xref: /openbmc/linux/arch/mips/kvm/emulate.c (revision bc5aa3a0)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: Instruction/Exception emulation
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11 
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/ktime.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/fs.h>
19 #include <linux/bootmem.h>
20 #include <linux/random.h>
21 #include <asm/page.h>
22 #include <asm/cacheflush.h>
23 #include <asm/cacheops.h>
24 #include <asm/cpu-info.h>
25 #include <asm/mmu_context.h>
26 #include <asm/tlbflush.h>
27 #include <asm/inst.h>
28 
29 #undef CONFIG_MIPS_MT
30 #include <asm/r4kcache.h>
31 #define CONFIG_MIPS_MT
32 
33 #include "interrupt.h"
34 #include "commpage.h"
35 
36 #include "trace.h"
37 
38 /*
39  * Compute the return address and do emulate branch simulation, if required.
40  * This function should be called only in branch delay slot active.
41  */
42 unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu,
43 	unsigned long instpc)
44 {
45 	unsigned int dspcontrol;
46 	union mips_instruction insn;
47 	struct kvm_vcpu_arch *arch = &vcpu->arch;
48 	long epc = instpc;
49 	long nextpc = KVM_INVALID_INST;
50 
51 	if (epc & 3)
52 		goto unaligned;
53 
54 	/* Read the instruction */
55 	insn.word = kvm_get_inst((u32 *) epc, vcpu);
56 
57 	if (insn.word == KVM_INVALID_INST)
58 		return KVM_INVALID_INST;
59 
60 	switch (insn.i_format.opcode) {
61 		/* jr and jalr are in r_format format. */
62 	case spec_op:
63 		switch (insn.r_format.func) {
64 		case jalr_op:
65 			arch->gprs[insn.r_format.rd] = epc + 8;
66 			/* Fall through */
67 		case jr_op:
68 			nextpc = arch->gprs[insn.r_format.rs];
69 			break;
70 		}
71 		break;
72 
73 		/*
74 		 * This group contains:
75 		 * bltz_op, bgez_op, bltzl_op, bgezl_op,
76 		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
77 		 */
78 	case bcond_op:
79 		switch (insn.i_format.rt) {
80 		case bltz_op:
81 		case bltzl_op:
82 			if ((long)arch->gprs[insn.i_format.rs] < 0)
83 				epc = epc + 4 + (insn.i_format.simmediate << 2);
84 			else
85 				epc += 8;
86 			nextpc = epc;
87 			break;
88 
89 		case bgez_op:
90 		case bgezl_op:
91 			if ((long)arch->gprs[insn.i_format.rs] >= 0)
92 				epc = epc + 4 + (insn.i_format.simmediate << 2);
93 			else
94 				epc += 8;
95 			nextpc = epc;
96 			break;
97 
98 		case bltzal_op:
99 		case bltzall_op:
100 			arch->gprs[31] = epc + 8;
101 			if ((long)arch->gprs[insn.i_format.rs] < 0)
102 				epc = epc + 4 + (insn.i_format.simmediate << 2);
103 			else
104 				epc += 8;
105 			nextpc = epc;
106 			break;
107 
108 		case bgezal_op:
109 		case bgezall_op:
110 			arch->gprs[31] = epc + 8;
111 			if ((long)arch->gprs[insn.i_format.rs] >= 0)
112 				epc = epc + 4 + (insn.i_format.simmediate << 2);
113 			else
114 				epc += 8;
115 			nextpc = epc;
116 			break;
117 		case bposge32_op:
118 			if (!cpu_has_dsp)
119 				goto sigill;
120 
121 			dspcontrol = rddsp(0x01);
122 
123 			if (dspcontrol >= 32)
124 				epc = epc + 4 + (insn.i_format.simmediate << 2);
125 			else
126 				epc += 8;
127 			nextpc = epc;
128 			break;
129 		}
130 		break;
131 
132 		/* These are unconditional and in j_format. */
133 	case jal_op:
134 		arch->gprs[31] = instpc + 8;
135 	case j_op:
136 		epc += 4;
137 		epc >>= 28;
138 		epc <<= 28;
139 		epc |= (insn.j_format.target << 2);
140 		nextpc = epc;
141 		break;
142 
143 		/* These are conditional and in i_format. */
144 	case beq_op:
145 	case beql_op:
146 		if (arch->gprs[insn.i_format.rs] ==
147 		    arch->gprs[insn.i_format.rt])
148 			epc = epc + 4 + (insn.i_format.simmediate << 2);
149 		else
150 			epc += 8;
151 		nextpc = epc;
152 		break;
153 
154 	case bne_op:
155 	case bnel_op:
156 		if (arch->gprs[insn.i_format.rs] !=
157 		    arch->gprs[insn.i_format.rt])
158 			epc = epc + 4 + (insn.i_format.simmediate << 2);
159 		else
160 			epc += 8;
161 		nextpc = epc;
162 		break;
163 
164 	case blez_op:	/* POP06 */
165 #ifndef CONFIG_CPU_MIPSR6
166 	case blezl_op:	/* removed in R6 */
167 #endif
168 		if (insn.i_format.rt != 0)
169 			goto compact_branch;
170 		if ((long)arch->gprs[insn.i_format.rs] <= 0)
171 			epc = epc + 4 + (insn.i_format.simmediate << 2);
172 		else
173 			epc += 8;
174 		nextpc = epc;
175 		break;
176 
177 	case bgtz_op:	/* POP07 */
178 #ifndef CONFIG_CPU_MIPSR6
179 	case bgtzl_op:	/* removed in R6 */
180 #endif
181 		if (insn.i_format.rt != 0)
182 			goto compact_branch;
183 		if ((long)arch->gprs[insn.i_format.rs] > 0)
184 			epc = epc + 4 + (insn.i_format.simmediate << 2);
185 		else
186 			epc += 8;
187 		nextpc = epc;
188 		break;
189 
190 		/* And now the FPA/cp1 branch instructions. */
191 	case cop1_op:
192 		kvm_err("%s: unsupported cop1_op\n", __func__);
193 		break;
194 
195 #ifdef CONFIG_CPU_MIPSR6
196 	/* R6 added the following compact branches with forbidden slots */
197 	case blezl_op:	/* POP26 */
198 	case bgtzl_op:	/* POP27 */
199 		/* only rt == 0 isn't compact branch */
200 		if (insn.i_format.rt != 0)
201 			goto compact_branch;
202 		break;
203 	case pop10_op:
204 	case pop30_op:
205 		/* only rs == rt == 0 is reserved, rest are compact branches */
206 		if (insn.i_format.rs != 0 || insn.i_format.rt != 0)
207 			goto compact_branch;
208 		break;
209 	case pop66_op:
210 	case pop76_op:
211 		/* only rs == 0 isn't compact branch */
212 		if (insn.i_format.rs != 0)
213 			goto compact_branch;
214 		break;
215 compact_branch:
216 		/*
217 		 * If we've hit an exception on the forbidden slot, then
218 		 * the branch must not have been taken.
219 		 */
220 		epc += 8;
221 		nextpc = epc;
222 		break;
223 #else
224 compact_branch:
225 		/* Compact branches not supported before R6 */
226 		break;
227 #endif
228 	}
229 
230 	return nextpc;
231 
232 unaligned:
233 	kvm_err("%s: unaligned epc\n", __func__);
234 	return nextpc;
235 
236 sigill:
237 	kvm_err("%s: DSP branch but not DSP ASE\n", __func__);
238 	return nextpc;
239 }
240 
241 enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
242 {
243 	unsigned long branch_pc;
244 	enum emulation_result er = EMULATE_DONE;
245 
246 	if (cause & CAUSEF_BD) {
247 		branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc);
248 		if (branch_pc == KVM_INVALID_INST) {
249 			er = EMULATE_FAIL;
250 		} else {
251 			vcpu->arch.pc = branch_pc;
252 			kvm_debug("BD update_pc(): New PC: %#lx\n",
253 				  vcpu->arch.pc);
254 		}
255 	} else
256 		vcpu->arch.pc += 4;
257 
258 	kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
259 
260 	return er;
261 }
262 
263 /**
264  * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
265  * @vcpu:	Virtual CPU.
266  *
267  * Returns:	1 if the CP0_Count timer is disabled by either the guest
268  *		CP0_Cause.DC bit or the count_ctl.DC bit.
269  *		0 otherwise (in which case CP0_Count timer is running).
270  */
271 static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
272 {
273 	struct mips_coproc *cop0 = vcpu->arch.cop0;
274 
275 	return	(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
276 		(kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
277 }
278 
279 /**
280  * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
281  *
282  * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
283  *
284  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
285  */
286 static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
287 {
288 	s64 now_ns, periods;
289 	u64 delta;
290 
291 	now_ns = ktime_to_ns(now);
292 	delta = now_ns + vcpu->arch.count_dyn_bias;
293 
294 	if (delta >= vcpu->arch.count_period) {
295 		/* If delta is out of safe range the bias needs adjusting */
296 		periods = div64_s64(now_ns, vcpu->arch.count_period);
297 		vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
298 		/* Recalculate delta with new bias */
299 		delta = now_ns + vcpu->arch.count_dyn_bias;
300 	}
301 
302 	/*
303 	 * We've ensured that:
304 	 *   delta < count_period
305 	 *
306 	 * Therefore the intermediate delta*count_hz will never overflow since
307 	 * at the boundary condition:
308 	 *   delta = count_period
309 	 *   delta = NSEC_PER_SEC * 2^32 / count_hz
310 	 *   delta * count_hz = NSEC_PER_SEC * 2^32
311 	 */
312 	return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
313 }
314 
315 /**
316  * kvm_mips_count_time() - Get effective current time.
317  * @vcpu:	Virtual CPU.
318  *
319  * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
320  * except when the master disable bit is set in count_ctl, in which case it is
321  * count_resume, i.e. the time that the count was disabled.
322  *
323  * Returns:	Effective monotonic ktime for CP0_Count.
324  */
325 static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
326 {
327 	if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
328 		return vcpu->arch.count_resume;
329 
330 	return ktime_get();
331 }
332 
333 /**
334  * kvm_mips_read_count_running() - Read the current count value as if running.
335  * @vcpu:	Virtual CPU.
336  * @now:	Kernel time to read CP0_Count at.
337  *
338  * Returns the current guest CP0_Count register at time @now and handles if the
339  * timer interrupt is pending and hasn't been handled yet.
340  *
341  * Returns:	The current value of the guest CP0_Count register.
