1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * KVM/MIPS: Instruction/Exception emulation 7 * 8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. 9 * Authors: Sanjay Lal <sanjayl@kymasys.com> 10 */ 11 12 #include <linux/errno.h> 13 #include <linux/err.h> 14 #include <linux/ktime.h> 15 #include <linux/kvm_host.h> 16 #include <linux/vmalloc.h> 17 #include <linux/fs.h> 18 #include <linux/memblock.h> 19 #include <linux/random.h> 20 #include <asm/page.h> 21 #include <asm/cacheflush.h> 22 #include <asm/cacheops.h> 23 #include <asm/cpu-info.h> 24 #include <asm/mmu_context.h> 25 #include <asm/tlbflush.h> 26 #include <asm/inst.h> 27 28 #undef CONFIG_MIPS_MT 29 #include <asm/r4kcache.h> 30 #define CONFIG_MIPS_MT 31 32 #include "interrupt.h" 33 #include "commpage.h" 34 35 #include "trace.h" 36 37 /* 38 * Compute the return address and do emulate branch simulation, if required. 39 * This function should be called only in branch delay slot active. 40 */ 41 static int kvm_compute_return_epc(struct kvm_vcpu *vcpu, unsigned long instpc, 42 unsigned long *out) 43 { 44 unsigned int dspcontrol; 45 union mips_instruction insn; 46 struct kvm_vcpu_arch *arch = &vcpu->arch; 47 long epc = instpc; 48 long nextpc; 49 int err; 50 51 if (epc & 3) { 52 kvm_err("%s: unaligned epc\n", __func__); 53 return -EINVAL; 54 } 55 56 /* Read the instruction */ 57 err = kvm_get_badinstrp((u32 *)epc, vcpu, &insn.word); 58 if (err) 59 return err; 60 61 switch (insn.i_format.opcode) { 62 /* jr and jalr are in r_format format. */ 63 case spec_op: 64 switch (insn.r_format.func) { 65 case jalr_op: 66 arch->gprs[insn.r_format.rd] = epc + 8; 67 /* Fall through */ 68 case jr_op: 69 nextpc = arch->gprs[insn.r_format.rs]; 70 break; 71 default: 72 return -EINVAL; 73 } 74 break; 75 76 /* 77 * This group contains: 78 * bltz_op, bgez_op, bltzl_op, bgezl_op, 79 * bltzal_op, bgezal_op, bltzall_op, bgezall_op. 80 */ 81 case bcond_op: 82 switch (insn.i_format.rt) { 83 case bltz_op: 84 case bltzl_op: 85 if ((long)arch->gprs[insn.i_format.rs] < 0) 86 epc = epc + 4 + (insn.i_format.simmediate << 2); 87 else 88 epc += 8; 89 nextpc = epc; 90 break; 91 92 case bgez_op: 93 case bgezl_op: 94 if ((long)arch->gprs[insn.i_format.rs] >= 0) 95 epc = epc + 4 + (insn.i_format.simmediate << 2); 96 else 97 epc += 8; 98 nextpc = epc; 99 break; 100 101 case bltzal_op: 102 case bltzall_op: 103 arch->gprs[31] = epc + 8; 104 if ((long)arch->gprs[insn.i_format.rs] < 0) 105 epc = epc + 4 + (insn.i_format.simmediate << 2); 106 else 107 epc += 8; 108 nextpc = epc; 109 break; 110 111 case bgezal_op: 112 case bgezall_op: 113 arch->gprs[31] = epc + 8; 114 if ((long)arch->gprs[insn.i_format.rs] >= 0) 115 epc = epc + 4 + (insn.i_format.simmediate << 2); 116 else 117 epc += 8; 118 nextpc = epc; 119 break; 120 case bposge32_op: 121 if (!cpu_has_dsp) { 122 kvm_err("%s: DSP branch but not DSP ASE\n", 123 __func__); 124 return -EINVAL; 125 } 126 127 dspcontrol = rddsp(0x01); 128 129 if (dspcontrol >= 32) 130 epc = epc + 4 + (insn.i_format.simmediate << 2); 131 else 132 epc += 8; 133 nextpc = epc; 134 break; 135 default: 136 return -EINVAL; 137 } 138 break; 139 140 /* These are unconditional and in j_format. */ 141 case jal_op: 142 arch->gprs[31] = instpc + 8; 143 case j_op: 144 epc += 4; 145 epc >>= 28; 146 epc <<= 28; 147 epc |= (insn.j_format.target << 2); 148 nextpc = epc; 149 break; 150 151 /* These are conditional and in i_format. */ 152 case beq_op: 153 case beql_op: 154 if (arch->gprs[insn.i_format.rs] == 155 arch->gprs[insn.i_format.rt]) 156 epc = epc + 4 + (insn.i_format.simmediate << 2); 157 else 158 epc += 8; 159 nextpc = epc; 160 break; 161 162 case bne_op: 163 case bnel_op: 164 if (arch->gprs[insn.i_format.rs] != 165 arch->gprs[insn.i_format.rt]) 166 epc = epc + 4 + (insn.i_format.simmediate << 2); 167 else 168 epc += 8; 169 nextpc = epc; 170 break; 171 172 case blez_op: /* POP06 */ 173 #ifndef CONFIG_CPU_MIPSR6 174 case blezl_op: /* removed in R6 */ 175 #endif 176 if (insn.i_format.rt != 0) 177 goto compact_branch; 178 if ((long)arch->gprs[insn.i_format.rs] <= 0) 179 epc = epc + 4 + (insn.i_format.simmediate << 2); 180 else 181 epc += 8; 182 nextpc = epc; 183 break; 184 185 case bgtz_op: /* POP07 */ 186 #ifndef CONFIG_CPU_MIPSR6 187 case bgtzl_op: /* removed in R6 */ 188 #endif 189 if (insn.i_format.rt != 0) 190 goto compact_branch; 191 if ((long)arch->gprs[insn.i_format.rs] > 0) 192 epc = epc + 4 + (insn.i_format.simmediate << 2); 193 else 194 epc += 8; 195 nextpc = epc; 196 break; 197 198 /* And now the FPA/cp1 branch instructions. */ 199 case cop1_op: 200 kvm_err("%s: unsupported cop1_op\n", __func__); 201 return -EINVAL; 202 203 #ifdef CONFIG_CPU_MIPSR6 204 /* R6 added the following compact branches with forbidden slots */ 205 case blezl_op: /* POP26 */ 206 case bgtzl_op: /* POP27 */ 207 /* only rt == 0 isn't compact branch */ 208 if (insn.i_format.rt != 0) 209 goto compact_branch; 210 return -EINVAL; 211 case pop10_op: 212 case pop30_op: 213 /* only rs == rt == 0 is reserved, rest are compact branches */ 214 if (insn.i_format.rs != 0 || insn.i_format.rt != 0) 215 goto compact_branch; 216 return -EINVAL; 217 case pop66_op: 218 case pop76_op: 219 /* only rs == 0 isn't compact branch */ 220 if (insn.i_format.rs != 0) 221 goto compact_branch; 222 return -EINVAL; 223 compact_branch: 224 /* 225 * If we've hit an exception on the forbidden slot, then 226 * the branch must not have been taken. 227 */ 228 epc += 8; 229 nextpc = epc; 230 break; 231 #else 232 compact_branch: 233 /* Fall through - Compact branches not supported before R6 */ 234 #endif 235 default: 236 return -EINVAL; 237 } 238 239 *out = nextpc; 240 return 0; 241 } 242 243 enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause) 244 { 245 int err; 246 247 if (cause & CAUSEF_BD) { 248 err = kvm_compute_return_epc(vcpu, vcpu->arch.pc, 249 &vcpu->arch.pc); 250 if (err) 251 return EMULATE_FAIL; 252 } else { 253 vcpu->arch.pc += 4; 254 } 255 256 kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc); 257 258 return EMULATE_DONE; 259 } 260 261 /** 262 * kvm_get_badinstr() - Get bad instruction encoding. 263 * @opc: Guest pointer to faulting instruction. 264 * @vcpu: KVM VCPU information. 265 * 266 * Gets the instruction encoding of the faulting instruction, using the saved 267 * BadInstr register value if it exists, otherwise falling back to reading guest 268 * memory at @opc. 269 * 270 * Returns: The instruction encoding of the faulting instruction. 271 */ 272 int kvm_get_badinstr(u32 *opc, struct kvm_vcpu *vcpu, u32 *out) 273 { 274 if (cpu_has_badinstr) { 275 *out = vcpu->arch.host_cp0_badinstr; 276 return 0; 277 } else { 278 return kvm_get_inst(opc, vcpu, out); 279 } 280 } 281 282 /** 283 * kvm_get_badinstrp() - Get bad prior instruction encoding. 284 * @opc: Guest pointer to prior faulting instruction. 285 * @vcpu: KVM VCPU information. 286 * 287 * Gets the instruction encoding of the prior faulting instruction (the branch 288 * containing the delay slot which faulted), using the saved BadInstrP register 289 * value if it exists, otherwise falling back to reading guest memory at @opc. 290 * 291 * Returns: The instruction encoding of the prior faulting instruction. 292 */ 293 int kvm_get_badinstrp(u32 *opc, struct kvm_vcpu *vcpu, u32 *out) 294 { 295 if (cpu_has_badinstrp) { 296 *out = vcpu->arch.host_cp0_badinstrp; 297 return 0; 298 } else { 299 return kvm_get_inst(opc, vcpu, out); 300 } 301 } 302 303 /** 304 * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled. 305 * @vcpu: Virtual CPU. 306 * 307 * Returns: 1 if the CP0_Count timer is disabled by either the guest 308 * CP0_Cause.DC bit or the count_ctl.DC bit. 309 * 0 otherwise (in which case CP0_Count timer is running). 310 */ 311 int kvm_mips_count_disabled(struct kvm_vcpu *vcpu) 312 { 313 struct mips_coproc *cop0 = vcpu->arch.cop0; 314 315 return (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) || 316 (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC); 317 } 318 319 /** 320 * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count. 321 * 322 * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias. 323 * 324 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running). 325 */ 326 static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now) 327 { 328 s64 now_ns, periods; 329 u64 delta; 330 331 now_ns = ktime_to_ns(now); 332 delta = now_ns + vcpu->arch.count_dyn_bias; 333 334 if (delta >= vcpu->arch.count_period) { 335 /* If delta is out of safe range the bias needs adjusting */ 336 periods = div64_s64(now_ns, vcpu->arch.count_period); 337 vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period; 338 /* Recalculate delta with new bias */ 339 delta = now_ns + vcpu->arch.count_dyn_bias; 340 } 341 342 /* 343 * We've ensured that: 344 * delta < count_period 345 * 346 * Therefore the intermediate delta*count_hz will never overflow since 347 * at the boundary condition: 348 * delta = count_period 349 * delta = NSEC_PER_SEC * 2^32 / count_hz 350 * delta * count_hz = NSEC_PER_SEC * 2^32 351 */ 352 return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC); 353 } 354 355 /** 356 * kvm_mips_count_time() - Get effective current time. 357 * @vcpu: Virtual CPU. 358 * 359 * Get effective monotonic ktime. This is usually a straightforward ktime_get(), 360 * except when the master disable bit is set in count_ctl, in which case it is 361 * count_resume, i.e. the time that the count was disabled. 362 * 363 * Returns: Effective monotonic ktime for CP0_Count. 364 */ 365 static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu) 366 { 367 if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)) 368 return vcpu->arch.count_resume; 369 370 return ktime_get(); 371 } 372 373 /** 374 * kvm_mips_read_count_running() - Read the current count value as if running. 375 * @vcpu: Virtual CPU. 376 * @now: Kernel time to read CP0_Count at. 377 * 378 * Returns the current guest CP0_Count register at time @now and handles if the 379 * timer interrupt is pending and hasn't been handled yet. 380 * 381 * Returns: The current value of the guest CP0_Count register. 382 */ 383 static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now) 384 { 385 struct mips_coproc *cop0 = vcpu->arch.cop0; 386 ktime_t expires, threshold; 387 u32 count, compare; 388 int running; 389 390 /* Calculate the biased and scaled guest CP0_Count */ 391 count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now); 392 compare = kvm_read_c0_guest_compare(cop0); 393 394 /* 395 * Find whether CP0_Count has reached the closest timer interrupt. If 396 * not, we shouldn't inject it. 397 */ 398 if ((s32)(count - compare) < 0) 399 return count; 400 401 /* 402 * The CP0_Count we're going to return has already reached the closest 403 * timer interrupt. Quickly check if it really is a new interrupt by 404 * looking at whether the interval until the hrtimer expiry time is 405 * less than 1/4 of the timer period. 