set PC to the exception entry point */
2405 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2406 
2407 	} else {
2408 		kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
2409 		er = EMULATE_FAIL;
2410 	}
2411 
2412 	return er;
2413 }
2414 
2415 enum emulation_result kvm_mips_emulate_tlbmiss_ld(u32 cause,
2416 						  u32 *opc,
2417 						  struct kvm_vcpu *vcpu)
2418 {
2419 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2420 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2421 	unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) |
2422 			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2423 
2424 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2425 		/* save old pc */
2426 		kvm_write_c0_guest_epc(cop0, arch->pc);
2427 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2428 
2429 		if (cause & CAUSEF_BD)
2430 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2431 		else
2432 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2433 
2434 		kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
2435 			  arch->pc);
2436 
2437 		/* set pc to the exception entry point */
2438 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0;
2439 
2440 	} else {
2441 		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
2442 			  arch->pc);
2443 
2444 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2445 	}
2446 
2447 	kvm_change_c0_guest_cause(cop0, (0xff),
2448 				  (EXCCODE_TLBL << CAUSEB_EXCCODE));
2449 
2450 	/* setup badvaddr, context and entryhi registers for the guest */
2451 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2452 	/* XXXKYMA: is the context register used by linux??? */
2453 	kvm_write_c0_guest_entryhi(cop0, entryhi);
2454 
2455 	return EMULATE_DONE;
2456 }
2457 
2458 enum emulation_result kvm_mips_emulate_tlbinv_ld(u32 cause,
2459 						 u32 *opc,
2460 						 struct kvm_vcpu *vcpu)
2461 {
2462 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2463 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2464 	unsigned long entryhi =
2465 		(vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2466 		(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2467 
2468 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2469 		/* save old pc */
2470 		kvm_write_c0_guest_epc(cop0, arch->pc);
2471 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2472 
2473 		if (cause & CAUSEF_BD)
2474 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2475 		else
2476 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2477 
2478 		kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
2479 			  arch->pc);
2480 	} else {
2481 		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
2482 			  arch->pc);
2483 	}
2484 
2485 	/* set pc to the exception entry point */
2486 	arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2487 
2488 	kvm_change_c0_guest_cause(cop0, (0xff),
2489 				  (EXCCODE_TLBL << CAUSEB_EXCCODE));
2490 
2491 	/* setup badvaddr, context and entryhi registers for the guest */
2492 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2493 	/* XXXKYMA: is the context register used by linux??? */
2494 	kvm_write_c0_guest_entryhi(cop0, entryhi);
2495 
2496 	return EMULATE_DONE;
2497 }
2498 
2499 enum emulation_result kvm_mips_emulate_tlbmiss_st(u32 cause,
2500 						  u32 *opc,
2501 						  struct kvm_vcpu *vcpu)
2502 {
2503 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2504 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2505 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2506 			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2507 
2508 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2509 		/* save old pc */
2510 		kvm_write_c0_guest_epc(cop0, arch->pc);
2511 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2512 
2513 		if (cause & CAUSEF_BD)
2514 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2515 		else
2516 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2517 
2518 		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2519 			  arch->pc);
2520 
2521 		/* Set PC to the exception entry point */
2522 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0;
2523 	} else {
2524 		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2525 			  arch->pc);
2526 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2527 	}
2528 
2529 	kvm_change_c0_guest_cause(cop0, (0xff),
2530 				  (EXCCODE_TLBS << CAUSEB_EXCCODE));
2531 
2532 	/* setup badvaddr, context and entryhi registers for the guest */