342  */
343 static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
344 {
345 	struct mips_coproc *cop0 = vcpu->arch.cop0;
346 	ktime_t expires, threshold;
347 	u32 count, compare;
348 	int running;
349 
350 	/* Calculate the biased and scaled guest CP0_Count */
351 	count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
352 	compare = kvm_read_c0_guest_compare(cop0);
353 
354 	/*
355 	 * Find whether CP0_Count has reached the closest timer interrupt. If
356 	 * not, we shouldn't inject it.
357 	 */
358 	if ((s32)(count - compare) < 0)
359 		return count;
360 
361 	/*
362 	 * The CP0_Count we're going to return has already reached the closest
363 	 * timer interrupt. Quickly check if it really is a new interrupt by
364 	 * looking at whether the interval until the hrtimer expiry time is
365 	 * less than 1/4 of the timer period.
366 	 */
367 	expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
368 	threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
369 	if (ktime_before(expires, threshold)) {
370 		/*
371 		 * Cancel it while we handle it so there's no chance of
372 		 * interference with the timeout handler.
373 		 */
374 		running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
375 
376 		/* Nothing should be waiting on the timeout */
377 		kvm_mips_callbacks->queue_timer_int(vcpu);
378 
379 		/*
380 		 * Restart the timer if it was running based on the expiry time
381 		 * we read, so that we don't push it back 2 periods.
382 		 */
383 		if (running) {
384 			expires = ktime_add_ns(expires,
385 					       vcpu->arch.count_period);
386 			hrtimer_start(&vcpu->arch.comparecount_timer, expires,
387 				      HRTIMER_MODE_ABS);
388 		}
389 	}
390 
391 	return count;
392 }
393 
394 /**
395  * kvm_mips_read_count() - Read the current count value.
396  * @vcpu:	Virtual CPU.
397  *
398  * Read the current guest CP0_Count value, taking into account whether the timer
399  * is stopped.
400  *
401  * Returns:	The current guest CP0_Count value.
402  */
403 u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
404 {
405 	struct mips_coproc *cop0 = vcpu->arch.cop0;
406 
407 	/* If count disabled just read static copy of count */
408 	if (kvm_mips_count_disabled(vcpu))
409 		return kvm_read_c0_guest_count(cop0);
410 
411 	return kvm_mips_read_count_running(vcpu, ktime_get());
412 }
413 
414 /**
415  * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
416  * @vcpu:	Virtual CPU.
417  * @count:	Output pointer for CP0_Count value at point of freeze.
418  *
419  * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
420  * at the point it was frozen. It is guaranteed that any pending interrupts at
421  * the point it was frozen are handled, and none after that point.
422  *
423  * This is useful where the time/CP0_Count is needed in the calculation of the
424  * new parameters.
425  *
426  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
427  *
428  * Returns:	The ktime at the point of freeze.
429  */
430 static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
431 {
432 	ktime_t now;
433 
434 	/* stop hrtimer before finding time */
435 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
436 	now = ktime_get();
437 
438 	/* find count at this point and handle pending hrtimer */
439 	*count = kvm_mips_read_count_running(vcpu, now);
440 
441 	return now;
442 }
443 
444 /**
445  * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
446  * @vcpu:	Virtual CPU.
447  * @now:	ktime at point of resume.
448  * @count:	CP0_Count at point of resume.
449  *
450  * Resumes the timer and updates the timer expiry based on @now and @count.
451  * This can be used in conjunction with kvm_mips_freeze_timer() when timer
452  * parameters need to be changed.
453  *
454  * It is guaranteed that a timer interrupt immediately after resume will be
455  * handled, but not if CP_Compare is exactly at @count. That case is already
456  * handled by kvm_mips_freeze_timer().
457  *
458  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
459  */
460 static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
461 				    ktime_t now, u32 count)
462 {
463 	struct mips_coproc *cop0 = vcpu->arch.cop0;
464 	u32 compare;
465 	u64 delta;
466 	ktime_t expire;
467 
468 	/* Calculate timeout (wrap 0 to 2^32) */
469 	compare = kvm_read_c0_guest_compare(cop0);
470 	delta = (u64)(u32)(compare - count - 1) + 1;
471 	delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
472 	expire = ktime_add_ns(now, delta);
473 
474 	/* Update hrtimer to use new timeout */
475 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
476 	hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
477 }
478 
479 /**
480  * kvm_mips_write_count() - Modify the count and update timer.
481  * @vcpu:	Virtual CPU.
482  * @count:	Guest CP0_Count value to set.
483  *
484  * Sets the CP0_Count value and updates the timer accordingly.
485  */
486 void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
487 {
488 	struct mips_coproc *cop0 = vcpu->arch.cop0;
489 	ktime_t now;
490 
491 	/* Calculate bias */
492 	now = kvm_mips_count_time(vcpu);
493 	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
494 
495 	if (kvm_mips_count_disabled(vcpu))
496 		/* The timer's disabled, adjust the static count */
497 		kvm_write_c0_guest_count(cop0, count);
498 	else
499 		/* Update timeout */
500 		kvm_mips_resume_hrtimer(vcpu, now, count);
501 }
502 
503 /**
504  * kvm_mips_init_count() - Initialise timer.
505  * @vcpu:	Virtual CPU.
506  *
507  * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
508  * it going if it's enabled.
509  */
510 void kvm_mips_init_count(struct kvm_vcpu *vcpu)
511 {
512 	/* 100 MHz */
513 	vcpu->arch.count_hz = 100*1000*1000;
514 	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
515 					  vcpu->arch.count_hz);
516 	vcpu->arch.count_dyn_bias = 0;
517 
518 	/* Starting at 0 */
519 	kvm_mips_write_count(vcpu, 0);
520 }
521 
522 /**
523  * kvm_mips_set_count_hz() - Update the frequency of the timer.
524  * @vcpu:	Virtual CPU.
525  * @count_hz:	Frequency of CP0_Count timer in Hz.
526  *
527  * Change the frequency of the CP0_Count timer. This is done atomically so that
528  * CP0_Count is continuous and no timer interrupt is lost.
529  *
530  * Returns:	-EINVAL if @count_hz is out of range.
531  *		0 on success.
532  */
533 int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
534 {
535 	struct mips_coproc *cop0 = vcpu->arch.cop0;
536 	int dc;
537 	ktime_t now;
538 	u32 count;
539 
540 	/* ensure the frequency is in a sensible range... */
541 	if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
542 		return -EINVAL;
543 	/* ... and has actually changed */
544 	if (vcpu->arch.count_hz == count_hz)
545 		return 0;
546 
547 	/* Safely freeze timer so we can keep it continuous */
548 	dc = kvm_mips_count_disabled(vcpu);
549 	if (dc) {
550 		now = kvm_mips_count_time(vcpu);
551 		count = kvm_read_c0_guest_count(cop0);
552 	} else {
553 		now = kvm_mips_freeze_hrtimer(vcpu, &count);
554 	}
555 
556 	/* Update the frequency */
557 	vcpu->arch.count_hz = count_hz;
558 	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
559 	vcpu->arch.count_dyn_bias = 0;
560 
561 	/* Calculate adjusted bias so dynamic count is unchanged */
562 	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
563 
564 	/* Update and resume hrtimer */
565 	if (!dc)
566 		kvm_mips_resume_hrtimer(vcpu, now, count);
567 	return 0;
568 }
569 
570 /**
571  * kvm_mips_write_compare() - Modify compare and update timer.
572  * @vcpu:	Virtual CPU.
573  * @compare:	New CP0_Compare value.
574  * @ack:	Whether to acknowledge timer interrupt.
575  *
576  * Update CP0_Compare to a new value and update the timeout.
577  * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
578  * any pending timer interrupt is preserved.
579  */
580 void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
581 {
582 	struct mips_coproc *cop0 = vcpu->arch.cop0;
583 	int dc;
584 	u32 old_compare = kvm_read_c0_guest_compare(cop0);
585 	ktime_t now;
586 	u32 count;
587 
588 	/* if unchanged, must just be an ack */
589 	if (old_compare == compare) {
590 		if (!ack)
591 			return;
592 		kvm_mips_callbacks->dequeue_timer_int(vcpu);
593 		kvm_write_c0_guest_compare(cop0, compare);
594 		return;
595 	}
596 
597 	/* freeze_hrtimer() takes care of timer interrupts <= count */
598 	dc = kvm_mips_count_disabled(vcpu);
599 	if (!dc)
600 		now = kvm_mips_freeze_hrtimer(vcpu, &count);
601 
602 	if (ack)
603 		kvm_mips_callbacks->dequeue_timer_int(vcpu);
604 
605 	kvm_write_c0_guest_compare(cop0, compare);
606 
607 	/* resume_hrtimer() takes care of timer interrupts > count */
608 	if (!dc)
609 		kvm_mips_resume_hrtimer(vcpu, now, count);
610 }
611 
612 /**
613  * kvm_mips_count_disable() - Disable count.
614  * @vcpu:	Virtual CPU.
615  *
616  * Disable the CP0_Count timer. A timer interrupt on or before the final stop
617  * time will be handled but not after.
618  *
619  * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
620  * count_ctl.DC has been set (count disabled).
621  *
622  * Returns:	The time that the timer was stopped.
623  */
624 static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
625 {
626 	struct mips_coproc *cop0 = vcpu->arch.cop0;
627 	u32 count;
628 	ktime_t now;
629 
630 	/* Stop hrtimer */
631 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
632 
633 	/* Set the static count from the dynamic count, handling pending TI */
634 	now = ktime_get();
635 	count = kvm_mips_read_count_running(vcpu, now);
636 	kvm_write_c0_guest_count(cop0, count);
637 
638 	return now;
639 }
640 
641 /**
642  * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
643  * @vcpu:	Virtual CPU.
644  *
645  * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
646  * before the final stop time will be handled if the timer isn't disabled by
647  * count_ctl.DC, but not after.
648  *
649  * Assumes CP0_Cause.DC is clear (count enabled).
650  */
651 void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
652 {
653 	struct mips_coproc *cop0 = vcpu->arch.cop0;
654 
655 	kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
656 	if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
657 		kvm_mips_count_disable(vcpu);
658 }
659 
660 /**
661  * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
662  * @vcpu:	Virtual CPU.
663  *
664  * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
665  * the start time will be handled if the timer isn't disabled by count_ctl.DC,
666  * potentially before even returning, so the caller should be careful with
667  * ordering of CP0_Cause modifications so as not to lose it.
668  *
669  * Assumes CP0_Cause.DC is set (count disabled).
670  */
671 void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
672 {
673 	struct mips_coproc *cop0 = vcpu->arch.cop0;
674 	u32 count;
675 
676 	kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
677 
678 	/*
679 	 * Set the dynamic count to match the static count.
680 	 * This starts the hrtimer if count_ctl.DC allows it.
681 	 * Otherwise it conveniently updates the biases.
