xref: /openbmc/linux/arch/mips/kvm/emulate.c (revision b96fc2f3)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: Instruction/Exception emulation
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11 
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/ktime.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/fs.h>
19 #include <linux/bootmem.h>
20 #include <linux/random.h>
21 #include <asm/page.h>
22 #include <asm/cacheflush.h>
23 #include <asm/cpu-info.h>
24 #include <asm/mmu_context.h>
25 #include <asm/tlbflush.h>
26 #include <asm/inst.h>
27 
28 #undef CONFIG_MIPS_MT
29 #include <asm/r4kcache.h>
30 #define CONFIG_MIPS_MT
31 
32 #include "opcode.h"
33 #include "interrupt.h"
34 #include "commpage.h"
35 
36 #include "trace.h"
37 
38 /*
39  * Compute the return address and do emulate branch simulation, if required.
40  * This function should be called only in branch delay slot active.
41  */
42 unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu,
43 	unsigned long instpc)
44 {
45 	unsigned int dspcontrol;
46 	union mips_instruction insn;
47 	struct kvm_vcpu_arch *arch = &vcpu->arch;
48 	long epc = instpc;
49 	long nextpc = KVM_INVALID_INST;
50 
51 	if (epc & 3)
52 		goto unaligned;
53 
54 	/* Read the instruction */
55 	insn.word = kvm_get_inst((uint32_t *) epc, vcpu);
56 
57 	if (insn.word == KVM_INVALID_INST)
58 		return KVM_INVALID_INST;
59 
60 	switch (insn.i_format.opcode) {
61 		/* jr and jalr are in r_format format. */
62 	case spec_op:
63 		switch (insn.r_format.func) {
64 		case jalr_op:
65 			arch->gprs[insn.r_format.rd] = epc + 8;
66 			/* Fall through */
67 		case jr_op:
68 			nextpc = arch->gprs[insn.r_format.rs];
69 			break;
70 		}
71 		break;
72 
73 		/*
74 		 * This group contains:
75 		 * bltz_op, bgez_op, bltzl_op, bgezl_op,
76 		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
77 		 */
78 	case bcond_op:
79 		switch (insn.i_format.rt) {
80 		case bltz_op:
81 		case bltzl_op:
82 			if ((long)arch->gprs[insn.i_format.rs] < 0)
83 				epc = epc + 4 + (insn.i_format.simmediate << 2);
84 			else
85 				epc += 8;
86 			nextpc = epc;
87 			break;
88 
89 		case bgez_op:
90 		case bgezl_op:
91 			if ((long)arch->gprs[insn.i_format.rs] >= 0)
92 				epc = epc + 4 + (insn.i_format.simmediate << 2);
93 			else
94 				epc += 8;
95 			nextpc = epc;
96 			break;
97 
98 		case bltzal_op:
99 		case bltzall_op:
100 			arch->gprs[31] = epc + 8;
101 			if ((long)arch->gprs[insn.i_format.rs] < 0)
102 				epc = epc + 4 + (insn.i_format.simmediate << 2);
103 			else
104 				epc += 8;
105 			nextpc = epc;
106 			break;
107 
108 		case bgezal_op:
109 		case bgezall_op:
110 			arch->gprs[31] = epc + 8;
111 			if ((long)arch->gprs[insn.i_format.rs] >= 0)
112 				epc = epc + 4 + (insn.i_format.simmediate << 2);
113 			else
114 				epc += 8;
115 			nextpc = epc;
116 			break;
117 		case bposge32_op:
118 			if (!cpu_has_dsp)
119 				goto sigill;
120 
121 			dspcontrol = rddsp(0x01);
122 
123 			if (dspcontrol >= 32)
124 				epc = epc + 4 + (insn.i_format.simmediate << 2);
125 			else
126 				epc += 8;
127 			nextpc = epc;
128 			break;
129 		}
130 		break;
131 
132 		/* These are unconditional and in j_format. */
133 	case jal_op:
134 		arch->gprs[31] = instpc + 8;
135 	case j_op:
136 		epc += 4;
137 		epc >>= 28;
138 		epc <<= 28;
139 		epc |= (insn.j_format.target << 2);
140 		nextpc = epc;
141 		break;
142 
143 		/* These are conditional and in i_format. */
144 	case beq_op:
145 	case beql_op:
146 		if (arch->gprs[insn.i_format.rs] ==
147 		    arch->gprs[insn.i_format.rt])
148 			epc = epc + 4 + (insn.i_format.simmediate << 2);
149 		else
150 			epc += 8;
151 		nextpc = epc;
152 		break;
153 
154 	case bne_op:
155 	case bnel_op:
156 		if (arch->gprs[insn.i_format.rs] !=
157 		    arch->gprs[insn.i_format.rt])
158 			epc = epc + 4 + (insn.i_format.simmediate << 2);
159 		else
160 			epc += 8;
161 		nextpc = epc;
162 		break;
163 
164 	case blez_op:		/* not really i_format */
165 	case blezl_op:
166 		/* rt field assumed to be zero */
167 		if ((long)arch->gprs[insn.i_format.rs] <= 0)
168 			epc = epc + 4 + (insn.i_format.simmediate << 2);
169 		else
170 			epc += 8;
171 		nextpc = epc;
172 		break;
173 
174 	case bgtz_op:
175 	case bgtzl_op:
176 		/* rt field assumed to be zero */
177 		if ((long)arch->gprs[insn.i_format.rs] > 0)
178 			epc = epc + 4 + (insn.i_format.simmediate << 2);
179 		else
180 			epc += 8;
181 		nextpc = epc;
182 		break;
183 
184 		/* And now the FPA/cp1 branch instructions. */
185 	case cop1_op:
186 		kvm_err("%s: unsupported cop1_op\n", __func__);
187 		break;
188 	}
189 
190 	return nextpc;
191 
192 unaligned:
193 	kvm_err("%s: unaligned epc\n", __func__);
194 	return nextpc;
195 
196 sigill:
197 	kvm_err("%s: DSP branch but not DSP ASE\n", __func__);
198 	return nextpc;
199 }
200 
201 enum emulation_result update_pc(struct kvm_vcpu *vcpu, uint32_t cause)
202 {
203 	unsigned long branch_pc;
204 	enum emulation_result er = EMULATE_DONE;
205 
206 	if (cause & CAUSEF_BD) {
207 		branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc);
208 		if (branch_pc == KVM_INVALID_INST) {
209 			er = EMULATE_FAIL;
210 		} else {
211 			vcpu->arch.pc = branch_pc;
212 			kvm_debug("BD update_pc(): New PC: %#lx\n",
213 				  vcpu->arch.pc);
214 		}
215 	} else
216 		vcpu->arch.pc += 4;
217 
218 	kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
219 
220 	return er;
221 }
222 
223 /**
224  * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
225  * @vcpu:	Virtual CPU.
226  *
227  * Returns:	1 if the CP0_Count timer is disabled by either the guest
228  *		CP0_Cause.DC bit or the count_ctl.DC bit.
229  *		0 otherwise (in which case CP0_Count timer is running).
230  */
231 static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
232 {
233 	struct mips_coproc *cop0 = vcpu->arch.cop0;
234 
235 	return	(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
236 		(kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
237 }
238 
239 /**
240  * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
241  *
242  * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
243  *
244  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
245  */
246 static uint32_t kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
247 {
248 	s64 now_ns, periods;
249 	u64 delta;
250 
251 	now_ns = ktime_to_ns(now);
252 	delta = now_ns + vcpu->arch.count_dyn_bias;
253 
254 	if (delta >= vcpu->arch.count_period) {
255 		/* If delta is out of safe range the bias needs adjusting */
256 		periods = div64_s64(now_ns, vcpu->arch.count_period);
257 		vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
258 		/* Recalculate delta with new bias */
259 		delta = now_ns + vcpu->arch.count_dyn_bias;
260 	}
261 
262 	/*
263 	 * We've ensured that:
264 	 *   delta < count_period
265 	 *
266 	 * Therefore the intermediate delta*count_hz will never overflow since
267 	 * at the boundary condition:
268 	 *   delta = count_period
269 	 *   delta = NSEC_PER_SEC * 2^32 / count_hz
270 	 *   delta * count_hz = NSEC_PER_SEC * 2^32
271 	 */
272 	return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
273 }
274 
275 /**
276  * kvm_mips_count_time() - Get effective current time.
277  * @vcpu:	Virtual CPU.
278  *
279  * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
280  * except when the master disable bit is set in count_ctl, in which case it is
281  * count_resume, i.e. the time that the count was disabled.
282  *
283  * Returns:	Effective monotonic ktime for CP0_Count.
284  */
285 static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
286 {
287 	if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
288 		return vcpu->arch.count_resume;
289 
290 	return ktime_get();
291 }
292 
293 /**
294  * kvm_mips_read_count_running() - Read the current count value as if running.
295  * @vcpu:	Virtual CPU.
296  * @now:	Kernel time to read CP0_Count at.
297  *
298  * Returns the current guest CP0_Count register at time @now and handles if the
299  * timer interrupt is pending and hasn't been handled yet.
300  *
301  * Returns:	The current value of the guest CP0_Count register.
302  */
303 static uint32_t kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
304 {
305 	ktime_t expires;
306 	int running;
307 
308 	/* Is the hrtimer pending? */
309 	expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
310 	if (ktime_compare(now, expires) >= 0) {
311 		/*
312 		 * Cancel it while we handle it so there's no chance of
313 		 * interference with the timeout handler.
314 		 */
315 		running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
316 
317 		/* Nothing should be waiting on the timeout */
318 		kvm_mips_callbacks->queue_timer_int(vcpu);
319 
320 		/*
321 		 * Restart the timer if it was running based on the expiry time
322 		 * we read, so that we don't push it back 2 periods.
323 		 */
324 		if (running) {
325 			expires = ktime_add_ns(expires,
326 					       vcpu->arch.count_period);
327 			hrtimer_start(&vcpu->arch.comparecount_timer, expires,
328 				      HRTIMER_MODE_ABS);
329 		}
330 	}
331 
332 	/* Return the biased and scaled guest CP0_Count */
333 	return vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
334 }
335 
336 /**
337  * kvm_mips_read_count() - Read the current count value.
338  * @vcpu:	Virtual CPU.
339  *
340  * Read the current guest CP0_Count value, taking into account whether the timer
341  * is stopped.
342  *
343  * Returns:	The current guest CP0_Count value.
