xref: /openbmc/linux/arch/mips/kvm/emulate.c (revision aac5987a)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: Instruction/Exception emulation
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11 
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/ktime.h>
15 #include <linux/kvm_host.h>
16 #include <linux/vmalloc.h>
17 #include <linux/fs.h>
18 #include <linux/bootmem.h>
19 #include <linux/random.h>
20 #include <asm/page.h>
21 #include <asm/cacheflush.h>
22 #include <asm/cacheops.h>
23 #include <asm/cpu-info.h>
24 #include <asm/mmu_context.h>
25 #include <asm/tlbflush.h>
26 #include <asm/inst.h>
27 
28 #undef CONFIG_MIPS_MT
29 #include <asm/r4kcache.h>
30 #define CONFIG_MIPS_MT
31 
32 #include "interrupt.h"
33 #include "commpage.h"
34 
35 #include "trace.h"
36 
37 /*
38  * Compute the return address and do emulate branch simulation, if required.
39  * This function should be called only in branch delay slot active.
40  */
41 static int kvm_compute_return_epc(struct kvm_vcpu *vcpu, unsigned long instpc,
42 				  unsigned long *out)
43 {
44 	unsigned int dspcontrol;
45 	union mips_instruction insn;
46 	struct kvm_vcpu_arch *arch = &vcpu->arch;
47 	long epc = instpc;
48 	long nextpc;
49 	int err;
50 
51 	if (epc & 3) {
52 		kvm_err("%s: unaligned epc\n", __func__);
53 		return -EINVAL;
54 	}
55 
56 	/* Read the instruction */
57 	err = kvm_get_badinstrp((u32 *)epc, vcpu, &insn.word);
58 	if (err)
59 		return err;
60 
61 	switch (insn.i_format.opcode) {
62 		/* jr and jalr are in r_format format. */
63 	case spec_op:
64 		switch (insn.r_format.func) {
65 		case jalr_op:
66 			arch->gprs[insn.r_format.rd] = epc + 8;
67 			/* Fall through */
68 		case jr_op:
69 			nextpc = arch->gprs[insn.r_format.rs];
70 			break;
71 		default:
72 			return -EINVAL;
73 		}
74 		break;
75 
76 		/*
77 		 * This group contains:
78 		 * bltz_op, bgez_op, bltzl_op, bgezl_op,
79 		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
80 		 */
81 	case bcond_op:
82 		switch (insn.i_format.rt) {
83 		case bltz_op:
84 		case bltzl_op:
85 			if ((long)arch->gprs[insn.i_format.rs] < 0)
86 				epc = epc + 4 + (insn.i_format.simmediate << 2);
87 			else
88 				epc += 8;
89 			nextpc = epc;
90 			break;
91 
92 		case bgez_op:
93 		case bgezl_op:
94 			if ((long)arch->gprs[insn.i_format.rs] >= 0)
95 				epc = epc + 4 + (insn.i_format.simmediate << 2);
96 			else
97 				epc += 8;
98 			nextpc = epc;
99 			break;
100 
101 		case bltzal_op:
102 		case bltzall_op:
103 			arch->gprs[31] = epc + 8;
104 			if ((long)arch->gprs[insn.i_format.rs] < 0)
105 				epc = epc + 4 + (insn.i_format.simmediate << 2);
106 			else
107 				epc += 8;
108 			nextpc = epc;
109 			break;
110 
111 		case bgezal_op:
112 		case bgezall_op:
113 			arch->gprs[31] = epc + 8;
114 			if ((long)arch->gprs[insn.i_format.rs] >= 0)
115 				epc = epc + 4 + (insn.i_format.simmediate << 2);
116 			else
117 				epc += 8;
118 			nextpc = epc;
119 			break;
120 		case bposge32_op:
121 			if (!cpu_has_dsp) {
122 				kvm_err("%s: DSP branch but not DSP ASE\n",
123 					__func__);
124 				return -EINVAL;
125 			}
126 
127 			dspcontrol = rddsp(0x01);
128 
129 			if (dspcontrol >= 32)
130 				epc = epc + 4 + (insn.i_format.simmediate << 2);
131 			else
132 				epc += 8;
133 			nextpc = epc;
134 			break;
135 		default:
136 			return -EINVAL;
137 		}
138 		break;
139 
140 		/* These are unconditional and in j_format. */
141 	case jal_op:
142 		arch->gprs[31] = instpc + 8;
143 	case j_op:
144 		epc += 4;
145 		epc >>= 28;
146 		epc <<= 28;
147 		epc |= (insn.j_format.target << 2);
148 		nextpc = epc;
149 		break;
150 
151 		/* These are conditional and in i_format. */
152 	case beq_op:
153 	case beql_op:
154 		if (arch->gprs[insn.i_format.rs] ==
155 		    arch->gprs[insn.i_format.rt])
156 			epc = epc + 4 + (insn.i_format.simmediate << 2);
157 		else
158 			epc += 8;
159 		nextpc = epc;
160 		break;
161 
162 	case bne_op:
163 	case bnel_op:
164 		if (arch->gprs[insn.i_format.rs] !=
165 		    arch->gprs[insn.i_format.rt])
166 			epc = epc + 4 + (insn.i_format.simmediate << 2);
167 		else
168 			epc += 8;
169 		nextpc = epc;
170 		break;
171 
172 	case blez_op:	/* POP06 */
173 #ifndef CONFIG_CPU_MIPSR6
174 	case blezl_op:	/* removed in R6 */
175 #endif
176 		if (insn.i_format.rt != 0)
177 			goto compact_branch;
178 		if ((long)arch->gprs[insn.i_format.rs] <= 0)
179 			epc = epc + 4 + (insn.i_format.simmediate << 2);
180 		else
181 			epc += 8;
182 		nextpc = epc;
183 		break;
184 
185 	case bgtz_op:	/* POP07 */
186 #ifndef CONFIG_CPU_MIPSR6
187 	case bgtzl_op:	/* removed in R6 */
188 #endif
189 		if (insn.i_format.rt != 0)
190 			goto compact_branch;
191 		if ((long)arch->gprs[insn.i_format.rs] > 0)
192 			epc = epc + 4 + (insn.i_format.simmediate << 2);
193 		else
194 			epc += 8;
195 		nextpc = epc;
196 		break;
197 
198 		/* And now the FPA/cp1 branch instructions. */
199 	case cop1_op:
200 		kvm_err("%s: unsupported cop1_op\n", __func__);
201 		return -EINVAL;
202 
203 #ifdef CONFIG_CPU_MIPSR6
204 	/* R6 added the following compact branches with forbidden slots */
205 	case blezl_op:	/* POP26 */
206 	case bgtzl_op:	/* POP27 */
207 		/* only rt == 0 isn't compact branch */
208 		if (insn.i_format.rt != 0)
209 			goto compact_branch;
210 		return -EINVAL;
211 	case pop10_op:
212 	case pop30_op:
213 		/* only rs == rt == 0 is reserved, rest are compact branches */
214 		if (insn.i_format.rs != 0 || insn.i_format.rt != 0)
215 			goto compact_branch;
216 		return -EINVAL;
217 	case pop66_op:
218 	case pop76_op:
219 		/* only rs == 0 isn't compact branch */
220 		if (insn.i_format.rs != 0)
221 			goto compact_branch;
222 		return -EINVAL;
223 compact_branch:
224 		/*
225 		 * If we've hit an exception on the forbidden slot, then
226 		 * the branch must not have been taken.
227 		 */
228 		epc += 8;
229 		nextpc = epc;
230 		break;
231 #else
232 compact_branch:
233 		/* Fall through - Compact branches not supported before R6 */
234 #endif
235 	default:
236 		return -EINVAL;
237 	}
238 
239 	*out = nextpc;
240 	return 0;
241 }
242 
243 enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
244 {
245 	int err;
246 
247 	if (cause & CAUSEF_BD) {
248 		err = kvm_compute_return_epc(vcpu, vcpu->arch.pc,
249 					     &vcpu->arch.pc);
250 		if (err)
251 			return EMULATE_FAIL;
252 	} else {
253 		vcpu->arch.pc += 4;
254 	}
255 
256 	kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
257 
258 	return EMULATE_DONE;
259 }
260 
261 /**
262  * kvm_get_badinstr() - Get bad instruction encoding.
263  * @opc:	Guest pointer to faulting instruction.
264  * @vcpu:	KVM VCPU information.
265  *
266  * Gets the instruction encoding of the faulting instruction, using the saved
267  * BadInstr register value if it exists, otherwise falling back to reading guest
268  * memory at @opc.
269  *
270  * Returns:	The instruction encoding of the faulting instruction.
271  */
272 int kvm_get_badinstr(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
273 {
274 	if (cpu_has_badinstr) {
275 		*out = vcpu->arch.host_cp0_badinstr;
276 		return 0;
277 	} else {
278 		return kvm_get_inst(opc, vcpu, out);
279 	}
280 }
281 
282 /**
283  * kvm_get_badinstrp() - Get bad prior instruction encoding.
284  * @opc:	Guest pointer to prior faulting instruction.
285  * @vcpu:	KVM VCPU information.
286  *
287  * Gets the instruction encoding of the prior faulting instruction (the branch
288  * containing the delay slot which faulted), using the saved BadInstrP register
289  * value if it exists, otherwise falling back to reading guest memory at @opc.
290  *
291  * Returns:	The instruction encoding of the prior faulting instruction.
292  */
293 int kvm_get_badinstrp(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
294 {
295 	if (cpu_has_badinstrp) {
296 		*out = vcpu->arch.host_cp0_badinstrp;
297 		return 0;
298 	} else {
299 		return kvm_get_inst(opc, vcpu, out);
300 	}
301 }
302 
303 /**
304  * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
305  * @vcpu:	Virtual CPU.
306  *
307  * Returns:	1 if the CP0_Count timer is disabled by either the guest
308  *		CP0_Cause.DC bit or the count_ctl.DC bit.
309  *		0 otherwise (in which case CP0_Count timer is running).
310  */
311 static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
312 {
313 	struct mips_coproc *cop0 = vcpu->arch.cop0;
314 
315 	return	(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
316 		(kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
317 }
318 
319 /**
320  * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
321  *
322  * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
323  *
324  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
325  */
326 static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
327 {
328 	s64 now_ns, periods;
329 	u64 delta;
330 
331 	now_ns = ktime_to_ns(now);
332 	delta = now_ns + vcpu->arch.count_dyn_bias;
333 
334 	if (delta >= vcpu->arch.count_period) {
335 		/* If delta is out of safe range the bias needs adjusting */
336 		periods = div64_s64(now_ns, vcpu->arch.count_period);
337 		vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
338 		/* Recalculate delta with new bias */
339 		delta = now_ns + vcpu->arch.count_dyn_bias;
340 	}
341 
342 	/*
343 	 * We've ensured that:
344 	 *   delta < count_period
345 	 *
346 	 * Therefore the intermediate delta*count_hz will never overflow since
347 	 * at the boundary condition:
348 	 *   delta = count_period
349 	 *   delta = NSEC_PER_SEC * 2^32 / count_hz
350 	 *   delta * count_hz = NSEC_PER_SEC * 2^32
351 	 */
352 	return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
353 }
354 
355 /**
356  * kvm_mips_count_time() - Get effective current time.