2533 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2534 	/* XXXKYMA: is the context register used by linux??? */
2535 	kvm_write_c0_guest_entryhi(cop0, entryhi);
2536 
2537 	return EMULATE_DONE;
2538 }
2539 
2540 enum emulation_result kvm_mips_emulate_tlbinv_st(u32 cause,
2541 						 u32 *opc,
2542 						 struct kvm_vcpu *vcpu)
2543 {
2544 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2545 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2546 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2547 		(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2548 
2549 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2550 		/* save old pc */
2551 		kvm_write_c0_guest_epc(cop0, arch->pc);
2552 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2553 
2554 		if (cause & CAUSEF_BD)
2555 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2556 		else
2557 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2558 
2559 		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2560 			  arch->pc);
2561 	} else {
2562 		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2563 			  arch->pc);
2564 	}
2565 
2566 	/* Set PC to the exception entry point */
2567 	arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2568 
2569 	kvm_change_c0_guest_cause(cop0, (0xff),
2570 				  (EXCCODE_TLBS << CAUSEB_EXCCODE));
2571 
2572 	/* setup badvaddr, context and entryhi registers for the guest */
2573 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2574 	/* XXXKYMA: is the context register used by linux??? */
2575 	kvm_write_c0_guest_entryhi(cop0, entryhi);
2576 
2577 	return EMULATE_DONE;
2578 }
2579 
2580 enum emulation_result kvm_mips_emulate_tlbmod(u32 cause,
2581 					      u32 *opc,
2582 					      struct kvm_vcpu *vcpu)
2583 {
2584 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2585 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2586 			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2587 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2588 
2589 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2590 		/* save old pc */
2591 		kvm_write_c0_guest_epc(cop0, arch->pc);
2592 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2593 
2594 		if (cause & CAUSEF_BD)
2595 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2596 		else
2597 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2598 
2599 		kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2600 			  arch->pc);
2601 	} else {
2602 		kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2603 			  arch->pc);
2604 	}
2605 
2606 	arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2607 
2608 	kvm_change_c0_guest_cause(cop0, (0xff),
2609 				  (EXCCODE_MOD << CAUSEB_EXCCODE));
2610 
2611 	/* setup badvaddr, context and entryhi registers for the guest */
2612 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2613 	/* XXXKYMA: is the context register used by linux??? */
2614 	kvm_write_c0_guest_entryhi(cop0, entryhi);
2615 
2616 	return EMULATE_DONE;
2617 }
2618 
2619 enum emulation_result kvm_mips_emulate_fpu_exc(u32 cause,
2620 					       u32 *opc,
2621 					       struct kvm_vcpu *vcpu)
2622 {
2623 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2624 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2625 
2626 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2627 		/* save old pc */
2628 		kvm_write_c0_guest_epc(cop0, arch->pc);
2629 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2630 
2631 		if (cause & CAUSEF_BD)
2632 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2633 		else
2634 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2635 
2636 	}
2637 
2638 	arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2639 
2640 	kvm_change_c0_guest_cause(cop0, (0xff),
2641 				  (EXCCODE_CPU << CAUSEB_EXCCODE));
2642 	kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2643 
2644 	return EMULATE_DONE;
2645 }
2646 
2647 enum emulation_result kvm_mips_emulate_ri_exc(u32 cause,
2648 					      u32 *opc,
2649 					      struct kvm_vcpu *vcpu)
2650 {
2651 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2652 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2653 	enum emulation_result er = EMULATE_DONE;
2654 
2655 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2656 		/* save old pc */
2657 		kvm_write_c0_guest_epc(cop0, arch->pc);
2658 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2659 
2660 		if (cause & CAUSEF_BD)