344  */
345 uint32_t kvm_mips_read_count(struct kvm_vcpu *vcpu)
346 {
347 	struct mips_coproc *cop0 = vcpu->arch.cop0;
348 
349 	/* If count disabled just read static copy of count */
350 	if (kvm_mips_count_disabled(vcpu))
351 		return kvm_read_c0_guest_count(cop0);
352 
353 	return kvm_mips_read_count_running(vcpu, ktime_get());
354 }
355 
356 /**
357  * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
358  * @vcpu:	Virtual CPU.
359  * @count:	Output pointer for CP0_Count value at point of freeze.
360  *
361  * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
362  * at the point it was frozen. It is guaranteed that any pending interrupts at
363  * the point it was frozen are handled, and none after that point.
364  *
365  * This is useful where the time/CP0_Count is needed in the calculation of the
366  * new parameters.
367  *
368  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
369  *
370  * Returns:	The ktime at the point of freeze.
371  */
372 static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu,
373 				       uint32_t *count)
374 {
375 	ktime_t now;
376 
377 	/* stop hrtimer before finding time */
378 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
379 	now = ktime_get();
380 
381 	/* find count at this point and handle pending hrtimer */
382 	*count = kvm_mips_read_count_running(vcpu, now);
383 
384 	return now;
385 }
386 
387 /**
388  * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
389  * @vcpu:	Virtual CPU.
390  * @now:	ktime at point of resume.
391  * @count:	CP0_Count at point of resume.
392  *
393  * Resumes the timer and updates the timer expiry based on @now and @count.
394  * This can be used in conjunction with kvm_mips_freeze_timer() when timer
395  * parameters need to be changed.
396  *
397  * It is guaranteed that a timer interrupt immediately after resume will be
398  * handled, but not if CP_Compare is exactly at @count. That case is already
399  * handled by kvm_mips_freeze_timer().
400  *
401  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
402  */
403 static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
404 				    ktime_t now, uint32_t count)
405 {
406 	struct mips_coproc *cop0 = vcpu->arch.cop0;
407 	uint32_t compare;
408 	u64 delta;
409 	ktime_t expire;
410 
411 	/* Calculate timeout (wrap 0 to 2^32) */
412 	compare = kvm_read_c0_guest_compare(cop0);
413 	delta = (u64)(uint32_t)(compare - count - 1) + 1;
414 	delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
415 	expire = ktime_add_ns(now, delta);
416 
417 	/* Update hrtimer to use new timeout */
418 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
419 	hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
420 }
421 
422 /**
423  * kvm_mips_update_hrtimer() - Update next expiry time of hrtimer.
424  * @vcpu:	Virtual CPU.
425  *
426  * Recalculates and updates the expiry time of the hrtimer. This can be used
427  * after timer parameters have been altered which do not depend on the time that
428  * the change occurs (in those cases kvm_mips_freeze_hrtimer() and
429  * kvm_mips_resume_hrtimer() are used directly).
430  *
431  * It is guaranteed that no timer interrupts will be lost in the process.
432  *
433  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
434  */
435 static void kvm_mips_update_hrtimer(struct kvm_vcpu *vcpu)
436 {
437 	ktime_t now;
438 	uint32_t count;
439 
440 	/*
441 	 * freeze_hrtimer takes care of a timer interrupts <= count, and
442 	 * resume_hrtimer the hrtimer takes care of a timer interrupts > count.
443 	 */
444 	now = kvm_mips_freeze_hrtimer(vcpu, &count);
445 	kvm_mips_resume_hrtimer(vcpu, now, count);
446 }
447 
448 /**
449  * kvm_mips_write_count() - Modify the count and update timer.
450  * @vcpu:	Virtual CPU.
451  * @count:	Guest CP0_Count value to set.
452  *
453  * Sets the CP0_Count value and updates the timer accordingly.
454  */
455 void kvm_mips_write_count(struct kvm_vcpu *vcpu, uint32_t count)
456 {
457 	struct mips_coproc *cop0 = vcpu->arch.cop0;
458 	ktime_t now;
459 
460 	/* Calculate bias */
461 	now = kvm_mips_count_time(vcpu);
462 	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
463 
464 	if (kvm_mips_count_disabled(vcpu))
465 		/* The timer's disabled, adjust the static count */
466 		kvm_write_c0_guest_count(cop0, count);
467 	else
468 		/* Update timeout */
469 		kvm_mips_resume_hrtimer(vcpu, now, count);
470 }
471 
472 /**
473  * kvm_mips_init_count() - Initialise timer.
474  * @vcpu:	Virtual CPU.
475  *
476  * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
477  * it going if it's enabled.
478  */
479 void kvm_mips_init_count(struct kvm_vcpu *vcpu)
480 {
481 	/* 100 MHz */
482 	vcpu->arch.count_hz = 100*1000*1000;
483 	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
484 					  vcpu->arch.count_hz);
485 	vcpu->arch.count_dyn_bias = 0;
486 
487 	/* Starting at 0 */
488 	kvm_mips_write_count(vcpu, 0);
489 }
490 
491 /**
492  * kvm_mips_set_count_hz() - Update the frequency of the timer.
493  * @vcpu:	Virtual CPU.
494  * @count_hz:	Frequency of CP0_Count timer in Hz.
495  *
496  * Change the frequency of the CP0_Count timer. This is done atomically so that
497  * CP0_Count is continuous and no timer interrupt is lost.
498  *
499  * Returns:	-EINVAL if @count_hz is out of range.
500  *		0 on success.
501  */
502 int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
503 {
504 	struct mips_coproc *cop0 = vcpu->arch.cop0;
505 	int dc;
506 	ktime_t now;
507 	u32 count;
508 
509 	/* ensure the frequency is in a sensible range... */
510 	if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
511 		return -EINVAL;
512 	/* ... and has actually changed */
513 	if (vcpu->arch.count_hz == count_hz)
514 		return 0;
515 
516 	/* Safely freeze timer so we can keep it continuous */
517 	dc = kvm_mips_count_disabled(vcpu);
518 	if (dc) {
519 		now = kvm_mips_count_time(vcpu);
520 		count = kvm_read_c0_guest_count(cop0);
521 	} else {
522 		now = kvm_mips_freeze_hrtimer(vcpu, &count);
523 	}
524 
525 	/* Update the frequency */
526 	vcpu->arch.count_hz = count_hz;
527 	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
528 	vcpu->arch.count_dyn_bias = 0;
529 
530 	/* Calculate adjusted bias so dynamic count is unchanged */
531 	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
532 
533 	/* Update and resume hrtimer */
534 	if (!dc)
535 		kvm_mips_resume_hrtimer(vcpu, now, count);
536 	return 0;
537 }
538 
539 /**
540  * kvm_mips_write_compare() - Modify compare and update timer.
541  * @vcpu:	Virtual CPU.
542  * @compare:	New CP0_Compare value.
543  *
544  * Update CP0_Compare to a new value and update the timeout.
545  */
546 void kvm_mips_write_compare(struct kvm_vcpu *vcpu, uint32_t compare)
547 {
548 	struct mips_coproc *cop0 = vcpu->arch.cop0;
549 
550 	/* if unchanged, must just be an ack */
551 	if (kvm_read_c0_guest_compare(cop0) == compare)
552 		return;
553 
554 	/* Update compare */
555 	kvm_write_c0_guest_compare(cop0, compare);
556 
557 	/* Update timeout if count enabled */
558 	if (!kvm_mips_count_disabled(vcpu))
559 		kvm_mips_update_hrtimer(vcpu);
560 }
561 
562 /**
563  * kvm_mips_count_disable() - Disable count.
564  * @vcpu:	Virtual CPU.
565  *
566  * Disable the CP0_Count timer. A timer interrupt on or before the final stop
567  * time will be handled but not after.
568  *
569  * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
570  * count_ctl.DC has been set (count disabled).
571  *
572  * Returns:	The time that the timer was stopped.
573  */
574 static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
575 {
576 	struct mips_coproc *cop0 = vcpu->arch.cop0;
577 	uint32_t count;
578 	ktime_t now;
579 
580 	/* Stop hrtimer */
581 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
582 
583 	/* Set the static count from the dynamic count, handling pending TI */
584 	now = ktime_get();
585 	count = kvm_mips_read_count_running(vcpu, now);
586 	kvm_write_c0_guest_count(cop0, count);
587 
588 	return now;
589 }
590 
591 /**
592  * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
593  * @vcpu:	Virtual CPU.
594  *
595  * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
596  * before the final stop time will be handled if the timer isn't disabled by
597  * count_ctl.DC, but not after.
598  *
599  * Assumes CP0_Cause.DC is clear (count enabled).
600  */
601 void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
602 {
603 	struct mips_coproc *cop0 = vcpu->arch.cop0;
604 
605 	kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
606 	if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
607 		kvm_mips_count_disable(vcpu);
608 }
609 
610 /**
611  * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
612  * @vcpu:	Virtual CPU.
613  *
614  * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
615  * the start time will be handled if the timer isn't disabled by count_ctl.DC,
616  * potentially before even returning, so the caller should be careful with
617  * ordering of CP0_Cause modifications so as not to lose it.
618  *
619  * Assumes CP0_Cause.DC is set (count disabled).
620  */
621 void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
622 {
623 	struct mips_coproc *cop0 = vcpu->arch.cop0;
624 	uint32_t count;
625 
626 	kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
627 
628 	/*
629 	 * Set the dynamic count to match the static count.
630 	 * This starts the hrtimer if count_ctl.DC allows it.
631 	 * Otherwise it conveniently updates the biases.
632 	 */
633 	count = kvm_read_c0_guest_count(cop0);
634 	kvm_mips_write_count(vcpu, count);
635 }
636 
637 /**
638  * kvm_mips_set_count_ctl() - Update the count control KVM register.
639  * @vcpu:	Virtual CPU.
640  * @count_ctl:	Count control register new value.
641  *
642  * Set the count control KVM register. The timer is updated accordingly.
643  *
644  * Returns:	-EINVAL if reserved bits are set.
645  *		0 on success.
646  */
647 int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
648 {
649 	struct mips_coproc *cop0 = vcpu->arch.cop0;
650 	s64 changed = count_ctl ^ vcpu->arch.count_ctl;
651 	s64 delta;
652 	ktime_t expire, now;
653 	uint32_t count, compare;
654 
655 	/* Only allow defined bits to be changed */
656 	if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
657 		return -EINVAL;
658 
659 	/* Apply new value */
660 	vcpu->arch.count_ctl = count_ctl;
661 
662 	/* Master CP0_Count disable */
663 	if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
664 		/* Is CP0_Cause.DC already disabling CP0_Count? */
665 		if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
666 			if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
667 				/* Just record the current time */
668 				vcpu->arch.count_resume = ktime_get();
669 		} else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
670 			/* disable timer and record current time */
671 			vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
672 		} else {
673 			/*
674 			 * Calculate timeout relative to static count at resume
675 			 * time (wrap 0 to 2^32).