682 	 */
683 	count = kvm_read_c0_guest_count(cop0);
684 	kvm_mips_write_count(vcpu, count);
685 }
686 
687 /**
688  * kvm_mips_set_count_ctl() - Update the count control KVM register.
689  * @vcpu:	Virtual CPU.
690  * @count_ctl:	Count control register new value.
691  *
692  * Set the count control KVM register. The timer is updated accordingly.
693  *
694  * Returns:	-EINVAL if reserved bits are set.
695  *		0 on success.
696  */
697 int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
698 {
699 	struct mips_coproc *cop0 = vcpu->arch.cop0;
700 	s64 changed = count_ctl ^ vcpu->arch.count_ctl;
701 	s64 delta;
702 	ktime_t expire, now;
703 	u32 count, compare;
704 
705 	/* Only allow defined bits to be changed */
706 	if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
707 		return -EINVAL;
708 
709 	/* Apply new value */
710 	vcpu->arch.count_ctl = count_ctl;
711 
712 	/* Master CP0_Count disable */
713 	if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
714 		/* Is CP0_Cause.DC already disabling CP0_Count? */
715 		if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
716 			if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
717 				/* Just record the current time */
718 				vcpu->arch.count_resume = ktime_get();
719 		} else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
720 			/* disable timer and record current time */
721 			vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
722 		} else {
723 			/*
724 			 * Calculate timeout relative to static count at resume
725 			 * time (wrap 0 to 2^32).
726 			 */
727 			count = kvm_read_c0_guest_count(cop0);
728 			compare = kvm_read_c0_guest_compare(cop0);
729 			delta = (u64)(u32)(compare - count - 1) + 1;
730 			delta = div_u64(delta * NSEC_PER_SEC,
731 					vcpu->arch.count_hz);
732 			expire = ktime_add_ns(vcpu->arch.count_resume, delta);
733 
734 			/* Handle pending interrupt */
735 			now = ktime_get();
736 			if (ktime_compare(now, expire) >= 0)
737 				/* Nothing should be waiting on the timeout */
738 				kvm_mips_callbacks->queue_timer_int(vcpu);
739 
740 			/* Resume hrtimer without changing bias */
741 			count = kvm_mips_read_count_running(vcpu, now);
742 			kvm_mips_resume_hrtimer(vcpu, now, count);
743 		}
744 	}
745 
746 	return 0;
747 }
748 
749 /**
750  * kvm_mips_set_count_resume() - Update the count resume KVM register.
751  * @vcpu:		Virtual CPU.
752  * @count_resume:	Count resume register new value.
753  *
754  * Set the count resume KVM register.
755  *
756  * Returns:	-EINVAL if out of valid range (0..now).
757  *		0 on success.
758  */
759 int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
760 {
761 	/*
762 	 * It doesn't make sense for the resume time to be in the future, as it
763 	 * would be possible for the next interrupt to be more than a full
764 	 * period in the future.
765 	 */
766 	if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
767 		return -EINVAL;
768 
769 	vcpu->arch.count_resume = ns_to_ktime(count_resume);
770 	return 0;
771 }
772 
773 /**
774  * kvm_mips_count_timeout() - Push timer forward on timeout.
775  * @vcpu:	Virtual CPU.
776  *
777  * Handle an hrtimer event by push the hrtimer forward a period.
778  *
779  * Returns:	The hrtimer_restart value to return to the hrtimer subsystem.
780  */
781 enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
782 {
783 	/* Add the Count period to the current expiry time */
784 	hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
785 			       vcpu->arch.count_period);
786 	return HRTIMER_RESTART;
787 }
788 
789 enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
790 {
791 	struct mips_coproc *cop0 = vcpu->arch.cop0;
792 	enum emulation_result er = EMULATE_DONE;
793 
794 	if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
795 		kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
796 			  kvm_read_c0_guest_epc(cop0));
797 		kvm_clear_c0_guest_status(cop0, ST0_EXL);
798 		vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
799 
800 	} else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
801 		kvm_clear_c0_guest_status(cop0, ST0_ERL);
802 		vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
803 	} else {
804 		kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
805 			vcpu->arch.pc);
806 		er = EMULATE_FAIL;
807 	}
808 
809 	return er;
810 }
811 
812 enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
813 {
814 	kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
815 		  vcpu->arch.pending_exceptions);
816 
817 	++vcpu->stat.wait_exits;
818 	trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
819 	if (!vcpu->arch.pending_exceptions) {
820 		vcpu->arch.wait = 1;
821 		kvm_vcpu_block(vcpu);
822 
823 		/*
824 		 * We we are runnable, then definitely go off to user space to
825 		 * check if any I/O interrupts are pending.
826 		 */
827 		if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
828 			clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
829 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
830 		}
831 	}
832 
833 	return EMULATE_DONE;
834 }
835 
836 /*
837  * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
838  * we can catch this, if things ever change
839  */
840 enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
841 {
842 	struct mips_coproc *cop0 = vcpu->arch.cop0;
843 	unsigned long pc = vcpu->arch.pc;
844 
845 	kvm_err("[%#lx] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
846 	return EMULATE_FAIL;
847 }
848 
849 /* Write Guest TLB Entry @ Index */
850 enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
851 {
852 	struct mips_coproc *cop0 = vcpu->arch.cop0;
853 	int index = kvm_read_c0_guest_index(cop0);
854 	struct kvm_mips_tlb *tlb = NULL;
855 	unsigned long pc = vcpu->arch.pc;
856 
857 	if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
858 		kvm_debug("%s: illegal index: %d\n", __func__, index);
859 		kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
860 			  pc, index, kvm_read_c0_guest_entryhi(cop0),
861 			  kvm_read_c0_guest_entrylo0(cop0),
862 			  kvm_read_c0_guest_entrylo1(cop0),
863 			  kvm_read_c0_guest_pagemask(cop0));
864 		index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
865 	}
866 
867 	tlb = &vcpu->arch.guest_tlb[index];
868 	/*
869 	 * Probe the shadow host TLB for the entry being overwritten, if one
870 	 * matches, invalidate it
871 	 */
872 	kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
873 
874 	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
875 	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
876 	tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
877 	tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
878 
879 	kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
880 		  pc, index, kvm_read_c0_guest_entryhi(cop0),
881 		  kvm_read_c0_guest_entrylo0(cop0),
882 		  kvm_read_c0_guest_entrylo1(cop0),
883 		  kvm_read_c0_guest_pagemask(cop0));
884 
885 	return EMULATE_DONE;
886 }
887 
888 /* Write Guest TLB Entry @ Random Index */
889 enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
890 {
891 	struct mips_coproc *cop0 = vcpu->arch.cop0;
892 	struct kvm_mips_tlb *tlb = NULL;
893 	unsigned long pc = vcpu->arch.pc;
894 	int index;
895 
896 	get_random_bytes(&index, sizeof(index));
897 	index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
898 
899 	tlb = &vcpu->arch.guest_tlb[index];
900 
901 	/*
902 	 * Probe the shadow host TLB for the entry being overwritten, if one
903 	 * matches, invalidate it
904 	 */
905 	kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
906 
907 	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
908 	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
909 	tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
910 	tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
911 
912 	kvm_debug("[%#lx] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
913 		  pc, index, kvm_read_c0_guest_entryhi(cop0),
914 		  kvm_read_c0_guest_entrylo0(cop0),
915 		  kvm_read_c0_guest_entrylo1(cop0));
916 
917 	return EMULATE_DONE;
918 }
919 
920 enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
921 {
922 	struct mips_coproc *cop0 = vcpu->arch.cop0;
923 	long entryhi = kvm_read_c0_guest_entryhi(cop0);
924 	unsigned long pc = vcpu->arch.pc;
925 	int index = -1;
926 
927 	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
928 
929 	kvm_write_c0_guest_index(cop0, index);
930 
931 	kvm_debug("[%#lx] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
932 		  index);
933 
934 	return EMULATE_DONE;
935 }
936 
937 /**
938  * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
939  * @vcpu:	Virtual CPU.
940  *
941  * Finds the mask of bits which are writable in the guest's Config1 CP0
942  * register, by userland (currently read-only to the guest).
943  */
944 unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
945 {
946 	unsigned int mask = 0;
947 
948 	/* Permit FPU to be present if FPU is supported */
949 	if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
950 		mask |= MIPS_CONF1_FP;
951 
952 	return mask;
953 }
954 
955 /**
956  * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
957  * @vcpu:	Virtual CPU.
958  *
959  * Finds the mask of bits which are writable in the guest's Config3 CP0
960  * register, by userland (currently read-only to the guest).
961  */
962 unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
963 {
964 	/* Config4 and ULRI are optional */
965 	unsigned int mask = MIPS_CONF_M | MIPS_CONF3_ULRI;
966 
967 	/* Permit MSA to be present if MSA is supported */
968 	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
969 		mask |= MIPS_CONF3_MSA;
970 
971 	return mask;
972 }
973 
974 /**
975  * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
976  * @vcpu:	Virtual CPU.
977  *
978  * Finds the mask of bits which are writable in the guest's Config4 CP0
979  * register, by userland (currently read-only to the guest).
980  */
981 unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
982 {
983 	/* Config5 is optional */
984 	unsigned int mask = MIPS_CONF_M;
985 
986 	/* KScrExist */
987 	mask |= (unsigned int)vcpu->arch.kscratch_enabled << 16;
988 
989 	return mask;
990 }
991 
992 /**
993  * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
994  * @vcpu:	Virtual CPU.
995  *
996  * Finds the mask of bits which are writable in the guest's Config5 CP0
997  * register, by the guest itself.
998  */
999 unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
1000 {
1001 	unsigned int mask = 0;
1002 
1003 	/* Permit MSAEn changes if MSA supported and enabled */
1004 	if (kvm_mips_guest_has_msa(&vcpu->arch))
1005 		mask |= MIPS_CONF5_MSAEN;
1006 
1007 	/*
1008 	 * Permit guest FPU mode changes if FPU is enabled and the relevant
1009 	 * feature exists according to FIR register.