2661 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2662 		else
2663 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2664 
2665 		kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2666 
2667 		kvm_change_c0_guest_cause(cop0, (0xff),
2668 					  (EXCCODE_RI << CAUSEB_EXCCODE));
2669 
2670 		/* Set PC to the exception entry point */
2671 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2672 
2673 	} else {
2674 		kvm_err("Trying to deliver RI when EXL is already set\n");
2675 		er = EMULATE_FAIL;
2676 	}
2677 
2678 	return er;
2679 }
2680 
2681 enum emulation_result kvm_mips_emulate_bp_exc(u32 cause,
2682 					      u32 *opc,
2683 					      struct kvm_vcpu *vcpu)
2684 {
2685 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2686 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2687 	enum emulation_result er = EMULATE_DONE;
2688 
2689 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2690 		/* save old pc */
2691 		kvm_write_c0_guest_epc(cop0, arch->pc);
2692 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2693 
2694 		if (cause & CAUSEF_BD)
2695 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2696 		else
2697 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2698 
2699 		kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2700 
2701 		kvm_change_c0_guest_cause(cop0, (0xff),
2702 					  (EXCCODE_BP << CAUSEB_EXCCODE));
2703 
2704 		/* Set PC to the exception entry point */
2705 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2706 
2707 	} else {
2708 		kvm_err("Trying to deliver BP when EXL is already set\n");
2709 		er = EMULATE_FAIL;
2710 	}
2711 
2712 	return er;
2713 }
2714 
2715 enum emulation_result kvm_mips_emulate_trap_exc(u32 cause,
2716 						u32 *opc,
2717 						struct kvm_vcpu *vcpu)
2718 {
2719 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2720 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2721 	enum emulation_result er = EMULATE_DONE;
2722 
2723 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2724 		/* save old pc */
2725 		kvm_write_c0_guest_epc(cop0, arch->pc);
2726 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2727 
2728 		if (cause & CAUSEF_BD)
2729 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2730 		else
2731 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2732 
2733 		kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2734 
2735 		kvm_change_c0_guest_cause(cop0, (0xff),
2736 					  (EXCCODE_TR << CAUSEB_EXCCODE));
2737 
2738 		/* Set PC to the exception entry point */
2739 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2740 
2741 	} else {
2742 		kvm_err("Trying to deliver TRAP when EXL is already set\n");
2743 		er = EMULATE_FAIL;
2744 	}
2745 
2746 	return er;
2747 }
2748 
2749 enum emulation_result kvm_mips_emulate_msafpe_exc(u32 cause,
2750 						  u32 *opc,
2751 						  struct kvm_vcpu *vcpu)
2752 {
2753 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2754 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2755 	enum emulation_result er = EMULATE_DONE;
2756 
2757 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2758 		/* save old pc */
2759 		kvm_write_c0_guest_epc(cop0, arch->pc);
2760 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2761 
2762 		if (cause & CAUSEF_BD)
2763 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2764 		else
2765 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2766 
2767 		kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2768 
2769 		kvm_change_c0_guest_cause(cop0, (0xff),
2770 					  (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
2771 
2772 		/* Set PC to the exception entry point */
2773 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2774 
2775 	} else {
2776 		kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2777 		er = EMULATE_FAIL;
2778 	}
2779 
2780 	return er;
2781 }
2782 
2783 enum emulation_result kvm_mips_emulate_fpe_exc(u32 cause,
2784 					       u32 *opc,
2785 					       struct kvm_vcpu *vcpu)
2786 {
2787 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2788 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2789 	enum emulation_result er = EMULATE_DONE;
2790 
2791 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2792 		/* save old pc */
2793 		kvm_write_c0_guest_epc(cop0, arch->pc);
2794 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2795 
2796 		if (cause & CAUSEF_BD)
2797 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2798 		else