676 			 */
677 			count = kvm_read_c0_guest_count(cop0);
678 			compare = kvm_read_c0_guest_compare(cop0);
679 			delta = (u64)(uint32_t)(compare - count - 1) + 1;
680 			delta = div_u64(delta * NSEC_PER_SEC,
681 					vcpu->arch.count_hz);
682 			expire = ktime_add_ns(vcpu->arch.count_resume, delta);
683 
684 			/* Handle pending interrupt */
685 			now = ktime_get();
686 			if (ktime_compare(now, expire) >= 0)
687 				/* Nothing should be waiting on the timeout */
688 				kvm_mips_callbacks->queue_timer_int(vcpu);
689 
690 			/* Resume hrtimer without changing bias */
691 			count = kvm_mips_read_count_running(vcpu, now);
692 			kvm_mips_resume_hrtimer(vcpu, now, count);
693 		}
694 	}
695 
696 	return 0;
697 }
698 
699 /**
700  * kvm_mips_set_count_resume() - Update the count resume KVM register.
701  * @vcpu:		Virtual CPU.
702  * @count_resume:	Count resume register new value.
703  *
704  * Set the count resume KVM register.
705  *
706  * Returns:	-EINVAL if out of valid range (0..now).
707  *		0 on success.
708  */
709 int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
710 {
711 	/*
712 	 * It doesn't make sense for the resume time to be in the future, as it
713 	 * would be possible for the next interrupt to be more than a full
714 	 * period in the future.
715 	 */
716 	if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
717 		return -EINVAL;
718 
719 	vcpu->arch.count_resume = ns_to_ktime(count_resume);
720 	return 0;
721 }
722 
723 /**
724  * kvm_mips_count_timeout() - Push timer forward on timeout.
725  * @vcpu:	Virtual CPU.
726  *
727  * Handle an hrtimer event by push the hrtimer forward a period.
728  *
729  * Returns:	The hrtimer_restart value to return to the hrtimer subsystem.
730  */
731 enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
732 {
733 	/* Add the Count period to the current expiry time */
734 	hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
735 			       vcpu->arch.count_period);
736 	return HRTIMER_RESTART;
737 }
738 
739 enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
740 {
741 	struct mips_coproc *cop0 = vcpu->arch.cop0;
742 	enum emulation_result er = EMULATE_DONE;
743 
744 	if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
745 		kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
746 			  kvm_read_c0_guest_epc(cop0));
747 		kvm_clear_c0_guest_status(cop0, ST0_EXL);
748 		vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
749 
750 	} else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
751 		kvm_clear_c0_guest_status(cop0, ST0_ERL);
752 		vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
753 	} else {
754 		kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
755 			vcpu->arch.pc);
756 		er = EMULATE_FAIL;
757 	}
758 
759 	return er;
760 }
761 
762 enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
763 {
764 	kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
765 		  vcpu->arch.pending_exceptions);
766 
767 	++vcpu->stat.wait_exits;
768 	trace_kvm_exit(vcpu, WAIT_EXITS);
769 	if (!vcpu->arch.pending_exceptions) {
770 		vcpu->arch.wait = 1;
771 		kvm_vcpu_block(vcpu);
772 
773 		/*
774 		 * We we are runnable, then definitely go off to user space to
775 		 * check if any I/O interrupts are pending.
776 		 */
777 		if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
778 			clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
779 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
780 		}
781 	}
782 
783 	return EMULATE_DONE;
784 }
785 
786 /*
787  * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
788  * we can catch this, if things ever change
789  */
790 enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
791 {
792 	struct mips_coproc *cop0 = vcpu->arch.cop0;
793 	uint32_t pc = vcpu->arch.pc;
794 
795 	kvm_err("[%#x] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
796 	return EMULATE_FAIL;
797 }
798 
799 /* Write Guest TLB Entry @ Index */
800 enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
801 {
802 	struct mips_coproc *cop0 = vcpu->arch.cop0;
803 	int index = kvm_read_c0_guest_index(cop0);
804 	struct kvm_mips_tlb *tlb = NULL;
805 	uint32_t pc = vcpu->arch.pc;
806 
807 	if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
808 		kvm_debug("%s: illegal index: %d\n", __func__, index);
809 		kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
810 			  pc, index, kvm_read_c0_guest_entryhi(cop0),
811 			  kvm_read_c0_guest_entrylo0(cop0),
812 			  kvm_read_c0_guest_entrylo1(cop0),
813 			  kvm_read_c0_guest_pagemask(cop0));
814 		index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
815 	}
816 
817 	tlb = &vcpu->arch.guest_tlb[index];
818 	/*
819 	 * Probe the shadow host TLB for the entry being overwritten, if one
820 	 * matches, invalidate it
821 	 */
822 	kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
823 
824 	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
825 	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
826 	tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
827 	tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
828 
829 	kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
830 		  pc, index, kvm_read_c0_guest_entryhi(cop0),
831 		  kvm_read_c0_guest_entrylo0(cop0),
832 		  kvm_read_c0_guest_entrylo1(cop0),
833 		  kvm_read_c0_guest_pagemask(cop0));
834 
835 	return EMULATE_DONE;
836 }
837 
838 /* Write Guest TLB Entry @ Random Index */
839 enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
840 {
841 	struct mips_coproc *cop0 = vcpu->arch.cop0;
842 	struct kvm_mips_tlb *tlb = NULL;
843 	uint32_t pc = vcpu->arch.pc;
844 	int index;
845 
846 	get_random_bytes(&index, sizeof(index));
847 	index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
848 
849 	tlb = &vcpu->arch.guest_tlb[index];
850 
851 	/*
852 	 * Probe the shadow host TLB for the entry being overwritten, if one
853 	 * matches, invalidate it
854 	 */
855 	kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
856 
857 	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
858 	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
859 	tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
860 	tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
861 
862 	kvm_debug("[%#x] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
863 		  pc, index, kvm_read_c0_guest_entryhi(cop0),
864 		  kvm_read_c0_guest_entrylo0(cop0),
865 		  kvm_read_c0_guest_entrylo1(cop0));
866 
867 	return EMULATE_DONE;
868 }
869 
870 enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
871 {
872 	struct mips_coproc *cop0 = vcpu->arch.cop0;
873 	long entryhi = kvm_read_c0_guest_entryhi(cop0);
874 	uint32_t pc = vcpu->arch.pc;
875 	int index = -1;
876 
877 	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
878 
879 	kvm_write_c0_guest_index(cop0, index);
880 
881 	kvm_debug("[%#x] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
882 		  index);
883 
884 	return EMULATE_DONE;
885 }
886 
887 /**
888  * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
889  * @vcpu:	Virtual CPU.
890  *
891  * Finds the mask of bits which are writable in the guest's Config1 CP0
892  * register, by userland (currently read-only to the guest).
893  */
894 unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
895 {
896 	unsigned int mask = 0;
897 
898 	/* Permit FPU to be present if FPU is supported */
899 	if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
900 		mask |= MIPS_CONF1_FP;
901 
902 	return mask;
903 }
904 
905 /**
906  * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
907  * @vcpu:	Virtual CPU.
908  *
909  * Finds the mask of bits which are writable in the guest's Config3 CP0
910  * register, by userland (currently read-only to the guest).
911  */
912 unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
913 {
914 	/* Config4 is optional */
915 	unsigned int mask = MIPS_CONF_M;
916 
917 	/* Permit MSA to be present if MSA is supported */
918 	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
919 		mask |= MIPS_CONF3_MSA;
920 
921 	return mask;
922 }
923 
924 /**
925  * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
926  * @vcpu:	Virtual CPU.
927  *
928  * Finds the mask of bits which are writable in the guest's Config4 CP0
929  * register, by userland (currently read-only to the guest).
930  */
931 unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
932 {
933 	/* Config5 is optional */
934 	return MIPS_CONF_M;
935 }
936 
937 /**
938  * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
939  * @vcpu:	Virtual CPU.
940  *
941  * Finds the mask of bits which are writable in the guest's Config5 CP0
942  * register, by the guest itself.
943  */
944 unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
945 {
946 	unsigned int mask = 0;
947 
948 	/* Permit MSAEn changes if MSA supported and enabled */
949 	if (kvm_mips_guest_has_msa(&vcpu->arch))
950 		mask |= MIPS_CONF5_MSAEN;
951 
952 	/*
953 	 * Permit guest FPU mode changes if FPU is enabled and the relevant
954 	 * feature exists according to FIR register.