406 */ 407 expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer); 408 threshold = ktime_add_ns(now, vcpu->arch.count_period / 4); 409 if (ktime_before(expires, threshold)) { 410 /* 411 * Cancel it while we handle it so there's no chance of 412 * interference with the timeout handler. 413 */ 414 running = hrtimer_cancel(&vcpu->arch.comparecount_timer); 415 416 /* Nothing should be waiting on the timeout */ 417 kvm_mips_callbacks->queue_timer_int(vcpu); 418 419 /* 420 * Restart the timer if it was running based on the expiry time 421 * we read, so that we don't push it back 2 periods. 422 */ 423 if (running) { 424 expires = ktime_add_ns(expires, 425 vcpu->arch.count_period); 426 hrtimer_start(&vcpu->arch.comparecount_timer, expires, 427 HRTIMER_MODE_ABS); 428 } 429 } 430 431 return count; 432 } 433 434 /** 435 * kvm_mips_read_count() - Read the current count value. 436 * @vcpu: Virtual CPU. 437 * 438 * Read the current guest CP0_Count value, taking into account whether the timer 439 * is stopped. 440 * 441 * Returns: The current guest CP0_Count value. 442 */ 443 u32 kvm_mips_read_count(struct kvm_vcpu *vcpu) 444 { 445 struct mips_coproc *cop0 = vcpu->arch.cop0; 446 447 /* If count disabled just read static copy of count */ 448 if (kvm_mips_count_disabled(vcpu)) 449 return kvm_read_c0_guest_count(cop0); 450 451 return kvm_mips_read_count_running(vcpu, ktime_get()); 452 } 453 454 /** 455 * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer. 456 * @vcpu: Virtual CPU. 457 * @count: Output pointer for CP0_Count value at point of freeze. 458 * 459 * Freeze the hrtimer safely and return both the ktime and the CP0_Count value 460 * at the point it was frozen. It is guaranteed that any pending interrupts at 461 * the point it was frozen are handled, and none after that point. 462 * 463 * This is useful where the time/CP0_Count is needed in the calculation of the 464 * new parameters. 465 * 466 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running). 467 * 468 * Returns: The ktime at the point of freeze. 469 */ 470 ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count) 471 { 472 ktime_t now; 473 474 /* stop hrtimer before finding time */ 475 hrtimer_cancel(&vcpu->arch.comparecount_timer); 476 now = ktime_get(); 477 478 /* find count at this point and handle pending hrtimer */ 479 *count = kvm_mips_read_count_running(vcpu, now); 480 481 return now; 482 } 483 484 /** 485 * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry. 486 * @vcpu: Virtual CPU. 487 * @now: ktime at point of resume. 488 * @count: CP0_Count at point of resume. 489 * 490 * Resumes the timer and updates the timer expiry based on @now and @count. 491 * This can be used in conjunction with kvm_mips_freeze_timer() when timer 492 * parameters need to be changed. 493 * 494 * It is guaranteed that a timer interrupt immediately after resume will be 495 * handled, but not if CP_Compare is exactly at @count. That case is already 496 * handled by kvm_mips_freeze_timer(). 497 * 498 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running). 499 */ 500 static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu, 501 ktime_t now, u32 count) 502 { 503 struct mips_coproc *cop0 = vcpu->arch.cop0; 504 u32 compare; 505 u64 delta; 506 ktime_t expire; 507 508 /* Calculate timeout (wrap 0 to 2^32) */ 509 compare = kvm_read_c0_guest_compare(cop0); 510 delta = (u64)(u32)(compare - count - 1) + 1; 511 delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz); 512 expire = ktime_add_ns(now, delta); 513 514 /* Update hrtimer to use new timeout */ 515 hrtimer_cancel(&vcpu->arch.comparecount_timer); 516 hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS); 517 } 518 519 /** 520 * kvm_mips_restore_hrtimer() - Restore hrtimer after a gap, updating expiry. 521 * @vcpu: Virtual CPU. 522 * @before: Time before Count was saved, lower bound of drift calculation. 523 * @count: CP0_Count at point of restore. 524 * @min_drift: Minimum amount of drift permitted before correction. 525 * Must be <= 0. 526 * 527 * Restores the timer from a particular @count, accounting for drift. This can 528 * be used in conjunction with kvm_mips_freeze_timer() when a hardware timer is 529 * to be used for a period of time, but the exact ktime corresponding to the 530 * final Count that must be restored is not known. 531 * 532 * It is gauranteed that a timer interrupt immediately after restore will be 533 * handled, but not if CP0_Compare is exactly at @count. That case should 534 * already be handled when the hardware timer state is saved. 535 * 536 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is not 537 * stopped). 538 * 539 * Returns: Amount of correction to count_bias due to drift. 540 */ 541 int kvm_mips_restore_hrtimer(struct kvm_vcpu *vcpu, ktime_t before, 542 u32 count, int min_drift) 543 { 544 ktime_t now, count_time; 545 u32 now_count, before_count; 546 u64 delta; 547 int drift, ret = 0; 548 549 /* Calculate expected count at before */ 550 before_count = vcpu->arch.count_bias + 551 kvm_mips_ktime_to_count(vcpu, before); 552 553 /* 554 * Detect significantly negative drift, where count is lower than 555 * expected. Some negative drift is expected when hardware counter is 556 * set after kvm_mips_freeze_timer(), and it is harmless to allow the 557 * time to jump forwards a little, within reason. If the drift is too 558 * significant, adjust the bias to avoid a big Guest.CP0_Count jump. 559 */ 560 drift = count - before_count; 561 if (drift < min_drift) { 562 count_time = before; 563 vcpu->arch.count_bias += drift; 564 ret = drift; 565 goto resume; 566 } 567 568 /* Calculate expected count right now */ 569 now = ktime_get(); 570 now_count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now); 571 572 /* 573 * Detect positive drift, where count is higher than expected, and 574 * adjust the bias to avoid guest time going backwards. 575 */ 576 drift = count - now_count; 577 if (drift > 0) { 578 count_time = now; 579 vcpu->arch.count_bias += drift; 580 ret = drift; 581 goto resume; 582 } 583 584 /* Subtract nanosecond delta to find ktime when count was read */ 585 delta = (u64)(u32)(now_count - count); 586 delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz); 587 count_time = ktime_sub_ns(now, delta); 588 589 resume: 590 /* Resume using the calculated ktime */ 591 kvm_mips_resume_hrtimer(vcpu, count_time, count); 592 return ret; 593 } 594 595 /** 596 * kvm_mips_write_count() - Modify the count and update timer. 597 * @vcpu: Virtual CPU. 598 * @count: Guest CP0_Count value to set. 599 * 600 * Sets the CP0_Count value and updates the timer accordingly. 601 */ 602 void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count) 603 { 604 struct mips_coproc *cop0 = vcpu->arch.cop0; 605 ktime_t now; 606 607 /* Calculate bias */ 608 now = kvm_mips_count_time(vcpu); 609 vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now); 610 611 if (kvm_mips_count_disabled(vcpu)) 612 /* The timer's disabled, adjust the static count */ 613 kvm_write_c0_guest_count(cop0, count); 614 else 615 /* Update timeout */ 616 kvm_mips_resume_hrtimer(vcpu, now, count); 617 } 618 619 /** 620 * kvm_mips_init_count() - Initialise timer. 621 * @vcpu: Virtual CPU. 622 * @count_hz: Frequency of timer. 623 * 624 * Initialise the timer to the specified frequency, zero it, and set it going if 625 * it's enabled. 626 */ 627 void kvm_mips_init_count(struct kvm_vcpu *vcpu, unsigned long count_hz) 628 { 629 vcpu->arch.count_hz = count_hz; 630 vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz); 631 vcpu->arch.count_dyn_bias = 0; 632 633 /* Starting at 0 */ 634 kvm_mips_write_count(vcpu, 0); 635 } 636 637 /** 638 * kvm_mips_set_count_hz() - Update the frequency of the timer. 639 * @vcpu: Virtual CPU. 640 * @count_hz: Frequency of CP0_Count timer in Hz. 641 * 642 * Change the frequency of the CP0_Count timer. This is done atomically so that 643 * CP0_Count is continuous and no timer interrupt is lost. 644 * 645 * Returns: -EINVAL if @count_hz is out of range. 646 * 0 on success. 647 */ 648 int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz) 649 { 650 struct mips_coproc *cop0 = vcpu->arch.cop0; 651 int dc; 652 ktime_t now; 653 u32 count; 654 655 /* ensure the frequency is in a sensible range... */ 656 if (count_hz <= 0 || count_hz > NSEC_PER_SEC) 657 return -EINVAL; 658 /* ... and has actually changed */ 659 if (vcpu->arch.count_hz == count_hz) 660 return 0; 661 662 /* Safely freeze timer so we can keep it continuous */ 663 dc = kvm_mips_count_disabled(vcpu); 664 if (dc) { 665 now = kvm_mips_count_time(vcpu); 666 count = kvm_read_c0_guest_count(cop0); 667 } else { 668 now = kvm_mips_freeze_hrtimer(vcpu, &count); 669 } 670 671 /* Update the frequency */ 672 vcpu->arch.count_hz = count_hz; 673 vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz); 674 vcpu->arch.count_dyn_bias = 0; 675 676 /* Calculate adjusted bias so dynamic count is unchanged */ 677 vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now); 678 679 /* Update and resume hrtimer */ 680 if (!dc) 681 kvm_mips_resume_hrtimer(vcpu, now, count); 682 return 0; 683 } 684 685 /** 686 * kvm_mips_write_compare() - Modify compare and update timer. 687 * @vcpu: Virtual CPU. 688 * @compare: New CP0_Compare value. 689 * @ack: Whether to acknowledge timer interrupt. 690 * 691 * Update CP0_Compare to a new value and update the timeout. 692 * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure 693 * any pending timer interrupt is preserved. 694 */ 695 void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack) 696 { 697 struct mips_coproc *cop0 = vcpu->arch.cop0; 698 int dc; 699 u32 old_compare = kvm_read_c0_guest_compare(cop0); 700 s32 delta = compare - old_compare; 701 u32 cause; 702 ktime_t now = ktime_set(0, 0); /* silence bogus GCC warning */ 703 u32 count; 704 705 /* if unchanged, must just be an ack */ 706 if (old_compare == compare) { 707 if (!ack) 708 return; 709 kvm_mips_callbacks->dequeue_timer_int(vcpu); 710 kvm_write_c0_guest_compare(cop0, compare); 711 return; 712 } 713 714 /* 715 * If guest CP0_Compare moves forward, CP0_GTOffset should be adjusted 716 * too to prevent guest CP0_Count hitting guest CP0_Compare. 