357  * @vcpu:	Virtual CPU.
358  *
359  * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
360  * except when the master disable bit is set in count_ctl, in which case it is
361  * count_resume, i.e. the time that the count was disabled.
362  *
363  * Returns:	Effective monotonic ktime for CP0_Count.
364  */
365 static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
366 {
367 	if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
368 		return vcpu->arch.count_resume;
369 
370 	return ktime_get();
371 }
372 
373 /**
374  * kvm_mips_read_count_running() - Read the current count value as if running.
375  * @vcpu:	Virtual CPU.
376  * @now:	Kernel time to read CP0_Count at.
377  *
378  * Returns the current guest CP0_Count register at time @now and handles if the
379  * timer interrupt is pending and hasn't been handled yet.
380  *
381  * Returns:	The current value of the guest CP0_Count register.
382  */
383 static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
384 {
385 	struct mips_coproc *cop0 = vcpu->arch.cop0;
386 	ktime_t expires, threshold;
387 	u32 count, compare;
388 	int running;
389 
390 	/* Calculate the biased and scaled guest CP0_Count */
391 	count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
392 	compare = kvm_read_c0_guest_compare(cop0);
393 
394 	/*
395 	 * Find whether CP0_Count has reached the closest timer interrupt. If
396 	 * not, we shouldn't inject it.
397 	 */
398 	if ((s32)(count - compare) < 0)
399 		return count;
400 
401 	/*
402 	 * The CP0_Count we're going to return has already reached the closest
403 	 * timer interrupt. Quickly check if it really is a new interrupt by
404 	 * looking at whether the interval until the hrtimer expiry time is
405 	 * less than 1/4 of the timer period.
406 	 */
407 	expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
408 	threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
409 	if (ktime_before(expires, threshold)) {
410 		/*
411 		 * Cancel it while we handle it so there's no chance of
412 		 * interference with the timeout handler.
413 		 */
414 		running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
415 
416 		/* Nothing should be waiting on the timeout */
417 		kvm_mips_callbacks->queue_timer_int(vcpu);
418 
419 		/*
420 		 * Restart the timer if it was running based on the expiry time
421 		 * we read, so that we don't push it back 2 periods.
422 		 */
423 		if (running) {
424 			expires = ktime_add_ns(expires,
425 					       vcpu->arch.count_period);
426 			hrtimer_start(&vcpu->arch.comparecount_timer, expires,
427 				      HRTIMER_MODE_ABS);
428 		}
429 	}
430 
431 	return count;
432 }
433 
434 /**
435  * kvm_mips_read_count() - Read the current count value.
436  * @vcpu:	Virtual CPU.
437  *
438  * Read the current guest CP0_Count value, taking into account whether the timer
439  * is stopped.
440  *
441  * Returns:	The current guest CP0_Count value.
442  */
443 u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
444 {
445 	struct mips_coproc *cop0 = vcpu->arch.cop0;
446 
447 	/* If count disabled just read static copy of count */
448 	if (kvm_mips_count_disabled(vcpu))
449 		return kvm_read_c0_guest_count(cop0);
450 
451 	return kvm_mips_read_count_running(vcpu, ktime_get());
452 }
453 
454 /**
455  * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
456  * @vcpu:	Virtual CPU.
457  * @count:	Output pointer for CP0_Count value at point of freeze.
458  *
459  * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
460  * at the point it was frozen. It is guaranteed that any pending interrupts at
461  * the point it was frozen are handled, and none after that point.
462  *
463  * This is useful where the time/CP0_Count is needed in the calculation of the
464  * new parameters.
465  *
466  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
467  *
468  * Returns:	The ktime at the point of freeze.
469  */
470 static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
471 {
472 	ktime_t now;
473 
474 	/* stop hrtimer before finding time */
475 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
476 	now = ktime_get();
477 
478 	/* find count at this point and handle pending hrtimer */
479 	*count = kvm_mips_read_count_running(vcpu, now);
480 
481 	return now;
482 }
483 
484 /**
485  * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
486  * @vcpu:	Virtual CPU.
487  * @now:	ktime at point of resume.
488  * @count:	CP0_Count at point of resume.
489  *
490  * Resumes the timer and updates the timer expiry based on @now and @count.
491  * This can be used in conjunction with kvm_mips_freeze_timer() when timer
492  * parameters need to be changed.
493  *
494  * It is guaranteed that a timer interrupt immediately after resume will be
495  * handled, but not if CP_Compare is exactly at @count. That case is already
496  * handled by kvm_mips_freeze_timer().
497  *
498  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
499  */
500 static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
501 				    ktime_t now, u32 count)
502 {
503 	struct mips_coproc *cop0 = vcpu->arch.cop0;
504 	u32 compare;
505 	u64 delta;
506 	ktime_t expire;
507 
508 	/* Calculate timeout (wrap 0 to 2^32) */
509 	compare = kvm_read_c0_guest_compare(cop0);
510 	delta = (u64)(u32)(compare - count - 1) + 1;
511 	delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
512 	expire = ktime_add_ns(now, delta);
513 
514 	/* Update hrtimer to use new timeout */
515 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
516 	hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
517 }
518 
519 /**
520  * kvm_mips_write_count() - Modify the count and update timer.
521  * @vcpu:	Virtual CPU.
522  * @count:	Guest CP0_Count value to set.
523  *
524  * Sets the CP0_Count value and updates the timer accordingly.
525  */
526 void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
527 {
528 	struct mips_coproc *cop0 = vcpu->arch.cop0;
529 	ktime_t now;
530 
531 	/* Calculate bias */
532 	now = kvm_mips_count_time(vcpu);
533 	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
534 
535 	if (kvm_mips_count_disabled(vcpu))
536 		/* The timer's disabled, adjust the static count */
537 		kvm_write_c0_guest_count(cop0, count);
538 	else
539 		/* Update timeout */
540 		kvm_mips_resume_hrtimer(vcpu, now, count);
541 }
542 
543 /**
544  * kvm_mips_init_count() - Initialise timer.
545  * @vcpu:	Virtual CPU.
546  *
547  * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
548  * it going if it's enabled.
549  */
550 void kvm_mips_init_count(struct kvm_vcpu *vcpu)
551 {
552 	/* 100 MHz */
553 	vcpu->arch.count_hz = 100*1000*1000;
554 	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
555 					  vcpu->arch.count_hz);
556 	vcpu->arch.count_dyn_bias = 0;
557 
558 	/* Starting at 0 */
559 	kvm_mips_write_count(vcpu, 0);
560 }
561 
562 /**
563  * kvm_mips_set_count_hz() - Update the frequency of the timer.
564  * @vcpu:	Virtual CPU.
565  * @count_hz:	Frequency of CP0_Count timer in Hz.
566  *
567  * Change the frequency of the CP0_Count timer. This is done atomically so that
568  * CP0_Count is continuous and no timer interrupt is lost.
569  *
570  * Returns:	-EINVAL if @count_hz is out of range.
571  *		0 on success.
572  */
573 int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
574 {
575 	struct mips_coproc *cop0 = vcpu->arch.cop0;
576 	int dc;
577 	ktime_t now;
578 	u32 count;
579 
580 	/* ensure the frequency is in a sensible range... */
581 	if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
582 		return -EINVAL;
583 	/* ... and has actually changed */
584 	if (vcpu->arch.count_hz == count_hz)
585 		return 0;
586 
587 	/* Safely freeze timer so we can keep it continuous */
588 	dc = kvm_mips_count_disabled(vcpu);
589 	if (dc) {
590 		now = kvm_mips_count_time(vcpu);
591 		count = kvm_read_c0_guest_count(cop0);
592 	} else {
593 		now = kvm_mips_freeze_hrtimer(vcpu, &count);
594 	}
595 
596 	/* Update the frequency */
597 	vcpu->arch.count_hz = count_hz;
598 	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
599 	vcpu->arch.count_dyn_bias = 0;
600 
601 	/* Calculate adjusted bias so dynamic count is unchanged */
602 	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
603 
604 	/* Update and resume hrtimer */
605 	if (!dc)
606 		kvm_mips_resume_hrtimer(vcpu, now, count);
607 	return 0;
608 }
609 
610 /**
611  * kvm_mips_write_compare() - Modify compare and update timer.
612  * @vcpu:	Virtual CPU.
613  * @compare:	New CP0_Compare value.
614  * @ack:	Whether to acknowledge timer interrupt.
615  *
616  * Update CP0_Compare to a new value and update the timeout.
617  * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
618  * any pending timer interrupt is preserved.
619  */
620 void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
621 {
622 	struct mips_coproc *cop0 = vcpu->arch.cop0;
623 	int dc;
624 	u32 old_compare = kvm_read_c0_guest_compare(cop0);
625 	ktime_t now;
626 	u32 count;
627 
628 	/* if unchanged, must just be an ack */
629 	if (old_compare == compare) {
630 		if (!ack)
631 			return;
632 		kvm_mips_callbacks->dequeue_timer_int(vcpu);
633 		kvm_write_c0_guest_compare(cop0, compare);
634 		return;
635 	}
636 
637 	/* freeze_hrtimer() takes care of timer interrupts <= count */
638 	dc = kvm_mips_count_disabled(vcpu);
639 	if (!dc)
640 		now = kvm_mips_freeze_hrtimer(vcpu, &count);
641 
642 	if (ack)
643 		kvm_mips_callbacks->dequeue_timer_int(vcpu);
644 
645 	kvm_write_c0_guest_compare(cop0, compare);
646 
647 	/* resume_hrtimer() takes care of timer interrupts > count */
648 	if (!dc)
649 		kvm_mips_resume_hrtimer(vcpu, now, count);
650 }
651 
652 /**
653  * kvm_mips_count_disable() - Disable count.
654  * @vcpu:	Virtual CPU.
655  *
656  * Disable the CP0_Count timer. A timer interrupt on or before the final stop
657  * time will be handled but not after.
658  *
659  * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
660  * count_ctl.DC has been set (count disabled).
661  *
662  * Returns:	The time that the timer was stopped.
663  */
664 static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
665 {
666 	struct mips_coproc *cop0 = vcpu->arch.cop0;
667 	u32 count;
668 	ktime_t now;
669 
670 	/* Stop hrtimer */
671 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
672 
673 	/* Set the static count from the dynamic count, handling pending TI */
674 	now = ktime_get();
675 	count = kvm_mips_read_count_running(vcpu, now);
676 	kvm_write_c0_guest_count(cop0, count);
677 
678 	return now;
679 }
680 
681 /**
682  * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
683  * @vcpu:	Virtual CPU.