955 	 */
956 	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
957 		if (cpu_has_fre)
958 			mask |= MIPS_CONF5_FRE;
959 		/* We don't support UFR or UFE */
960 	}
961 
962 	return mask;
963 }
964 
965 enum emulation_result kvm_mips_emulate_CP0(uint32_t inst, uint32_t *opc,
966 					   uint32_t cause, struct kvm_run *run,
967 					   struct kvm_vcpu *vcpu)
968 {
969 	struct mips_coproc *cop0 = vcpu->arch.cop0;
970 	enum emulation_result er = EMULATE_DONE;
971 	int32_t rt, rd, copz, sel, co_bit, op;
972 	uint32_t pc = vcpu->arch.pc;
973 	unsigned long curr_pc;
974 
975 	/*
976 	 * Update PC and hold onto current PC in case there is
977 	 * an error and we want to rollback the PC
978 	 */
979 	curr_pc = vcpu->arch.pc;
980 	er = update_pc(vcpu, cause);
981 	if (er == EMULATE_FAIL)
982 		return er;
983 
984 	copz = (inst >> 21) & 0x1f;
985 	rt = (inst >> 16) & 0x1f;
986 	rd = (inst >> 11) & 0x1f;
987 	sel = inst & 0x7;
988 	co_bit = (inst >> 25) & 1;
989 
990 	if (co_bit) {
991 		op = (inst) & 0xff;
992 
993 		switch (op) {
994 		case tlbr_op:	/*  Read indexed TLB entry  */
995 			er = kvm_mips_emul_tlbr(vcpu);
996 			break;
997 		case tlbwi_op:	/*  Write indexed  */
998 			er = kvm_mips_emul_tlbwi(vcpu);
999 			break;
1000 		case tlbwr_op:	/*  Write random  */
1001 			er = kvm_mips_emul_tlbwr(vcpu);
1002 			break;
1003 		case tlbp_op:	/* TLB Probe */
1004 			er = kvm_mips_emul_tlbp(vcpu);
1005 			break;
1006 		case rfe_op:
1007 			kvm_err("!!!COP0_RFE!!!\n");
1008 			break;
1009 		case eret_op:
1010 			er = kvm_mips_emul_eret(vcpu);
1011 			goto dont_update_pc;
1012 			break;
1013 		case wait_op:
1014 			er = kvm_mips_emul_wait(vcpu);
1015 			break;
1016 		}
1017 	} else {
1018 		switch (copz) {
1019 		case mfc_op:
1020 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1021 			cop0->stat[rd][sel]++;
1022 #endif
1023 			/* Get reg */
1024 			if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1025 				vcpu->arch.gprs[rt] = kvm_mips_read_count(vcpu);
1026 			} else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1027 				vcpu->arch.gprs[rt] = 0x0;
1028 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1029 				kvm_mips_trans_mfc0(inst, opc, vcpu);
1030 #endif
1031 			} else {
1032 				vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1033 
1034 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1035 				kvm_mips_trans_mfc0(inst, opc, vcpu);
1036 #endif
1037 			}
1038 
1039 			kvm_debug
1040 			    ("[%#x] MFCz[%d][%d], vcpu->arch.gprs[%d]: %#lx\n",
1041 			     pc, rd, sel, rt, vcpu->arch.gprs[rt]);
1042 
1043 			break;
1044 
1045 		case dmfc_op:
1046 			vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1047 			break;
1048 
1049 		case mtc_op:
1050 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1051 			cop0->stat[rd][sel]++;
1052 #endif
1053 			if ((rd == MIPS_CP0_TLB_INDEX)
1054 			    && (vcpu->arch.gprs[rt] >=
1055 				KVM_MIPS_GUEST_TLB_SIZE)) {
1056 				kvm_err("Invalid TLB Index: %ld",
1057 					vcpu->arch.gprs[rt]);
1058 				er = EMULATE_FAIL;
1059 				break;
1060 			}
1061 #define C0_EBASE_CORE_MASK 0xff
1062 			if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1063 				/* Preserve CORE number */
1064 				kvm_change_c0_guest_ebase(cop0,
1065 							  ~(C0_EBASE_CORE_MASK),
1066 							  vcpu->arch.gprs[rt]);
1067 				kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n",
1068 					kvm_read_c0_guest_ebase(cop0));
1069 			} else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1070 				uint32_t nasid =
1071 					vcpu->arch.gprs[rt] & ASID_MASK;
1072 				if ((KSEGX(vcpu->arch.gprs[rt]) != CKSEG0) &&
1073 				    ((kvm_read_c0_guest_entryhi(cop0) &
1074 				      ASID_MASK) != nasid)) {
1075 					kvm_debug("MTCz, change ASID from %#lx to %#lx\n",
1076 						kvm_read_c0_guest_entryhi(cop0)
1077 						& ASID_MASK,
1078 						vcpu->arch.gprs[rt]
1079 						& ASID_MASK);
1080 
1081 					/* Blow away the shadow host TLBs */
1082 					kvm_mips_flush_host_tlb(1);
1083 				}
1084 				kvm_write_c0_guest_entryhi(cop0,
1085 							   vcpu->arch.gprs[rt]);
1086 			}
1087 			/* Are we writing to COUNT */
1088 			else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1089 				kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1090 				goto done;
1091 			} else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1092 				kvm_debug("[%#x] MTCz, COMPARE %#lx <- %#lx\n",
1093 					  pc, kvm_read_c0_guest_compare(cop0),
1094 					  vcpu->arch.gprs[rt]);
1095 
1096 				/* If we are writing to COMPARE */
1097 				/* Clear pending timer interrupt, if any */
1098 				kvm_mips_callbacks->dequeue_timer_int(vcpu);
1099 				kvm_mips_write_compare(vcpu,
1100 						       vcpu->arch.gprs[rt]);
1101 			} else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1102 				unsigned int old_val, val, change;
1103 
1104 				old_val = kvm_read_c0_guest_status(cop0);
1105 				val = vcpu->arch.gprs[rt];
1106 				change = val ^ old_val;
1107 
1108 				/* Make sure that the NMI bit is never set */
1109 				val &= ~ST0_NMI;
1110 
1111 				/*
1112 				 * Don't allow CU1 or FR to be set unless FPU
1113 				 * capability enabled and exists in guest
1114 				 * configuration.
1115 				 */
1116 				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1117 					val &= ~(ST0_CU1 | ST0_FR);
1118 
1119 				/*
1120 				 * Also don't allow FR to be set if host doesn't
1121 				 * support it.
1122 				 */
1123 				if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1124 					val &= ~ST0_FR;
1125 
1126 
1127 				/* Handle changes in FPU mode */
1128 				preempt_disable();
1129 
1130 				/*
1131 				 * FPU and Vector register state is made
1132 				 * UNPREDICTABLE by a change of FR, so don't
1133 				 * even bother saving it.
1134 				 */
1135 				if (change & ST0_FR)
1136 					kvm_drop_fpu(vcpu);
1137 
1138 				/*
1139 				 * If MSA state is already live, it is undefined
1140 				 * how it interacts with FR=0 FPU state, and we
1141 				 * don't want to hit reserved instruction
1142 				 * exceptions trying to save the MSA state later
1143 				 * when CU=1 && FR=1, so play it safe and save
1144 				 * it first.
1145 				 */
1146 				if (change & ST0_CU1 && !(val & ST0_FR) &&
1147 				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1148 					kvm_lose_fpu(vcpu);
1149 
1150 				/*
1151 				 * Propagate CU1 (FPU enable) changes
1152 				 * immediately if the FPU context is already
1153 				 * loaded. When disabling we leave the context
1154 				 * loaded so it can be quickly enabled again in
1155 				 * the near future.
1156 				 */
1157 				if (change & ST0_CU1 &&
1158 				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1159 					change_c0_status(ST0_CU1, val);
1160 
1161 				preempt_enable();
1162 
1163 				kvm_write_c0_guest_status(cop0, val);
1164 
1165 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1166 				/*
1167 				 * If FPU present, we need CU1/FR bits to take
1168 				 * effect fairly soon.
1169 				 */
1170 				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1171 					kvm_mips_trans_mtc0(inst, opc, vcpu);
1172 #endif
1173 			} else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1174 				unsigned int old_val, val, change, wrmask;
1175 
1176 				old_val = kvm_read_c0_guest_config5(cop0);
1177 				val = vcpu->arch.gprs[rt];
1178 
1179 				/* Only a few bits are writable in Config5 */
1180 				wrmask = kvm_mips_config5_wrmask(vcpu);
1181 				change = (val ^ old_val) & wrmask;
1182 				val = old_val ^ change;
1183 
1184 
1185 				/* Handle changes in FPU/MSA modes */
1186 				preempt_disable();
1187 
1188 				/*
1189 				 * Propagate FRE changes immediately if the FPU
1190 				 * context is already loaded.
1191 				 */
1192 				if (change & MIPS_CONF5_FRE &&
1193 				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1194 					change_c0_config5(MIPS_CONF5_FRE, val);
1195 
1196 				/*
1197 				 * Propagate MSAEn changes immediately if the
1198 				 * MSA context is already loaded. When disabling
1199 				 * we leave the context loaded so it can be
1200 				 * quickly enabled again in the near future.
1201 				 */
1202 				if (change & MIPS_CONF5_MSAEN &&
1203 				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1204 					change_c0_config5(MIPS_CONF5_MSAEN,
1205 							  val);
1206 
1207 				preempt_enable();
1208 
1209 				kvm_write_c0_guest_config5(cop0, val);
1210 			} else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1211 				uint32_t old_cause, new_cause;
1212 
1213 				old_cause = kvm_read_c0_guest_cause(cop0);
1214 				new_cause = vcpu->arch.gprs[rt];
1215 				/* Update R/W bits */
1216 				kvm_change_c0_guest_cause(cop0, 0x08800300,
1217 							  new_cause);
1218 				/* DC bit enabling/disabling timer? */
1219 				if ((old_cause ^ new_cause) & CAUSEF_DC) {
1220 					if (new_cause & CAUSEF_DC)
1221 						kvm_mips_count_disable_cause(vcpu);
1222 					else
1223 						kvm_mips_count_enable_cause(vcpu);
1224 				}
1225 			} else {
1226 				cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1227 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1228 				kvm_mips_trans_mtc0(inst, opc, vcpu);
1229 #endif
1230 			}
1231 
1232 			kvm_debug("[%#x] MTCz, cop0->reg[%d][%d]: %#lx\n", pc,
1233 				  rd, sel, cop0->reg[rd][sel]);
1234 			break;
1235 
1236 		case dmtc_op:
1237 			kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1238 				vcpu->arch.pc, rt, rd, sel);
1239 			er = EMULATE_FAIL;
1240 			break;
1241 
1242 		case mfmcz_op:
1243 #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1244 			cop0->stat[MIPS_CP0_STATUS][0]++;
1245 #endif
1246 			if (rt != 0) {
1247 				vcpu->arch.gprs[rt] =
1248 				    kvm_read_c0_guest_status(cop0);
1249 			}
1250 			/* EI */
1251 			if (inst & 0x20) {
1252 				kvm_debug("[%#lx] mfmcz_op: EI\n",
1253 					  vcpu->arch.pc);
1254 				kvm_set_c0_guest_status(cop0, ST0_IE);
1255 			} else {
1256 				kvm_debug("[%#lx] mfmcz_op: DI\n",
1257 					  vcpu->arch.pc);
1258 				kvm_clear_c0_guest_status(cop0, ST0_IE);
1259 			}
1260 
1261 			break;
1262 
1263 		case wrpgpr_op:
1264 			{
1265 				uint32_t css =
1266 				    cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1267 				uint32_t pss =
1268 				    (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1269 				/*
1270 				 * We don't support any shadow register sets, so
1271 				 * SRSCtl[PSS] == SRSCtl[CSS] = 0
1272 				 */
1273 				if (css || pss) {
1274 					er = EMULATE_FAIL;
1275 					break;
1276 				}
1277 				kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1278 					  vcpu->arch.gprs[rt]);
1279 				vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1280 			}
1281 			break;
1282 		default:
1283 			kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1284 				vcpu->arch.pc, copz);
1285 			er = EMULATE_FAIL;
1286 			break;
1287 		}
1288 	}
1289 
1290 done:
1291 	/* Rollback PC only if emulation was unsuccessful */
1292 	if (er == EMULATE_FAIL)
1293 		vcpu->arch.pc = curr_pc;
1294 
1295 dont_update_pc:
1296 	/*
1297 	 * This is for special instructions whose emulation
1298 	 * updates the PC, so do not overwrite the PC under
1299 	 * any circumstances
1300 	 */
1301 
1302 	return er;
1303 }
1304 
1305 enum emulation_result kvm_mips_emulate_store(uint32_t inst, uint32_t cause,
1306 					     struct kvm_run *run,
1307 					     struct kvm_vcpu *vcpu)
1308 {
1309 	enum emulation_result er = EMULATE_DO_MMIO;