2799 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2800 
2801 		kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2802 
2803 		kvm_change_c0_guest_cause(cop0, (0xff),
2804 					  (EXCCODE_FPE << CAUSEB_EXCCODE));
2805 
2806 		/* Set PC to the exception entry point */
2807 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2808 
2809 	} else {
2810 		kvm_err("Trying to deliver FPE when EXL is already set\n");
2811 		er = EMULATE_FAIL;
2812 	}
2813 
2814 	return er;
2815 }
2816 
2817 enum emulation_result kvm_mips_emulate_msadis_exc(u32 cause,
2818 						  u32 *opc,
2819 						  struct kvm_vcpu *vcpu)
2820 {
2821 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2822 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2823 	enum emulation_result er = EMULATE_DONE;
2824 
2825 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2826 		/* save old pc */
2827 		kvm_write_c0_guest_epc(cop0, arch->pc);
2828 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2829 
2830 		if (cause & CAUSEF_BD)
2831 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2832 		else
2833 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2834 
2835 		kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2836 
2837 		kvm_change_c0_guest_cause(cop0, (0xff),
2838 					  (EXCCODE_MSADIS << CAUSEB_EXCCODE));
2839 
2840 		/* Set PC to the exception entry point */
2841 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2842 
2843 	} else {
2844 		kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2845 		er = EMULATE_FAIL;
2846 	}
2847 
2848 	return er;
2849 }
2850 
2851 enum emulation_result kvm_mips_handle_ri(u32 cause, u32 *opc,
2852 					 struct kvm_vcpu *vcpu)
2853 {
2854 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2855 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2856 	enum emulation_result er = EMULATE_DONE;
2857 	unsigned long curr_pc;
2858 	union mips_instruction inst;
2859 	int err;
2860 
2861 	/*
2862 	 * Update PC and hold onto current PC in case there is
2863 	 * an error and we want to rollback the PC
2864 	 */
2865 	curr_pc = vcpu->arch.pc;
2866 	er = update_pc(vcpu, cause);
2867 	if (er == EMULATE_FAIL)
2868 		return er;
2869 
2870 	/* Fetch the instruction. */
2871 	if (cause & CAUSEF_BD)
2872 		opc += 1;
2873 	err = kvm_get_badinstr(opc, vcpu, &inst.word);
2874 	if (err) {
2875 		kvm_err("%s: Cannot get inst @ %p (%d)\n", __func__, opc, err);
2876 		return EMULATE_FAIL;
2877 	}
2878 
2879 	if (inst.r_format.opcode == spec3_op &&
2880 	    inst.r_format.func == rdhwr_op &&
2881 	    inst.r_format.rs == 0 &&
2882 	    (inst.r_format.re >> 3) == 0) {
2883 		int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2884 		int rd = inst.r_format.rd;
2885 		int rt = inst.r_format.rt;
2886 		int sel = inst.r_format.re & 0x7;
2887 
2888 		/* If usermode, check RDHWR rd is allowed by guest HWREna */
2889 		if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2890 			kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2891 				  rd, opc);
2892 			goto emulate_ri;
2893 		}
2894 		switch (rd) {
2895 		case MIPS_HWR_CPUNUM:		/* CPU number */
2896 			arch->gprs[rt] = vcpu->vcpu_id;
2897 			break;
2898 		case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
2899 			arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2900 					     current_cpu_data.icache.linesz);
2901 			break;
2902 		case MIPS_HWR_CC:		/* Read count register */
2903 			arch->gprs[rt] = (s32)kvm_mips_read_count(vcpu);
2904 			break;
2905 		case MIPS_HWR_CCRES:		/* Count register resolution */
2906 			switch (current_cpu_data.cputype) {
2907 			case CPU_20KC:
2908 			case CPU_25KF:
2909 				arch->gprs[rt] = 1;
2910 				break;
2911 			default:
2912 				arch->gprs[rt] = 2;
2913 			}
2914 			break;
2915 		case MIPS_HWR_ULR:		/* Read UserLocal register */
2916 			arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2917 			break;
2918 
2919 		default:
2920 			kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2921 			goto emulate_ri;
2922 		}
2923 
2924 		trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, KVM_TRACE_HWR(rd, sel),
2925 			      vcpu->arch.gprs[rt]);
2926 	} else {
2927 		kvm_debug("Emulate RI not supported @ %p: %#x\n",
2928 			  opc, inst.word);
2929 		goto emulate_ri;
2930 	}
2931 
2932 	return EMULATE_DONE;
2933 
2934 emulate_ri:
2935 	/*
2936 	 * Rollback PC (if in branch delay slot then the PC already points to
2937 	 * branch target), and pass the RI exception to the guest OS.