1010 	 */
1011 	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1012 		if (cpu_has_fre)
1013 			mask |= MIPS_CONF5_FRE;
1014 		/* We don't support UFR or UFE */
1015 	}
1016 
1017 	return mask;
1018 }
1019 
1020 enum emulation_result kvm_mips_emulate_CP0(union mips_instruction inst,
1021 					   u32 *opc, u32 cause,
1022 					   struct kvm_run *run,
1023 					   struct kvm_vcpu *vcpu)
1024 {
1025 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1026 	enum emulation_result er = EMULATE_DONE;
1027 	u32 rt, rd, sel;
1028 	unsigned long curr_pc;
1029 
1030 	/*
1031 	 * Update PC and hold onto current PC in case there is
1032 	 * an error and we want to rollback the PC
1033 	 */
1034 	curr_pc = vcpu->arch.pc;
1035 	er = update_pc(vcpu, cause);
1036 	if (er == EMULATE_FAIL)
1037 		return er;
1038 
1039 	if (inst.co_format.co) {
1040 		switch (inst.co_format.func) {
1041 		case tlbr_op:	/*  Read indexed TLB entry  */
1042 			er = kvm_mips_emul_tlbr(vcpu);
1043 			break;
1044 		case tlbwi_op:	/*  Write indexed  */
1045 			er = kvm_mips_emul_tlbwi(vcpu);
1046 			break;
1047 		case tlbwr_op:	/*  Write random  */
1048 			er = kvm_mips_emul_tlbwr(vcpu);
1049 			break;
1050 		case tlbp_op:	/* TLB Probe */
1051 			er = kvm_mips_emul_tlbp(vcpu);
1052 			break;
1053 		case rfe_op:
1054 			kvm_err("!!!COP0_RFE!!!\n");
1055 			break;
1056 		case eret_op:
1057 			er = kvm_mips_emul_eret(vcpu);
1058 			goto dont_update_pc;
1059 		case wait_op:
1060 			er = kvm_mips_emul_wait(vcpu);
1061 			break;
1062 		}
1063 	} else {
1064 		rt = inst.c0r_format.rt;
1065 		rd = inst.c0r_format.rd;
1066 		sel = inst.c0r_format.sel;
1067 
1068 		switch (inst.c0r_format.rs) {
1069 		case mfc_op:
1070 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1071 			cop0->stat[rd][sel]++;
1072 #endif
1073 			/* Get reg */
1074 			if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1075 				vcpu->arch.gprs[rt] =
1076 				    (s32)kvm_mips_read_count(vcpu);
1077 			} else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1078 				vcpu->arch.gprs[rt] = 0x0;
1079 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1080 				kvm_mips_trans_mfc0(inst, opc, vcpu);
1081 #endif
1082 			} else {
1083 				vcpu->arch.gprs[rt] = (s32)cop0->reg[rd][sel];
1084 
1085 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1086 				kvm_mips_trans_mfc0(inst, opc, vcpu);
1087 #endif
1088 			}
1089 
1090 			trace_kvm_hwr(vcpu, KVM_TRACE_MFC0,
1091 				      KVM_TRACE_COP0(rd, sel),
1092 				      vcpu->arch.gprs[rt]);
1093 			break;
1094 
1095 		case dmfc_op:
1096 			vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1097 
1098 			trace_kvm_hwr(vcpu, KVM_TRACE_DMFC0,
1099 				      KVM_TRACE_COP0(rd, sel),
1100 				      vcpu->arch.gprs[rt]);
1101 			break;
1102 
1103 		case mtc_op:
1104 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1105 			cop0->stat[rd][sel]++;
1106 #endif
1107 			trace_kvm_hwr(vcpu, KVM_TRACE_MTC0,
1108 				      KVM_TRACE_COP0(rd, sel),
1109 				      vcpu->arch.gprs[rt]);
1110 
1111 			if ((rd == MIPS_CP0_TLB_INDEX)
1112 			    && (vcpu->arch.gprs[rt] >=
1113 				KVM_MIPS_GUEST_TLB_SIZE)) {
1114 				kvm_err("Invalid TLB Index: %ld",
1115 					vcpu->arch.gprs[rt]);
1116 				er = EMULATE_FAIL;
1117 				break;
1118 			}
1119 #define C0_EBASE_CORE_MASK 0xff
1120 			if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1121 				/* Preserve CORE number */
1122 				kvm_change_c0_guest_ebase(cop0,
1123 							  ~(C0_EBASE_CORE_MASK),
1124 							  vcpu->arch.gprs[rt]);
1125 				kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n",
1126 					kvm_read_c0_guest_ebase(cop0));
1127 			} else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1128 				u32 nasid =
1129 					vcpu->arch.gprs[rt] & KVM_ENTRYHI_ASID;
1130 				if ((KSEGX(vcpu->arch.gprs[rt]) != CKSEG0) &&
1131 				    ((kvm_read_c0_guest_entryhi(cop0) &
1132 				      KVM_ENTRYHI_ASID) != nasid)) {
1133 					trace_kvm_asid_change(vcpu,
1134 						kvm_read_c0_guest_entryhi(cop0)
1135 							& KVM_ENTRYHI_ASID,
1136 						nasid);
1137 
1138 					/* Blow away the shadow host TLBs */
1139 					kvm_mips_flush_host_tlb(1);
1140 				}
1141 				kvm_write_c0_guest_entryhi(cop0,
1142 							   vcpu->arch.gprs[rt]);
1143 			}
1144 			/* Are we writing to COUNT */
1145 			else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1146 				kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1147 				goto done;
1148 			} else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1149 				/* If we are writing to COMPARE */
1150 				/* Clear pending timer interrupt, if any */
1151 				kvm_mips_write_compare(vcpu,
1152 						       vcpu->arch.gprs[rt],
1153 						       true);
1154 			} else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1155 				unsigned int old_val, val, change;
1156 
1157 				old_val = kvm_read_c0_guest_status(cop0);
1158 				val = vcpu->arch.gprs[rt];
1159 				change = val ^ old_val;
1160 
1161 				/* Make sure that the NMI bit is never set */
1162 				val &= ~ST0_NMI;
1163 
1164 				/*
1165 				 * Don't allow CU1 or FR to be set unless FPU
1166 				 * capability enabled and exists in guest
1167 				 * configuration.
1168 				 */
1169 				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1170 					val &= ~(ST0_CU1 | ST0_FR);
1171 
1172 				/*
1173 				 * Also don't allow FR to be set if host doesn't
1174 				 * support it.
1175 				 */
1176 				if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1177 					val &= ~ST0_FR;
1178 
1179 
1180 				/* Handle changes in FPU mode */
1181 				preempt_disable();
1182 
1183 				/*
1184 				 * FPU and Vector register state is made
1185 				 * UNPREDICTABLE by a change of FR, so don't
1186 				 * even bother saving it.
1187 				 */
1188 				if (change & ST0_FR)
1189 					kvm_drop_fpu(vcpu);
1190 
1191 				/*
1192 				 * If MSA state is already live, it is undefined
1193 				 * how it interacts with FR=0 FPU state, and we
1194 				 * don't want to hit reserved instruction
1195 				 * exceptions trying to save the MSA state later
1196 				 * when CU=1 && FR=1, so play it safe and save
1197 				 * it first.
1198 				 */
1199 				if (change & ST0_CU1 && !(val & ST0_FR) &&
1200 				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1201 					kvm_lose_fpu(vcpu);
1202 
1203 				/*
1204 				 * Propagate CU1 (FPU enable) changes
1205 				 * immediately if the FPU context is already
1206 				 * loaded. When disabling we leave the context
1207 				 * loaded so it can be quickly enabled again in
1208 				 * the near future.
1209 				 */
1210 				if (change & ST0_CU1 &&
1211 				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1212 					change_c0_status(ST0_CU1, val);
1213 
1214 				preempt_enable();
1215 
1216 				kvm_write_c0_guest_status(cop0, val);
1217 
1218 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1219 				/*
1220 				 * If FPU present, we need CU1/FR bits to take
1221 				 * effect fairly soon.
1222 				 */
1223 				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1224 					kvm_mips_trans_mtc0(inst, opc, vcpu);
1225 #endif
1226 			} else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1227 				unsigned int old_val, val, change, wrmask;
1228 
1229 				old_val = kvm_read_c0_guest_config5(cop0);
1230 				val = vcpu->arch.gprs[rt];
1231 
1232 				/* Only a few bits are writable in Config5 */
1233 				wrmask = kvm_mips_config5_wrmask(vcpu);
1234 				change = (val ^ old_val) & wrmask;
1235 				val = old_val ^ change;
1236 
1237 
1238 				/* Handle changes in FPU/MSA modes */
1239 				preempt_disable();
1240 
1241 				/*
1242 				 * Propagate FRE changes immediately if the FPU
1243 				 * context is already loaded.
1244 				 */
1245 				if (change & MIPS_CONF5_FRE &&
1246 				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1247 					change_c0_config5(MIPS_CONF5_FRE, val);
1248 
1249 				/*
1250 				 * Propagate MSAEn changes immediately if the
1251 				 * MSA context is already loaded. When disabling
1252 				 * we leave the context loaded so it can be
1253 				 * quickly enabled again in the near future.