1310 	int32_t op, base, rt, offset;
1311 	uint32_t bytes;
1312 	void *data = run->mmio.data;
1313 	unsigned long curr_pc;
1314 
1315 	/*
1316 	 * Update PC and hold onto current PC in case there is
1317 	 * an error and we want to rollback the PC
1318 	 */
1319 	curr_pc = vcpu->arch.pc;
1320 	er = update_pc(vcpu, cause);
1321 	if (er == EMULATE_FAIL)
1322 		return er;
1323 
1324 	rt = (inst >> 16) & 0x1f;
1325 	base = (inst >> 21) & 0x1f;
1326 	offset = inst & 0xffff;
1327 	op = (inst >> 26) & 0x3f;
1328 
1329 	switch (op) {
1330 	case sb_op:
1331 		bytes = 1;
1332 		if (bytes > sizeof(run->mmio.data)) {
1333 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1334 			       run->mmio.len);
1335 		}
1336 		run->mmio.phys_addr =
1337 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1338 						   host_cp0_badvaddr);
1339 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1340 			er = EMULATE_FAIL;
1341 			break;
1342 		}
1343 		run->mmio.len = bytes;
1344 		run->mmio.is_write = 1;
1345 		vcpu->mmio_needed = 1;
1346 		vcpu->mmio_is_write = 1;
1347 		*(u8 *) data = vcpu->arch.gprs[rt];
1348 		kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1349 			  vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
1350 			  *(uint8_t *) data);
1351 
1352 		break;
1353 
1354 	case sw_op:
1355 		bytes = 4;
1356 		if (bytes > sizeof(run->mmio.data)) {
1357 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1358 			       run->mmio.len);
1359 		}
1360 		run->mmio.phys_addr =
1361 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1362 						   host_cp0_badvaddr);
1363 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1364 			er = EMULATE_FAIL;
1365 			break;
1366 		}
1367 
1368 		run->mmio.len = bytes;
1369 		run->mmio.is_write = 1;
1370 		vcpu->mmio_needed = 1;
1371 		vcpu->mmio_is_write = 1;
1372 		*(uint32_t *) data = vcpu->arch.gprs[rt];
1373 
1374 		kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1375 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1376 			  vcpu->arch.gprs[rt], *(uint32_t *) data);
1377 		break;
1378 
1379 	case sh_op:
1380 		bytes = 2;
1381 		if (bytes > sizeof(run->mmio.data)) {
1382 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1383 			       run->mmio.len);
1384 		}
1385 		run->mmio.phys_addr =
1386 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1387 						   host_cp0_badvaddr);
1388 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1389 			er = EMULATE_FAIL;
1390 			break;
1391 		}
1392 
1393 		run->mmio.len = bytes;
1394 		run->mmio.is_write = 1;
1395 		vcpu->mmio_needed = 1;
1396 		vcpu->mmio_is_write = 1;
1397 		*(uint16_t *) data = vcpu->arch.gprs[rt];
1398 
1399 		kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1400 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1401 			  vcpu->arch.gprs[rt], *(uint32_t *) data);
1402 		break;
1403 
1404 	default:
1405 		kvm_err("Store not yet supported");
1406 		er = EMULATE_FAIL;
1407 		break;
1408 	}
1409 
1410 	/* Rollback PC if emulation was unsuccessful */
1411 	if (er == EMULATE_FAIL)
1412 		vcpu->arch.pc = curr_pc;
1413 
1414 	return er;
1415 }
1416 
1417 enum emulation_result kvm_mips_emulate_load(uint32_t inst, uint32_t cause,
1418 					    struct kvm_run *run,
1419 					    struct kvm_vcpu *vcpu)
1420 {
1421 	enum emulation_result er = EMULATE_DO_MMIO;
1422 	int32_t op, base, rt, offset;
1423 	uint32_t bytes;
1424 
1425 	rt = (inst >> 16) & 0x1f;
1426 	base = (inst >> 21) & 0x1f;
1427 	offset = inst & 0xffff;
1428 	op = (inst >> 26) & 0x3f;
1429 
1430 	vcpu->arch.pending_load_cause = cause;
1431 	vcpu->arch.io_gpr = rt;
1432 
1433 	switch (op) {
1434 	case lw_op:
1435 		bytes = 4;
1436 		if (bytes > sizeof(run->mmio.data)) {
1437 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1438 			       run->mmio.len);
1439 			er = EMULATE_FAIL;
1440 			break;
1441 		}
1442 		run->mmio.phys_addr =
1443 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1444 						   host_cp0_badvaddr);
1445 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1446 			er = EMULATE_FAIL;
1447 			break;
1448 		}
1449 
1450 		run->mmio.len = bytes;
1451 		run->mmio.is_write = 0;
1452 		vcpu->mmio_needed = 1;
1453 		vcpu->mmio_is_write = 0;
1454 		break;
1455 
1456 	case lh_op:
1457 	case lhu_op:
1458 		bytes = 2;
1459 		if (bytes > sizeof(run->mmio.data)) {
1460 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1461 			       run->mmio.len);
1462 			er = EMULATE_FAIL;
1463 			break;
1464 		}
1465 		run->mmio.phys_addr =
1466 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1467 						   host_cp0_badvaddr);
1468 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1469 			er = EMULATE_FAIL;
1470 			break;
1471 		}
1472 
1473 		run->mmio.len = bytes;
1474 		run->mmio.is_write = 0;
1475 		vcpu->mmio_needed = 1;
1476 		vcpu->mmio_is_write = 0;
1477 
1478 		if (op == lh_op)
1479 			vcpu->mmio_needed = 2;
1480 		else
1481 			vcpu->mmio_needed = 1;
1482 
1483 		break;
1484 
1485 	case lbu_op:
1486 	case lb_op:
1487 		bytes = 1;
1488 		if (bytes > sizeof(run->mmio.data)) {
1489 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1490 			       run->mmio.len);
1491 			er = EMULATE_FAIL;
1492 			break;
1493 		}
1494 		run->mmio.phys_addr =
1495 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1496 						   host_cp0_badvaddr);
1497 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1498 			er = EMULATE_FAIL;
1499 			break;
1500 		}
1501 
1502 		run->mmio.len = bytes;
1503 		run->mmio.is_write = 0;
1504 		vcpu->mmio_is_write = 0;
1505 
1506 		if (op == lb_op)
1507 			vcpu->mmio_needed = 2;
1508 		else
1509 			vcpu->mmio_needed = 1;
1510 
1511 		break;
1512 
1513 	default:
1514 		kvm_err("Load not yet supported");
1515 		er = EMULATE_FAIL;
1516 		break;
1517 	}
1518 
1519 	return er;
1520 }
1521 
1522 int kvm_mips_sync_icache(unsigned long va, struct kvm_vcpu *vcpu)
1523 {
1524 	unsigned long offset = (va & ~PAGE_MASK);
1525 	struct kvm *kvm = vcpu->kvm;
1526 	unsigned long pa;
1527 	gfn_t gfn;
1528 	pfn_t pfn;
1529 
1530 	gfn = va >> PAGE_SHIFT;
1531 
1532 	if (gfn >= kvm->arch.guest_pmap_npages) {
1533 		kvm_err("%s: Invalid gfn: %#llx\n", __func__, gfn);
1534 		kvm_mips_dump_host_tlbs();
1535 		kvm_arch_vcpu_dump_regs(vcpu);
1536 		return -1;
1537 	}
1538 	pfn = kvm->arch.guest_pmap[gfn];
1539 	pa = (pfn << PAGE_SHIFT) | offset;
1540 
1541 	kvm_debug("%s: va: %#lx, unmapped: %#x\n", __func__, va,
1542 		  CKSEG0ADDR(pa));
1543 
1544 	local_flush_icache_range(CKSEG0ADDR(pa), 32);
1545 	return 0;
1546 }
1547 
1548 #define MIPS_CACHE_OP_INDEX_INV         0x0
1549 #define MIPS_CACHE_OP_INDEX_LD_TAG      0x1
1550 #define MIPS_CACHE_OP_INDEX_ST_TAG      0x2
1551 #define MIPS_CACHE_OP_IMP               0x3
1552 #define MIPS_CACHE_OP_HIT_INV           0x4
1553 #define MIPS_CACHE_OP_FILL_WB_INV       0x5
1554 #define MIPS_CACHE_OP_HIT_HB            0x6
1555 #define MIPS_CACHE_OP_FETCH_LOCK        0x7
1556 
1557 #define MIPS_CACHE_ICACHE               0x0
1558 #define MIPS_CACHE_DCACHE               0x1
1559 #define MIPS_CACHE_SEC                  0x3
1560 
1561 enum emulation_result kvm_mips_emulate_cache(uint32_t inst, uint32_t *opc,
1562 					     uint32_t cause,
1563 					     struct kvm_run *run,
1564 					     struct kvm_vcpu *vcpu)
1565 {
1566 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1567 	enum emulation_result er = EMULATE_DONE;
1568 	int32_t offset, cache, op_inst, op, base;
1569 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1570 	unsigned long va;
1571 	unsigned long curr_pc;
1572 
1573 	/*
1574 	 * Update PC and hold onto current PC in case there is
1575 	 * an error and we want to rollback the PC
1576 	 */
1577 	curr_pc = vcpu->arch.pc;
1578 	er = update_pc(vcpu, cause);
1579 	if (er == EMULATE_FAIL)
1580 		return er;
1581 
1582 	base = (inst >> 21) & 0x1f;
1583 	op_inst = (inst >> 16) & 0x1f;
1584 	offset = inst & 0xffff;
1585 	cache = (inst >> 16) & 0x3;
1586 	op = (inst >> 18) & 0x7;
1587 
1588 	va = arch->gprs[base] + offset;
1589 
1590 	kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1591 		  cache, op, base, arch->gprs[base], offset);
1592 
1593 	/*
1594 	 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1595 	 * invalidate the caches entirely by stepping through all the
1596 	 * ways/indexes
1597 	 */
1598 	if (op == MIPS_CACHE_OP_INDEX_INV) {
1599 		kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1600 			  vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1601 			  arch->gprs[base], offset);
1602 
1603 		if (cache == MIPS_CACHE_DCACHE)
1604 			r4k_blast_dcache();
1605 		else if (cache == MIPS_CACHE_ICACHE)
1606 			r4k_blast_icache();
1607 		else {
1608 			kvm_err("%s: unsupported CACHE INDEX operation\n",
1609 				__func__);
1610 			return EMULATE_FAIL;
1611 		}
1612 
1613 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1614 		kvm_mips_trans_cache_index(inst, opc, vcpu);
1615 #endif
1616 		goto done;
1617 	}
1618 
1619 	preempt_disable();
1620 	if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
1621 		if (kvm_mips_host_tlb_lookup(vcpu, va) < 0)
1622 			kvm_mips_handle_kseg0_tlb_fault(va, vcpu);
1623 	} else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) ||
1624 		   KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
1625 		int index;
1626 
1627 		/* If an entry already exists then skip */
1628 		if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0)
1629 			goto skip_fault;
1630 
1631 		/*
1632 		 * If address not in the guest TLB, then give the guest a fault,
1633 		 * the resulting handler will do the right thing
1634 		 */
1635 		index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) |
1636 						  (kvm_read_c0_guest_entryhi
1637 						   (cop0) & ASID_MASK));
1638 
1639 		if (index < 0) {
1640 			vcpu->arch.host_cp0_entryhi = (va & VPN2_MASK);
1641 			vcpu->arch.host_cp0_badvaddr = va;
1642 			er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run,
1643 							 vcpu);
1644 			preempt_enable();
1645 			goto dont_update_pc;
1646 		} else {
1647 			struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
1648 			/*
1649 			 * Check if the entry is valid, if not then setup a TLB
1650 			 * invalid exception to the guest
1651 			 */
1652 			if (!TLB_IS_VALID(*tlb, va)) {
1653 				er = kvm_mips_emulate_tlbinv_ld(cause, NULL,
1654 								run, vcpu);
1655 				preempt_enable();
1656 				goto dont_update_pc;
1657 			} else {
1658 				/*
1659 				 * We fault an entry from the guest tlb to the
1660 				 * shadow host TLB
1661 				 */
1662 				kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb,
1663 								     NULL,
1664 								     NULL);
1665 			}
1666 		}
1667 	} else {
1668 		kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1669 			cache, op, base, arch->gprs[base], offset);
1670 		er = EMULATE_FAIL;
1671 		preempt_enable();
1672 		goto dont_update_pc;
1673 
1674 	}
1675 
1676 skip_fault:
1677 	/* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1678 	if (cache == MIPS_CACHE_DCACHE
1679 	    && (op == MIPS_CACHE_OP_FILL_WB_INV
1680 		|| op == MIPS_CACHE_OP_HIT_INV)) {
1681 		flush_dcache_line(va);
1682 
1683 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1684 		/*
1685 		 * Replace the CACHE instruction, with a SYNCI, not the same,
1686 		 * but avoids a trap
1687 		 */
1688 		kvm_mips_trans_cache_va(inst, opc, vcpu);
1689 #endif