2938 	 */
2939 	vcpu->arch.pc = curr_pc;
2940 	return kvm_mips_emulate_ri_exc(cause, opc, vcpu);
2941 }
2942 
2943 enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu)
2944 {
2945 	struct kvm_run *run = vcpu->run;
2946 	unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2947 	enum emulation_result er = EMULATE_DONE;
2948 
2949 	if (run->mmio.len > sizeof(*gpr)) {
2950 		kvm_err("Bad MMIO length: %d", run->mmio.len);
2951 		er = EMULATE_FAIL;
2952 		goto done;
2953 	}
2954 
2955 	/* Restore saved resume PC */
2956 	vcpu->arch.pc = vcpu->arch.io_pc;
2957 
2958 	switch (run->mmio.len) {
2959 	case 8:
2960 		switch (vcpu->mmio_needed) {
2961 		case 11:
2962 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff) |
2963 				(((*(s64 *)run->mmio.data) & 0xff) << 56);
2964 			break;
2965 		case 12:
2966 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff) |
2967 				(((*(s64 *)run->mmio.data) & 0xffff) << 48);
2968 			break;
2969 		case 13:
2970 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff) |
2971 				(((*(s64 *)run->mmio.data) & 0xffffff) << 40);
2972 			break;
2973 		case 14:
2974 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff) |
2975 				(((*(s64 *)run->mmio.data) & 0xffffffff) << 32);
2976 			break;
2977 		case 15:
2978 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) |
2979 				(((*(s64 *)run->mmio.data) & 0xffffffffff) << 24);
2980 			break;
2981 		case 16:
2982 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) |
2983 				(((*(s64 *)run->mmio.data) & 0xffffffffffff) << 16);
2984 			break;
2985 		case 17:
2986 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) |
2987 				(((*(s64 *)run->mmio.data) & 0xffffffffffffff) << 8);
2988 			break;
2989 		case 18:
2990 		case 19:
2991 			*gpr = *(s64 *)run->mmio.data;
2992 			break;
2993 		case 20:
2994 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff00000000000000) |
2995 				((((*(s64 *)run->mmio.data)) >> 8) & 0xffffffffffffff);
2996 			break;
2997 		case 21:
2998 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff000000000000) |
2999 				((((*(s64 *)run->mmio.data)) >> 16) & 0xffffffffffff);
3000 			break;
3001 		case 22:
3002 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff0000000000) |
3003 				((((*(s64 *)run->mmio.data)) >> 24) & 0xffffffffff);
3004 			break;
3005 		case 23:
3006 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff00000000) |
3007 				((((*(s64 *)run->mmio.data)) >> 32) & 0xffffffff);
3008 			break;
3009 		case 24:
3010 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff000000) |
3011 				((((*(s64 *)run->mmio.data)) >> 40) & 0xffffff);
3012 			break;
3013 		case 25:
3014 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff0000) |
3015 				((((*(s64 *)run->mmio.data)) >> 48) & 0xffff);
3016 			break;
3017 		case 26:
3018 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff00) |
3019 				((((*(s64 *)run->mmio.data)) >> 56) & 0xff);
3020 			break;
3021 		default:
3022 			*gpr = *(s64 *)run->mmio.data;
3023 		}
3024 		break;
3025 
3026 	case 4:
3027 		switch (vcpu->mmio_needed) {
3028 		case 1:
3029 			*gpr = *(u32 *)run->mmio.data;
3030 			break;
3031 		case 2:
3032 			*gpr = *(s32 *)run->mmio.data;
3033 			break;
3034 		case 3:
3035 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) |
3036 				(((*(s32 *)run->mmio.data) & 0xff) << 24);
3037 			break;
3038 		case 4:
3039 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) |
3040 				(((*(s32 *)run->mmio.data) & 0xffff) << 16);
3041 			break;
3042 		case 5:
3043 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) |
3044 				(((*(s32 *)run->mmio.data) & 0xffffff) << 8);
3045 			break;
3046 		case 6:
3047 		case 7:
3048 			*gpr = *(s32 *)run->mmio.data;
3049 			break;
3050 		case 8:
3051 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff000000) |
3052 				((((*(s32 *)run->mmio.data)) >> 8) & 0xffffff);
3053 			break;
3054 		case 9:
3055 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff0000) |
3056 				((((*(s32 *)run->mmio.data)) >> 16) & 0xffff);
3057 			break;
3058 		case 10:
3059 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff00) |
3060 				((((*(s32 *)run->mmio.data)) >> 24) & 0xff);
3061 			break;
3062 		default:
3063 			*gpr = *(s32 *)run->mmio.data;
3064 		}
3065 		break;
3066 
3067 	case 2:
3068 		if (vcpu->mmio_needed == 1)
3069 			*gpr = *(u16 *)run->mmio.data;