1254 				 */
1255 				if (change & MIPS_CONF5_MSAEN &&
1256 				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1257 					change_c0_config5(MIPS_CONF5_MSAEN,
1258 							  val);
1259 
1260 				preempt_enable();
1261 
1262 				kvm_write_c0_guest_config5(cop0, val);
1263 			} else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1264 				u32 old_cause, new_cause;
1265 
1266 				old_cause = kvm_read_c0_guest_cause(cop0);
1267 				new_cause = vcpu->arch.gprs[rt];
1268 				/* Update R/W bits */
1269 				kvm_change_c0_guest_cause(cop0, 0x08800300,
1270 							  new_cause);
1271 				/* DC bit enabling/disabling timer? */
1272 				if ((old_cause ^ new_cause) & CAUSEF_DC) {
1273 					if (new_cause & CAUSEF_DC)
1274 						kvm_mips_count_disable_cause(vcpu);
1275 					else
1276 						kvm_mips_count_enable_cause(vcpu);
1277 				}
1278 			} else if ((rd == MIPS_CP0_HWRENA) && (sel == 0)) {
1279 				u32 mask = MIPS_HWRENA_CPUNUM |
1280 					   MIPS_HWRENA_SYNCISTEP |
1281 					   MIPS_HWRENA_CC |
1282 					   MIPS_HWRENA_CCRES;
1283 
1284 				if (kvm_read_c0_guest_config3(cop0) &
1285 				    MIPS_CONF3_ULRI)
1286 					mask |= MIPS_HWRENA_ULR;
1287 				cop0->reg[rd][sel] = vcpu->arch.gprs[rt] & mask;
1288 			} else {
1289 				cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1290 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1291 				kvm_mips_trans_mtc0(inst, opc, vcpu);
1292 #endif
1293 			}
1294 			break;
1295 
1296 		case dmtc_op:
1297 			kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1298 				vcpu->arch.pc, rt, rd, sel);
1299 			trace_kvm_hwr(vcpu, KVM_TRACE_DMTC0,
1300 				      KVM_TRACE_COP0(rd, sel),
1301 				      vcpu->arch.gprs[rt]);
1302 			er = EMULATE_FAIL;
1303 			break;
1304 
1305 		case mfmc0_op:
1306 #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1307 			cop0->stat[MIPS_CP0_STATUS][0]++;
1308 #endif
1309 			if (rt != 0)
1310 				vcpu->arch.gprs[rt] =
1311 				    kvm_read_c0_guest_status(cop0);
1312 			/* EI */
1313 			if (inst.mfmc0_format.sc) {
1314 				kvm_debug("[%#lx] mfmc0_op: EI\n",
1315 					  vcpu->arch.pc);
1316 				kvm_set_c0_guest_status(cop0, ST0_IE);
1317 			} else {
1318 				kvm_debug("[%#lx] mfmc0_op: DI\n",
1319 					  vcpu->arch.pc);
1320 				kvm_clear_c0_guest_status(cop0, ST0_IE);
1321 			}
1322 
1323 			break;
1324 
1325 		case wrpgpr_op:
1326 			{
1327 				u32 css = cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1328 				u32 pss =
1329 				    (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1330 				/*
1331 				 * We don't support any shadow register sets, so
1332 				 * SRSCtl[PSS] == SRSCtl[CSS] = 0
1333 				 */
1334 				if (css || pss) {
1335 					er = EMULATE_FAIL;
1336 					break;
1337 				}
1338 				kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1339 					  vcpu->arch.gprs[rt]);
1340 				vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1341 			}
1342 			break;
1343 		default:
1344 			kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1345 				vcpu->arch.pc, inst.c0r_format.rs);
1346 			er = EMULATE_FAIL;
1347 			break;
1348 		}
1349 	}
1350 
1351 done:
1352 	/* Rollback PC only if emulation was unsuccessful */
1353 	if (er == EMULATE_FAIL)
1354 		vcpu->arch.pc = curr_pc;
1355 
1356 dont_update_pc:
1357 	/*
1358 	 * This is for special instructions whose emulation
1359 	 * updates the PC, so do not overwrite the PC under
1360 	 * any circumstances
1361 	 */
1362 
1363 	return er;
1364 }
1365 
1366 enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
1367 					     u32 cause,
1368 					     struct kvm_run *run,
1369 					     struct kvm_vcpu *vcpu)
1370 {
1371 	enum emulation_result er = EMULATE_DO_MMIO;
1372 	u32 rt;
1373 	u32 bytes;
1374 	void *data = run->mmio.data;
1375 	unsigned long curr_pc;
1376 
1377 	/*
1378 	 * Update PC and hold onto current PC in case there is
1379 	 * an error and we want to rollback the PC
1380 	 */
1381 	curr_pc = vcpu->arch.pc;
1382 	er = update_pc(vcpu, cause);
1383 	if (er == EMULATE_FAIL)
1384 		return er;
1385 
1386 	rt = inst.i_format.rt;
1387 
1388 	switch (inst.i_format.opcode) {
1389 	case sb_op:
1390 		bytes = 1;
1391 		if (bytes > sizeof(run->mmio.data)) {
1392 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1393 			       run->mmio.len);
1394 		}
1395 		run->mmio.phys_addr =
1396 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1397 						   host_cp0_badvaddr);
1398 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1399 			er = EMULATE_FAIL;
1400 			break;
1401 		}
1402 		run->mmio.len = bytes;
1403 		run->mmio.is_write = 1;
1404 		vcpu->mmio_needed = 1;
1405 		vcpu->mmio_is_write = 1;
1406 		*(u8 *) data = vcpu->arch.gprs[rt];
1407 		kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1408 			  vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
1409 			  *(u8 *) data);
1410 
1411 		break;
1412 
1413 	case sw_op:
1414 		bytes = 4;
1415 		if (bytes > sizeof(run->mmio.data)) {
1416 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1417 			       run->mmio.len);
1418 		}
1419 		run->mmio.phys_addr =
1420 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1421 						   host_cp0_badvaddr);
1422 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1423 			er = EMULATE_FAIL;
1424 			break;
1425 		}
1426 
1427 		run->mmio.len = bytes;
1428 		run->mmio.is_write = 1;
1429 		vcpu->mmio_needed = 1;
1430 		vcpu->mmio_is_write = 1;
1431 		*(u32 *) data = vcpu->arch.gprs[rt];
1432 
1433 		kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1434 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1435 			  vcpu->arch.gprs[rt], *(u32 *) data);
1436 		break;
1437 
1438 	case sh_op:
1439 		bytes = 2;
1440 		if (bytes > sizeof(run->mmio.data)) {
1441 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1442 			       run->mmio.len);
1443 		}
1444 		run->mmio.phys_addr =
1445 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1446 						   host_cp0_badvaddr);
1447 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1448 			er = EMULATE_FAIL;
1449 			break;
1450 		}
1451 
1452 		run->mmio.len = bytes;
1453 		run->mmio.is_write = 1;
1454 		vcpu->mmio_needed = 1;
1455 		vcpu->mmio_is_write = 1;
1456 		*(u16 *) data = vcpu->arch.gprs[rt];
1457 
1458 		kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1459 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1460 			  vcpu->arch.gprs[rt], *(u32 *) data);
1461 		break;
1462 
1463 	default:
1464 		kvm_err("Store not yet supported (inst=0x%08x)\n",
1465 			inst.word);
1466 		er = EMULATE_FAIL;
1467 		break;
1468 	}
1469 
1470 	/* Rollback PC if emulation was unsuccessful */
1471 	if (er == EMULATE_FAIL)
1472 		vcpu->arch.pc = curr_pc;
1473 
1474 	return er;
1475 }
1476 
1477 enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
1478 					    u32 cause, struct kvm_run *run,
1479 					    struct kvm_vcpu *vcpu)
1480 {
1481 	enum emulation_result er = EMULATE_DO_MMIO;
1482 	u32 op, rt;
1483 	u32 bytes;
1484 
1485 	rt = inst.i_format.rt;
1486 	op = inst.i_format.opcode;
1487 
1488 	vcpu->arch.pending_load_cause = cause;
1489 	vcpu->arch.io_gpr = rt;
1490 
1491 	switch (op) {
1492 	case lw_op:
1493 		bytes = 4;
1494 		if (bytes > sizeof(run->mmio.data)) {
1495 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1496 			       run->mmio.len);
1497 			er = EMULATE_FAIL;
1498 			break;
1499 		}
1500 		run->mmio.phys_addr =
1501 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1502 						   host_cp0_badvaddr);
1503 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1504 			er = EMULATE_FAIL;
1505 			break;
1506 		}
1507 
1508 		run->mmio.len = bytes;
1509 		run->mmio.is_write = 0;
1510 		vcpu->mmio_needed = 1;
1511 		vcpu->mmio_is_write = 0;
1512 		break;
1513 
1514 	case lh_op:
1515 	case lhu_op:
1516 		bytes = 2;
1517 		if (bytes > sizeof(run->mmio.data)) {
1518 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1519 			       run->mmio.len);
1520 			er = EMULATE_FAIL;
1521 			break;
1522 		}
1523 		run->mmio.phys_addr =
1524 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1525 						   host_cp0_badvaddr);
1526 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1527 			er = EMULATE_FAIL;
1528 			break;
1529 		}
1530 
1531 		run->mmio.len = bytes;
1532 		run->mmio.is_write = 0;
1533 		vcpu->mmio_needed = 1;
1534 		vcpu->mmio_is_write = 0;
1535 
1536 		if (op == lh_op)
1537 			vcpu->mmio_needed = 2;
1538 		else
1539 			vcpu->mmio_needed = 1;
1540 
1541 		break;
1542 
1543 	case lbu_op:
1544 	case lb_op:
1545 		bytes = 1;
1546 		if (bytes > sizeof(run->mmio.data)) {
1547 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1548 			       run->mmio.len);
1549 			er = EMULATE_FAIL;
1550 			break;
1551 		}
1552 		run->mmio.phys_addr =
1553 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1554 						   host_cp0_badvaddr);
1555 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1556 			er = EMULATE_FAIL;
1557 			break;
1558 		}
1559 
1560 		run->mmio.len = bytes;
1561 		run->mmio.is_write = 0;
1562 		vcpu->mmio_is_write = 0;
1563 
1564 		if (op == lb_op)
1565 			vcpu->mmio_needed = 2;
1566 		else
1567 			vcpu->mmio_needed = 1;
1568 
1569 		break;
1570 
1571 	default:
1572 		kvm_err("Load not yet supported (inst=0x%08x)\n",
1573 			inst.word);
1574 		er = EMULATE_FAIL;
1575 		break;
1576 	}
1577 
1578 	return er;
1579 }
1580 
1581 enum emulation_result kvm_mips_emulate_cache(union mips_instruction inst,
1582 					     u32 *opc, u32 cause,
1583 					     struct kvm_run *run,
1584 					     struct kvm_vcpu *vcpu)
1585 {
1586 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1587 	enum emulation_result er = EMULATE_DONE;
1588 	u32 cache, op_inst, op, base;
1589 	s16 offset;
1590 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1591 	unsigned long va;
1592 	unsigned long curr_pc;
1593 
1594 	/*
1595 	 * Update PC and hold onto current PC in case there is
1596 	 * an error and we want to rollback the PC
1597 	 */
1598 	curr_pc = vcpu->arch.pc;
1599 	er = update_pc(vcpu, cause);
1600 	if (er == EMULATE_FAIL)
1601 		return er;
1602 
1603 	base = inst.i_format.rs;
1604 	op_inst = inst.i_format.rt;
1605 	if (cpu_has_mips_r6)
1606 		offset = inst.spec3_format.simmediate;
1607 	else
1608 		offset = inst.i_format.simmediate;
1609 	cache = op_inst & CacheOp_Cache;
1610 	op = op_inst & CacheOp_Op;
1611 
1612 	va = arch->gprs[base] + offset;
1613 
1614 	kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1615 		  cache, op, base, arch->gprs[base], offset);
1616 
1617 	/*
1618 	 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1619 	 * invalidate the caches entirely by stepping through all the
1620 	 * ways/indexes
1621 	 */
1622 	if (op == Index_Writeback_Inv) {
1623 		kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1624 			  vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1625 			  arch->gprs[base], offset);
1626 
1627 		if (cache == Cache_D)
1628 			r4k_blast_dcache();
1629 		else if (cache == Cache_I)
1630 			r4k_blast_icache();
1631 		else {
1632 			kvm_err("%s: unsupported CACHE INDEX operation\n",
1633 				__func__);
1634 			return EMULATE_FAIL;
1635 		}
1636 
1637 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1638 		kvm_mips_trans_cache_index(inst, opc, vcpu);
1639 #endif
1640 		goto done;
1641 	}
1642 
1643 	preempt_disable();
1644 	if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
1645 		if (kvm_mips_host_tlb_lookup(vcpu, va) < 0 &&
1646 		    kvm_mips_handle_kseg0_tlb_fault(va, vcpu)) {
1647 			kvm_err("%s: handling mapped kseg0 tlb fault for %lx, vcpu: %p, ASID: %#lx\n",
1648 				__func__, va, vcpu, read_c0_entryhi());
1649 			er = EMULATE_FAIL;
1650 			preempt_enable();
1651 			goto done;
1652 		}
1653 	} else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) ||
1654 		   KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
1655 		int index;
1656 
1657 		/* If an entry already exists then skip */
1658 		if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0)
1659 			goto skip_fault;
1660 
1661 		/*
1662 		 * If address not in the guest TLB, then give the guest a fault,
1663 		 * the resulting handler will do the right thing
1664 		 */
1665 		index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) |
1666 						  (kvm_read_c0_guest_entryhi
1667 						   (cop0) & KVM_ENTRYHI_ASID));
1668 
1669 		if (index < 0) {
1670 			vcpu->arch.host_cp0_badvaddr = va;
1671 			vcpu->arch.pc = curr_pc;