684  *
685  * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
686  * before the final stop time will be handled if the timer isn't disabled by
687  * count_ctl.DC, but not after.
688  *
689  * Assumes CP0_Cause.DC is clear (count enabled).
690  */
691 void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
692 {
693 	struct mips_coproc *cop0 = vcpu->arch.cop0;
694 
695 	kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
696 	if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
697 		kvm_mips_count_disable(vcpu);
698 }
699 
700 /**
701  * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
702  * @vcpu:	Virtual CPU.
703  *
704  * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
705  * the start time will be handled if the timer isn't disabled by count_ctl.DC,
706  * potentially before even returning, so the caller should be careful with
707  * ordering of CP0_Cause modifications so as not to lose it.
708  *
709  * Assumes CP0_Cause.DC is set (count disabled).
710  */
711 void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
712 {
713 	struct mips_coproc *cop0 = vcpu->arch.cop0;
714 	u32 count;
715 
716 	kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
717 
718 	/*
719 	 * Set the dynamic count to match the static count.
720 	 * This starts the hrtimer if count_ctl.DC allows it.
721 	 * Otherwise it conveniently updates the biases.
722 	 */
723 	count = kvm_read_c0_guest_count(cop0);
724 	kvm_mips_write_count(vcpu, count);
725 }
726 
727 /**
728  * kvm_mips_set_count_ctl() - Update the count control KVM register.
729  * @vcpu:	Virtual CPU.
730  * @count_ctl:	Count control register new value.
731  *
732  * Set the count control KVM register. The timer is updated accordingly.
733  *
734  * Returns:	-EINVAL if reserved bits are set.
735  *		0 on success.
736  */
737 int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
738 {
739 	struct mips_coproc *cop0 = vcpu->arch.cop0;
740 	s64 changed = count_ctl ^ vcpu->arch.count_ctl;
741 	s64 delta;
742 	ktime_t expire, now;
743 	u32 count, compare;
744 
745 	/* Only allow defined bits to be changed */
746 	if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
747 		return -EINVAL;
748 
749 	/* Apply new value */
750 	vcpu->arch.count_ctl = count_ctl;
751 
752 	/* Master CP0_Count disable */
753 	if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
754 		/* Is CP0_Cause.DC already disabling CP0_Count? */
755 		if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
756 			if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
757 				/* Just record the current time */
758 				vcpu->arch.count_resume = ktime_get();
759 		} else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
760 			/* disable timer and record current time */
761 			vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
762 		} else {
763 			/*
764 			 * Calculate timeout relative to static count at resume
765 			 * time (wrap 0 to 2^32).
766 			 */
767 			count = kvm_read_c0_guest_count(cop0);
768 			compare = kvm_read_c0_guest_compare(cop0);
769 			delta = (u64)(u32)(compare - count - 1) + 1;
770 			delta = div_u64(delta * NSEC_PER_SEC,
771 					vcpu->arch.count_hz);
772 			expire = ktime_add_ns(vcpu->arch.count_resume, delta);
773 
774 			/* Handle pending interrupt */
775 			now = ktime_get();
776 			if (ktime_compare(now, expire) >= 0)
777 				/* Nothing should be waiting on the timeout */
778 				kvm_mips_callbacks->queue_timer_int(vcpu);
779 
780 			/* Resume hrtimer without changing bias */
781 			count = kvm_mips_read_count_running(vcpu, now);
782 			kvm_mips_resume_hrtimer(vcpu, now, count);
783 		}
784 	}
785 
786 	return 0;
787 }
788 
789 /**
790  * kvm_mips_set_count_resume() - Update the count resume KVM register.
791  * @vcpu:		Virtual CPU.
792  * @count_resume:	Count resume register new value.
793  *
794  * Set the count resume KVM register.
795  *
796  * Returns:	-EINVAL if out of valid range (0..now).
797  *		0 on success.
798  */
799 int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
800 {
801 	/*
802 	 * It doesn't make sense for the resume time to be in the future, as it
803 	 * would be possible for the next interrupt to be more than a full
804 	 * period in the future.
805 	 */
806 	if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
807 		return -EINVAL;
808 
809 	vcpu->arch.count_resume = ns_to_ktime(count_resume);
810 	return 0;
811 }
812 
813 /**
814  * kvm_mips_count_timeout() - Push timer forward on timeout.
815  * @vcpu:	Virtual CPU.
816  *
817  * Handle an hrtimer event by push the hrtimer forward a period.
818  *
819  * Returns:	The hrtimer_restart value to return to the hrtimer subsystem.
820  */
821 enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
822 {
823 	/* Add the Count period to the current expiry time */
824 	hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
825 			       vcpu->arch.count_period);
826 	return HRTIMER_RESTART;
827 }
828 
829 enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
830 {
831 	struct mips_coproc *cop0 = vcpu->arch.cop0;
832 	enum emulation_result er = EMULATE_DONE;
833 
834 	if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
835 		kvm_clear_c0_guest_status(cop0, ST0_ERL);
836 		vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
837 	} else if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
838 		kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
839 			  kvm_read_c0_guest_epc(cop0));
840 		kvm_clear_c0_guest_status(cop0, ST0_EXL);
841 		vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
842 
843 	} else {
844 		kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
845 			vcpu->arch.pc);
846 		er = EMULATE_FAIL;
847 	}
848 
849 	return er;
850 }
851 
852 enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
853 {
854 	kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
855 		  vcpu->arch.pending_exceptions);
856 
857 	++vcpu->stat.wait_exits;
858 	trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
859 	if (!vcpu->arch.pending_exceptions) {
860 		vcpu->arch.wait = 1;
861 		kvm_vcpu_block(vcpu);
862 
863 		/*
864 		 * We we are runnable, then definitely go off to user space to
865 		 * check if any I/O interrupts are pending.
866 		 */
867 		if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
868 			clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
869 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
870 		}
871 	}
872 
873 	return EMULATE_DONE;
874 }
875 
876 /*
877  * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
878  * we can catch this, if things ever change
879  */
880 enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
881 {
882 	struct mips_coproc *cop0 = vcpu->arch.cop0;
883 	unsigned long pc = vcpu->arch.pc;
884 
885 	kvm_err("[%#lx] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
886 	return EMULATE_FAIL;
887 }
888 
889 /**
890  * kvm_mips_invalidate_guest_tlb() - Indicates a change in guest MMU map.
891  * @vcpu:	VCPU with changed mappings.
892  * @tlb:	TLB entry being removed.
893  *
894  * This is called to indicate a single change in guest MMU mappings, so that we
895  * can arrange TLB flushes on this and other CPUs.
896  */
897 static void kvm_mips_invalidate_guest_tlb(struct kvm_vcpu *vcpu,
898 					  struct kvm_mips_tlb *tlb)
899 {
900 	struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
901 	struct mm_struct *user_mm = &vcpu->arch.guest_user_mm;
902 	int cpu, i;
903 	bool user;
904 
905 	/* No need to flush for entries which are already invalid */
906 	if (!((tlb->tlb_lo[0] | tlb->tlb_lo[1]) & ENTRYLO_V))
907 		return;
908 	/* Don't touch host kernel page tables or TLB mappings */
909 	if ((unsigned long)tlb->tlb_hi > 0x7fffffff)
910 		return;
911 	/* User address space doesn't need flushing for KSeg2/3 changes */
912 	user = tlb->tlb_hi < KVM_GUEST_KSEG0;
913 
914 	preempt_disable();
915 
916 	/* Invalidate page table entries */
917 	kvm_trap_emul_invalidate_gva(vcpu, tlb->tlb_hi & VPN2_MASK, user);
918 
919 	/*
920 	 * Probe the shadow host TLB for the entry being overwritten, if one
921 	 * matches, invalidate it
922 	 */
923 	kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi, user, true);
924 
925 	/* Invalidate the whole ASID on other CPUs */
926 	cpu = smp_processor_id();
927 	for_each_possible_cpu(i) {
928 		if (i == cpu)
929 			continue;
930 		if (user)
931 			cpu_context(i, user_mm) = 0;
932 		cpu_context(i, kern_mm) = 0;
933 	}
934 
935 	preempt_enable();
936 }
937 
938 /* Write Guest TLB Entry @ Index */
939 enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
940 {
941 	struct mips_coproc *cop0 = vcpu->arch.cop0;
942 	int index = kvm_read_c0_guest_index(cop0);
943 	struct kvm_mips_tlb *tlb = NULL;
944 	unsigned long pc = vcpu->arch.pc;
945 
946 	if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
947 		kvm_debug("%s: illegal index: %d\n", __func__, index);
948 		kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
949 			  pc, index, kvm_read_c0_guest_entryhi(cop0),
950 			  kvm_read_c0_guest_entrylo0(cop0),
951 			  kvm_read_c0_guest_entrylo1(cop0),
952 			  kvm_read_c0_guest_pagemask(cop0));
953 		index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
954 	}
955 
956 	tlb = &vcpu->arch.guest_tlb[index];
957 
958 	kvm_mips_invalidate_guest_tlb(vcpu, tlb);
959 
960 	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
961 	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
962 	tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
963 	tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
964 
965 	kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
966 		  pc, index, kvm_read_c0_guest_entryhi(cop0),
967 		  kvm_read_c0_guest_entrylo0(cop0),
968 		  kvm_read_c0_guest_entrylo1(cop0),
969 		  kvm_read_c0_guest_pagemask(cop0));
970 
971 	return EMULATE_DONE;
972 }
973 
974 /* Write Guest TLB Entry @ Random Index */
975 enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
976 {
977 	struct mips_coproc *cop0 = vcpu->arch.cop0;
978 	struct kvm_mips_tlb *tlb = NULL;
979 	unsigned long pc = vcpu->arch.pc;
980 	int index;
981 
982 	get_random_bytes(&index, sizeof(index));
983 	index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
984 
985 	tlb = &vcpu->arch.guest_tlb[index];
986 
987 	kvm_mips_invalidate_guest_tlb(vcpu, tlb);
988 
989 	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
990 	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
991 	tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
992 	tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
993 
994 	kvm_debug("[%#lx] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
995 		  pc, index, kvm_read_c0_guest_entryhi(cop0),
996 		  kvm_read_c0_guest_entrylo0(cop0),
997 		  kvm_read_c0_guest_entrylo1(cop0));
998 
999 	return EMULATE_DONE;
1000 }
1001 
1002 enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
1003 {
1004 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1005 	long entryhi = kvm_read_c0_guest_entryhi(cop0);
1006 	unsigned long pc = vcpu->arch.pc;
1007 	int index = -1;
1008 
1009 	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
1010 
1011 	kvm_write_c0_guest_index(cop0, index);
1012 
1013 	kvm_debug("[%#lx] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
1014 		  index);
1015 
1016 	return EMULATE_DONE;
1017 }
1018 
1019 /**
1020  * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
1021  * @vcpu:	Virtual CPU.