1690 	} else if (op == MIPS_CACHE_OP_HIT_INV && cache == MIPS_CACHE_ICACHE) {
1691 		flush_dcache_line(va);
1692 		flush_icache_line(va);
1693 
1694 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1695 		/* Replace the CACHE instruction, with a SYNCI */
1696 		kvm_mips_trans_cache_va(inst, opc, vcpu);
1697 #endif
1698 	} else {
1699 		kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1700 			cache, op, base, arch->gprs[base], offset);
1701 		er = EMULATE_FAIL;
1702 		preempt_enable();
1703 		goto dont_update_pc;
1704 	}
1705 
1706 	preempt_enable();
1707 
1708 dont_update_pc:
1709 	/* Rollback PC */
1710 	vcpu->arch.pc = curr_pc;
1711 done:
1712 	return er;
1713 }
1714 
1715 enum emulation_result kvm_mips_emulate_inst(unsigned long cause, uint32_t *opc,
1716 					    struct kvm_run *run,
1717 					    struct kvm_vcpu *vcpu)
1718 {
1719 	enum emulation_result er = EMULATE_DONE;
1720 	uint32_t inst;
1721 
1722 	/* Fetch the instruction. */
1723 	if (cause & CAUSEF_BD)
1724 		opc += 1;
1725 
1726 	inst = kvm_get_inst(opc, vcpu);
1727 
1728 	switch (((union mips_instruction)inst).r_format.opcode) {
1729 	case cop0_op:
1730 		er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1731 		break;
1732 	case sb_op:
1733 	case sh_op:
1734 	case sw_op:
1735 		er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1736 		break;
1737 	case lb_op:
1738 	case lbu_op:
1739 	case lhu_op:
1740 	case lh_op:
1741 	case lw_op:
1742 		er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1743 		break;
1744 
1745 	case cache_op:
1746 		++vcpu->stat.cache_exits;
1747 		trace_kvm_exit(vcpu, CACHE_EXITS);
1748 		er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1749 		break;
1750 
1751 	default:
1752 		kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1753 			inst);
1754 		kvm_arch_vcpu_dump_regs(vcpu);
1755 		er = EMULATE_FAIL;
1756 		break;
1757 	}
1758 
1759 	return er;
1760 }
1761 
1762 enum emulation_result kvm_mips_emulate_syscall(unsigned long cause,
1763 					       uint32_t *opc,
1764 					       struct kvm_run *run,
1765 					       struct kvm_vcpu *vcpu)
1766 {
1767 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1768 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1769 	enum emulation_result er = EMULATE_DONE;
1770 
1771 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1772 		/* save old pc */
1773 		kvm_write_c0_guest_epc(cop0, arch->pc);
1774 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1775 
1776 		if (cause & CAUSEF_BD)
1777 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1778 		else
1779 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1780 
1781 		kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
1782 
1783 		kvm_change_c0_guest_cause(cop0, (0xff),
1784 					  (T_SYSCALL << CAUSEB_EXCCODE));
1785 
1786 		/* Set PC to the exception entry point */
1787 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1788 
1789 	} else {
1790 		kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
1791 		er = EMULATE_FAIL;
1792 	}
1793 
1794 	return er;
1795 }
1796 
1797 enum emulation_result kvm_mips_emulate_tlbmiss_ld(unsigned long cause,
1798 						  uint32_t *opc,
1799 						  struct kvm_run *run,
1800 						  struct kvm_vcpu *vcpu)
1801 {
1802 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1803 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1804 	unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) |
1805 				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1806 
1807 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1808 		/* save old pc */
1809 		kvm_write_c0_guest_epc(cop0, arch->pc);
1810 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1811 
1812 		if (cause & CAUSEF_BD)
1813 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1814 		else
1815 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1816 
1817 		kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
1818 			  arch->pc);
1819 
1820 		/* set pc to the exception entry point */
1821 		arch->pc = KVM_GUEST_KSEG0 + 0x0;
1822 
1823 	} else {
1824 		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1825 			  arch->pc);
1826 
1827 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1828 	}
1829 
1830 	kvm_change_c0_guest_cause(cop0, (0xff),
1831 				  (T_TLB_LD_MISS << CAUSEB_EXCCODE));
1832 
1833 	/* setup badvaddr, context and entryhi registers for the guest */
1834 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1835 	/* XXXKYMA: is the context register used by linux??? */
1836 	kvm_write_c0_guest_entryhi(cop0, entryhi);
1837 	/* Blow away the shadow host TLBs */
1838 	kvm_mips_flush_host_tlb(1);
1839 
1840 	return EMULATE_DONE;
1841 }
1842 
1843 enum emulation_result kvm_mips_emulate_tlbinv_ld(unsigned long cause,
1844 						 uint32_t *opc,
1845 						 struct kvm_run *run,
1846 						 struct kvm_vcpu *vcpu)
1847 {
1848 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1849 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1850 	unsigned long entryhi =
1851 		(vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1852 		(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1853 
1854 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1855 		/* save old pc */
1856 		kvm_write_c0_guest_epc(cop0, arch->pc);
1857 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1858 
1859 		if (cause & CAUSEF_BD)
1860 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1861 		else
1862 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1863 
1864 		kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
1865 			  arch->pc);
1866 
1867 		/* set pc to the exception entry point */
1868 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1869 
1870 	} else {
1871 		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1872 			  arch->pc);
1873 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1874 	}
1875 
1876 	kvm_change_c0_guest_cause(cop0, (0xff),
1877 				  (T_TLB_LD_MISS << CAUSEB_EXCCODE));
1878 
1879 	/* setup badvaddr, context and entryhi registers for the guest */
1880 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1881 	/* XXXKYMA: is the context register used by linux??? */
1882 	kvm_write_c0_guest_entryhi(cop0, entryhi);
1883 	/* Blow away the shadow host TLBs */
1884 	kvm_mips_flush_host_tlb(1);
1885 
1886 	return EMULATE_DONE;
1887 }
1888 
1889 enum emulation_result kvm_mips_emulate_tlbmiss_st(unsigned long cause,
1890 						  uint32_t *opc,
1891 						  struct kvm_run *run,
1892 						  struct kvm_vcpu *vcpu)
1893 {
1894 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1895 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1896 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1897 				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1898 
1899 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1900 		/* save old pc */
1901 		kvm_write_c0_guest_epc(cop0, arch->pc);
1902 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1903 
1904 		if (cause & CAUSEF_BD)
1905 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1906 		else
1907 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1908 
1909 		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1910 			  arch->pc);
1911 
1912 		/* Set PC to the exception entry point */
1913 		arch->pc = KVM_GUEST_KSEG0 + 0x0;
1914 	} else {
1915 		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1916 			  arch->pc);
1917 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1918 	}
1919 
1920 	kvm_change_c0_guest_cause(cop0, (0xff),
1921 				  (T_TLB_ST_MISS << CAUSEB_EXCCODE));
1922 
1923 	/* setup badvaddr, context and entryhi registers for the guest */
1924 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1925 	/* XXXKYMA: is the context register used by linux??? */
1926 	kvm_write_c0_guest_entryhi(cop0, entryhi);
1927 	/* Blow away the shadow host TLBs */
1928 	kvm_mips_flush_host_tlb(1);
1929 
1930 	return EMULATE_DONE;
1931 }
1932 
1933 enum emulation_result kvm_mips_emulate_tlbinv_st(unsigned long cause,
1934 						 uint32_t *opc,
1935 						 struct kvm_run *run,
1936 						 struct kvm_vcpu *vcpu)
1937 {
1938 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1939 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1940 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1941 		(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1942 
1943 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1944 		/* save old pc */
1945 		kvm_write_c0_guest_epc(cop0, arch->pc);
1946 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1947 
1948 		if (cause & CAUSEF_BD)
1949 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1950 		else
1951 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1952 
1953 		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1954 			  arch->pc);
1955 
1956 		/* Set PC to the exception entry point */
1957 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1958 	} else {
1959 		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1960 			  arch->pc);
1961 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1962 	}
1963 
1964 	kvm_change_c0_guest_cause(cop0, (0xff),
1965 				  (T_TLB_ST_MISS << CAUSEB_EXCCODE));
1966 
1967 	/* setup badvaddr, context and entryhi registers for the guest */
1968 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1969 	/* XXXKYMA: is the context register used by linux??? */
1970 	kvm_write_c0_guest_entryhi(cop0, entryhi);
1971 	/* Blow away the shadow host TLBs */
1972 	kvm_mips_flush_host_tlb(1);
1973 
1974 	return EMULATE_DONE;
1975 }
1976 
1977 /* TLBMOD: store into address matching TLB with Dirty bit off */
1978 enum emulation_result kvm_mips_handle_tlbmod(unsigned long cause, uint32_t *opc,
1979 					     struct kvm_run *run,
1980 					     struct kvm_vcpu *vcpu)
1981 {
1982 	enum emulation_result er = EMULATE_DONE;
1983 #ifdef DEBUG
1984 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1985 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1986 				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1987 	int index;
1988 
1989 	/* If address not in the guest TLB, then we are in trouble */
1990 	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
1991 	if (index < 0) {
1992 		/* XXXKYMA Invalidate and retry */
1993 		kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr);
1994 		kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
1995 		     __func__, entryhi);
1996 		kvm_mips_dump_guest_tlbs(vcpu);
1997 		kvm_mips_dump_host_tlbs();
1998 		return EMULATE_FAIL;
1999 	}
2000 #endif
2001 
2002 	er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
2003 	return er;
2004 }
2005 
2006 enum emulation_result kvm_mips_emulate_tlbmod(unsigned long cause,
2007 					      uint32_t *opc,
2008 					      struct kvm_run *run,
2009 					      struct kvm_vcpu *vcpu)
2010 {
2011 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2012 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2013 				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
2014 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2015 
2016 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2017 		/* save old pc */
2018 		kvm_write_c0_guest_epc(cop0, arch->pc);
2019 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2020 
2021 		if (cause & CAUSEF_BD)
2022 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2023 		else
2024 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2025 
2026 		kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2027 			  arch->pc);