1672 			er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run,
1673 							 vcpu);
1674 			preempt_enable();
1675 			goto dont_update_pc;
1676 		} else {
1677 			struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
1678 			/*
1679 			 * Check if the entry is valid, if not then setup a TLB
1680 			 * invalid exception to the guest
1681 			 */
1682 			if (!TLB_IS_VALID(*tlb, va)) {
1683 				vcpu->arch.host_cp0_badvaddr = va;
1684 				vcpu->arch.pc = curr_pc;
1685 				er = kvm_mips_emulate_tlbinv_ld(cause, NULL,
1686 								run, vcpu);
1687 				preempt_enable();
1688 				goto dont_update_pc;
1689 			}
1690 			/*
1691 			 * We fault an entry from the guest tlb to the
1692 			 * shadow host TLB
1693 			 */
1694 			if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb)) {
1695 				kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
1696 					__func__, va, index, vcpu,
1697 					read_c0_entryhi());
1698 				er = EMULATE_FAIL;
1699 				preempt_enable();
1700 				goto done;
1701 			}
1702 		}
1703 	} else {
1704 		kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1705 			cache, op, base, arch->gprs[base], offset);
1706 		er = EMULATE_FAIL;
1707 		preempt_enable();
1708 		goto done;
1709 
1710 	}
1711 
1712 skip_fault:
1713 	/* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1714 	if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
1715 		flush_dcache_line(va);
1716 
1717 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1718 		/*
1719 		 * Replace the CACHE instruction, with a SYNCI, not the same,
1720 		 * but avoids a trap
1721 		 */
1722 		kvm_mips_trans_cache_va(inst, opc, vcpu);
1723 #endif
1724 	} else if (op_inst == Hit_Invalidate_I) {
1725 		flush_dcache_line(va);
1726 		flush_icache_line(va);
1727 
1728 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1729 		/* Replace the CACHE instruction, with a SYNCI */
1730 		kvm_mips_trans_cache_va(inst, opc, vcpu);
1731 #endif
1732 	} else {
1733 		kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1734 			cache, op, base, arch->gprs[base], offset);
1735 		er = EMULATE_FAIL;
1736 	}
1737 
1738 	preempt_enable();
1739 done:
1740 	/* Rollback PC only if emulation was unsuccessful */
1741 	if (er == EMULATE_FAIL)
1742 		vcpu->arch.pc = curr_pc;
1743 
1744 dont_update_pc:
1745 	/*
1746 	 * This is for exceptions whose emulation updates the PC, so do not
1747 	 * overwrite the PC under any circumstances
1748 	 */
1749 
1750 	return er;
1751 }
1752 
1753 enum emulation_result kvm_mips_emulate_inst(u32 cause, u32 *opc,
1754 					    struct kvm_run *run,
1755 					    struct kvm_vcpu *vcpu)
1756 {
1757 	union mips_instruction inst;
1758 	enum emulation_result er = EMULATE_DONE;
1759 
1760 	/* Fetch the instruction. */
1761 	if (cause & CAUSEF_BD)
1762 		opc += 1;
1763 
1764 	inst.word = kvm_get_inst(opc, vcpu);
1765 
1766 	switch (inst.r_format.opcode) {
1767 	case cop0_op:
1768 		er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1769 		break;
1770 	case sb_op:
1771 	case sh_op:
1772 	case sw_op:
1773 		er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1774 		break;
1775 	case lb_op:
1776 	case lbu_op:
1777 	case lhu_op:
1778 	case lh_op:
1779 	case lw_op:
1780 		er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1781 		break;
1782 
1783 #ifndef CONFIG_CPU_MIPSR6
1784 	case cache_op:
1785 		++vcpu->stat.cache_exits;
1786 		trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1787 		er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1788 		break;
1789 #else
1790 	case spec3_op:
1791 		switch (inst.spec3_format.func) {
1792 		case cache6_op:
1793 			++vcpu->stat.cache_exits;
1794 			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1795 			er = kvm_mips_emulate_cache(inst, opc, cause, run,
1796 						    vcpu);
1797 			break;
1798 		default:
1799 			goto unknown;
1800 		};
1801 		break;
1802 unknown:
1803 #endif
1804 
1805 	default:
1806 		kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1807 			inst.word);
1808 		kvm_arch_vcpu_dump_regs(vcpu);
1809 		er = EMULATE_FAIL;
1810 		break;
1811 	}
1812 
1813 	return er;
1814 }
1815 
1816 enum emulation_result kvm_mips_emulate_syscall(u32 cause,
1817 					       u32 *opc,
1818 					       struct kvm_run *run,
1819 					       struct kvm_vcpu *vcpu)
1820 {
1821 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1822 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1823 	enum emulation_result er = EMULATE_DONE;
1824 
1825 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1826 		/* save old pc */
1827 		kvm_write_c0_guest_epc(cop0, arch->pc);
1828 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1829 
1830 		if (cause & CAUSEF_BD)
1831 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1832 		else
1833 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1834 
1835 		kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
1836 
1837 		kvm_change_c0_guest_cause(cop0, (0xff),
1838 					  (EXCCODE_SYS << CAUSEB_EXCCODE));
1839 
1840 		/* Set PC to the exception entry point */
1841 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1842 
1843 	} else {
1844 		kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
1845 		er = EMULATE_FAIL;
1846 	}
1847 
1848 	return er;
1849 }
1850 
1851 enum emulation_result kvm_mips_emulate_tlbmiss_ld(u32 cause,
1852 						  u32 *opc,
1853 						  struct kvm_run *run,
1854 						  struct kvm_vcpu *vcpu)
1855 {
1856 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1857 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1858 	unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) |
1859 			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1860 
1861 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1862 		/* save old pc */
1863 		kvm_write_c0_guest_epc(cop0, arch->pc);
1864 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1865 
1866 		if (cause & CAUSEF_BD)
1867 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1868 		else
1869 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1870 
1871 		kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
1872 			  arch->pc);
1873 
1874 		/* set pc to the exception entry point */
1875 		arch->pc = KVM_GUEST_KSEG0 + 0x0;
1876 
1877 	} else {
1878 		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1879 			  arch->pc);
1880 
1881 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1882 	}
1883 
1884 	kvm_change_c0_guest_cause(cop0, (0xff),
1885 				  (EXCCODE_TLBL << CAUSEB_EXCCODE));
1886 
1887 	/* setup badvaddr, context and entryhi registers for the guest */
1888 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1889 	/* XXXKYMA: is the context register used by linux??? */
1890 	kvm_write_c0_guest_entryhi(cop0, entryhi);
1891 	/* Blow away the shadow host TLBs */
1892 	kvm_mips_flush_host_tlb(1);
1893 
1894 	return EMULATE_DONE;
1895 }
1896 
1897 enum emulation_result kvm_mips_emulate_tlbinv_ld(u32 cause,
1898 						 u32 *opc,
1899 						 struct kvm_run *run,
1900 						 struct kvm_vcpu *vcpu)
1901 {
1902 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1903 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1904 	unsigned long entryhi =
1905 		(vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1906 		(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1907 
1908 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1909 		/* save old pc */
1910 		kvm_write_c0_guest_epc(cop0, arch->pc);
1911 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1912 
1913 		if (cause & CAUSEF_BD)
1914 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1915 		else
1916 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1917 
1918 		kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
1919 			  arch->pc);
1920 
1921 		/* set pc to the exception entry point */
1922 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1923 
1924 	} else {
1925 		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1926 			  arch->pc);
1927 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1928 	}
1929 
1930 	kvm_change_c0_guest_cause(cop0, (0xff),
1931 				  (EXCCODE_TLBL << CAUSEB_EXCCODE));
1932 
1933 	/* setup badvaddr, context and entryhi registers for the guest */
1934 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1935 	/* XXXKYMA: is the context register used by linux??? */
1936 	kvm_write_c0_guest_entryhi(cop0, entryhi);
1937 	/* Blow away the shadow host TLBs */
1938 	kvm_mips_flush_host_tlb(1);
1939 
1940 	return EMULATE_DONE;
1941 }
1942 
1943 enum emulation_result kvm_mips_emulate_tlbmiss_st(u32 cause,
1944 						  u32 *opc,
1945 						  struct kvm_run *run,
1946 						  struct kvm_vcpu *vcpu)
1947 {
1948 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1949 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1950 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1951 			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1952 
1953 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1954 		/* save old pc */
1955 		kvm_write_c0_guest_epc(cop0, arch->pc);
1956 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1957 
1958 		if (cause & CAUSEF_BD)
1959 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1960 		else
1961 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1962 
1963 		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1964 			  arch->pc);
1965 
1966 		/* Set PC to the exception entry point */
1967 		arch->pc = KVM_GUEST_KSEG0 + 0x0;
1968 	} else {
1969 		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1970 			  arch->pc);
1971 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1972 	}
1973 
1974 	kvm_change_c0_guest_cause(cop0, (0xff),
1975 				  (EXCCODE_TLBS << CAUSEB_EXCCODE));
1976 
1977 	/* setup badvaddr, context and entryhi registers for the guest */
1978 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1979 	/* XXXKYMA: is the context register used by linux??? */
1980 	kvm_write_c0_guest_entryhi(cop0, entryhi);
1981 	/* Blow away the shadow host TLBs */
1982 	kvm_mips_flush_host_tlb(1);
1983 
1984 	return EMULATE_DONE;
1985 }
1986 
1987 enum emulation_result kvm_mips_emulate_tlbinv_st(u32 cause,
1988 						 u32 *opc,
1989 						 struct kvm_run *run,
1990 						 struct kvm_vcpu *vcpu)
1991 {
1992 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1993 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1994 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1995 		(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1996 
1997 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1998 		/* save old pc */
1999 		kvm_write_c0_guest_epc(cop0, arch->pc);
2000 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2001 
2002 		if (cause & CAUSEF_BD)
2003 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2004 		else
2005 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2006 
2007 		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2008 			  arch->pc);
2009 
2010 		/* Set PC to the exception entry point */
2011 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2012 	} else {
2013 		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2014 			  arch->pc);
2015 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2016 	}
2017 
2018 	kvm_change_c0_guest_cause(cop0, (0xff),
2019 				  (EXCCODE_TLBS << CAUSEB_EXCCODE));
2020 
2021 	/* setup badvaddr, context and entryhi registers for the guest */
2022 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2023 	/* XXXKYMA: is the context register used by linux??? */
2024 	kvm_write_c0_guest_entryhi(cop0, entryhi);
2025 	/* Blow away the shadow host TLBs */
2026 	kvm_mips_flush_host_tlb(1);
2027 
2028 	return EMULATE_DONE;
2029 }
2030 
2031 /* TLBMOD: store into address matching TLB with Dirty bit off */
2032 enum emulation_result kvm_mips_handle_tlbmod(u32 cause, u32 *opc,
2033 					     struct kvm_run *run,
2034 					     struct kvm_vcpu *vcpu)
2035 {
2036 	enum emulation_result er = EMULATE_DONE;
2037 #ifdef DEBUG
2038 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2039 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2040 			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2041 	int index;
2042 
2043 	/* If address not in the guest TLB, then we are in trouble */
2044 	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
2045 	if (index < 0) {
2046 		/* XXXKYMA Invalidate and retry */
2047 		kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr);
2048 		kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