1022  *
1023  * Finds the mask of bits which are writable in the guest's Config1 CP0
1024  * register, by userland (currently read-only to the guest).
1025  */
1026 unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
1027 {
1028 	unsigned int mask = 0;
1029 
1030 	/* Permit FPU to be present if FPU is supported */
1031 	if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
1032 		mask |= MIPS_CONF1_FP;
1033 
1034 	return mask;
1035 }
1036 
1037 /**
1038  * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
1039  * @vcpu:	Virtual CPU.
1040  *
1041  * Finds the mask of bits which are writable in the guest's Config3 CP0
1042  * register, by userland (currently read-only to the guest).
1043  */
1044 unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
1045 {
1046 	/* Config4 and ULRI are optional */
1047 	unsigned int mask = MIPS_CONF_M | MIPS_CONF3_ULRI;
1048 
1049 	/* Permit MSA to be present if MSA is supported */
1050 	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
1051 		mask |= MIPS_CONF3_MSA;
1052 
1053 	return mask;
1054 }
1055 
1056 /**
1057  * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
1058  * @vcpu:	Virtual CPU.
1059  *
1060  * Finds the mask of bits which are writable in the guest's Config4 CP0
1061  * register, by userland (currently read-only to the guest).
1062  */
1063 unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
1064 {
1065 	/* Config5 is optional */
1066 	unsigned int mask = MIPS_CONF_M;
1067 
1068 	/* KScrExist */
1069 	mask |= 0xfc << MIPS_CONF4_KSCREXIST_SHIFT;
1070 
1071 	return mask;
1072 }
1073 
1074 /**
1075  * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
1076  * @vcpu:	Virtual CPU.
1077  *
1078  * Finds the mask of bits which are writable in the guest's Config5 CP0
1079  * register, by the guest itself.
1080  */
1081 unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
1082 {
1083 	unsigned int mask = 0;
1084 
1085 	/* Permit MSAEn changes if MSA supported and enabled */
1086 	if (kvm_mips_guest_has_msa(&vcpu->arch))
1087 		mask |= MIPS_CONF5_MSAEN;
1088 
1089 	/*
1090 	 * Permit guest FPU mode changes if FPU is enabled and the relevant
1091 	 * feature exists according to FIR register.
1092 	 */
1093 	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1094 		if (cpu_has_fre)
1095 			mask |= MIPS_CONF5_FRE;
1096 		/* We don't support UFR or UFE */
1097 	}
1098 
1099 	return mask;
1100 }
1101 
1102 enum emulation_result kvm_mips_emulate_CP0(union mips_instruction inst,
1103 					   u32 *opc, u32 cause,
1104 					   struct kvm_run *run,
1105 					   struct kvm_vcpu *vcpu)
1106 {
1107 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1108 	struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
1109 	enum emulation_result er = EMULATE_DONE;
1110 	u32 rt, rd, sel;
1111 	unsigned long curr_pc;
1112 	int cpu, i;
1113 
1114 	/*
1115 	 * Update PC and hold onto current PC in case there is
1116 	 * an error and we want to rollback the PC
1117 	 */
1118 	curr_pc = vcpu->arch.pc;
1119 	er = update_pc(vcpu, cause);
1120 	if (er == EMULATE_FAIL)
1121 		return er;
1122 
1123 	if (inst.co_format.co) {
1124 		switch (inst.co_format.func) {
1125 		case tlbr_op:	/*  Read indexed TLB entry  */
1126 			er = kvm_mips_emul_tlbr(vcpu);
1127 			break;
1128 		case tlbwi_op:	/*  Write indexed  */
1129 			er = kvm_mips_emul_tlbwi(vcpu);
1130 			break;
1131 		case tlbwr_op:	/*  Write random  */
1132 			er = kvm_mips_emul_tlbwr(vcpu);
1133 			break;
1134 		case tlbp_op:	/* TLB Probe */
1135 			er = kvm_mips_emul_tlbp(vcpu);
1136 			break;
1137 		case rfe_op:
1138 			kvm_err("!!!COP0_RFE!!!\n");
1139 			break;
1140 		case eret_op:
1141 			er = kvm_mips_emul_eret(vcpu);
1142 			goto dont_update_pc;
1143 		case wait_op:
1144 			er = kvm_mips_emul_wait(vcpu);
1145 			break;
1146 		}
1147 	} else {
1148 		rt = inst.c0r_format.rt;
1149 		rd = inst.c0r_format.rd;
1150 		sel = inst.c0r_format.sel;
1151 
1152 		switch (inst.c0r_format.rs) {
1153 		case mfc_op:
1154 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1155 			cop0->stat[rd][sel]++;
1156 #endif
1157 			/* Get reg */
1158 			if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1159 				vcpu->arch.gprs[rt] =
1160 				    (s32)kvm_mips_read_count(vcpu);
1161 			} else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1162 				vcpu->arch.gprs[rt] = 0x0;
1163 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1164 				kvm_mips_trans_mfc0(inst, opc, vcpu);
1165 #endif
1166 			} else {
1167 				vcpu->arch.gprs[rt] = (s32)cop0->reg[rd][sel];
1168 
1169 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1170 				kvm_mips_trans_mfc0(inst, opc, vcpu);
1171 #endif
1172 			}
1173 
1174 			trace_kvm_hwr(vcpu, KVM_TRACE_MFC0,
1175 				      KVM_TRACE_COP0(rd, sel),
1176 				      vcpu->arch.gprs[rt]);
1177 			break;
1178 
1179 		case dmfc_op:
1180 			vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1181 
1182 			trace_kvm_hwr(vcpu, KVM_TRACE_DMFC0,
1183 				      KVM_TRACE_COP0(rd, sel),
1184 				      vcpu->arch.gprs[rt]);
1185 			break;
1186 
1187 		case mtc_op:
1188 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1189 			cop0->stat[rd][sel]++;
1190 #endif
1191 			trace_kvm_hwr(vcpu, KVM_TRACE_MTC0,
1192 				      KVM_TRACE_COP0(rd, sel),
1193 				      vcpu->arch.gprs[rt]);
1194 
1195 			if ((rd == MIPS_CP0_TLB_INDEX)
1196 			    && (vcpu->arch.gprs[rt] >=
1197 				KVM_MIPS_GUEST_TLB_SIZE)) {
1198 				kvm_err("Invalid TLB Index: %ld",
1199 					vcpu->arch.gprs[rt]);
1200 				er = EMULATE_FAIL;
1201 				break;
1202 			}
1203 			if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1204 				/*
1205 				 * Preserve core number, and keep the exception
1206 				 * base in guest KSeg0.
1207 				 */
1208 				kvm_change_c0_guest_ebase(cop0, 0x1ffff000,
1209 							  vcpu->arch.gprs[rt]);
1210 			} else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1211 				u32 nasid =
1212 					vcpu->arch.gprs[rt] & KVM_ENTRYHI_ASID;
1213 				if (((kvm_read_c0_guest_entryhi(cop0) &
1214 				      KVM_ENTRYHI_ASID) != nasid)) {
1215 					trace_kvm_asid_change(vcpu,
1216 						kvm_read_c0_guest_entryhi(cop0)
1217 							& KVM_ENTRYHI_ASID,
1218 						nasid);
1219 
1220 					/*
1221 					 * Flush entries from the GVA page
1222 					 * tables.
1223 					 * Guest user page table will get
1224 					 * flushed lazily on re-entry to guest
1225 					 * user if the guest ASID actually
1226 					 * changes.
1227 					 */
1228 					kvm_mips_flush_gva_pt(kern_mm->pgd,
1229 							      KMF_KERN);
1230 
1231 					/*
1232 					 * Regenerate/invalidate kernel MMU
1233 					 * context.
1234 					 * The user MMU context will be
1235 					 * regenerated lazily on re-entry to
1236 					 * guest user if the guest ASID actually
1237 					 * changes.
1238 					 */
1239 					preempt_disable();
1240 					cpu = smp_processor_id();
1241 					get_new_mmu_context(kern_mm, cpu);
1242 					for_each_possible_cpu(i)
1243 						if (i != cpu)
1244 							cpu_context(i, kern_mm) = 0;
1245 					preempt_enable();
1246 				}
1247 				kvm_write_c0_guest_entryhi(cop0,
1248 							   vcpu->arch.gprs[rt]);
1249 			}
1250 			/* Are we writing to COUNT */
1251 			else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1252 				kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1253 				goto done;
1254 			} else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1255 				/* If we are writing to COMPARE */
1256 				/* Clear pending timer interrupt, if any */
1257 				kvm_mips_write_compare(vcpu,
1258 						       vcpu->arch.gprs[rt],
1259 						       true);
1260 			} else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1261 				unsigned int old_val, val, change;
1262 
1263 				old_val = kvm_read_c0_guest_status(cop0);
1264 				val = vcpu->arch.gprs[rt];
1265 				change = val ^ old_val;
1266 
1267 				/* Make sure that the NMI bit is never set */
1268 				val &= ~ST0_NMI;
1269 
1270 				/*
1271 				 * Don't allow CU1 or FR to be set unless FPU
1272 				 * capability enabled and exists in guest
1273 				 * configuration.
1274 				 */
1275 				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1276 					val &= ~(ST0_CU1 | ST0_FR);
1277 
1278 				/*
1279 				 * Also don't allow FR to be set if host doesn't
1280 				 * support it.
1281 				 */
1282 				if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1283 					val &= ~ST0_FR;
1284 
1285 
1286 				/* Handle changes in FPU mode */
1287 				preempt_disable();
1288 
1289 				/*
1290 				 * FPU and Vector register state is made
1291 				 * UNPREDICTABLE by a change of FR, so don't
1292 				 * even bother saving it.
1293 				 */
1294 				if (change & ST0_FR)
1295 					kvm_drop_fpu(vcpu);
1296 
1297 				/*
1298 				 * If MSA state is already live, it is undefined
1299 				 * how it interacts with FR=0 FPU state, and we
1300 				 * don't want to hit reserved instruction
1301 				 * exceptions trying to save the MSA state later
1302 				 * when CU=1 && FR=1, so play it safe and save
1303 				 * it first.
1304 				 */
1305 				if (change & ST0_CU1 && !(val & ST0_FR) &&
1306 				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1307 					kvm_lose_fpu(vcpu);
1308 
1309 				/*
1310 				 * Propagate CU1 (FPU enable) changes
1311 				 * immediately if the FPU context is already
1312 				 * loaded. When disabling we leave the context
1313 				 * loaded so it can be quickly enabled again in
1314 				 * the near future.