2028 
2029 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2030 	} else {
2031 		kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2032 			  arch->pc);
2033 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2034 	}
2035 
2036 	kvm_change_c0_guest_cause(cop0, (0xff), (T_TLB_MOD << CAUSEB_EXCCODE));
2037 
2038 	/* setup badvaddr, context and entryhi registers for the guest */
2039 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2040 	/* XXXKYMA: is the context register used by linux??? */
2041 	kvm_write_c0_guest_entryhi(cop0, entryhi);
2042 	/* Blow away the shadow host TLBs */
2043 	kvm_mips_flush_host_tlb(1);
2044 
2045 	return EMULATE_DONE;
2046 }
2047 
2048 enum emulation_result kvm_mips_emulate_fpu_exc(unsigned long cause,
2049 					       uint32_t *opc,
2050 					       struct kvm_run *run,
2051 					       struct kvm_vcpu *vcpu)
2052 {
2053 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2054 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2055 
2056 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2057 		/* save old pc */
2058 		kvm_write_c0_guest_epc(cop0, arch->pc);
2059 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2060 
2061 		if (cause & CAUSEF_BD)
2062 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2063 		else
2064 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2065 
2066 	}
2067 
2068 	arch->pc = KVM_GUEST_KSEG0 + 0x180;
2069 
2070 	kvm_change_c0_guest_cause(cop0, (0xff),
2071 				  (T_COP_UNUSABLE << CAUSEB_EXCCODE));
2072 	kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2073 
2074 	return EMULATE_DONE;
2075 }
2076 
2077 enum emulation_result kvm_mips_emulate_ri_exc(unsigned long cause,
2078 					      uint32_t *opc,
2079 					      struct kvm_run *run,
2080 					      struct kvm_vcpu *vcpu)
2081 {
2082 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2083 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2084 	enum emulation_result er = EMULATE_DONE;
2085 
2086 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2087 		/* save old pc */
2088 		kvm_write_c0_guest_epc(cop0, arch->pc);
2089 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2090 
2091 		if (cause & CAUSEF_BD)
2092 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2093 		else
2094 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2095 
2096 		kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2097 
2098 		kvm_change_c0_guest_cause(cop0, (0xff),
2099 					  (T_RES_INST << CAUSEB_EXCCODE));
2100 
2101 		/* Set PC to the exception entry point */
2102 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2103 
2104 	} else {
2105 		kvm_err("Trying to deliver RI when EXL is already set\n");
2106 		er = EMULATE_FAIL;
2107 	}
2108 
2109 	return er;
2110 }
2111 
2112 enum emulation_result kvm_mips_emulate_bp_exc(unsigned long cause,
2113 					      uint32_t *opc,
2114 					      struct kvm_run *run,
2115 					      struct kvm_vcpu *vcpu)
2116 {
2117 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2118 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2119 	enum emulation_result er = EMULATE_DONE;
2120 
2121 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2122 		/* save old pc */
2123 		kvm_write_c0_guest_epc(cop0, arch->pc);
2124 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2125 
2126 		if (cause & CAUSEF_BD)
2127 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2128 		else
2129 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2130 
2131 		kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2132 
2133 		kvm_change_c0_guest_cause(cop0, (0xff),
2134 					  (T_BREAK << CAUSEB_EXCCODE));
2135 
2136 		/* Set PC to the exception entry point */
2137 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2138 
2139 	} else {
2140 		kvm_err("Trying to deliver BP when EXL is already set\n");
2141 		er = EMULATE_FAIL;
2142 	}
2143 
2144 	return er;
2145 }
2146 
2147 enum emulation_result kvm_mips_emulate_trap_exc(unsigned long cause,
2148 						uint32_t *opc,
2149 						struct kvm_run *run,
2150 						struct kvm_vcpu *vcpu)
2151 {
2152 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2153 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2154 	enum emulation_result er = EMULATE_DONE;
2155 
2156 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2157 		/* save old pc */
2158 		kvm_write_c0_guest_epc(cop0, arch->pc);
2159 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2160 
2161 		if (cause & CAUSEF_BD)
2162 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2163 		else
2164 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2165 
2166 		kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2167 
2168 		kvm_change_c0_guest_cause(cop0, (0xff),
2169 					  (T_TRAP << CAUSEB_EXCCODE));
2170 
2171 		/* Set PC to the exception entry point */
2172 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2173 
2174 	} else {
2175 		kvm_err("Trying to deliver TRAP when EXL is already set\n");
2176 		er = EMULATE_FAIL;
2177 	}
2178 
2179 	return er;
2180 }
2181 
2182 enum emulation_result kvm_mips_emulate_msafpe_exc(unsigned long cause,
2183 						  uint32_t *opc,
2184 						  struct kvm_run *run,
2185 						  struct kvm_vcpu *vcpu)
2186 {
2187 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2188 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2189 	enum emulation_result er = EMULATE_DONE;
2190 
2191 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2192 		/* save old pc */
2193 		kvm_write_c0_guest_epc(cop0, arch->pc);
2194 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2195 
2196 		if (cause & CAUSEF_BD)
2197 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2198 		else
2199 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2200 
2201 		kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2202 
2203 		kvm_change_c0_guest_cause(cop0, (0xff),
2204 					  (T_MSAFPE << CAUSEB_EXCCODE));
2205 
2206 		/* Set PC to the exception entry point */
2207 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2208 
2209 	} else {
2210 		kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2211 		er = EMULATE_FAIL;
2212 	}
2213 
2214 	return er;
2215 }
2216 
2217 enum emulation_result kvm_mips_emulate_fpe_exc(unsigned long cause,
2218 					       uint32_t *opc,
2219 					       struct kvm_run *run,
2220 					       struct kvm_vcpu *vcpu)
2221 {
2222 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2223 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2224 	enum emulation_result er = EMULATE_DONE;
2225 
2226 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2227 		/* save old pc */
2228 		kvm_write_c0_guest_epc(cop0, arch->pc);
2229 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2230 
2231 		if (cause & CAUSEF_BD)
2232 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2233 		else
2234 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2235 
2236 		kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2237 
2238 		kvm_change_c0_guest_cause(cop0, (0xff),
2239 					  (T_FPE << CAUSEB_EXCCODE));
2240 
2241 		/* Set PC to the exception entry point */
2242 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2243 
2244 	} else {
2245 		kvm_err("Trying to deliver FPE when EXL is already set\n");
2246 		er = EMULATE_FAIL;
2247 	}
2248 
2249 	return er;
2250 }
2251 
2252 enum emulation_result kvm_mips_emulate_msadis_exc(unsigned long cause,
2253 						  uint32_t *opc,
2254 						  struct kvm_run *run,
2255 						  struct kvm_vcpu *vcpu)
2256 {
2257 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2258 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2259 	enum emulation_result er = EMULATE_DONE;
2260 
2261 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2262 		/* save old pc */
2263 		kvm_write_c0_guest_epc(cop0, arch->pc);
2264 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2265 
2266 		if (cause & CAUSEF_BD)
2267 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2268 		else
2269 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2270 
2271 		kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2272 
2273 		kvm_change_c0_guest_cause(cop0, (0xff),
2274 					  (T_MSADIS << CAUSEB_EXCCODE));
2275 
2276 		/* Set PC to the exception entry point */
2277 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2278 
2279 	} else {
2280 		kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2281 		er = EMULATE_FAIL;
2282 	}
2283 
2284 	return er;
2285 }
2286 
2287 /* ll/sc, rdhwr, sync emulation */
2288 
2289 #define OPCODE 0xfc000000
2290 #define BASE   0x03e00000
2291 #define RT     0x001f0000
2292 #define OFFSET 0x0000ffff
2293 #define LL     0xc0000000
2294 #define SC     0xe0000000
2295 #define SPEC0  0x00000000
2296 #define SPEC3  0x7c000000
2297 #define RD     0x0000f800
2298 #define FUNC   0x0000003f
2299 #define SYNC   0x0000000f
2300 #define RDHWR  0x0000003b
2301 
2302 enum emulation_result kvm_mips_handle_ri(unsigned long cause, uint32_t *opc,
2303 					 struct kvm_run *run,
2304 					 struct kvm_vcpu *vcpu)
2305 {
2306 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2307 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2308 	enum emulation_result er = EMULATE_DONE;
2309 	unsigned long curr_pc;
2310 	uint32_t inst;
2311 
2312 	/*
2313 	 * Update PC and hold onto current PC in case there is
2314 	 * an error and we want to rollback the PC
2315 	 */
2316 	curr_pc = vcpu->arch.pc;
2317 	er = update_pc(vcpu, cause);
2318 	if (er == EMULATE_FAIL)
2319 		return er;
2320 
2321 	/* Fetch the instruction. */
2322 	if (cause & CAUSEF_BD)
2323 		opc += 1;
2324 
2325 	inst = kvm_get_inst(opc, vcpu);
2326 
2327 	if (inst == KVM_INVALID_INST) {
2328 		kvm_err("%s: Cannot get inst @ %p\n", __func__, opc);
2329 		return EMULATE_FAIL;
2330 	}
2331 
2332 	if ((inst & OPCODE) == SPEC3 && (inst & FUNC) == RDHWR) {
2333 		int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2334 		int rd = (inst & RD) >> 11;
2335 		int rt = (inst & RT) >> 16;
2336 		/* If usermode, check RDHWR rd is allowed by guest HWREna */
2337 		if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2338 			kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2339 				  rd, opc);
2340 			goto emulate_ri;
2341 		}
2342 		switch (rd) {
2343 		case 0:	/* CPU number */
2344 			arch->gprs[rt] = 0;
2345 			break;
2346 		case 1:	/* SYNCI length */
2347 			arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2348 					     current_cpu_data.icache.linesz);
2349 			break;
2350 		case 2:	/* Read count register */
2351 			arch->gprs[rt] = kvm_mips_read_count(vcpu);
2352 			break;
2353 		case 3:	/* Count register resolution */
2354 			switch (current_cpu_data.cputype) {
2355 			case CPU_20KC:
2356 			case CPU_25KF:
2357 				arch->gprs[rt] = 1;
2358 				break;
2359 			default:
2360 				arch->gprs[rt] = 2;
2361 			}
2362 			break;
2363 		case 29:
2364 			arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2365 			break;
2366 
2367 		default:
2368 			kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2369 			goto emulate_ri;
2370 		}
2371 	} else {
2372 		kvm_debug("Emulate RI not supported @ %p: %#x\n", opc, inst);
2373 		goto emulate_ri;
2374 	}
2375 
2376 	return EMULATE_DONE;
2377 
2378 emulate_ri:
2379 	/*
2380 	 * Rollback PC (if in branch delay slot then the PC already points to
2381 	 * branch target), and pass the RI exception to the guest OS.