717 * 718 * The new GTOffset corresponds to the new value of CP0_Compare, and is 719 * set prior to it being written into the guest context. We disable 720 * preemption until the new value is written to prevent restore of a 721 * GTOffset corresponding to the old CP0_Compare value. 722 */ 723 if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta > 0) { 724 preempt_disable(); 725 write_c0_gtoffset(compare - read_c0_count()); 726 back_to_back_c0_hazard(); 727 } 728 729 /* freeze_hrtimer() takes care of timer interrupts <= count */ 730 dc = kvm_mips_count_disabled(vcpu); 731 if (!dc) 732 now = kvm_mips_freeze_hrtimer(vcpu, &count); 733 734 if (ack) 735 kvm_mips_callbacks->dequeue_timer_int(vcpu); 736 else if (IS_ENABLED(CONFIG_KVM_MIPS_VZ)) 737 /* 738 * With VZ, writing CP0_Compare acks (clears) CP0_Cause.TI, so 739 * preserve guest CP0_Cause.TI if we don't want to ack it. 740 */ 741 cause = kvm_read_c0_guest_cause(cop0); 742 743 kvm_write_c0_guest_compare(cop0, compare); 744 745 if (IS_ENABLED(CONFIG_KVM_MIPS_VZ)) { 746 if (delta > 0) 747 preempt_enable(); 748 749 back_to_back_c0_hazard(); 750 751 if (!ack && cause & CAUSEF_TI) 752 kvm_write_c0_guest_cause(cop0, cause); 753 } 754 755 /* resume_hrtimer() takes care of timer interrupts > count */ 756 if (!dc) 757 kvm_mips_resume_hrtimer(vcpu, now, count); 758 759 /* 760 * If guest CP0_Compare is moving backward, we delay CP0_GTOffset change 761 * until after the new CP0_Compare is written, otherwise new guest 762 * CP0_Count could hit new guest CP0_Compare. 763 */ 764 if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta <= 0) 765 write_c0_gtoffset(compare - read_c0_count()); 766 } 767 768 /** 769 * kvm_mips_count_disable() - Disable count. 770 * @vcpu: Virtual CPU. 771 * 772 * Disable the CP0_Count timer. A timer interrupt on or before the final stop 773 * time will be handled but not after. 774 * 775 * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or 776 * count_ctl.DC has been set (count disabled). 777 * 778 * Returns: The time that the timer was stopped. 779 */ 780 static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu) 781 { 782 struct mips_coproc *cop0 = vcpu->arch.cop0; 783 u32 count; 784 ktime_t now; 785 786 /* Stop hrtimer */ 787 hrtimer_cancel(&vcpu->arch.comparecount_timer); 788 789 /* Set the static count from the dynamic count, handling pending TI */ 790 now = ktime_get(); 791 count = kvm_mips_read_count_running(vcpu, now); 792 kvm_write_c0_guest_count(cop0, count); 793 794 return now; 795 } 796 797 /** 798 * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC. 799 * @vcpu: Virtual CPU. 800 * 801 * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or 802 * before the final stop time will be handled if the timer isn't disabled by 803 * count_ctl.DC, but not after. 804 * 805 * Assumes CP0_Cause.DC is clear (count enabled). 806 */ 807 void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu) 808 { 809 struct mips_coproc *cop0 = vcpu->arch.cop0; 810 811 kvm_set_c0_guest_cause(cop0, CAUSEF_DC); 812 if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)) 813 kvm_mips_count_disable(vcpu); 814 } 815 816 /** 817 * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC. 818 * @vcpu: Virtual CPU. 819 * 820 * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after 821 * the start time will be handled if the timer isn't disabled by count_ctl.DC, 822 * potentially before even returning, so the caller should be careful with 823 * ordering of CP0_Cause modifications so as not to lose it. 824 * 825 * Assumes CP0_Cause.DC is set (count disabled). 826 */ 827 void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu) 828 { 829 struct mips_coproc *cop0 = vcpu->arch.cop0; 830 u32 count; 831 832 kvm_clear_c0_guest_cause(cop0, CAUSEF_DC); 833 834 /* 835 * Set the dynamic count to match the static count. 836 * This starts the hrtimer if count_ctl.DC allows it. 837 * Otherwise it conveniently updates the biases. 838 */ 839 count = kvm_read_c0_guest_count(cop0); 840 kvm_mips_write_count(vcpu, count); 841 } 842 843 /** 844 * kvm_mips_set_count_ctl() - Update the count control KVM register. 845 * @vcpu: Virtual CPU. 846 * @count_ctl: Count control register new value. 847 * 848 * Set the count control KVM register. The timer is updated accordingly. 849 * 850 * Returns: -EINVAL if reserved bits are set. 851 * 0 on success. 852 */ 853 int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl) 854 { 855 struct mips_coproc *cop0 = vcpu->arch.cop0; 856 s64 changed = count_ctl ^ vcpu->arch.count_ctl; 857 s64 delta; 858 ktime_t expire, now; 859 u32 count, compare; 860 861 /* Only allow defined bits to be changed */ 862 if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC)) 863 return -EINVAL; 864 865 /* Apply new value */ 866 vcpu->arch.count_ctl = count_ctl; 867 868 /* Master CP0_Count disable */ 869 if (changed & KVM_REG_MIPS_COUNT_CTL_DC) { 870 /* Is CP0_Cause.DC already disabling CP0_Count? */ 871 if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) { 872 if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) 873 /* Just record the current time */ 874 vcpu->arch.count_resume = ktime_get(); 875 } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) { 876 /* disable timer and record current time */ 877 vcpu->arch.count_resume = kvm_mips_count_disable(vcpu); 878 } else { 879 /* 880 * Calculate timeout relative to static count at resume 881 * time (wrap 0 to 2^32). 882 */ 883 count = kvm_read_c0_guest_count(cop0); 884 compare = kvm_read_c0_guest_compare(cop0); 885 delta = (u64)(u32)(compare - count - 1) + 1; 886 delta = div_u64(delta * NSEC_PER_SEC, 887 vcpu->arch.count_hz); 888 expire = ktime_add_ns(vcpu->arch.count_resume, delta); 889 890 /* Handle pending interrupt */ 891 now = ktime_get(); 892 if (ktime_compare(now, expire) >= 0) 893 /* Nothing should be waiting on the timeout */ 894 kvm_mips_callbacks->queue_timer_int(vcpu); 895 896 /* Resume hrtimer without changing bias */ 897 count = kvm_mips_read_count_running(vcpu, now); 898 kvm_mips_resume_hrtimer(vcpu, now, count); 899 } 900 } 901 902 return 0; 903 } 904 905 /** 906 * kvm_mips_set_count_resume() - Update the count resume KVM register. 907 * @vcpu: Virtual CPU. 908 * @count_resume: Count resume register new value. 909 * 910 * Set the count resume KVM register. 911 * 912 * Returns: -EINVAL if out of valid range (0..now). 913 * 0 on success. 914 */ 915 int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume) 916 { 917 /* 918 * It doesn't make sense for the resume time to be in the future, as it 919 * would be possible for the next interrupt to be more than a full 920 * period in the future. 921 */ 922 if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get())) 923 return -EINVAL; 924 925 vcpu->arch.count_resume = ns_to_ktime(count_resume); 926 return 0; 927 } 928 929 /** 930 * kvm_mips_count_timeout() - Push timer forward on timeout. 931 * @vcpu: Virtual CPU. 932 * 933 * Handle an hrtimer event by push the hrtimer forward a period. 934 * 935 * Returns: The hrtimer_restart value to return to the hrtimer subsystem. 936 */ 937 enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu) 938 { 939 /* Add the Count period to the current expiry time */ 940 hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer, 941 vcpu->arch.count_period); 942 return HRTIMER_RESTART; 943 } 944 945 enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu) 946 { 947 struct mips_coproc *cop0 = vcpu->arch.cop0; 948 enum emulation_result er = EMULATE_DONE; 949 950 if (kvm_read_c0_guest_status(cop0) & ST0_ERL) { 951 kvm_clear_c0_guest_status(cop0, ST0_ERL); 952 vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0); 953 } else if (kvm_read_c0_guest_status(cop0) & ST0_EXL) { 954 kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc, 955 kvm_read_c0_guest_epc(cop0)); 956 kvm_clear_c0_guest_status(cop0, ST0_EXL); 957 vcpu->arch.pc = kvm_read_c0_guest_epc(cop0); 958 959 } else { 960 kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n", 961 vcpu->arch.pc); 962 er = EMULATE_FAIL; 963 } 964 965 return er; 966 } 967 968 enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu) 969 { 970 kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc, 971 vcpu->arch.pending_exceptions); 972 973 ++vcpu->stat.wait_exits; 974 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT); 975 if (!vcpu->arch.pending_exceptions) { 976 kvm_vz_lose_htimer(vcpu); 977 vcpu->arch.wait = 1; 978 kvm_vcpu_block(vcpu); 979 980 /* 981 * We we are runnable, then definitely go off to user space to 982 * check if any I/O interrupts are pending. 983 */ 984 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) { 985 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 986 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 987 } 988 } 989 990 return EMULATE_DONE; 991 } 992 993 static void kvm_mips_change_entryhi(struct kvm_vcpu *vcpu, 994 unsigned long entryhi) 995 { 996 struct mips_coproc *cop0 = vcpu->arch.cop0; 997 struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm; 998 int cpu, i; 999 u32 nasid = entryhi & KVM_ENTRYHI_ASID; 1000 1001 if (((kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID) != nasid)) { 1002 trace_kvm_asid_change(vcpu, kvm_read_c0_guest_entryhi(cop0) & 1003 KVM_ENTRYHI_ASID, nasid); 1004 1005 /* 1006 * Flush entries from the GVA page tables. 1007 * Guest user page table will get flushed lazily on re-entry to 1008 * guest user if the guest ASID actually changes. 1009 */ 1010 kvm_mips_flush_gva_pt(kern_mm->pgd, KMF_KERN); 1011 1012 /* 1013 * Regenerate/invalidate kernel MMU context. 1014 * The user MMU context will be regenerated lazily on re-entry 1015 * to guest user if the guest ASID actually changes. 1016 */ 1017 preempt_disable(); 1018 cpu = smp_processor_id(); 1019 get_new_mmu_context(kern_mm); 1020 for_each_possible_cpu(i) 1021 if (i != cpu) 1022 set_cpu_context(i, kern_mm, 0); 1023 preempt_enable(); 1024 } 1025 kvm_write_c0_guest_entryhi(cop0, entryhi); 1026 } 1027 1028 enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu) 1029 { 1030 struct mips_coproc *cop0 = vcpu->arch.cop0; 1031 struct kvm_mips_tlb *tlb; 1032 unsigned long pc = vcpu->arch.pc; 1033 int index; 1034 1035 index = kvm_read_c0_guest_index(cop0); 1036 if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) { 1037 /* UNDEFINED */ 1038 kvm_debug("[%#lx] TLBR Index %#x out of range\n", pc, index); 1039 index &= KVM_MIPS_GUEST_TLB_SIZE - 1; 1040 } 1041 1042 tlb = &vcpu->arch.guest_tlb[index]; 1043 kvm_write_c0_guest_pagemask(cop0, tlb->tlb_mask); 1044 kvm_write_c0_guest_entrylo0(cop0, tlb->tlb_lo[0]); 1045 kvm_write_c0_guest_entrylo1(cop0, tlb->tlb_lo[1]); 1046 kvm_mips_change_entryhi(vcpu, tlb->tlb_hi); 1047 1048 return EMULATE_DONE; 1049 } 1050 1051 /** 1052 * kvm_mips_invalidate_guest_tlb() - Indicates a change in guest MMU map. 1053 * @vcpu: VCPU with changed mappings. 