3070 		else
3071 			*gpr = *(s16 *)run->mmio.data;
3072 
3073 		break;
3074 	case 1:
3075 		if (vcpu->mmio_needed == 1)
3076 			*gpr = *(u8 *)run->mmio.data;
3077 		else
3078 			*gpr = *(s8 *)run->mmio.data;
3079 		break;
3080 	}
3081 
3082 done:
3083 	return er;
3084 }
3085 
3086 static enum emulation_result kvm_mips_emulate_exc(u32 cause,
3087 						  u32 *opc,
3088 						  struct kvm_vcpu *vcpu)
3089 {
3090 	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
3091 	struct mips_coproc *cop0 = vcpu->arch.cop0;
3092 	struct kvm_vcpu_arch *arch = &vcpu->arch;
3093 	enum emulation_result er = EMULATE_DONE;
3094 
3095 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
3096 		/* save old pc */
3097 		kvm_write_c0_guest_epc(cop0, arch->pc);
3098 		kvm_set_c0_guest_status(cop0, ST0_EXL);
3099 
3100 		if (cause & CAUSEF_BD)
3101 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
3102 		else
3103 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
3104 
3105 		kvm_change_c0_guest_cause(cop0, (0xff),
3106 					  (exccode << CAUSEB_EXCCODE));
3107 
3108 		/* Set PC to the exception entry point */
3109 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
3110 		kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
3111 
3112 		kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
3113 			  exccode, kvm_read_c0_guest_epc(cop0),
3114 			  kvm_read_c0_guest_badvaddr(cop0));
3115 	} else {
3116 		kvm_err("Trying to deliver EXC when EXL is already set\n");
3117 		er = EMULATE_FAIL;
3118 	}
3119 
3120 	return er;
3121 }
3122 
3123 enum emulation_result kvm_mips_check_privilege(u32 cause,
3124 					       u32 *opc,
3125 					       struct kvm_vcpu *vcpu)
3126 {
3127 	enum emulation_result er = EMULATE_DONE;
3128 	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
3129 	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
3130 
3131 	int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
3132 
3133 	if (usermode) {
3134 		switch (exccode) {
3135 		case EXCCODE_INT:
3136 		case EXCCODE_SYS:
3137 		case EXCCODE_BP:
3138 		case EXCCODE_RI:
3139 		case EXCCODE_TR:
3140 		case EXCCODE_MSAFPE:
3141 		case EXCCODE_FPE:
3142 		case EXCCODE_MSADIS:
3143 			break;
3144 
3145 		case EXCCODE_CPU:
3146 			if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
3147 				er = EMULATE_PRIV_FAIL;
3148 			break;
3149 
3150 		case EXCCODE_MOD:
3151 			break;
3152 
3153 		case EXCCODE_TLBL:
3154 			/*
3155 			 * We we are accessing Guest kernel space, then send an
3156 			 * address error exception to the guest
3157 			 */
3158 			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
3159 				kvm_debug("%s: LD MISS @ %#lx\n", __func__,
3160 					  badvaddr);
3161 				cause &= ~0xff;
3162 				cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
3163 				er = EMULATE_PRIV_FAIL;
3164 			}
3165 			break;
3166 
3167 		case EXCCODE_TLBS:
3168 			/*
3169 			 * We we are accessing Guest kernel space, then send an
3170 			 * address error exception to the guest
3171 			 */
3172 			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
3173 				kvm_debug("%s: ST MISS @ %#lx\n", __func__,
3174 					  badvaddr);
3175 				cause &= ~0xff;
3176 				cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
3177 				er = EMULATE_PRIV_FAIL;
3178 			}
3179 			break;
3180 
3181 		case EXCCODE_ADES:
3182 			kvm_debug("%s: address error ST @ %#lx\n", __func__,
3183 				  badvaddr);
3184 			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
3185 				cause &= ~0xff;
3186 				cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
3187 			}
3188 			er = EMULATE_PRIV_FAIL;
3189 			break;
3190 		case EXCCODE_ADEL:
3191 			kvm_debug("%s: address error LD @ %#lx\n", __func__,
3192 				  badvaddr);
3193 			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
3194 				cause &= ~0xff;
3195 				cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
3196 			}
3197 			er = EMULATE_PRIV_FAIL;
3198 			break;
3199 		default:
3200 			er = EMULATE_PRIV_FAIL;
3201 			break;
3202 		}
3203 	}
3204 
3205 	if (er == EMULATE_PRIV_FAIL)
3206 		kvm_mips_emulate_exc(cause, opc, vcpu);
3207 
3208 	return er;
3209 }
3210 
3211 /*
3212  * User Address (UA) fault, this could happen if
3213  * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
3214  *     case we pass on the fault to the guest kernel and let it handle it.