1315 				 */
1316 				if (change & ST0_CU1 &&
1317 				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1318 					change_c0_status(ST0_CU1, val);
1319 
1320 				preempt_enable();
1321 
1322 				kvm_write_c0_guest_status(cop0, val);
1323 
1324 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1325 				/*
1326 				 * If FPU present, we need CU1/FR bits to take
1327 				 * effect fairly soon.
1328 				 */
1329 				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1330 					kvm_mips_trans_mtc0(inst, opc, vcpu);
1331 #endif
1332 			} else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1333 				unsigned int old_val, val, change, wrmask;
1334 
1335 				old_val = kvm_read_c0_guest_config5(cop0);
1336 				val = vcpu->arch.gprs[rt];
1337 
1338 				/* Only a few bits are writable in Config5 */
1339 				wrmask = kvm_mips_config5_wrmask(vcpu);
1340 				change = (val ^ old_val) & wrmask;
1341 				val = old_val ^ change;
1342 
1343 
1344 				/* Handle changes in FPU/MSA modes */
1345 				preempt_disable();
1346 
1347 				/*
1348 				 * Propagate FRE changes immediately if the FPU
1349 				 * context is already loaded.
1350 				 */
1351 				if (change & MIPS_CONF5_FRE &&
1352 				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1353 					change_c0_config5(MIPS_CONF5_FRE, val);
1354 
1355 				/*
1356 				 * Propagate MSAEn changes immediately if the
1357 				 * MSA context is already loaded. When disabling
1358 				 * we leave the context loaded so it can be
1359 				 * quickly enabled again in the near future.
1360 				 */
1361 				if (change & MIPS_CONF5_MSAEN &&
1362 				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1363 					change_c0_config5(MIPS_CONF5_MSAEN,
1364 							  val);
1365 
1366 				preempt_enable();
1367 
1368 				kvm_write_c0_guest_config5(cop0, val);
1369 			} else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1370 				u32 old_cause, new_cause;
1371 
1372 				old_cause = kvm_read_c0_guest_cause(cop0);
1373 				new_cause = vcpu->arch.gprs[rt];
1374 				/* Update R/W bits */
1375 				kvm_change_c0_guest_cause(cop0, 0x08800300,
1376 							  new_cause);
1377 				/* DC bit enabling/disabling timer? */
1378 				if ((old_cause ^ new_cause) & CAUSEF_DC) {
1379 					if (new_cause & CAUSEF_DC)
1380 						kvm_mips_count_disable_cause(vcpu);
1381 					else
1382 						kvm_mips_count_enable_cause(vcpu);
1383 				}
1384 			} else if ((rd == MIPS_CP0_HWRENA) && (sel == 0)) {
1385 				u32 mask = MIPS_HWRENA_CPUNUM |
1386 					   MIPS_HWRENA_SYNCISTEP |
1387 					   MIPS_HWRENA_CC |
1388 					   MIPS_HWRENA_CCRES;
1389 
1390 				if (kvm_read_c0_guest_config3(cop0) &
1391 				    MIPS_CONF3_ULRI)
1392 					mask |= MIPS_HWRENA_ULR;
1393 				cop0->reg[rd][sel] = vcpu->arch.gprs[rt] & mask;
1394 			} else {
1395 				cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1396 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1397 				kvm_mips_trans_mtc0(inst, opc, vcpu);
1398 #endif
1399 			}
1400 			break;
1401 
1402 		case dmtc_op:
1403 			kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1404 				vcpu->arch.pc, rt, rd, sel);
1405 			trace_kvm_hwr(vcpu, KVM_TRACE_DMTC0,
1406 				      KVM_TRACE_COP0(rd, sel),
1407 				      vcpu->arch.gprs[rt]);
1408 			er = EMULATE_FAIL;
1409 			break;
1410 
1411 		case mfmc0_op:
1412 #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1413 			cop0->stat[MIPS_CP0_STATUS][0]++;
1414 #endif
1415 			if (rt != 0)
1416 				vcpu->arch.gprs[rt] =
1417 				    kvm_read_c0_guest_status(cop0);
1418 			/* EI */
1419 			if (inst.mfmc0_format.sc) {
1420 				kvm_debug("[%#lx] mfmc0_op: EI\n",
1421 					  vcpu->arch.pc);
1422 				kvm_set_c0_guest_status(cop0, ST0_IE);
1423 			} else {
1424 				kvm_debug("[%#lx] mfmc0_op: DI\n",
1425 					  vcpu->arch.pc);
1426 				kvm_clear_c0_guest_status(cop0, ST0_IE);
1427 			}
1428 
1429 			break;
1430 
1431 		case wrpgpr_op:
1432 			{
1433 				u32 css = cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1434 				u32 pss =
1435 				    (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1436 				/*
1437 				 * We don't support any shadow register sets, so
1438 				 * SRSCtl[PSS] == SRSCtl[CSS] = 0
1439 				 */
1440 				if (css || pss) {
1441 					er = EMULATE_FAIL;
1442 					break;
1443 				}
1444 				kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1445 					  vcpu->arch.gprs[rt]);
1446 				vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1447 			}
1448 			break;
1449 		default:
1450 			kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1451 				vcpu->arch.pc, inst.c0r_format.rs);
1452 			er = EMULATE_FAIL;
1453 			break;
1454 		}
1455 	}
1456 
1457 done:
1458 	/* Rollback PC only if emulation was unsuccessful */
1459 	if (er == EMULATE_FAIL)
1460 		vcpu->arch.pc = curr_pc;
1461 
1462 dont_update_pc:
1463 	/*
1464 	 * This is for special instructions whose emulation
1465 	 * updates the PC, so do not overwrite the PC under
1466 	 * any circumstances
1467 	 */
1468 
1469 	return er;
1470 }
1471 
1472 enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
1473 					     u32 cause,
1474 					     struct kvm_run *run,
1475 					     struct kvm_vcpu *vcpu)
1476 {
1477 	enum emulation_result er = EMULATE_DO_MMIO;
1478 	u32 rt;
1479 	u32 bytes;
1480 	void *data = run->mmio.data;
1481 	unsigned long curr_pc;
1482 
1483 	/*
1484 	 * Update PC and hold onto current PC in case there is
1485 	 * an error and we want to rollback the PC
1486 	 */
1487 	curr_pc = vcpu->arch.pc;
1488 	er = update_pc(vcpu, cause);
1489 	if (er == EMULATE_FAIL)
1490 		return er;
1491 
1492 	rt = inst.i_format.rt;
1493 
1494 	switch (inst.i_format.opcode) {
1495 	case sb_op:
1496 		bytes = 1;
1497 		if (bytes > sizeof(run->mmio.data)) {
1498 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1499 			       run->mmio.len);
1500 		}
1501 		run->mmio.phys_addr =
1502 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1503 						   host_cp0_badvaddr);
1504 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1505 			er = EMULATE_FAIL;
1506 			break;
1507 		}
1508 		run->mmio.len = bytes;
1509 		run->mmio.is_write = 1;
1510 		vcpu->mmio_needed = 1;
1511 		vcpu->mmio_is_write = 1;
1512 		*(u8 *) data = vcpu->arch.gprs[rt];
1513 		kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1514 			  vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
1515 			  *(u8 *) data);
1516 
1517 		break;
1518 
1519 	case sw_op:
1520 		bytes = 4;
1521 		if (bytes > sizeof(run->mmio.data)) {
1522 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1523 			       run->mmio.len);
1524 		}
1525 		run->mmio.phys_addr =
1526 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1527 						   host_cp0_badvaddr);
1528 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1529 			er = EMULATE_FAIL;
1530 			break;
1531 		}
1532 
1533 		run->mmio.len = bytes;
1534 		run->mmio.is_write = 1;
1535 		vcpu->mmio_needed = 1;
1536 		vcpu->mmio_is_write = 1;
1537 		*(u32 *) data = vcpu->arch.gprs[rt];
1538 
1539 		kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1540 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1541 			  vcpu->arch.gprs[rt], *(u32 *) data);
1542 		break;
1543 
1544 	case sh_op:
1545 		bytes = 2;
1546 		if (bytes > sizeof(run->mmio.data)) {
1547 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1548 			       run->mmio.len);
1549 		}
1550 		run->mmio.phys_addr =
1551 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1552 						   host_cp0_badvaddr);
1553 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1554 			er = EMULATE_FAIL;
1555 			break;
1556 		}
1557 
1558 		run->mmio.len = bytes;
1559 		run->mmio.is_write = 1;
1560 		vcpu->mmio_needed = 1;
1561 		vcpu->mmio_is_write = 1;
1562 		*(u16 *) data = vcpu->arch.gprs[rt];
1563 
1564 		kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1565 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1566 			  vcpu->arch.gprs[rt], *(u32 *) data);
1567 		break;
1568 
1569 	default:
1570 		kvm_err("Store not yet supported (inst=0x%08x)\n",
1571 			inst.word);
1572 		er = EMULATE_FAIL;
1573 		break;
1574 	}
1575 
1576 	/* Rollback PC if emulation was unsuccessful */
1577 	if (er == EMULATE_FAIL)
1578 		vcpu->arch.pc = curr_pc;
1579 
1580 	return er;
1581 }
1582 
1583 enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
1584 					    u32 cause, struct kvm_run *run,
1585 					    struct kvm_vcpu *vcpu)
1586 {
1587 	enum emulation_result er = EMULATE_DO_MMIO;
1588 	unsigned long curr_pc;
1589 	u32 op, rt;
1590 	u32 bytes;
1591 
1592 	rt = inst.i_format.rt;
1593 	op = inst.i_format.opcode;
1594 
1595 	/*
1596 	 * Find the resume PC now while we have safe and easy access to the
1597 	 * prior branch instruction, and save it for
1598 	 * kvm_mips_complete_mmio_load() to restore later.