2049 		     __func__, entryhi);
2050 		kvm_mips_dump_guest_tlbs(vcpu);
2051 		kvm_mips_dump_host_tlbs();
2052 		return EMULATE_FAIL;
2053 	}
2054 #endif
2055 
2056 	er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
2057 	return er;
2058 }
2059 
2060 enum emulation_result kvm_mips_emulate_tlbmod(u32 cause,
2061 					      u32 *opc,
2062 					      struct kvm_run *run,
2063 					      struct kvm_vcpu *vcpu)
2064 {
2065 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2066 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2067 			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2068 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2069 
2070 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2071 		/* save old pc */
2072 		kvm_write_c0_guest_epc(cop0, arch->pc);
2073 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2074 
2075 		if (cause & CAUSEF_BD)
2076 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2077 		else
2078 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2079 
2080 		kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2081 			  arch->pc);
2082 
2083 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2084 	} else {
2085 		kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2086 			  arch->pc);
2087 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2088 	}
2089 
2090 	kvm_change_c0_guest_cause(cop0, (0xff),
2091 				  (EXCCODE_MOD << CAUSEB_EXCCODE));
2092 
2093 	/* setup badvaddr, context and entryhi registers for the guest */
2094 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2095 	/* XXXKYMA: is the context register used by linux??? */
2096 	kvm_write_c0_guest_entryhi(cop0, entryhi);
2097 	/* Blow away the shadow host TLBs */
2098 	kvm_mips_flush_host_tlb(1);
2099 
2100 	return EMULATE_DONE;
2101 }
2102 
2103 enum emulation_result kvm_mips_emulate_fpu_exc(u32 cause,
2104 					       u32 *opc,
2105 					       struct kvm_run *run,
2106 					       struct kvm_vcpu *vcpu)
2107 {
2108 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2109 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2110 
2111 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2112 		/* save old pc */
2113 		kvm_write_c0_guest_epc(cop0, arch->pc);
2114 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2115 
2116 		if (cause & CAUSEF_BD)
2117 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2118 		else
2119 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2120 
2121 	}
2122 
2123 	arch->pc = KVM_GUEST_KSEG0 + 0x180;
2124 
2125 	kvm_change_c0_guest_cause(cop0, (0xff),
2126 				  (EXCCODE_CPU << CAUSEB_EXCCODE));
2127 	kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2128 
2129 	return EMULATE_DONE;
2130 }
2131 
2132 enum emulation_result kvm_mips_emulate_ri_exc(u32 cause,
2133 					      u32 *opc,
2134 					      struct kvm_run *run,
2135 					      struct kvm_vcpu *vcpu)
2136 {
2137 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2138 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2139 	enum emulation_result er = EMULATE_DONE;
2140 
2141 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2142 		/* save old pc */
2143 		kvm_write_c0_guest_epc(cop0, arch->pc);
2144 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2145 
2146 		if (cause & CAUSEF_BD)
2147 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2148 		else
2149 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2150 
2151 		kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2152 
2153 		kvm_change_c0_guest_cause(cop0, (0xff),
2154 					  (EXCCODE_RI << CAUSEB_EXCCODE));
2155 
2156 		/* Set PC to the exception entry point */
2157 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2158 
2159 	} else {
2160 		kvm_err("Trying to deliver RI when EXL is already set\n");
2161 		er = EMULATE_FAIL;
2162 	}
2163 
2164 	return er;
2165 }
2166 
2167 enum emulation_result kvm_mips_emulate_bp_exc(u32 cause,
2168 					      u32 *opc,
2169 					      struct kvm_run *run,
2170 					      struct kvm_vcpu *vcpu)
2171 {
2172 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2173 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2174 	enum emulation_result er = EMULATE_DONE;
2175 
2176 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2177 		/* save old pc */
2178 		kvm_write_c0_guest_epc(cop0, arch->pc);
2179 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2180 
2181 		if (cause & CAUSEF_BD)
2182 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2183 		else
2184 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2185 
2186 		kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2187 
2188 		kvm_change_c0_guest_cause(cop0, (0xff),
2189 					  (EXCCODE_BP << CAUSEB_EXCCODE));
2190 
2191 		/* Set PC to the exception entry point */
2192 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2193 
2194 	} else {
2195 		kvm_err("Trying to deliver BP when EXL is already set\n");
2196 		er = EMULATE_FAIL;
2197 	}
2198 
2199 	return er;
2200 }
2201 
2202 enum emulation_result kvm_mips_emulate_trap_exc(u32 cause,
2203 						u32 *opc,
2204 						struct kvm_run *run,
2205 						struct kvm_vcpu *vcpu)
2206 {
2207 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2208 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2209 	enum emulation_result er = EMULATE_DONE;
2210 
2211 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2212 		/* save old pc */
2213 		kvm_write_c0_guest_epc(cop0, arch->pc);
2214 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2215 
2216 		if (cause & CAUSEF_BD)
2217 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2218 		else
2219 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2220 
2221 		kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2222 
2223 		kvm_change_c0_guest_cause(cop0, (0xff),
2224 					  (EXCCODE_TR << CAUSEB_EXCCODE));
2225 
2226 		/* Set PC to the exception entry point */
2227 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2228 
2229 	} else {
2230 		kvm_err("Trying to deliver TRAP when EXL is already set\n");
2231 		er = EMULATE_FAIL;
2232 	}
2233 
2234 	return er;
2235 }
2236 
2237 enum emulation_result kvm_mips_emulate_msafpe_exc(u32 cause,
2238 						  u32 *opc,
2239 						  struct kvm_run *run,
2240 						  struct kvm_vcpu *vcpu)
2241 {
2242 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2243 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2244 	enum emulation_result er = EMULATE_DONE;
2245 
2246 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2247 		/* save old pc */
2248 		kvm_write_c0_guest_epc(cop0, arch->pc);
2249 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2250 
2251 		if (cause & CAUSEF_BD)
2252 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2253 		else
2254 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2255 
2256 		kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2257 
2258 		kvm_change_c0_guest_cause(cop0, (0xff),
2259 					  (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
2260 
2261 		/* Set PC to the exception entry point */
2262 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2263 
2264 	} else {
2265 		kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2266 		er = EMULATE_FAIL;
2267 	}
2268 
2269 	return er;
2270 }
2271 
2272 enum emulation_result kvm_mips_emulate_fpe_exc(u32 cause,
2273 					       u32 *opc,
2274 					       struct kvm_run *run,
2275 					       struct kvm_vcpu *vcpu)
2276 {
2277 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2278 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2279 	enum emulation_result er = EMULATE_DONE;
2280 
2281 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2282 		/* save old pc */
2283 		kvm_write_c0_guest_epc(cop0, arch->pc);
2284 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2285 
2286 		if (cause & CAUSEF_BD)
2287 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2288 		else
2289 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2290 
2291 		kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2292 
2293 		kvm_change_c0_guest_cause(cop0, (0xff),
2294 					  (EXCCODE_FPE << CAUSEB_EXCCODE));
2295 
2296 		/* Set PC to the exception entry point */
2297 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2298 
2299 	} else {
2300 		kvm_err("Trying to deliver FPE when EXL is already set\n");
2301 		er = EMULATE_FAIL;
2302 	}
2303 
2304 	return er;
2305 }
2306 
2307 enum emulation_result kvm_mips_emulate_msadis_exc(u32 cause,
2308 						  u32 *opc,
2309 						  struct kvm_run *run,
2310 						  struct kvm_vcpu *vcpu)
2311 {
2312 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2313 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2314 	enum emulation_result er = EMULATE_DONE;
2315 
2316 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2317 		/* save old pc */
2318 		kvm_write_c0_guest_epc(cop0, arch->pc);
2319 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2320 
2321 		if (cause & CAUSEF_BD)
2322 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2323 		else
2324 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2325 
2326 		kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2327 
2328 		kvm_change_c0_guest_cause(cop0, (0xff),
2329 					  (EXCCODE_MSADIS << CAUSEB_EXCCODE));
2330 
2331 		/* Set PC to the exception entry point */
2332 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2333 
2334 	} else {
2335 		kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2336 		er = EMULATE_FAIL;
2337 	}
2338 
2339 	return er;
2340 }
2341 
2342 enum emulation_result kvm_mips_handle_ri(u32 cause, u32 *opc,
2343 					 struct kvm_run *run,
2344 					 struct kvm_vcpu *vcpu)
2345 {
2346 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2347 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2348 	enum emulation_result er = EMULATE_DONE;
2349 	unsigned long curr_pc;
2350 	union mips_instruction inst;
2351 
2352 	/*
2353 	 * Update PC and hold onto current PC in case there is
2354 	 * an error and we want to rollback the PC
2355 	 */
2356 	curr_pc = vcpu->arch.pc;
2357 	er = update_pc(vcpu, cause);
2358 	if (er == EMULATE_FAIL)
2359 		return er;
2360 
2361 	/* Fetch the instruction. */
2362 	if (cause & CAUSEF_BD)
2363 		opc += 1;
2364 
2365 	inst.word = kvm_get_inst(opc, vcpu);
2366 
2367 	if (inst.word == KVM_INVALID_INST) {
2368 		kvm_err("%s: Cannot get inst @ %p\n", __func__, opc);
2369 		return EMULATE_FAIL;
2370 	}
2371 
2372 	if (inst.r_format.opcode == spec3_op &&
2373 	    inst.r_format.func == rdhwr_op &&
2374 	    inst.r_format.rs == 0 &&
2375 	    (inst.r_format.re >> 3) == 0) {
2376 		int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2377 		int rd = inst.r_format.rd;
2378 		int rt = inst.r_format.rt;
2379 		int sel = inst.r_format.re & 0x7;
2380 
2381 		/* If usermode, check RDHWR rd is allowed by guest HWREna */
2382 		if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2383 			kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2384 				  rd, opc);
2385 			goto emulate_ri;
2386 		}
2387 		switch (rd) {
2388 		case MIPS_HWR_CPUNUM:		/* CPU number */
2389 			arch->gprs[rt] = vcpu->vcpu_id;
2390 			break;
2391 		case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
2392 			arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2393 					     current_cpu_data.icache.linesz);
2394 			break;
2395 		case MIPS_HWR_CC:		/* Read count register */
2396 			arch->gprs[rt] = (s32)kvm_mips_read_count(vcpu);
2397 			break;
2398 		case MIPS_HWR_CCRES:		/* Count register resolution */
2399 			switch (current_cpu_data.cputype) {
2400 			case CPU_20KC:
2401 			case CPU_25KF:
2402 				arch->gprs[rt] = 1;
2403 				break;
2404 			default:
2405 				arch->gprs[rt] = 2;
2406 			}
2407 			break;
2408 		case MIPS_HWR_ULR:		/* Read UserLocal register */
2409 			arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2410 			break;
2411 
2412 		default:
2413 			kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2414 			goto emulate_ri;
2415 		}
2416 
2417 		trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, KVM_TRACE_HWR(rd, sel),
2418 			      vcpu->arch.gprs[rt]);
2419 	} else {
2420 		kvm_debug("Emulate RI not supported @ %p: %#x\n",
2421 			  opc, inst.word);
2422 		goto emulate_ri;
2423 	}
2424 
2425 	return EMULATE_DONE;
2426 
2427 emulate_ri:
2428 	/*
2429 	 * Rollback PC (if in branch delay slot then the PC already points to
2430 	 * branch target), and pass the RI exception to the guest OS.