1054 * @tlb: TLB entry being removed. 1055 * 1056 * This is called to indicate a single change in guest MMU mappings, so that we 1057 * can arrange TLB flushes on this and other CPUs. 1058 */ 1059 static void kvm_mips_invalidate_guest_tlb(struct kvm_vcpu *vcpu, 1060 struct kvm_mips_tlb *tlb) 1061 { 1062 struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm; 1063 struct mm_struct *user_mm = &vcpu->arch.guest_user_mm; 1064 int cpu, i; 1065 bool user; 1066 1067 /* No need to flush for entries which are already invalid */ 1068 if (!((tlb->tlb_lo[0] | tlb->tlb_lo[1]) & ENTRYLO_V)) 1069 return; 1070 /* Don't touch host kernel page tables or TLB mappings */ 1071 if ((unsigned long)tlb->tlb_hi > 0x7fffffff) 1072 return; 1073 /* User address space doesn't need flushing for KSeg2/3 changes */ 1074 user = tlb->tlb_hi < KVM_GUEST_KSEG0; 1075 1076 preempt_disable(); 1077 1078 /* Invalidate page table entries */ 1079 kvm_trap_emul_invalidate_gva(vcpu, tlb->tlb_hi & VPN2_MASK, user); 1080 1081 /* 1082 * Probe the shadow host TLB for the entry being overwritten, if one 1083 * matches, invalidate it 1084 */ 1085 kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi, user, true); 1086 1087 /* Invalidate the whole ASID on other CPUs */ 1088 cpu = smp_processor_id(); 1089 for_each_possible_cpu(i) { 1090 if (i == cpu) 1091 continue; 1092 if (user) 1093 set_cpu_context(i, user_mm, 0); 1094 set_cpu_context(i, kern_mm, 0); 1095 } 1096 1097 preempt_enable(); 1098 } 1099 1100 /* Write Guest TLB Entry @ Index */ 1101 enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu) 1102 { 1103 struct mips_coproc *cop0 = vcpu->arch.cop0; 1104 int index = kvm_read_c0_guest_index(cop0); 1105 struct kvm_mips_tlb *tlb = NULL; 1106 unsigned long pc = vcpu->arch.pc; 1107 1108 if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) { 1109 kvm_debug("%s: illegal index: %d\n", __func__, index); 1110 kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n", 1111 pc, index, kvm_read_c0_guest_entryhi(cop0), 1112 kvm_read_c0_guest_entrylo0(cop0), 1113 kvm_read_c0_guest_entrylo1(cop0), 1114 kvm_read_c0_guest_pagemask(cop0)); 1115 index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE; 1116 } 1117 1118 tlb = &vcpu->arch.guest_tlb[index]; 1119 1120 kvm_mips_invalidate_guest_tlb(vcpu, tlb); 1121 1122 tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0); 1123 tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0); 1124 tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0); 1125 tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0); 1126 1127 kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n", 1128 pc, index, kvm_read_c0_guest_entryhi(cop0), 1129 kvm_read_c0_guest_entrylo0(cop0), 1130 kvm_read_c0_guest_entrylo1(cop0), 1131 kvm_read_c0_guest_pagemask(cop0)); 1132 1133 return EMULATE_DONE; 1134 } 1135 1136 /* Write Guest TLB Entry @ Random Index */ 1137 enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu) 1138 { 1139 struct mips_coproc *cop0 = vcpu->arch.cop0; 1140 struct kvm_mips_tlb *tlb = NULL; 1141 unsigned long pc = vcpu->arch.pc; 1142 int index; 1143 1144 index = prandom_u32_max(KVM_MIPS_GUEST_TLB_SIZE); 1145 tlb = &vcpu->arch.guest_tlb[index]; 1146 1147 kvm_mips_invalidate_guest_tlb(vcpu, tlb); 1148 1149 tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0); 1150 tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0); 1151 tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0); 1152 tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0); 1153 1154 kvm_debug("[%#lx] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n", 1155 pc, index, kvm_read_c0_guest_entryhi(cop0), 1156 kvm_read_c0_guest_entrylo0(cop0), 1157 kvm_read_c0_guest_entrylo1(cop0)); 1158 1159 return EMULATE_DONE; 1160 } 1161 1162 enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu) 1163 { 1164 struct mips_coproc *cop0 = vcpu->arch.cop0; 1165 long entryhi = kvm_read_c0_guest_entryhi(cop0); 1166 unsigned long pc = vcpu->arch.pc; 1167 int index = -1; 1168 1169 index = kvm_mips_guest_tlb_lookup(vcpu, entryhi); 1170 1171 kvm_write_c0_guest_index(cop0, index); 1172 1173 kvm_debug("[%#lx] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi, 1174 index); 1175 1176 return EMULATE_DONE; 1177 } 1178 1179 /** 1180 * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1 1181 * @vcpu: Virtual CPU. 1182 * 1183 * Finds the mask of bits which are writable in the guest's Config1 CP0 1184 * register, by userland (currently read-only to the guest). 1185 */ 1186 unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu) 1187 { 1188 unsigned int mask = 0; 1189 1190 /* Permit FPU to be present if FPU is supported */ 1191 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) 1192 mask |= MIPS_CONF1_FP; 1193 1194 return mask; 1195 } 1196 1197 /** 1198 * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3 1199 * @vcpu: Virtual CPU. 1200 * 1201 * Finds the mask of bits which are writable in the guest's Config3 CP0 1202 * register, by userland (currently read-only to the guest). 1203 */ 1204 unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu) 1205 { 1206 /* Config4 and ULRI are optional */ 1207 unsigned int mask = MIPS_CONF_M | MIPS_CONF3_ULRI; 1208 1209 /* Permit MSA to be present if MSA is supported */ 1210 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) 1211 mask |= MIPS_CONF3_MSA; 1212 1213 return mask; 1214 } 1215 1216 /** 1217 * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4 1218 * @vcpu: Virtual CPU. 1219 * 1220 * Finds the mask of bits which are writable in the guest's Config4 CP0 1221 * register, by userland (currently read-only to the guest). 1222 */ 1223 unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu) 1224 { 1225 /* Config5 is optional */ 1226 unsigned int mask = MIPS_CONF_M; 1227 1228 /* KScrExist */ 1229 mask |= 0xfc << MIPS_CONF4_KSCREXIST_SHIFT; 1230 1231 return mask; 1232 } 1233 1234 /** 1235 * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5 1236 * @vcpu: Virtual CPU. 1237 * 1238 * Finds the mask of bits which are writable in the guest's Config5 CP0 1239 * register, by the guest itself. 1240 */ 1241 unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu) 1242 { 1243 unsigned int mask = 0; 1244 1245 /* Permit MSAEn changes if MSA supported and enabled */ 1246 if (kvm_mips_guest_has_msa(&vcpu->arch)) 1247 mask |= MIPS_CONF5_MSAEN; 1248 1249 /* 1250 * Permit guest FPU mode changes if FPU is enabled and the relevant 1251 * feature exists according to FIR register. 1252 */ 1253 if (kvm_mips_guest_has_fpu(&vcpu->arch)) { 1254 if (cpu_has_fre) 1255 mask |= MIPS_CONF5_FRE; 1256 /* We don't support UFR or UFE */ 1257 } 1258 1259 return mask; 1260 } 1261 1262 enum emulation_result kvm_mips_emulate_CP0(union mips_instruction inst, 1263 u32 *opc, u32 cause, 1264 struct kvm_run *run, 1265 struct kvm_vcpu *vcpu) 1266 { 1267 struct mips_coproc *cop0 = vcpu->arch.cop0; 1268 enum emulation_result er = EMULATE_DONE; 1269 u32 rt, rd, sel; 1270 unsigned long curr_pc; 1271 1272 /* 1273 * Update PC and hold onto current PC in case there is 1274 * an error and we want to rollback the PC 1275 */ 1276 curr_pc = vcpu->arch.pc; 1277 er = update_pc(vcpu, cause); 1278 if (er == EMULATE_FAIL) 1279 return er; 1280 1281 if (inst.co_format.co) { 1282 switch (inst.co_format.func) { 1283 case tlbr_op: /* Read indexed TLB entry */ 1284 er = kvm_mips_emul_tlbr(vcpu); 1285 break; 1286 case tlbwi_op: /* Write indexed */ 1287 er = kvm_mips_emul_tlbwi(vcpu); 1288 break; 1289 case tlbwr_op: /* Write random */ 1290 er = kvm_mips_emul_tlbwr(vcpu); 1291 break; 1292 case tlbp_op: /* TLB Probe */ 1293 er = kvm_mips_emul_tlbp(vcpu); 1294 break; 1295 case rfe_op: 1296 kvm_err("!!!COP0_RFE!!!\n"); 1297 break; 1298 case eret_op: 1299 er = kvm_mips_emul_eret(vcpu); 1300 goto dont_update_pc; 1301 case wait_op: 1302 er = kvm_mips_emul_wait(vcpu); 1303 break; 1304 case hypcall_op: 1305 er = kvm_mips_emul_hypcall(vcpu, inst); 1306 break; 1307 } 1308 } else { 1309 rt = inst.c0r_format.rt; 1310 rd = inst.c0r_format.rd; 1311 sel = inst.c0r_format.sel; 1312 1313 switch (inst.c0r_format.rs) { 1314 case mfc_op: 1315 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS 1316 cop0->stat[rd][sel]++; 1317 #endif 1318 /* Get reg */ 1319 if ((rd == MIPS_CP0_COUNT) && (sel == 0)) { 1320 vcpu->arch.gprs[rt] = 1321 (s32)kvm_mips_read_count(vcpu); 1322 } else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) { 1323 vcpu->arch.gprs[rt] = 0x0; 1324 #ifdef CONFIG_KVM_MIPS_DYN_TRANS 1325 kvm_mips_trans_mfc0(inst, opc, vcpu); 1326 #endif 1327 } else { 1328 vcpu->arch.gprs[rt] = (s32)cop0->reg[rd][sel]; 1329 1330 #ifdef CONFIG_KVM_MIPS_DYN_TRANS 1331 kvm_mips_trans_mfc0(inst, opc, vcpu); 1332 #endif 1333 } 1334 1335 trace_kvm_hwr(vcpu, KVM_TRACE_MFC0, 1336 KVM_TRACE_COP0(rd, sel), 1337 vcpu->arch.gprs[rt]); 1338 break; 1339 1340 case dmfc_op: 1341 vcpu->arch.gprs[rt] = cop0->reg[rd][sel]; 1342 1343 trace_kvm_hwr(vcpu, KVM_TRACE_DMFC0, 1344 KVM_TRACE_COP0(rd, sel), 1345 vcpu->arch.gprs[rt]); 1346 break; 1347 1348 case mtc_op: 1349 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS 1350 cop0->stat[rd][sel]++; 1351 #endif 1352 trace_kvm_hwr(vcpu, KVM_TRACE_MTC0, 1353 KVM_TRACE_COP0(rd, sel), 1354 vcpu->arch.gprs[rt]); 1355 1356 if ((rd == MIPS_CP0_TLB_INDEX) 1357 && (vcpu->arch.gprs[rt] >= 1358 KVM_MIPS_GUEST_TLB_SIZE)) { 1359 kvm_err("Invalid TLB Index: %ld", 1360 vcpu->arch.gprs[rt]); 1361 er = EMULATE_FAIL; 1362 break; 1363 } 1364 if ((rd == MIPS_CP0_PRID) && (sel == 1)) { 1365 /* 1366 * Preserve core number, and keep the exception 1367 * base in guest KSeg0. 1368 */ 1369 kvm_change_c0_guest_ebase(cop0, 0x1ffff000, 1370 vcpu->arch.gprs[rt]); 1371 } else if (rd == MIPS_CP0_TLB_HI && sel == 0) { 1372 kvm_mips_change_entryhi(vcpu, 1373 vcpu->arch.gprs[rt]); 1374 } 1375 /* Are we writing to COUNT */ 1376 else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) { 1377 kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]); 1378 goto done; 1379 } else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) { 1380 /* If we are writing to COMPARE */ 1381 /* Clear pending timer interrupt, if any */ 1382 kvm_mips_write_compare(vcpu, 1383 vcpu->arch.gprs[rt], 1384 true); 1385 } else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) { 1386 unsigned int old_val, val, change; 1387 1388 old_val = kvm_read_c0_guest_status(cop0); 1389 val = vcpu->arch.gprs[rt]; 1390 change = val ^ old_val; 1391 1392 /* Make sure that the NMI bit is never set */ 1393 val &= ~ST0_NMI; 1394 1395 /* 1396 * Don't allow CU1 or FR to be set unless FPU 1397 * capability enabled and exists in guest 1398 * configuration. 