2382 	 */
2383 	vcpu->arch.pc = curr_pc;
2384 	return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
2385 }
2386 
2387 enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2388 						  struct kvm_run *run)
2389 {
2390 	unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2391 	enum emulation_result er = EMULATE_DONE;
2392 
2393 	if (run->mmio.len > sizeof(*gpr)) {
2394 		kvm_err("Bad MMIO length: %d", run->mmio.len);
2395 		er = EMULATE_FAIL;
2396 		goto done;
2397 	}
2398 
2399 	er = update_pc(vcpu, vcpu->arch.pending_load_cause);
2400 	if (er == EMULATE_FAIL)
2401 		return er;
2402 
2403 	switch (run->mmio.len) {
2404 	case 4:
2405 		*gpr = *(int32_t *) run->mmio.data;
2406 		break;
2407 
2408 	case 2:
2409 		if (vcpu->mmio_needed == 2)
2410 			*gpr = *(int16_t *) run->mmio.data;
2411 		else
2412 			*gpr = *(uint16_t *)run->mmio.data;
2413 
2414 		break;
2415 	case 1:
2416 		if (vcpu->mmio_needed == 2)
2417 			*gpr = *(int8_t *) run->mmio.data;
2418 		else
2419 			*gpr = *(u8 *) run->mmio.data;
2420 		break;
2421 	}
2422 
2423 	if (vcpu->arch.pending_load_cause & CAUSEF_BD)
2424 		kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n",
2425 			  vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr,
2426 			  vcpu->mmio_needed);
2427 
2428 done:
2429 	return er;
2430 }
2431 
2432 static enum emulation_result kvm_mips_emulate_exc(unsigned long cause,
2433 						  uint32_t *opc,
2434 						  struct kvm_run *run,
2435 						  struct kvm_vcpu *vcpu)
2436 {
2437 	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2438 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2439 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2440 	enum emulation_result er = EMULATE_DONE;
2441 
2442 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2443 		/* save old pc */
2444 		kvm_write_c0_guest_epc(cop0, arch->pc);
2445 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2446 
2447 		if (cause & CAUSEF_BD)
2448 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2449 		else
2450 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2451 
2452 		kvm_change_c0_guest_cause(cop0, (0xff),
2453 					  (exccode << CAUSEB_EXCCODE));
2454 
2455 		/* Set PC to the exception entry point */
2456 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2457 		kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2458 
2459 		kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2460 			  exccode, kvm_read_c0_guest_epc(cop0),
2461 			  kvm_read_c0_guest_badvaddr(cop0));
2462 	} else {
2463 		kvm_err("Trying to deliver EXC when EXL is already set\n");
2464 		er = EMULATE_FAIL;
2465 	}
2466 
2467 	return er;
2468 }
2469 
2470 enum emulation_result kvm_mips_check_privilege(unsigned long cause,
2471 					       uint32_t *opc,
2472 					       struct kvm_run *run,
2473 					       struct kvm_vcpu *vcpu)
2474 {
2475 	enum emulation_result er = EMULATE_DONE;
2476 	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2477 	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2478 
2479 	int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2480 
2481 	if (usermode) {
2482 		switch (exccode) {
2483 		case T_INT:
2484 		case T_SYSCALL:
2485 		case T_BREAK:
2486 		case T_RES_INST:
2487 		case T_TRAP:
2488 		case T_MSAFPE:
2489 		case T_FPE:
2490 		case T_MSADIS:
2491 			break;
2492 
2493 		case T_COP_UNUSABLE:
2494 			if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2495 				er = EMULATE_PRIV_FAIL;
2496 			break;
2497 
2498 		case T_TLB_MOD:
2499 			break;
2500 
2501 		case T_TLB_LD_MISS:
2502 			/*
2503 			 * We we are accessing Guest kernel space, then send an
2504 			 * address error exception to the guest
2505 			 */
2506 			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2507 				kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2508 					  badvaddr);
2509 				cause &= ~0xff;
2510 				cause |= (T_ADDR_ERR_LD << CAUSEB_EXCCODE);
2511 				er = EMULATE_PRIV_FAIL;
2512 			}
2513 			break;
2514 
2515 		case T_TLB_ST_MISS:
2516 			/*
2517 			 * We we are accessing Guest kernel space, then send an
2518 			 * address error exception to the guest
2519 			 */
2520 			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2521 				kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2522 					  badvaddr);
2523 				cause &= ~0xff;
2524 				cause |= (T_ADDR_ERR_ST << CAUSEB_EXCCODE);
2525 				er = EMULATE_PRIV_FAIL;
2526 			}
2527 			break;
2528 
2529 		case T_ADDR_ERR_ST:
2530 			kvm_debug("%s: address error ST @ %#lx\n", __func__,
2531 				  badvaddr);
2532 			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2533 				cause &= ~0xff;
2534 				cause |= (T_TLB_ST_MISS << CAUSEB_EXCCODE);
2535 			}
2536 			er = EMULATE_PRIV_FAIL;
2537 			break;
2538 		case T_ADDR_ERR_LD:
2539 			kvm_debug("%s: address error LD @ %#lx\n", __func__,
2540 				  badvaddr);
2541 			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2542 				cause &= ~0xff;
2543 				cause |= (T_TLB_LD_MISS << CAUSEB_EXCCODE);
2544 			}
2545 			er = EMULATE_PRIV_FAIL;
2546 			break;
2547 		default:
2548 			er = EMULATE_PRIV_FAIL;
2549 			break;
2550 		}
2551 	}
2552 
2553 	if (er == EMULATE_PRIV_FAIL)
2554 		kvm_mips_emulate_exc(cause, opc, run, vcpu);
2555 
2556 	return er;
2557 }
2558 
2559 /*
2560  * User Address (UA) fault, this could happen if
2561  * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2562  *     case we pass on the fault to the guest kernel and let it handle it.
2563  * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2564  *     case we inject the TLB from the Guest TLB into the shadow host TLB
2565  */
2566 enum emulation_result kvm_mips_handle_tlbmiss(unsigned long cause,
2567 					      uint32_t *opc,
2568 					      struct kvm_run *run,
2569 					      struct kvm_vcpu *vcpu)
2570 {
2571 	enum emulation_result er = EMULATE_DONE;
2572 	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2573 	unsigned long va = vcpu->arch.host_cp0_badvaddr;
2574 	int index;
2575 
2576 	kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx, entryhi: %#lx\n",
2577 		  vcpu->arch.host_cp0_badvaddr, vcpu->arch.host_cp0_entryhi);
2578 
2579 	/*
2580 	 * KVM would not have got the exception if this entry was valid in the
2581 	 * shadow host TLB. Check the Guest TLB, if the entry is not there then
2582 	 * send the guest an exception. The guest exc handler should then inject
2583 	 * an entry into the guest TLB.
2584 	 */
2585 	index = kvm_mips_guest_tlb_lookup(vcpu,
2586 					  (va & VPN2_MASK) |
2587 					  (kvm_read_c0_guest_entryhi
2588 					   (vcpu->arch.cop0) & ASID_MASK));
2589 	if (index < 0) {
2590 		if (exccode == T_TLB_LD_MISS) {
2591 			er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
2592 		} else if (exccode == T_TLB_ST_MISS) {
2593 			er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2594 		} else {
2595 			kvm_err("%s: invalid exc code: %d\n", __func__,
2596 				exccode);
2597 			er = EMULATE_FAIL;
2598 		}
2599 	} else {
2600 		struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2601 
2602 		/*
2603 		 * Check if the entry is valid, if not then setup a TLB invalid
2604 		 * exception to the guest
2605 		 */
2606 		if (!TLB_IS_VALID(*tlb, va)) {
2607 			if (exccode == T_TLB_LD_MISS) {
2608 				er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2609 								vcpu);
2610 			} else if (exccode == T_TLB_ST_MISS) {
2611 				er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2612 								vcpu);
2613 			} else {
2614 				kvm_err("%s: invalid exc code: %d\n", __func__,
2615 					exccode);
2616 				er = EMULATE_FAIL;
2617 			}
2618 		} else {
2619 			kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2620 				  tlb->tlb_hi, tlb->tlb_lo0, tlb->tlb_lo1);
2621 			/*
2622 			 * OK we have a Guest TLB entry, now inject it into the
2623 			 * shadow host TLB
2624 			 */
2625 			kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, NULL,
2626 							     NULL);
2627 		}
2628 	}
2629 
2630 	return er;
2631 }
2632