1599 	 */
1600 	curr_pc = vcpu->arch.pc;
1601 	er = update_pc(vcpu, cause);
1602 	if (er == EMULATE_FAIL)
1603 		return er;
1604 	vcpu->arch.io_pc = vcpu->arch.pc;
1605 	vcpu->arch.pc = curr_pc;
1606 
1607 	vcpu->arch.io_gpr = rt;
1608 
1609 	switch (op) {
1610 	case lw_op:
1611 		bytes = 4;
1612 		if (bytes > sizeof(run->mmio.data)) {
1613 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1614 			       run->mmio.len);
1615 			er = EMULATE_FAIL;
1616 			break;
1617 		}
1618 		run->mmio.phys_addr =
1619 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1620 						   host_cp0_badvaddr);
1621 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1622 			er = EMULATE_FAIL;
1623 			break;
1624 		}
1625 
1626 		run->mmio.len = bytes;
1627 		run->mmio.is_write = 0;
1628 		vcpu->mmio_needed = 1;
1629 		vcpu->mmio_is_write = 0;
1630 		break;
1631 
1632 	case lh_op:
1633 	case lhu_op:
1634 		bytes = 2;
1635 		if (bytes > sizeof(run->mmio.data)) {
1636 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1637 			       run->mmio.len);
1638 			er = EMULATE_FAIL;
1639 			break;
1640 		}
1641 		run->mmio.phys_addr =
1642 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1643 						   host_cp0_badvaddr);
1644 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1645 			er = EMULATE_FAIL;
1646 			break;
1647 		}
1648 
1649 		run->mmio.len = bytes;
1650 		run->mmio.is_write = 0;
1651 		vcpu->mmio_needed = 1;
1652 		vcpu->mmio_is_write = 0;
1653 
1654 		if (op == lh_op)
1655 			vcpu->mmio_needed = 2;
1656 		else
1657 			vcpu->mmio_needed = 1;
1658 
1659 		break;
1660 
1661 	case lbu_op:
1662 	case lb_op:
1663 		bytes = 1;
1664 		if (bytes > sizeof(run->mmio.data)) {
1665 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1666 			       run->mmio.len);
1667 			er = EMULATE_FAIL;
1668 			break;
1669 		}
1670 		run->mmio.phys_addr =
1671 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1672 						   host_cp0_badvaddr);
1673 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1674 			er = EMULATE_FAIL;
1675 			break;
1676 		}
1677 
1678 		run->mmio.len = bytes;
1679 		run->mmio.is_write = 0;
1680 		vcpu->mmio_is_write = 0;
1681 
1682 		if (op == lb_op)
1683 			vcpu->mmio_needed = 2;
1684 		else
1685 			vcpu->mmio_needed = 1;
1686 
1687 		break;
1688 
1689 	default:
1690 		kvm_err("Load not yet supported (inst=0x%08x)\n",
1691 			inst.word);
1692 		er = EMULATE_FAIL;
1693 		break;
1694 	}
1695 
1696 	return er;
1697 }
1698 
1699 static enum emulation_result kvm_mips_guest_cache_op(int (*fn)(unsigned long),
1700 						     unsigned long curr_pc,
1701 						     unsigned long addr,
1702 						     struct kvm_run *run,
1703 						     struct kvm_vcpu *vcpu,
1704 						     u32 cause)
1705 {
1706 	int err;
1707 
1708 	for (;;) {
1709 		/* Carefully attempt the cache operation */
1710 		kvm_trap_emul_gva_lockless_begin(vcpu);
1711 		err = fn(addr);
1712 		kvm_trap_emul_gva_lockless_end(vcpu);
1713 
1714 		if (likely(!err))
1715 			return EMULATE_DONE;
1716 
1717 		/*
1718 		 * Try to handle the fault and retry, maybe we just raced with a
1719 		 * GVA invalidation.
1720 		 */
1721 		switch (kvm_trap_emul_gva_fault(vcpu, addr, false)) {
1722 		case KVM_MIPS_GVA:
1723 		case KVM_MIPS_GPA:
1724 			/* bad virtual or physical address */
1725 			return EMULATE_FAIL;
1726 		case KVM_MIPS_TLB:
1727 			/* no matching guest TLB */
1728 			vcpu->arch.host_cp0_badvaddr = addr;
1729 			vcpu->arch.pc = curr_pc;
1730 			kvm_mips_emulate_tlbmiss_ld(cause, NULL, run, vcpu);
1731 			return EMULATE_EXCEPT;
1732 		case KVM_MIPS_TLBINV:
1733 			/* invalid matching guest TLB */
1734 			vcpu->arch.host_cp0_badvaddr = addr;
1735 			vcpu->arch.pc = curr_pc;
1736 			kvm_mips_emulate_tlbinv_ld(cause, NULL, run, vcpu);
1737 			return EMULATE_EXCEPT;
1738 		default:
1739 			break;
1740 		};
1741 	}
1742 }
1743 
1744 enum emulation_result kvm_mips_emulate_cache(union mips_instruction inst,
1745 					     u32 *opc, u32 cause,
1746 					     struct kvm_run *run,
1747 					     struct kvm_vcpu *vcpu)
1748 {
1749 	enum emulation_result er = EMULATE_DONE;
1750 	u32 cache, op_inst, op, base;
1751 	s16 offset;
1752 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1753 	unsigned long va;
1754 	unsigned long curr_pc;
1755 
1756 	/*
1757 	 * Update PC and hold onto current PC in case there is
1758 	 * an error and we want to rollback the PC
1759 	 */
1760 	curr_pc = vcpu->arch.pc;
1761 	er = update_pc(vcpu, cause);
1762 	if (er == EMULATE_FAIL)
1763 		return er;
1764 
1765 	base = inst.i_format.rs;
1766 	op_inst = inst.i_format.rt;
1767 	if (cpu_has_mips_r6)
1768 		offset = inst.spec3_format.simmediate;
1769 	else
1770 		offset = inst.i_format.simmediate;
1771 	cache = op_inst & CacheOp_Cache;
1772 	op = op_inst & CacheOp_Op;
1773 
1774 	va = arch->gprs[base] + offset;
1775 
1776 	kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1777 		  cache, op, base, arch->gprs[base], offset);
1778 
1779 	/*
1780 	 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1781 	 * invalidate the caches entirely by stepping through all the
1782 	 * ways/indexes
1783 	 */
1784 	if (op == Index_Writeback_Inv) {
1785 		kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1786 			  vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1787 			  arch->gprs[base], offset);
1788 
1789 		if (cache == Cache_D)
1790 			r4k_blast_dcache();
1791 		else if (cache == Cache_I)
1792 			r4k_blast_icache();
1793 		else {
1794 			kvm_err("%s: unsupported CACHE INDEX operation\n",
1795 				__func__);
1796 			return EMULATE_FAIL;
1797 		}
1798 
1799 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1800 		kvm_mips_trans_cache_index(inst, opc, vcpu);
1801 #endif
1802 		goto done;
1803 	}
1804 
1805 	/* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1806 	if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
1807 		/*
1808 		 * Perform the dcache part of icache synchronisation on the
1809 		 * guest's behalf.
1810 		 */
1811 		er = kvm_mips_guest_cache_op(protected_writeback_dcache_line,
1812 					     curr_pc, va, run, vcpu, cause);
1813 		if (er != EMULATE_DONE)
1814 			goto done;
1815 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1816 		/*
1817 		 * Replace the CACHE instruction, with a SYNCI, not the same,
1818 		 * but avoids a trap
1819 		 */
1820 		kvm_mips_trans_cache_va(inst, opc, vcpu);
1821 #endif
1822 	} else if (op_inst == Hit_Invalidate_I) {
1823 		/* Perform the icache synchronisation on the guest's behalf */
1824 		er = kvm_mips_guest_cache_op(protected_writeback_dcache_line,
1825 					     curr_pc, va, run, vcpu, cause);
1826 		if (er != EMULATE_DONE)
1827 			goto done;
1828 		er = kvm_mips_guest_cache_op(protected_flush_icache_line,
1829 					     curr_pc, va, run, vcpu, cause);
1830 		if (er != EMULATE_DONE)
1831 			goto done;
1832 
1833 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1834 		/* Replace the CACHE instruction, with a SYNCI */
1835 		kvm_mips_trans_cache_va(inst, opc, vcpu);
1836 #endif
1837 	} else {
1838 		kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1839 			cache, op, base, arch->gprs[base], offset);
1840 		er = EMULATE_FAIL;
1841 	}
1842 
1843 done:
1844 	/* Rollback PC only if emulation was unsuccessful */
1845 	if (er == EMULATE_FAIL)
1846 		vcpu->arch.pc = curr_pc;
1847 	/* Guest exception needs guest to resume */
1848 	if (er == EMULATE_EXCEPT)
1849 		er = EMULATE_DONE;
1850 
1851 	return er;
1852 }
1853 
1854 enum emulation_result kvm_mips_emulate_inst(u32 cause, u32 *opc,
1855 					    struct kvm_run *run,
1856 					    struct kvm_vcpu *vcpu)
1857 {
1858 	union mips_instruction inst;
1859 	enum emulation_result er = EMULATE_DONE;
1860 	int err;
1861 
1862 	/* Fetch the instruction. */
1863 	if (cause & CAUSEF_BD)
1864 		opc += 1;
1865 	err = kvm_get_badinstr(opc, vcpu, &inst.word);
1866 	if (err)
1867 		return EMULATE_FAIL;
1868 
1869 	switch (inst.r_format.opcode) {
1870 	case cop0_op:
1871 		er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1872 		break;
1873 	case sb_op:
1874 	case sh_op:
1875 	case sw_op:
1876 		er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1877 		break;
1878 	case lb_op:
1879 	case lbu_op:
1880 	case lhu_op:
1881 	case lh_op:
1882 	case lw_op:
1883 		er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1884 		break;
1885 
1886 #ifndef CONFIG_CPU_MIPSR6
1887 	case cache_op:
1888 		++vcpu->stat.cache_exits;
1889 		trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1890 		er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1891 		break;
1892 #else
1893 	case spec3_op:
1894 		switch (inst.spec3_format.func) {
1895 		case cache6_op:
1896 			++vcpu->stat.cache_exits;
1897 			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1898 			er = kvm_mips_emulate_cache(inst, opc, cause, run,
1899 						    vcpu);
1900 			break;
1901 		default:
1902 			goto unknown;
1903 		};
1904 		break;
1905 unknown:
1906 #endif
1907 
1908 	default:
1909 		kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1910 			inst.word);
1911 		kvm_arch_vcpu_dump_regs(vcpu);
1912 		er = EMULATE_FAIL;
1913 		break;
1914 	}
1915 
1916 	return er;
1917 }
1918 
1919 /**
1920  * kvm_mips_guest_exception_base() - Find guest exception vector base address.
1921  *
1922  * Returns:	The base address of the current guest exception vector, taking
1923  *		both Guest.CP0_Status.BEV and Guest.CP0_EBase into account.