3215  * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
3216  *     case we inject the TLB from the Guest TLB into the shadow host TLB
3217  */
3218 enum emulation_result kvm_mips_handle_tlbmiss(u32 cause,
3219 					      u32 *opc,
3220 					      struct kvm_vcpu *vcpu,
3221 					      bool write_fault)
3222 {
3223 	enum emulation_result er = EMULATE_DONE;
3224 	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
3225 	unsigned long va = vcpu->arch.host_cp0_badvaddr;
3226 	int index;
3227 
3228 	kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n",
3229 		  vcpu->arch.host_cp0_badvaddr);
3230 
3231 	/*
3232 	 * KVM would not have got the exception if this entry was valid in the
3233 	 * shadow host TLB. Check the Guest TLB, if the entry is not there then
3234 	 * send the guest an exception. The guest exc handler should then inject
3235 	 * an entry into the guest TLB.
3236 	 */
3237 	index = kvm_mips_guest_tlb_lookup(vcpu,
3238 		      (va & VPN2_MASK) |
3239 		      (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) &
3240 		       KVM_ENTRYHI_ASID));
3241 	if (index < 0) {
3242 		if (exccode == EXCCODE_TLBL) {
3243 			er = kvm_mips_emulate_tlbmiss_ld(cause, opc, vcpu);
3244 		} else if (exccode == EXCCODE_TLBS) {
3245 			er = kvm_mips_emulate_tlbmiss_st(cause, opc, vcpu);
3246 		} else {
3247 			kvm_err("%s: invalid exc code: %d\n", __func__,
3248 				exccode);
3249 			er = EMULATE_FAIL;
3250 		}
3251 	} else {
3252 		struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
3253 
3254 		/*
3255 		 * Check if the entry is valid, if not then setup a TLB invalid
3256 		 * exception to the guest
3257 		 */
3258 		if (!TLB_IS_VALID(*tlb, va)) {
3259 			if (exccode == EXCCODE_TLBL) {
3260 				er = kvm_mips_emulate_tlbinv_ld(cause, opc,
3261 								vcpu);
3262 			} else if (exccode == EXCCODE_TLBS) {
3263 				er = kvm_mips_emulate_tlbinv_st(cause, opc,
3264 								vcpu);
3265 			} else {
3266 				kvm_err("%s: invalid exc code: %d\n", __func__,
3267 					exccode);
3268 				er = EMULATE_FAIL;
3269 			}
3270 		} else {
3271 			kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
3272 				  tlb->tlb_hi, tlb->tlb_lo[0], tlb->tlb_lo[1]);
3273 			/*
3274 			 * OK we have a Guest TLB entry, now inject it into the
3275 			 * shadow host TLB
3276 			 */
3277 			if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, va,
3278 								 write_fault)) {
3279 				kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
3280 					__func__, va, index, vcpu,
3281 					read_c0_entryhi());
3282 				er = EMULATE_FAIL;
3283 			}
3284 		}
3285 	}
3286 
3287 	return er;
3288 }
3289