1399 */ 1400 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 1401 val &= ~(ST0_CU1 | ST0_FR); 1402 1403 /* 1404 * Also don't allow FR to be set if host doesn't 1405 * support it. 1406 */ 1407 if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64)) 1408 val &= ~ST0_FR; 1409 1410 1411 /* Handle changes in FPU mode */ 1412 preempt_disable(); 1413 1414 /* 1415 * FPU and Vector register state is made 1416 * UNPREDICTABLE by a change of FR, so don't 1417 * even bother saving it. 1418 */ 1419 if (change & ST0_FR) 1420 kvm_drop_fpu(vcpu); 1421 1422 /* 1423 * If MSA state is already live, it is undefined 1424 * how it interacts with FR=0 FPU state, and we 1425 * don't want to hit reserved instruction 1426 * exceptions trying to save the MSA state later 1427 * when CU=1 && FR=1, so play it safe and save 1428 * it first. 1429 */ 1430 if (change & ST0_CU1 && !(val & ST0_FR) && 1431 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) 1432 kvm_lose_fpu(vcpu); 1433 1434 /* 1435 * Propagate CU1 (FPU enable) changes 1436 * immediately if the FPU context is already 1437 * loaded. When disabling we leave the context 1438 * loaded so it can be quickly enabled again in 1439 * the near future. 1440 */ 1441 if (change & ST0_CU1 && 1442 vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) 1443 change_c0_status(ST0_CU1, val); 1444 1445 preempt_enable(); 1446 1447 kvm_write_c0_guest_status(cop0, val); 1448 1449 #ifdef CONFIG_KVM_MIPS_DYN_TRANS 1450 /* 1451 * If FPU present, we need CU1/FR bits to take 1452 * effect fairly soon. 1453 */ 1454 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 1455 kvm_mips_trans_mtc0(inst, opc, vcpu); 1456 #endif 1457 } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) { 1458 unsigned int old_val, val, change, wrmask; 1459 1460 old_val = kvm_read_c0_guest_config5(cop0); 1461 val = vcpu->arch.gprs[rt]; 1462 1463 /* Only a few bits are writable in Config5 */ 1464 wrmask = kvm_mips_config5_wrmask(vcpu); 1465 change = (val ^ old_val) & wrmask; 1466 val = old_val ^ change; 1467 1468 1469 /* Handle changes in FPU/MSA modes */ 1470 preempt_disable(); 1471 1472 /* 1473 * Propagate FRE changes immediately if the FPU 1474 * context is already loaded. 1475 */ 1476 if (change & MIPS_CONF5_FRE && 1477 vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) 1478 change_c0_config5(MIPS_CONF5_FRE, val); 1479 1480 /* 1481 * Propagate MSAEn changes immediately if the 1482 * MSA context is already loaded. When disabling 1483 * we leave the context loaded so it can be 1484 * quickly enabled again in the near future. 1485 */ 1486 if (change & MIPS_CONF5_MSAEN && 1487 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) 1488 change_c0_config5(MIPS_CONF5_MSAEN, 1489 val); 1490 1491 preempt_enable(); 1492 1493 kvm_write_c0_guest_config5(cop0, val); 1494 } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) { 1495 u32 old_cause, new_cause; 1496 1497 old_cause = kvm_read_c0_guest_cause(cop0); 1498 new_cause = vcpu->arch.gprs[rt]; 1499 /* Update R/W bits */ 1500 kvm_change_c0_guest_cause(cop0, 0x08800300, 1501 new_cause); 1502 /* DC bit enabling/disabling timer? */ 1503 if ((old_cause ^ new_cause) & CAUSEF_DC) { 1504 if (new_cause & CAUSEF_DC) 1505 kvm_mips_count_disable_cause(vcpu); 1506 else 1507 kvm_mips_count_enable_cause(vcpu); 1508 } 1509 } else if ((rd == MIPS_CP0_HWRENA) && (sel == 0)) { 1510 u32 mask = MIPS_HWRENA_CPUNUM | 1511 MIPS_HWRENA_SYNCISTEP | 1512 MIPS_HWRENA_CC | 1513 MIPS_HWRENA_CCRES; 1514 1515 if (kvm_read_c0_guest_config3(cop0) & 1516 MIPS_CONF3_ULRI) 1517 mask |= MIPS_HWRENA_ULR; 1518 cop0->reg[rd][sel] = vcpu->arch.gprs[rt] & mask; 1519 } else { 1520 cop0->reg[rd][sel] = vcpu->arch.gprs[rt]; 1521 #ifdef CONFIG_KVM_MIPS_DYN_TRANS 1522 kvm_mips_trans_mtc0(inst, opc, vcpu); 1523 #endif 1524 } 1525 break; 1526 1527 case dmtc_op: 1528 kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n", 1529 vcpu->arch.pc, rt, rd, sel); 1530 trace_kvm_hwr(vcpu, KVM_TRACE_DMTC0, 1531 KVM_TRACE_COP0(rd, sel), 1532 vcpu->arch.gprs[rt]); 1533 er = EMULATE_FAIL; 1534 break; 1535 1536 case mfmc0_op: 1537 #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS 1538 cop0->stat[MIPS_CP0_STATUS][0]++; 1539 #endif 1540 if (rt != 0) 1541 vcpu->arch.gprs[rt] = 1542 kvm_read_c0_guest_status(cop0); 1543 /* EI */ 1544 if (inst.mfmc0_format.sc) { 1545 kvm_debug("[%#lx] mfmc0_op: EI\n", 1546 vcpu->arch.pc); 1547 kvm_set_c0_guest_status(cop0, ST0_IE); 1548 } else { 1549 kvm_debug("[%#lx] mfmc0_op: DI\n", 1550 vcpu->arch.pc); 1551 kvm_clear_c0_guest_status(cop0, ST0_IE); 1552 } 1553 1554 break; 1555 1556 case wrpgpr_op: 1557 { 1558 u32 css = cop0->reg[MIPS_CP0_STATUS][2] & 0xf; 1559 u32 pss = 1560 (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf; 1561 /* 1562 * We don't support any shadow register sets, so 1563 * SRSCtl[PSS] == SRSCtl[CSS] = 0 1564 */ 1565 if (css || pss) { 1566 er = EMULATE_FAIL; 1567 break; 1568 } 1569 kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd, 1570 vcpu->arch.gprs[rt]); 1571 vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt]; 1572 } 1573 break; 1574 default: 1575 kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n", 1576 vcpu->arch.pc, inst.c0r_format.rs); 1577 er = EMULATE_FAIL; 1578 break; 1579 } 1580 } 1581 1582 done: 1583 /* Rollback PC only if emulation was unsuccessful */ 1584 if (er == EMULATE_FAIL) 1585 vcpu->arch.pc = curr_pc; 1586 1587 dont_update_pc: 1588 /* 1589 * This is for special instructions whose emulation 1590 * updates the PC, so do not overwrite the PC under 1591 * any circumstances 1592 */ 1593 1594 return er; 1595 } 1596 1597 enum emulation_result kvm_mips_emulate_store(union mips_instruction inst, 1598 u32 cause, 1599 struct kvm_run *run, 1600 struct kvm_vcpu *vcpu) 1601 { 1602 enum emulation_result er; 1603 u32 rt; 1604 void *data = run->mmio.data; 1605 unsigned long curr_pc; 1606 1607 /* 1608 * Update PC and hold onto current PC in case there is 1609 * an error and we want to rollback the PC 1610 */ 1611 curr_pc = vcpu->arch.pc; 1612 er = update_pc(vcpu, cause); 1613 if (er == EMULATE_FAIL) 1614 return er; 1615 1616 rt = inst.i_format.rt; 1617 1618 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( 1619 vcpu->arch.host_cp0_badvaddr); 1620 if (run->mmio.phys_addr == KVM_INVALID_ADDR) 1621 goto out_fail; 1622 1623 switch (inst.i_format.opcode) { 1624 #if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ) 1625 case sd_op: 1626 run->mmio.len = 8; 1627 *(u64 *)data = vcpu->arch.gprs[rt]; 1628 1629 kvm_debug("[%#lx] OP_SD: eaddr: %#lx, gpr: %#lx, data: %#llx\n", 1630 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, 1631 vcpu->arch.gprs[rt], *(u64 *)data); 1632 break; 1633 #endif 1634 1635 case sw_op: 1636 run->mmio.len = 4; 1637 *(u32 *)data = vcpu->arch.gprs[rt]; 1638 1639 kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n", 1640 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, 1641 vcpu->arch.gprs[rt], *(u32 *)data); 1642 break; 1643 1644 case sh_op: 1645 run->mmio.len = 2; 1646 *(u16 *)data = vcpu->arch.gprs[rt]; 1647 1648 kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n", 1649 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, 1650 vcpu->arch.gprs[rt], *(u16 *)data); 1651 break; 1652 1653 case sb_op: 1654 run->mmio.len = 1; 1655 *(u8 *)data = vcpu->arch.gprs[rt]; 1656 1657 kvm_debug("[%#lx] OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n", 1658 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, 1659 vcpu->arch.gprs[rt], *(u8 *)data); 1660 break; 1661 1662 default: 1663 kvm_err("Store not yet supported (inst=0x%08x)\n", 1664 inst.word); 1665 goto out_fail; 1666 } 1667 1668 run->mmio.is_write = 1; 1669 vcpu->mmio_needed = 1; 1670 vcpu->mmio_is_write = 1; 1671 return EMULATE_DO_MMIO; 1672 1673 out_fail: 1674 /* Rollback PC if emulation was unsuccessful */ 1675 vcpu->arch.pc = curr_pc; 1676 return EMULATE_FAIL; 1677 } 1678 1679 enum emulation_result kvm_mips_emulate_load(union mips_instruction inst, 1680 u32 cause, struct kvm_run *run, 1681 struct kvm_vcpu *vcpu) 1682 { 1683 enum emulation_result er; 1684 unsigned long curr_pc; 1685 u32 op, rt; 1686 1687 rt = inst.i_format.rt; 1688 op = inst.i_format.opcode; 1689 1690 /* 1691 * Find the resume PC now while we have safe and easy access to the 1692 * prior branch instruction, and save it for 1693 * kvm_mips_complete_mmio_load() to restore later. 1694 */ 1695 curr_pc = vcpu->arch.pc; 1696 er = update_pc(vcpu, cause); 1697 if (er == EMULATE_FAIL) 1698 return er; 1699 vcpu->arch.io_pc = vcpu->arch.pc; 1700 vcpu->arch.pc = curr_pc; 1701 1702 vcpu->arch.io_gpr = rt; 1703 1704 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( 1705 vcpu->arch.host_cp0_badvaddr); 1706 if (run->mmio.phys_addr == KVM_INVALID_ADDR) 1707 return EMULATE_FAIL; 1708 1709 vcpu->mmio_needed = 2; /* signed */ 1710 switch (op) { 1711 #if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ) 1712 case ld_op: 1713 run->mmio.len = 8; 1714 break; 1715 1716 case lwu_op: 1717 vcpu->mmio_needed = 1; /* unsigned */ 1718 /* fall through */ 1719 #endif 1720 case lw_op: 1721 run->mmio.len = 4; 1722 break; 1723 1724 case lhu_op: 1725 vcpu->mmio_needed = 1; /* unsigned */ 1726 /* fall through */ 1727 case lh_op: 1728 run->mmio.len = 2; 1729 break; 1730 1731 case lbu_op: 1732 vcpu->mmio_needed = 1; /* unsigned */ 1733 /* fall through */ 1734 case lb_op: 1735 run->mmio.len = 1; 1736 break; 1737 1738 default: 1739 kvm_err("Load not yet supported (inst=0x%08x)\n", 1740 inst.word); 1741 vcpu->mmio_needed = 0; 1742 return EMULATE_FAIL; 1743 } 1744 1745 run->mmio.is_write = 0; 1746 vcpu->mmio_is_write = 0; 1747 return EMULATE_DO_MMIO; 1748 } 1749 1750 #ifndef CONFIG_KVM_MIPS_VZ 1751 static enum emulation_result kvm_mips_guest_cache_op(int (*fn)(unsigned long), 1752 unsigned long curr_pc, 1753 unsigned long addr, 1754 struct kvm_run *run, 1755 struct kvm_vcpu *vcpu, 1756 u32 cause) 1757 { 1758 int err; 1759 1760 for (;;) { 1761 /* Carefully attempt the cache operation */ 1762 kvm_trap_emul_gva_lockless_begin(vcpu); 1763 err = fn(addr); 1764 kvm_trap_emul_gva_lockless_end(vcpu); 1765 1766 if (likely(!err)) 1767 return EMULATE_DONE; 1768 1769 /* 1770 * Try to handle the fault and retry, maybe we just raced with a 1771 * GVA invalidation. 