1924  */
1925 long kvm_mips_guest_exception_base(struct kvm_vcpu *vcpu)
1926 {
1927 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1928 
1929 	if (kvm_read_c0_guest_status(cop0) & ST0_BEV)
1930 		return KVM_GUEST_CKSEG1ADDR(0x1fc00200);
1931 	else
1932 		return kvm_read_c0_guest_ebase(cop0) & MIPS_EBASE_BASE;
1933 }
1934 
1935 enum emulation_result kvm_mips_emulate_syscall(u32 cause,
1936 					       u32 *opc,
1937 					       struct kvm_run *run,
1938 					       struct kvm_vcpu *vcpu)
1939 {
1940 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1941 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1942 	enum emulation_result er = EMULATE_DONE;
1943 
1944 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1945 		/* save old pc */
1946 		kvm_write_c0_guest_epc(cop0, arch->pc);
1947 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1948 
1949 		if (cause & CAUSEF_BD)
1950 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1951 		else
1952 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1953 
1954 		kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
1955 
1956 		kvm_change_c0_guest_cause(cop0, (0xff),
1957 					  (EXCCODE_SYS << CAUSEB_EXCCODE));
1958 
1959 		/* Set PC to the exception entry point */
1960 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
1961 
1962 	} else {
1963 		kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
1964 		er = EMULATE_FAIL;
1965 	}
1966 
1967 	return er;
1968 }
1969 
1970 enum emulation_result kvm_mips_emulate_tlbmiss_ld(u32 cause,
1971 						  u32 *opc,
1972 						  struct kvm_run *run,
1973 						  struct kvm_vcpu *vcpu)
1974 {
1975 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1976 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1977 	unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) |
1978 			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1979 
1980 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1981 		/* save old pc */
1982 		kvm_write_c0_guest_epc(cop0, arch->pc);
1983 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1984 
1985 		if (cause & CAUSEF_BD)
1986 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1987 		else
1988 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1989 
1990 		kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
1991 			  arch->pc);
1992 
1993 		/* set pc to the exception entry point */
1994 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0;
1995 
1996 	} else {
1997 		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1998 			  arch->pc);
1999 
2000 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2001 	}
2002 
2003 	kvm_change_c0_guest_cause(cop0, (0xff),
2004 				  (EXCCODE_TLBL << CAUSEB_EXCCODE));
2005 
2006 	/* setup badvaddr, context and entryhi registers for the guest */
2007 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2008 	/* XXXKYMA: is the context register used by linux??? */
2009 	kvm_write_c0_guest_entryhi(cop0, entryhi);
2010 
2011 	return EMULATE_DONE;
2012 }
2013 
2014 enum emulation_result kvm_mips_emulate_tlbinv_ld(u32 cause,
2015 						 u32 *opc,
2016 						 struct kvm_run *run,
2017 						 struct kvm_vcpu *vcpu)
2018 {
2019 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2020 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2021 	unsigned long entryhi =
2022 		(vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2023 		(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2024 
2025 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2026 		/* save old pc */
2027 		kvm_write_c0_guest_epc(cop0, arch->pc);
2028 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2029 
2030 		if (cause & CAUSEF_BD)
2031 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2032 		else
2033 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2034 
2035 		kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
2036 			  arch->pc);
2037 	} else {
2038 		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
2039 			  arch->pc);
2040 	}
2041 
2042 	/* set pc to the exception entry point */
2043 	arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2044 
2045 	kvm_change_c0_guest_cause(cop0, (0xff),
2046 				  (EXCCODE_TLBL << CAUSEB_EXCCODE));
2047 
2048 	/* setup badvaddr, context and entryhi registers for the guest */
2049 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2050 	/* XXXKYMA: is the context register used by linux??? */
2051 	kvm_write_c0_guest_entryhi(cop0, entryhi);
2052 
2053 	return EMULATE_DONE;
2054 }
2055 
2056 enum emulation_result kvm_mips_emulate_tlbmiss_st(u32 cause,
2057 						  u32 *opc,
2058 						  struct kvm_run *run,
2059 						  struct kvm_vcpu *vcpu)
2060 {
2061 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2062 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2063 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2064 			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2065 
2066 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2067 		/* save old pc */
2068 		kvm_write_c0_guest_epc(cop0, arch->pc);
2069 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2070 
2071 		if (cause & CAUSEF_BD)
2072 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2073 		else
2074 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2075 
2076 		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2077 			  arch->pc);
2078 
2079 		/* Set PC to the exception entry point */
2080 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0;
2081 	} else {
2082 		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2083 			  arch->pc);
2084 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2085 	}
2086 
2087 	kvm_change_c0_guest_cause(cop0, (0xff),
2088 				  (EXCCODE_TLBS << CAUSEB_EXCCODE));
2089 
2090 	/* setup badvaddr, context and entryhi registers for the guest */
2091 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2092 	/* XXXKYMA: is the context register used by linux??? */
2093 	kvm_write_c0_guest_entryhi(cop0, entryhi);
2094 
2095 	return EMULATE_DONE;
2096 }
2097 
2098 enum emulation_result kvm_mips_emulate_tlbinv_st(u32 cause,
2099 						 u32 *opc,
2100 						 struct kvm_run *run,
2101 						 struct kvm_vcpu *vcpu)
2102 {
2103 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2104 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2105 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2106 		(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2107 
2108 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2109 		/* save old pc */
2110 		kvm_write_c0_guest_epc(cop0, arch->pc);
2111 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2112 
2113 		if (cause & CAUSEF_BD)
2114 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2115 		else
2116 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2117 
2118 		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2119 			  arch->pc);
2120 	} else {
2121 		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2122 			  arch->pc);
2123 	}
2124 
2125 	/* Set PC to the exception entry point */
2126 	arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2127 
2128 	kvm_change_c0_guest_cause(cop0, (0xff),
2129 				  (EXCCODE_TLBS << CAUSEB_EXCCODE));
2130 
2131 	/* setup badvaddr, context and entryhi registers for the guest */
2132 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2133 	/* XXXKYMA: is the context register used by linux??? */
2134 	kvm_write_c0_guest_entryhi(cop0, entryhi);
2135 
2136 	return EMULATE_DONE;
2137 }
2138 
2139 enum emulation_result kvm_mips_emulate_tlbmod(u32 cause,
2140 					      u32 *opc,
2141 					      struct kvm_run *run,
2142 					      struct kvm_vcpu *vcpu)
2143 {
2144 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2145 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2146 			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2147 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2148 
2149 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2150 		/* save old pc */
2151 		kvm_write_c0_guest_epc(cop0, arch->pc);
2152 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2153 
2154 		if (cause & CAUSEF_BD)
2155 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2156 		else
2157 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2158 
2159 		kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2160 			  arch->pc);
2161 	} else {
2162 		kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2163 			  arch->pc);
2164 	}
2165 
2166 	arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2167 
2168 	kvm_change_c0_guest_cause(cop0, (0xff),
2169 				  (EXCCODE_MOD << CAUSEB_EXCCODE));
2170 
2171 	/* setup badvaddr, context and entryhi registers for the guest */
2172 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2173 	/* XXXKYMA: is the context register used by linux??? */
2174 	kvm_write_c0_guest_entryhi(cop0, entryhi);
2175 
2176 	return EMULATE_DONE;
2177 }
2178 
2179 enum emulation_result kvm_mips_emulate_fpu_exc(u32 cause,
2180 					       u32 *opc,
2181 					       struct kvm_run *run,
2182 					       struct kvm_vcpu *vcpu)
2183 {
2184 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2185 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2186 
2187 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2188 		/* save old pc */
2189 		kvm_write_c0_guest_epc(cop0, arch->pc);
2190 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2191 
2192 		if (cause & CAUSEF_BD)
2193 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2194 		else
2195 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2196 
2197 	}
2198 
2199 	arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2200 
2201 	kvm_change_c0_guest_cause(cop0, (0xff),
2202 				  (EXCCODE_CPU << CAUSEB_EXCCODE));
2203 	kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2204 
2205 	return EMULATE_DONE;
2206 }
2207 
2208 enum emulation_result kvm_mips_emulate_ri_exc(u32 cause,
2209 					      u32 *opc,
2210 					      struct kvm_run *run,
2211 					      struct kvm_vcpu *vcpu)
2212 {
2213 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2214 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2215 	enum emulation_result er = EMULATE_DONE;
2216 
2217 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2218 		/* save old pc */
2219 		kvm_write_c0_guest_epc(cop0, arch->pc);
2220 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2221 
2222 		if (cause & CAUSEF_BD)
2223 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2224 		else
2225 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2226 
2227 		kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2228 
2229 		kvm_change_c0_guest_cause(cop0, (0xff),
2230 					  (EXCCODE_RI << CAUSEB_EXCCODE));
2231 
2232 		/* Set PC to the exception entry point */
2233 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2234 
2235 	} else {
2236 		kvm_err("Trying to deliver RI when EXL is already set\n");
2237 		er = EMULATE_FAIL;
2238 	}
2239 
2240 	return er;
2241 }
2242 
2243 enum emulation_result kvm_mips_emulate_bp_exc(u32 cause,
2244 					      u32 *opc,
2245 					      struct kvm_run *run,
2246 					      struct kvm_vcpu *vcpu)
2247 {
2248 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2249 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2250 	enum emulation_result er = EMULATE_DONE;
2251 
2252 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2253 		/* save old pc */
2254 		kvm_write_c0_guest_epc(cop0, arch->pc);
2255 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2256 
2257 		if (cause & CAUSEF_BD)
2258 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2259 		else
2260 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2261 
2262 		kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2263 
2264 		kvm_change_c0_guest_cause(cop0, (0xff),
2265 					  (EXCCODE_BP << CAUSEB_EXCCODE));
2266 
2267 		/* Set PC to the exception entry point */
2268 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2269 
2270 	} else {
2271 		kvm_err("Trying to deliver BP when EXL is already set\n");
2272 		er = EMULATE_FAIL;
2273 	}
2274 
2275 	return er;
2276 }
2277 
2278 enum emulation_result kvm_mips_emulate_trap_exc(u32 cause,
2279 						u32 *opc,
2280 						struct kvm_run *run,
2281 						struct kvm_vcpu *vcpu)
2282 {
2283 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2284 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2285 	enum emulation_result er = EMULATE_DONE;
2286 
2287 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2288 		/* save old pc */