2431 	 */
2432 	vcpu->arch.pc = curr_pc;
2433 	return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
2434 }
2435 
2436 enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2437 						  struct kvm_run *run)
2438 {
2439 	unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2440 	enum emulation_result er = EMULATE_DONE;
2441 
2442 	if (run->mmio.len > sizeof(*gpr)) {
2443 		kvm_err("Bad MMIO length: %d", run->mmio.len);
2444 		er = EMULATE_FAIL;
2445 		goto done;
2446 	}
2447 
2448 	er = update_pc(vcpu, vcpu->arch.pending_load_cause);
2449 	if (er == EMULATE_FAIL)
2450 		return er;
2451 
2452 	switch (run->mmio.len) {
2453 	case 4:
2454 		*gpr = *(s32 *) run->mmio.data;
2455 		break;
2456 
2457 	case 2:
2458 		if (vcpu->mmio_needed == 2)
2459 			*gpr = *(s16 *) run->mmio.data;
2460 		else
2461 			*gpr = *(u16 *)run->mmio.data;
2462 
2463 		break;
2464 	case 1:
2465 		if (vcpu->mmio_needed == 2)
2466 			*gpr = *(s8 *) run->mmio.data;
2467 		else
2468 			*gpr = *(u8 *) run->mmio.data;
2469 		break;
2470 	}
2471 
2472 	if (vcpu->arch.pending_load_cause & CAUSEF_BD)
2473 		kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n",
2474 			  vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr,
2475 			  vcpu->mmio_needed);
2476 
2477 done:
2478 	return er;
2479 }
2480 
2481 static enum emulation_result kvm_mips_emulate_exc(u32 cause,
2482 						  u32 *opc,
2483 						  struct kvm_run *run,
2484 						  struct kvm_vcpu *vcpu)
2485 {
2486 	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2487 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2488 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2489 	enum emulation_result er = EMULATE_DONE;
2490 
2491 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2492 		/* save old pc */
2493 		kvm_write_c0_guest_epc(cop0, arch->pc);
2494 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2495 
2496 		if (cause & CAUSEF_BD)
2497 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2498 		else
2499 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2500 
2501 		kvm_change_c0_guest_cause(cop0, (0xff),
2502 					  (exccode << CAUSEB_EXCCODE));
2503 
2504 		/* Set PC to the exception entry point */
2505 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2506 		kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2507 
2508 		kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2509 			  exccode, kvm_read_c0_guest_epc(cop0),
2510 			  kvm_read_c0_guest_badvaddr(cop0));
2511 	} else {
2512 		kvm_err("Trying to deliver EXC when EXL is already set\n");
2513 		er = EMULATE_FAIL;
2514 	}
2515 
2516 	return er;
2517 }
2518 
2519 enum emulation_result kvm_mips_check_privilege(u32 cause,
2520 					       u32 *opc,
2521 					       struct kvm_run *run,
2522 					       struct kvm_vcpu *vcpu)
2523 {
2524 	enum emulation_result er = EMULATE_DONE;
2525 	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2526 	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2527 
2528 	int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2529 
2530 	if (usermode) {
2531 		switch (exccode) {
2532 		case EXCCODE_INT:
2533 		case EXCCODE_SYS:
2534 		case EXCCODE_BP:
2535 		case EXCCODE_RI:
2536 		case EXCCODE_TR:
2537 		case EXCCODE_MSAFPE:
2538 		case EXCCODE_FPE:
2539 		case EXCCODE_MSADIS:
2540 			break;
2541 
2542 		case EXCCODE_CPU:
2543 			if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2544 				er = EMULATE_PRIV_FAIL;
2545 			break;
2546 
2547 		case EXCCODE_MOD:
2548 			break;
2549 
2550 		case EXCCODE_TLBL:
2551 			/*
2552 			 * We we are accessing Guest kernel space, then send an
2553 			 * address error exception to the guest
2554 			 */
2555 			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2556 				kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2557 					  badvaddr);
2558 				cause &= ~0xff;
2559 				cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
2560 				er = EMULATE_PRIV_FAIL;
2561 			}
2562 			break;
2563 
2564 		case EXCCODE_TLBS:
2565 			/*
2566 			 * We we are accessing Guest kernel space, then send an
2567 			 * address error exception to the guest
2568 			 */
2569 			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2570 				kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2571 					  badvaddr);
2572 				cause &= ~0xff;
2573 				cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
2574 				er = EMULATE_PRIV_FAIL;
2575 			}
2576 			break;
2577 
2578 		case EXCCODE_ADES:
2579 			kvm_debug("%s: address error ST @ %#lx\n", __func__,
2580 				  badvaddr);
2581 			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2582 				cause &= ~0xff;
2583 				cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
2584 			}
2585 			er = EMULATE_PRIV_FAIL;
2586 			break;
2587 		case EXCCODE_ADEL:
2588 			kvm_debug("%s: address error LD @ %#lx\n", __func__,
2589 				  badvaddr);
2590 			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2591 				cause &= ~0xff;
2592 				cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
2593 			}
2594 			er = EMULATE_PRIV_FAIL;
2595 			break;
2596 		default:
2597 			er = EMULATE_PRIV_FAIL;
2598 			break;
2599 		}
2600 	}
2601 
2602 	if (er == EMULATE_PRIV_FAIL)
2603 		kvm_mips_emulate_exc(cause, opc, run, vcpu);
2604 
2605 	return er;
2606 }
2607 
2608 /*
2609  * User Address (UA) fault, this could happen if
2610  * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2611  *     case we pass on the fault to the guest kernel and let it handle it.
2612  * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2613  *     case we inject the TLB from the Guest TLB into the shadow host TLB
2614  */
2615 enum emulation_result kvm_mips_handle_tlbmiss(u32 cause,
2616 					      u32 *opc,
2617 					      struct kvm_run *run,
2618 					      struct kvm_vcpu *vcpu)
2619 {
2620 	enum emulation_result er = EMULATE_DONE;
2621 	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2622 	unsigned long va = vcpu->arch.host_cp0_badvaddr;
2623 	int index;
2624 
2625 	kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n",
2626 		  vcpu->arch.host_cp0_badvaddr);
2627 
2628 	/*
2629 	 * KVM would not have got the exception if this entry was valid in the
2630 	 * shadow host TLB. Check the Guest TLB, if the entry is not there then
2631 	 * send the guest an exception. The guest exc handler should then inject
2632 	 * an entry into the guest TLB.
2633 	 */
2634 	index = kvm_mips_guest_tlb_lookup(vcpu,
2635 		      (va & VPN2_MASK) |
2636 		      (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) &
2637 		       KVM_ENTRYHI_ASID));
2638 	if (index < 0) {
2639 		if (exccode == EXCCODE_TLBL) {
2640 			er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
2641 		} else if (exccode == EXCCODE_TLBS) {
2642 			er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2643 		} else {
2644 			kvm_err("%s: invalid exc code: %d\n", __func__,
2645 				exccode);
2646 			er = EMULATE_FAIL;
2647 		}
2648 	} else {
2649 		struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2650 
2651 		/*
2652 		 * Check if the entry is valid, if not then setup a TLB invalid
2653 		 * exception to the guest
2654 		 */
2655 		if (!TLB_IS_VALID(*tlb, va)) {
2656 			if (exccode == EXCCODE_TLBL) {
2657 				er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2658 								vcpu);
2659 			} else if (exccode == EXCCODE_TLBS) {
2660 				er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2661 								vcpu);
2662 			} else {
2663 				kvm_err("%s: invalid exc code: %d\n", __func__,
2664 					exccode);
2665 				er = EMULATE_FAIL;
2666 			}
2667 		} else {
2668 			kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2669 				  tlb->tlb_hi, tlb->tlb_lo[0], tlb->tlb_lo[1]);
2670 			/*
2671 			 * OK we have a Guest TLB entry, now inject it into the
2672 			 * shadow host TLB
2673 			 */
2674 			if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb)) {
2675 				kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
2676 					__func__, va, index, vcpu,
2677 					read_c0_entryhi());
2678 				er = EMULATE_FAIL;
2679 			}
2680 		}
2681 	}
2682 
2683 	return er;
2684 }
2685