1772 */ 1773 switch (kvm_trap_emul_gva_fault(vcpu, addr, false)) { 1774 case KVM_MIPS_GVA: 1775 case KVM_MIPS_GPA: 1776 /* bad virtual or physical address */ 1777 return EMULATE_FAIL; 1778 case KVM_MIPS_TLB: 1779 /* no matching guest TLB */ 1780 vcpu->arch.host_cp0_badvaddr = addr; 1781 vcpu->arch.pc = curr_pc; 1782 kvm_mips_emulate_tlbmiss_ld(cause, NULL, run, vcpu); 1783 return EMULATE_EXCEPT; 1784 case KVM_MIPS_TLBINV: 1785 /* invalid matching guest TLB */ 1786 vcpu->arch.host_cp0_badvaddr = addr; 1787 vcpu->arch.pc = curr_pc; 1788 kvm_mips_emulate_tlbinv_ld(cause, NULL, run, vcpu); 1789 return EMULATE_EXCEPT; 1790 default: 1791 break; 1792 }; 1793 } 1794 } 1795 1796 enum emulation_result kvm_mips_emulate_cache(union mips_instruction inst, 1797 u32 *opc, u32 cause, 1798 struct kvm_run *run, 1799 struct kvm_vcpu *vcpu) 1800 { 1801 enum emulation_result er = EMULATE_DONE; 1802 u32 cache, op_inst, op, base; 1803 s16 offset; 1804 struct kvm_vcpu_arch *arch = &vcpu->arch; 1805 unsigned long va; 1806 unsigned long curr_pc; 1807 1808 /* 1809 * Update PC and hold onto current PC in case there is 1810 * an error and we want to rollback the PC 1811 */ 1812 curr_pc = vcpu->arch.pc; 1813 er = update_pc(vcpu, cause); 1814 if (er == EMULATE_FAIL) 1815 return er; 1816 1817 base = inst.i_format.rs; 1818 op_inst = inst.i_format.rt; 1819 if (cpu_has_mips_r6) 1820 offset = inst.spec3_format.simmediate; 1821 else 1822 offset = inst.i_format.simmediate; 1823 cache = op_inst & CacheOp_Cache; 1824 op = op_inst & CacheOp_Op; 1825 1826 va = arch->gprs[base] + offset; 1827 1828 kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n", 1829 cache, op, base, arch->gprs[base], offset); 1830 1831 /* 1832 * Treat INDEX_INV as a nop, basically issued by Linux on startup to 1833 * invalidate the caches entirely by stepping through all the 1834 * ways/indexes 1835 */ 1836 if (op == Index_Writeback_Inv) { 1837 kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n", 1838 vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base, 1839 arch->gprs[base], offset); 1840 1841 if (cache == Cache_D) { 1842 #ifdef CONFIG_CPU_R4K_CACHE_TLB 1843 r4k_blast_dcache(); 1844 #else 1845 switch (boot_cpu_type()) { 1846 case CPU_CAVIUM_OCTEON3: 1847 /* locally flush icache */ 1848 local_flush_icache_range(0, 0); 1849 break; 1850 default: 1851 __flush_cache_all(); 1852 break; 1853 } 1854 #endif 1855 } else if (cache == Cache_I) { 1856 #ifdef CONFIG_CPU_R4K_CACHE_TLB 1857 r4k_blast_icache(); 1858 #else 1859 switch (boot_cpu_type()) { 1860 case CPU_CAVIUM_OCTEON3: 1861 /* locally flush icache */ 1862 local_flush_icache_range(0, 0); 1863 break; 1864 default: 1865 flush_icache_all(); 1866 break; 1867 } 1868 #endif 1869 } else { 1870 kvm_err("%s: unsupported CACHE INDEX operation\n", 1871 __func__); 1872 return EMULATE_FAIL; 1873 } 1874 1875 #ifdef CONFIG_KVM_MIPS_DYN_TRANS 1876 kvm_mips_trans_cache_index(inst, opc, vcpu); 1877 #endif 1878 goto done; 1879 } 1880 1881 /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */ 1882 if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) { 1883 /* 1884 * Perform the dcache part of icache synchronisation on the 1885 * guest's behalf. 1886 */ 1887 er = kvm_mips_guest_cache_op(protected_writeback_dcache_line, 1888 curr_pc, va, run, vcpu, cause); 1889 if (er != EMULATE_DONE) 1890 goto done; 1891 #ifdef CONFIG_KVM_MIPS_DYN_TRANS 1892 /* 1893 * Replace the CACHE instruction, with a SYNCI, not the same, 1894 * but avoids a trap 1895 */ 1896 kvm_mips_trans_cache_va(inst, opc, vcpu); 1897 #endif 1898 } else if (op_inst == Hit_Invalidate_I) { 1899 /* Perform the icache synchronisation on the guest's behalf */ 1900 er = kvm_mips_guest_cache_op(protected_writeback_dcache_line, 1901 curr_pc, va, run, vcpu, cause); 1902 if (er != EMULATE_DONE) 1903 goto done; 1904 er = kvm_mips_guest_cache_op(protected_flush_icache_line, 1905 curr_pc, va, run, vcpu, cause); 1906 if (er != EMULATE_DONE) 1907 goto done; 1908 1909 #ifdef CONFIG_KVM_MIPS_DYN_TRANS 1910 /* Replace the CACHE instruction, with a SYNCI */ 1911 kvm_mips_trans_cache_va(inst, opc, vcpu); 1912 #endif 1913 } else { 1914 kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n", 1915 cache, op, base, arch->gprs[base], offset); 1916 er = EMULATE_FAIL; 1917 } 1918 1919 done: 1920 /* Rollback PC only if emulation was unsuccessful */ 1921 if (er == EMULATE_FAIL) 1922 vcpu->arch.pc = curr_pc; 1923 /* Guest exception needs guest to resume */ 1924 if (er == EMULATE_EXCEPT) 1925 er = EMULATE_DONE; 1926 1927 return er; 1928 } 1929 1930 enum emulation_result kvm_mips_emulate_inst(u32 cause, u32 *opc, 1931 struct kvm_run *run, 1932 struct kvm_vcpu *vcpu) 1933 { 1934 union mips_instruction inst; 1935 enum emulation_result er = EMULATE_DONE; 1936 int err; 1937 1938 /* Fetch the instruction. */ 1939 if (cause & CAUSEF_BD) 1940 opc += 1; 1941 err = kvm_get_badinstr(opc, vcpu, &inst.word); 1942 if (err) 1943 return EMULATE_FAIL; 1944 1945 switch (inst.r_format.opcode) { 1946 case cop0_op: 1947 er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu); 1948 break; 1949 1950 #ifndef CONFIG_CPU_MIPSR6 1951 case cache_op: 1952 ++vcpu->stat.cache_exits; 1953 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE); 1954 er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu); 1955 break; 1956 #else 1957 case spec3_op: 1958 switch (inst.spec3_format.func) { 1959 case cache6_op: 1960 ++vcpu->stat.cache_exits; 1961 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE); 1962 er = kvm_mips_emulate_cache(inst, opc, cause, run, 1963 vcpu); 1964 break; 1965 default: 1966 goto unknown; 1967 }; 1968 break; 1969 unknown: 1970 #endif 1971 1972 default: 1973 kvm_err("Instruction emulation not supported (%p/%#x)\n", opc, 1974 inst.word); 1975 kvm_arch_vcpu_dump_regs(vcpu); 1976 er = EMULATE_FAIL; 1977 break; 1978 } 1979 1980 return er; 1981 } 1982 #endif /* CONFIG_KVM_MIPS_VZ */ 1983 1984 /** 1985 * kvm_mips_guest_exception_base() - Find guest exception vector base address. 1986 * 1987 * Returns: The base address of the current guest exception vector, taking 1988 * both Guest.CP0_Status.BEV and Guest.CP0_EBase into account. 1989 */ 1990 long kvm_mips_guest_exception_base(struct kvm_vcpu *vcpu) 1991 { 1992 struct mips_coproc *cop0 = vcpu->arch.cop0; 1993 1994 if (kvm_read_c0_guest_status(cop0) & ST0_BEV) 1995 return KVM_GUEST_CKSEG1ADDR(0x1fc00200); 1996 else 1997 return kvm_read_c0_guest_ebase(cop0) & MIPS_EBASE_BASE; 1998 } 1999 2000 enum emulation_result kvm_mips_emulate_syscall(u32 cause, 2001 u32 *opc, 2002 struct kvm_run *run, 2003 struct kvm_vcpu *vcpu) 2004 { 2005 struct mips_coproc *cop0 = vcpu->arch.cop0; 2006 struct kvm_vcpu_arch *arch = &vcpu->arch; 2007 enum emulation_result er = EMULATE_DONE; 2008 2009 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { 2010 /* save old pc */ 2011 kvm_write_c0_guest_epc(cop0, arch->pc); 2012 kvm_set_c0_guest_status(cop0, ST0_EXL); 2013 2014 if (cause & CAUSEF_BD) 2015 kvm_set_c0_guest_cause(cop0, CAUSEF_BD); 2016 else 2017 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); 2018 2019 kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc); 2020 2021 kvm_change_c0_guest_cause(cop0, (0xff), 2022 (EXCCODE_SYS << CAUSEB_EXCCODE)); 2023 2024 /* Set PC to the exception entry point */ 2025 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; 2026 2027 } else { 2028 kvm_err("Trying to deliver SYSCALL when EXL is already set\n"); 2029 er = EMULATE_FAIL; 2030 } 2031 2032 return er; 2033 } 2034 2035 enum emulation_result kvm_mips_emulate_tlbmiss_ld(u32 cause, 2036 u32 *opc, 2037 struct kvm_run *run, 2038 struct kvm_vcpu *vcpu) 2039 { 2040 struct mips_coproc *cop0 = vcpu->arch.cop0; 2041 struct kvm_vcpu_arch *arch = &vcpu->arch; 2042 unsigned long entryhi = (vcpu->arch. host_cp0_badvaddr & VPN2_MASK) | 2043 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID); 2044 2045 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { 2046 /* save old pc */ 2047 kvm_write_c0_guest_epc(cop0, arch->pc); 2048 kvm_set_c0_guest_status(cop0, ST0_EXL); 2049 2050 if (cause & CAUSEF_BD) 2051 kvm_set_c0_guest_cause(cop0, CAUSEF_BD); 2052 else 2053 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); 2054 2055 kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n", 2056 arch->pc); 2057 2058 /* set pc to the exception entry point */ 2059 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0; 2060 2061 } else { 2062 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n", 2063 arch->pc); 2064 2065 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; 2066 } 2067 2068 kvm_change_c0_guest_cause(cop0, (0xff), 2069 (EXCCODE_TLBL << CAUSEB_EXCCODE)); 2070 2071 /* setup badvaddr, context and entryhi registers for the guest */ 2072 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); 2073 /* XXXKYMA: is the context register used by linux??? */ 2074 kvm_write_c0_guest_entryhi(cop0, entryhi); 2075 2076 return EMULATE_DONE; 2077 } 2078 2079 enum emulation_result kvm_mips_emulate_tlbinv_ld(u32 cause, 2080 u32 *opc, 2081 struct kvm_run *run, 2082 struct kvm_vcpu *vcpu) 2083 { 2084 struct mips_coproc *cop0 = vcpu->arch.cop0; 2085 struct kvm_vcpu_arch *arch = &vcpu->arch; 2086 unsigned long entryhi = 2087 (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) | 2088 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID); 2089 2090 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { 2091 /* save old pc */ 2092 kvm_write_c0_guest_epc(cop0, arch->pc); 2093 kvm_set_c0_guest_status(cop0, ST0_EXL); 2094 2095 if (cause & CAUSEF_BD) 2096 kvm_set_c0_guest_cause(cop0, CAUSEF_BD); 2097 else 2098 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); 2099 2100 kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n", 2101 arch->pc); 2102 } else { 2103 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n", 2104 arch->pc); 2105 } 2106 2107 /* set pc to the exception entry point */ 2108 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; 2109 2110 kvm_change_c0_guest_cause(cop0, (0xff), 2111 (EXCCODE_TLBL << CAUSEB_EXCCODE)); 2112 2113 /* setup badvaddr, context and entryhi registers for the guest */ 2114 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); 2115 /* XXXKYMA: is the context register used by linux??? */ 2116 kvm_write_c0_guest_entryhi(cop0, entryhi); 2117 2118 return EMULATE_DONE; 2119 } 2120 2121 enum emulation_result kvm_mips_emulate_tlbmiss_st(u32 cause, 2122 u32 *opc, 2123 struct kvm_run *run, 2124 struct kvm_vcpu *vcpu) 2125 { 2126 struct mips_coproc *cop0 = vcpu->arch.cop0; 2127 struct kvm_vcpu_arch *arch = &vcpu->arch; 2128 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) | 2129 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID); 2130 2131 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { 2132 /* save old pc */ 2133 kvm_write_c0_guest_epc(cop0, arch->pc); 2134 kvm_set_c0_guest_status(cop0, ST0_EXL); 2135 2136 if (cause & CAUSEF_BD) 2137 kvm_set_c0_guest_cause(cop0, CAUSEF_BD); 2138 else 2139 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); 2140 2141 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n", 2142 arch->pc); 2143 2144 /* Set PC to the exception entry point */ 2145 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0; 2146 } else { 2147 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n", 2148 arch->pc); 2149 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; 2150 } 2151 2152 kvm_change_c0_guest_cause(cop0, (0xff), 2153 (EXCCODE_TLBS << CAUSEB_EXCCODE)); 2154 2155 /* setup badvaddr, context and entryhi registers for the guest */ 2156 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); 2157 /* XXXKYMA: is the context register used by linux??? */ 2158 kvm_write_c0_guest_entryhi(cop0, entryhi); 2159 2160 return EMULATE_DONE; 2161 } 2162 2163 enum emulation_result kvm_mips_emulate_tlbinv_st(u32 cause, 2164 u32 *opc, 2165 struct kvm_run *run, 2166 struct kvm_vcpu *vcpu) 2167 { 2168 struct mips_coproc *cop0 = vcpu->arch.cop0; 2169 struct kvm_vcpu_arch *arch = &vcpu->arch; 2170 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) | 2171 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID); 2172 2173 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { 2174 /* save old pc */ 2175 kvm_write_c0_guest_epc(cop0, arch->pc); 2176 kvm_set_c0_guest_status(cop0, ST0_EXL); 2177 2178 if (cause & CAUSEF_BD) 2179 kvm_set_c0_guest_cause(cop0, CAUSEF_BD); 2180 else 2181 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); 2182 2183 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n", 2184 arch->pc); 2185 } else { 2186 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n", 2187 arch->pc); 2188 } 2189 2190 /* Set PC to the exception entry point */ 2191 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; 2192 2193 kvm_change_c0_guest_cause(cop0, (0xff), 2194 (EXCCODE_TLBS << CAUSEB_EXCCODE)); 2195 2196 /* setup badvaddr, context and entryhi registers for the guest */ 2197 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); 2198 /* XXXKYMA: is the context register used by linux??? */ 2199 kvm_write_c0_guest_entryhi(cop0, entryhi); 2200 2201 return EMULATE_DONE; 2202 } 2203 2204 enum emulation_result kvm_mips_emulate_tlbmod(u32 cause, 2205 u32 *opc, 2206 struct kvm_run *run, 2207 struct kvm_vcpu *vcpu) 2208 { 2209 struct mips_coproc *cop0 = vcpu->arch.cop0; 2210 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) | 2211 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID); 2212 struct kvm_vcpu_arch *arch = &vcpu->arch; 2213 2214 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { 2215 /* save old pc */ 2216 kvm_write_c0_guest_epc(cop0, arch->pc); 2217 kvm_set_c0_guest_status(cop0, ST0_EXL); 2218 2219 if (cause & CAUSEF_BD) 2220 kvm_set_c0_guest_cause(cop0, CAUSEF_BD); 2221 else 2222 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); 2223 2224 kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n", 2225 arch->pc); 2226 } else { 2227 kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n", 2228 arch->pc); 2229 } 2230 2231 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; 2232 2233 kvm_change_c0_guest_cause(cop0, (0xff), 2234 (EXCCODE_MOD << CAUSEB_EXCCODE)); 2235 2236 /* setup badvaddr, context and entryhi registers for the guest */ 2237 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); 2238 /* XXXKYMA: is the context register used by linux??? */ 2239 kvm_write_c0_guest_entryhi(cop0, entryhi); 2240 2241 return EMULATE_DONE; 2242 } 2243 2244 enum emulation_result kvm_mips_emulate_fpu_exc(u32 cause, 2245 u32 *opc, 2246 struct kvm_run *run, 2247 struct kvm_vcpu *vcpu) 2248 { 2249 struct mips_coproc *cop0 = vcpu->arch.cop0; 2250 struct kvm_vcpu_arch *arch = &vcpu->arch; 2251 2252 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { 2253 /* save old pc */ 2254 kvm_write_c0_guest_epc(cop0, arch->pc); 2255 kvm_set_c0_guest_status(cop0, ST0_EXL); 2256 2257 if (cause & CAUSEF_BD) 2258 kvm_set_c0_guest_cause(cop0, CAUSEF_BD); 2259 else 2260 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); 2261 2262 } 2263 2264 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; 2265 2266 kvm_change_c0_guest_cause(cop0, (0xff), 2267 (EXCCODE_CPU << CAUSEB_EXCCODE)); 2268 kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE)); 2269 2270 return EMULATE_DONE; 2271 } 2272 2273 enum emulation_result kvm_mips_emulate_ri_exc(u32 cause, 2274 u32 *opc, 2275 struct kvm_run *run, 2276 struct kvm_vcpu *vcpu) 2277 { 2278 struct mips_coproc *cop0 = vcpu->arch.cop0; 2279 struct kvm_vcpu_arch *arch = &vcpu->arch; 2280 enum emulation_result er = EMULATE_DONE; 2281 2282 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { 2283 /* save old pc */ 2284 kvm_write_c0_guest_epc(cop0, arch->pc); 2285 kvm_set_c0_guest_status(cop0, ST0_EXL); 2286 2287 if (cause & CAUSEF_BD) 2288 kvm_set_c0_guest_cause(cop0, CAUSEF_BD); 2289 else 2290 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); 2291 2292 kvm_debug("Delivering RI @ pc %#lx\n", arch->pc); 2293 2294 kvm_change_c0_guest_cause(cop0, (0xff), 2295 (EXCCODE_RI << CAUSEB_EXCCODE)); 2296 2297 /* Set PC to the exception entry point */ 2298 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; 2299 2300 } else { 2301 kvm_err("Trying to deliver RI when EXL is already set\n"); 2302 er = EMULATE_FAIL; 2303 } 2304 2305 return er; 2306 } 2307 2308 enum emulation_result kvm_mips_emulate_bp_exc(u32 cause, 2309 u32 *opc, 2310 struct kvm_run *run, 2311 struct kvm_vcpu *vcpu) 2312 { 2313 struct mips_coproc *cop0 = vcpu->arch.cop0; 2314 struct kvm_vcpu_arch *arch = &vcpu->arch; 2315 enum emulation_result er = EMULATE_DONE; 2316 2317 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { 2318 /* save old pc */ 2319 kvm_write_c0_guest_epc(cop0, arch->pc); 2320 kvm_set_c0_guest_status(cop0, ST0_EXL); 2321 2322 if (cause & CAUSEF_BD) 2323 kvm_set_c0_guest_cause(cop0, CAUSEF_BD); 2324 else 2325 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); 2326 2327 kvm_debug("Delivering BP @ pc %#lx\n", arch->pc); 2328 2329 kvm_change_c0_guest_cause(cop0, (0xff), 2330 (EXCCODE_BP << CAUSEB_EXCCODE)); 2331 2332 /* Set PC to the exception entry point */ 2333 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; 2334 2335 } else { 2336 kvm_err("Trying to deliver BP when EXL is already set\n"); 2337 er = EMULATE_FAIL; 2338 } 2339 2340 return er; 2341 } 2342 2343 enum emulation_result kvm_mips_emulate_trap_exc(u32 cause, 2344 u32 *opc, 2345 struct kvm_run *run, 2346 struct kvm_vcpu *vcpu) 2347 { 2348 struct mips_coproc *cop0 = vcpu->arch.cop0; 2349 struct kvm_vcpu_arch *arch = &vcpu->arch; 2350 enum emulation_result er = EMULATE_DONE; 2351 2352 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { 2353 /* save old pc */ 2354 kvm_write_c0_guest_epc(cop0, arch->pc); 2355 kvm_set_c0_guest_status(cop0, ST0_EXL); 2356 2357 if (cause & CAUSEF_BD) 2358 kvm_set_c0_guest_cause(cop0, CAUSEF_BD); 2359 else 2360 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); 2361 2362 kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc); 2363 2364 kvm_change_c0_guest_cause(cop0, (0xff), 2365 (EXCCODE_TR << CAUSEB_EXCCODE)); 2366 2367 /* Set PC to the exception entry point */ 2368 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; 2369 2370 } else { 2371 kvm_err("Trying to deliver TRAP when EXL is already set\n"); 2372 er = EMULATE_FAIL; 2373 } 2374 2375 return er; 2376 } 2377 2378 enum emulation_result kvm_mips_emulate_msafpe_exc(u32 cause, 2379 u32 *opc, 2380 struct kvm_run *run, 2381 struct kvm_vcpu *vcpu) 2382 { 2383 struct mips_coproc *cop0 = vcpu->arch.cop0; 2384 struct kvm_vcpu_arch *arch = &vcpu->arch; 2385 enum emulation_result er = EMULATE_DONE; 2386 2387 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { 2388 /* save old pc */ 2389 kvm_write_c0_guest_epc(cop0, arch->pc); 2390 kvm_set_c0_guest_status(cop0, ST0_EXL); 2391 2392 if (cause & CAUSEF_BD) 2393 kvm_set_c0_guest_cause(cop0, CAUSEF_BD); 2394 else 2395 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); 2396 2397 kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc); 2398 2399 kvm_change_c0_guest_cause(cop0, (0xff), 2400 (EXCCODE_MSAFPE << CAUSEB_EXCCODE)); 2401 2402 /* Set PC to the exception entry point */ 2403 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; 2404 2405 } else { 2406 kvm_err("Trying to deliver MSAFPE when EXL is already set\n"); 2407 er = EMULATE_FAIL; 2408 } 2409 2410 return er; 2411 } 2412 2413 enum emulation_result kvm_mips_emulate_fpe_exc(u32 cause, 2414 u32 *opc, 2415 struct kvm_run *run, 2416 struct kvm_vcpu *vcpu) 2417 { 2418 struct mips_coproc *cop0 = vcpu->arch.cop0; 2419 struct kvm_vcpu_arch *arch = &vcpu->arch; 2420 enum emulation_result er = EMULATE_DONE; 2421 2422 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { 2423 /* save old pc */ 2424 kvm_write_c0_guest_epc(cop0, arch->pc); 2425 kvm_set_c0_guest_status(cop0, ST0_EXL); 2426 2427 if (cause & CAUSEF_BD) 2428 kvm_set_c0_guest_cause(cop0, CAUSEF_BD); 2429 else 2430 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); 2431 2432 kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc); 2433 2434 kvm_change_c0_guest_cause(cop0, (0xff), 2435 (EXCCODE_FPE << CAUSEB_EXCCODE)); 2436 2437 /* Set PC to the exception entry point */ 2438 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; 2439 2440 } else { 2441 kvm_err("Trying to deliver FPE when EXL is already set\n"); 2442 er = EMULATE_FAIL; 2443 } 2444 2445 return er; 2446 } 2447 2448 enum emulation_result kvm_mips_emulate_msadis_exc(u32 cause, 2449 u32 *opc, 2450 struct kvm_run *run, 2451 struct kvm_vcpu *vcpu) 2452 { 2453 struct mips_coproc *cop0 = vcpu->arch.cop0; 2454 struct kvm_vcpu_arch *arch = &vcpu->arch; 2455 enum emulation_result er = EMULATE_DONE; 2456 2457 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { 2458 /* save old pc */ 2459 kvm_write_c0_guest_epc(cop0, arch->pc); 2460 kvm_set_c0_guest_status(cop0, ST0_EXL); 2461 2462 if (cause & CAUSEF_BD) 2463 kvm_set_c0_guest_cause(cop0, CAUSEF_BD); 2464 else 2465 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); 2466 2467 kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc); 2468 2469 kvm_change_c0_guest_cause(cop0, (0xff), 2470 (EXCCODE_MSADIS << CAUSEB_EXCCODE)); 2471 2472 /* Set PC to the exception entry point */ 2473 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; 2474 2475 } else { 2476 kvm_err("Trying to deliver MSADIS when EXL is already set\n"); 2477 er = EMULATE_FAIL; 2478 } 2479 2480 return er; 2481 } 2482 2483 enum emulation_result kvm_mips_handle_ri(u32 cause, u32 *opc, 2484 struct kvm_run *run, 2485 struct kvm_vcpu *vcpu) 2486 { 2487 struct mips_coproc *cop0 = vcpu->arch.cop0; 2488 struct kvm_vcpu_arch *arch = &vcpu->arch; 2489 enum emulation_result er = EMULATE_DONE; 2490 unsigned long curr_pc; 2491 union mips_instruction inst; 2492 int err; 2493 2494 /* 2495 * Update PC and hold onto current PC in case there is 2496 * an error and we want to rollback the PC 2497 */ 2498 curr_pc = vcpu->arch.pc; 2499 er = update_pc(vcpu, cause); 2500 if (er == EMULATE_FAIL) 2501 return er; 2502 2503 /* Fetch the instruction. */ 2504 if (cause & CAUSEF_BD) 2505 opc += 1; 2506 err = kvm_get_badinstr(opc, vcpu, &inst.word); 2507 if (err) { 2508 kvm_err("%s: Cannot get inst @ %p (%d)\n", __func__, opc, err); 2509 return EMULATE_FAIL; 2510 } 2511 2512 if (inst.r_format.opcode == spec3_op && 2513 inst.r_format.func == rdhwr_op && 2514 inst.r_format.rs == 0 && 2515 (inst.r_format.re >> 3) == 0) { 2516 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu); 2517 int rd = inst.r_format.rd; 2518 int rt = inst.r_format.rt; 2519 int sel = inst.r_format.re & 0x7; 2520 2521 /* If usermode, check RDHWR rd is allowed by guest HWREna */ 2522 if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) { 2523 kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n", 2524 rd, opc); 2525 goto emulate_ri; 2526 } 2527 switch (rd) { 2528 case MIPS_HWR_CPUNUM: /* CPU number */ 2529 arch->gprs[rt] = vcpu->vcpu_id; 2530 break; 2531 case MIPS_HWR_SYNCISTEP: /* SYNCI length */ 2532 arch->gprs[rt] = min(current_cpu_data.dcache.linesz, 2533 current_cpu_data.icache.linesz); 2534 break; 2535 case MIPS_HWR_CC: /* Read count register */ 2536 arch->gprs[rt] = (s32)kvm_mips_read_count(vcpu); 2537 break; 2538 case MIPS_HWR_CCRES: /* Count register resolution */ 2539 switch (current_cpu_data.cputype) { 2540 case CPU_20KC: 2541 case CPU_25KF: 2542 arch->gprs[rt] = 1; 2543 break; 2544 default: 2545 arch->gprs[rt] = 2; 2546 } 2547 break; 2548 case MIPS_HWR_ULR: /* Read UserLocal register */ 2549 arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0); 2550 break; 2551 2552 default: 2553 kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc); 2554 goto emulate_ri; 2555 } 2556 2557 trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, KVM_TRACE_HWR(rd, sel), 2558 vcpu->arch.gprs[rt]); 2559 } else { 2560 kvm_debug("Emulate RI not supported @ %p: %#x\n", 2561 opc, inst.word); 2562 goto emulate_ri; 2563 } 2564 2565 return EMULATE_DONE; 2566 2567 emulate_ri: 2568 /* 2569 * Rollback PC (if in branch delay slot then the PC already points to 2570 * branch target), and pass the RI exception to the guest OS. 2571 */ 2572 vcpu->arch.pc = curr_pc; 2573 return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu); 2574 } 2575 2576 enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu, 2577 struct kvm_run *run) 2578 { 2579 unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr]; 2580 enum emulation_result er = EMULATE_DONE; 2581 2582 if (run->mmio.len > sizeof(*gpr)) { 2583 kvm_err("Bad MMIO length: %d", run->mmio.len); 2584 er = EMULATE_FAIL; 2585 goto done; 2586 } 2587 2588 /* Restore saved resume PC */ 2589 vcpu->arch.pc = vcpu->arch.io_pc; 2590 2591 switch (run->mmio.len) { 2592 case 8: 2593 *gpr = *(s64 *)run->mmio.data; 2594 break; 2595 2596 case 4: 2597 if (vcpu->mmio_needed == 2) 2598 *gpr = *(s32 *)run->mmio.data; 2599 else 2600 *gpr = *(u32 *)run->mmio.data; 2601 break; 2602 2603 case 2: 2604 if (vcpu->mmio_needed == 2) 2605 *gpr = *(s16 *) run->mmio.data; 2606 else 2607 *gpr = *(u16 *)run->mmio.data; 2608 2609 break; 2610 case 1: 2611 if (vcpu->mmio_needed == 2) 2612 *gpr = *(s8 *) run->mmio.data; 2613 else 2614 *gpr = *(u8 *) run->mmio.data; 2615 break; 2616 } 2617 2618 done: 2619 return er; 2620 } 2621 2622 static enum emulation_result kvm_mips_emulate_exc(u32 cause, 2623 u32 *opc, 2624 struct kvm_run *run, 2625 struct kvm_vcpu *vcpu) 2626 { 2627 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f; 2628 struct mips_coproc *cop0 = vcpu->arch.cop0; 2629 struct kvm_vcpu_arch *arch = &vcpu->arch; 2630 enum emulation_result er = EMULATE_DONE; 2631 2632 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { 2633 /* save old pc */ 2634 kvm_write_c0_guest_epc(cop0, arch->pc); 2635 kvm_set_c0_guest_status(cop0, ST0_EXL); 2636 2637 if (cause & CAUSEF_BD) 2638 kvm_set_c0_guest_cause(cop0, CAUSEF_BD); 2639 else 2640 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); 2641 2642 kvm_change_c0_guest_cause(cop0, (0xff), 2643 (exccode << CAUSEB_EXCCODE)); 2644 2645 /* Set PC to the exception entry point */ 2646 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; 2647 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); 2648 2649 kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n", 2650 exccode, kvm_read_c0_guest_epc(cop0), 2651 kvm_read_c0_guest_badvaddr(cop0)); 2652 } else { 2653 kvm_err("Trying to deliver EXC when EXL is already set\n"); 2654 er = EMULATE_FAIL; 2655 } 2656 2657 return er; 2658 } 2659 2660 enum emulation_result kvm_mips_check_privilege(u32 cause, 2661 u32 *opc, 2662 struct kvm_run *run, 2663 struct kvm_vcpu *vcpu) 2664 { 2665 enum emulation_result er = EMULATE_DONE; 2666 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f; 2667 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; 2668 2669 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu); 2670 2671 if (usermode) { 2672 switch (exccode) { 2673 case EXCCODE_INT: 2674 case EXCCODE_SYS: 2675 case EXCCODE_BP: 2676 case EXCCODE_RI: 2677 case EXCCODE_TR: 2678 case EXCCODE_MSAFPE: 2679 case EXCCODE_FPE: 2680 case EXCCODE_MSADIS: 2681 break; 2682 2683 case EXCCODE_CPU: 2684 if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0) 2685 er = EMULATE_PRIV_FAIL; 2686 break; 2687 2688 case EXCCODE_MOD: 2689 break; 2690 2691 case EXCCODE_TLBL: 2692 /* 2693 * We we are accessing Guest kernel space, then send an 2694 * address error exception to the guest 2695 */ 2696 if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) { 2697 kvm_debug("%s: LD MISS @ %#lx\n", __func__, 2698 badvaddr); 2699 cause &= ~0xff; 2700 cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE); 2701 er = EMULATE_PRIV_FAIL; 2702 } 2703 break; 2704 2705 case EXCCODE_TLBS: 2706 /* 2707 * We we are accessing Guest kernel space, then send an 2708 * address error exception to the guest 2709 */ 2710 if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) { 2711 kvm_debug("%s: ST MISS @ %#lx\n", __func__, 2712 badvaddr); 2713 cause &= ~0xff; 2714 cause |= (EXCCODE_ADES << CAUSEB_EXCCODE); 2715 er = EMULATE_PRIV_FAIL; 2716 } 2717 break; 2718 2719 case EXCCODE_ADES: 2720 kvm_debug("%s: address error ST @ %#lx\n", __func__, 2721 badvaddr); 2722 if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) { 2723 cause &= ~0xff; 2724 cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE); 2725 } 2726 er = EMULATE_PRIV_FAIL; 2727 break; 2728 case EXCCODE_ADEL: 2729 kvm_debug("%s: address error LD @ %#lx\n", __func__, 2730 badvaddr); 2731 if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) { 2732 cause &= ~0xff; 2733 cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE); 2734 } 2735 er = EMULATE_PRIV_FAIL; 2736 break; 2737 default: 2738 er = EMULATE_PRIV_FAIL; 2739 break; 2740 } 2741 } 2742 2743 if (er == EMULATE_PRIV_FAIL) 2744 kvm_mips_emulate_exc(cause, opc, run, vcpu); 2745 2746 return er; 2747 } 2748 2749 /* 2750 * User Address (UA) fault, this could happen if 2751 * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this 2752 * case we pass on the fault to the guest kernel and let it handle it. 2753 * (2) TLB entry is present in the Guest TLB but not in the shadow, in this 2754 * case we inject the TLB from the Guest TLB into the shadow host TLB 2755 */ 2756 enum emulation_result kvm_mips_handle_tlbmiss(u32 cause, 2757 u32 *opc, 2758 struct kvm_run *run, 2759 struct kvm_vcpu *vcpu, 2760 bool write_fault) 2761 { 2762 enum emulation_result er = EMULATE_DONE; 2763 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f; 2764 unsigned long va = vcpu->arch.host_cp0_badvaddr; 2765 int index; 2766 2767 kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n", 2768 vcpu->arch.host_cp0_badvaddr); 2769 2770 /* 2771 * KVM would not have got the exception if this entry was valid in the 2772 * shadow host TLB. Check the Guest TLB, if the entry is not there then 2773 * send the guest an exception. The guest exc handler should then inject 2774 * an entry into the guest TLB. 2775 */ 2776 index = kvm_mips_guest_tlb_lookup(vcpu, 2777 (va & VPN2_MASK) | 2778 (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) & 2779 KVM_ENTRYHI_ASID)); 2780 if (index < 0) { 2781 if (exccode == EXCCODE_TLBL) { 2782 er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu); 2783 } else if (exccode == EXCCODE_TLBS) { 2784 er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu); 2785 } else { 2786 kvm_err("%s: invalid exc code: %d\n", __func__, 2787 exccode); 2788 er = EMULATE_FAIL; 2789 } 2790 } else { 2791 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index]; 2792 2793 /* 2794 * Check if the entry is valid, if not then setup a TLB invalid 2795 * exception to the guest 2796 */ 2797 if (!TLB_IS_VALID(*tlb, va)) { 2798 if (exccode == EXCCODE_TLBL) { 2799 er = kvm_mips_emulate_tlbinv_ld(cause, opc, run, 2800 vcpu); 2801 } else if (exccode == EXCCODE_TLBS) { 2802 er = kvm_mips_emulate_tlbinv_st(cause, opc, run, 2803 vcpu); 2804 } else { 2805 kvm_err("%s: invalid exc code: %d\n", __func__, 2806 exccode); 2807 er = EMULATE_FAIL; 2808 } 2809 } else { 2810 kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n", 2811 tlb->tlb_hi, tlb->tlb_lo[0], tlb->tlb_lo[1]); 2812 /* 2813 * OK we have a Guest TLB entry, now inject it into the 2814 * shadow host TLB 2815 */ 2816 if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, va, 2817 write_fault)) { 2818 kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n", 2819 __func__, va, index, vcpu, 2820 read_c0_entryhi()); 2821 er = EMULATE_FAIL; 2822 } 2823 } 2824 } 2825 2826 return er; 2827 } 2828