2289 		kvm_write_c0_guest_epc(cop0, arch->pc);
2290 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2291 
2292 		if (cause & CAUSEF_BD)
2293 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2294 		else
2295 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2296 
2297 		kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2298 
2299 		kvm_change_c0_guest_cause(cop0, (0xff),
2300 					  (EXCCODE_TR << CAUSEB_EXCCODE));
2301 
2302 		/* Set PC to the exception entry point */
2303 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2304 
2305 	} else {
2306 		kvm_err("Trying to deliver TRAP when EXL is already set\n");
2307 		er = EMULATE_FAIL;
2308 	}
2309 
2310 	return er;
2311 }
2312 
2313 enum emulation_result kvm_mips_emulate_msafpe_exc(u32 cause,
2314 						  u32 *opc,
2315 						  struct kvm_run *run,
2316 						  struct kvm_vcpu *vcpu)
2317 {
2318 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2319 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2320 	enum emulation_result er = EMULATE_DONE;
2321 
2322 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2323 		/* save old pc */
2324 		kvm_write_c0_guest_epc(cop0, arch->pc);
2325 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2326 
2327 		if (cause & CAUSEF_BD)
2328 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2329 		else
2330 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2331 
2332 		kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2333 
2334 		kvm_change_c0_guest_cause(cop0, (0xff),
2335 					  (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
2336 
2337 		/* Set PC to the exception entry point */
2338 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2339 
2340 	} else {
2341 		kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2342 		er = EMULATE_FAIL;
2343 	}
2344 
2345 	return er;
2346 }
2347 
2348 enum emulation_result kvm_mips_emulate_fpe_exc(u32 cause,
2349 					       u32 *opc,
2350 					       struct kvm_run *run,
2351 					       struct kvm_vcpu *vcpu)
2352 {
2353 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2354 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2355 	enum emulation_result er = EMULATE_DONE;
2356 
2357 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2358 		/* save old pc */
2359 		kvm_write_c0_guest_epc(cop0, arch->pc);
2360 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2361 
2362 		if (cause & CAUSEF_BD)
2363 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2364 		else
2365 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2366 
2367 		kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2368 
2369 		kvm_change_c0_guest_cause(cop0, (0xff),
2370 					  (EXCCODE_FPE << CAUSEB_EXCCODE));
2371 
2372 		/* Set PC to the exception entry point */
2373 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2374 
2375 	} else {
2376 		kvm_err("Trying to deliver FPE when EXL is already set\n");
2377 		er = EMULATE_FAIL;
2378 	}
2379 
2380 	return er;
2381 }
2382 
2383 enum emulation_result kvm_mips_emulate_msadis_exc(u32 cause,
2384 						  u32 *opc,
2385 						  struct kvm_run *run,
2386 						  struct kvm_vcpu *vcpu)
2387 {
2388 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2389 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2390 	enum emulation_result er = EMULATE_DONE;
2391 
2392 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2393 		/* save old pc */
2394 		kvm_write_c0_guest_epc(cop0, arch->pc);
2395 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2396 
2397 		if (cause & CAUSEF_BD)
2398 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2399 		else
2400 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2401 
2402 		kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2403 
2404 		kvm_change_c0_guest_cause(cop0, (0xff),
2405 					  (EXCCODE_MSADIS << CAUSEB_EXCCODE));
2406 
2407 		/* Set PC to the exception entry point */
2408 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2409 
2410 	} else {
2411 		kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2412 		er = EMULATE_FAIL;
2413 	}
2414 
2415 	return er;
2416 }
2417 
2418 enum emulation_result kvm_mips_handle_ri(u32 cause, u32 *opc,
2419 					 struct kvm_run *run,
2420 					 struct kvm_vcpu *vcpu)
2421 {
2422 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2423 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2424 	enum emulation_result er = EMULATE_DONE;
2425 	unsigned long curr_pc;
2426 	union mips_instruction inst;
2427 	int err;
2428 
2429 	/*
2430 	 * Update PC and hold onto current PC in case there is
2431 	 * an error and we want to rollback the PC
2432 	 */
2433 	curr_pc = vcpu->arch.pc;
2434 	er = update_pc(vcpu, cause);
2435 	if (er == EMULATE_FAIL)
2436 		return er;
2437 
2438 	/* Fetch the instruction. */
2439 	if (cause & CAUSEF_BD)
2440 		opc += 1;
2441 	err = kvm_get_badinstr(opc, vcpu, &inst.word);
2442 	if (err) {
2443 		kvm_err("%s: Cannot get inst @ %p (%d)\n", __func__, opc, err);
2444 		return EMULATE_FAIL;
2445 	}
2446 
2447 	if (inst.r_format.opcode == spec3_op &&
2448 	    inst.r_format.func == rdhwr_op &&
2449 	    inst.r_format.rs == 0 &&
2450 	    (inst.r_format.re >> 3) == 0) {
2451 		int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2452 		int rd = inst.r_format.rd;
2453 		int rt = inst.r_format.rt;
2454 		int sel = inst.r_format.re & 0x7;
2455 
2456 		/* If usermode, check RDHWR rd is allowed by guest HWREna */
2457 		if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2458 			kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2459 				  rd, opc);
2460 			goto emulate_ri;
2461 		}
2462 		switch (rd) {
2463 		case MIPS_HWR_CPUNUM:		/* CPU number */
2464 			arch->gprs[rt] = vcpu->vcpu_id;
2465 			break;
2466 		case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
2467 			arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2468 					     current_cpu_data.icache.linesz);
2469 			break;
2470 		case MIPS_HWR_CC:		/* Read count register */
2471 			arch->gprs[rt] = (s32)kvm_mips_read_count(vcpu);
2472 			break;
2473 		case MIPS_HWR_CCRES:		/* Count register resolution */
2474 			switch (current_cpu_data.cputype) {
2475 			case CPU_20KC:
2476 			case CPU_25KF:
2477 				arch->gprs[rt] = 1;
2478 				break;
2479 			default:
2480 				arch->gprs[rt] = 2;
2481 			}
2482 			break;
2483 		case MIPS_HWR_ULR:		/* Read UserLocal register */
2484 			arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2485 			break;
2486 
2487 		default:
2488 			kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2489 			goto emulate_ri;
2490 		}
2491 
2492 		trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, KVM_TRACE_HWR(rd, sel),
2493 			      vcpu->arch.gprs[rt]);
2494 	} else {
2495 		kvm_debug("Emulate RI not supported @ %p: %#x\n",
2496 			  opc, inst.word);
2497 		goto emulate_ri;
2498 	}
2499 
2500 	return EMULATE_DONE;
2501 
2502 emulate_ri:
2503 	/*
2504 	 * Rollback PC (if in branch delay slot then the PC already points to
2505 	 * branch target), and pass the RI exception to the guest OS.
2506 	 */
2507 	vcpu->arch.pc = curr_pc;
2508 	return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
2509 }
2510 
2511 enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2512 						  struct kvm_run *run)
2513 {
2514 	unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2515 	enum emulation_result er = EMULATE_DONE;
2516 
2517 	if (run->mmio.len > sizeof(*gpr)) {
2518 		kvm_err("Bad MMIO length: %d", run->mmio.len);
2519 		er = EMULATE_FAIL;
2520 		goto done;
2521 	}
2522 
2523 	/* Restore saved resume PC */
2524 	vcpu->arch.pc = vcpu->arch.io_pc;
2525 
2526 	switch (run->mmio.len) {
2527 	case 4:
2528 		*gpr = *(s32 *) run->mmio.data;
2529 		break;
2530 
2531 	case 2:
2532 		if (vcpu->mmio_needed == 2)
2533 			*gpr = *(s16 *) run->mmio.data;
2534 		else
2535 			*gpr = *(u16 *)run->mmio.data;
2536 
2537 		break;
2538 	case 1:
2539 		if (vcpu->mmio_needed == 2)
2540 			*gpr = *(s8 *) run->mmio.data;
2541 		else
2542 			*gpr = *(u8 *) run->mmio.data;
2543 		break;
2544 	}
2545 
2546 done:
2547 	return er;
2548 }
2549 
2550 static enum emulation_result kvm_mips_emulate_exc(u32 cause,
2551 						  u32 *opc,
2552 						  struct kvm_run *run,
2553 						  struct kvm_vcpu *vcpu)
2554 {
2555 	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2556 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2557 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2558 	enum emulation_result er = EMULATE_DONE;
2559 
2560 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2561 		/* save old pc */
2562 		kvm_write_c0_guest_epc(cop0, arch->pc);
2563 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2564 
2565 		if (cause & CAUSEF_BD)
2566 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2567 		else
2568 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2569 
2570 		kvm_change_c0_guest_cause(cop0, (0xff),
2571 					  (exccode << CAUSEB_EXCCODE));
2572 
2573 		/* Set PC to the exception entry point */
2574 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2575 		kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2576 
2577 		kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2578 			  exccode, kvm_read_c0_guest_epc(cop0),
2579 			  kvm_read_c0_guest_badvaddr(cop0));
2580 	} else {
2581 		kvm_err("Trying to deliver EXC when EXL is already set\n");
2582 		er = EMULATE_FAIL;
2583 	}
2584 
2585 	return er;
2586 }
2587 
2588 enum emulation_result kvm_mips_check_privilege(u32 cause,
2589 					       u32 *opc,
2590 					       struct kvm_run *run,
2591 					       struct kvm_vcpu *vcpu)
2592 {
2593 	enum emulation_result er = EMULATE_DONE;
2594 	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2595 	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2596 
2597 	int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2598 
2599 	if (usermode) {
2600 		switch (exccode) {
2601 		case EXCCODE_INT:
2602 		case EXCCODE_SYS:
2603 		case EXCCODE_BP:
2604 		case EXCCODE_RI:
2605 		case EXCCODE_TR:
2606 		case EXCCODE_MSAFPE:
2607 		case EXCCODE_FPE:
2608 		case EXCCODE_MSADIS:
2609 			break;
2610 
2611 		case EXCCODE_CPU:
2612 			if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2613 				er = EMULATE_PRIV_FAIL;
2614 			break;
2615 
2616 		case EXCCODE_MOD:
2617 			break;
2618 
2619 		case EXCCODE_TLBL:
2620 			/*
2621 			 * We we are accessing Guest kernel space, then send an
2622 			 * address error exception to the guest
2623 			 */
2624 			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2625 				kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2626 					  badvaddr);
2627 				cause &= ~0xff;
2628 				cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
2629 				er = EMULATE_PRIV_FAIL;
2630 			}
2631 			break;
2632 
2633 		case EXCCODE_TLBS:
2634 			/*
2635 			 * We we are accessing Guest kernel space, then send an
2636 			 * address error exception to the guest
2637 			 */
2638 			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2639 				kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2640 					  badvaddr);
2641 				cause &= ~0xff;
2642 				cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
2643 				er = EMULATE_PRIV_FAIL;
2644 			}
2645 			break;
2646 
2647 		case EXCCODE_ADES:
2648 			kvm_debug("%s: address error ST @ %#lx\n", __func__,
2649 				  badvaddr);
2650 			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2651 				cause &= ~0xff;
2652 				cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
2653 			}
2654 			er = EMULATE_PRIV_FAIL;
2655 			break;
2656 		case EXCCODE_ADEL:
2657 			kvm_debug("%s: address error LD @ %#lx\n", __func__,
2658 				  badvaddr);
2659 			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2660 				cause &= ~0xff;
2661 				cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
2662 			}
2663 			er = EMULATE_PRIV_FAIL;
2664 			break;
2665 		default:
2666 			er = EMULATE_PRIV_FAIL;
2667 			break;
2668 		}
2669 	}
2670 
2671 	if (er == EMULATE_PRIV_FAIL)
2672 		kvm_mips_emulate_exc(cause, opc, run, vcpu);
2673 
2674 	return er;
2675 }
2676 
2677 /*
2678  * User Address (UA) fault, this could happen if
2679  * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2680  *     case we pass on the fault to the guest kernel and let it handle it.
2681  * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2682  *     case we inject the TLB from the Guest TLB into the shadow host TLB
2683  */
2684 enum emulation_result kvm_mips_handle_tlbmiss(u32 cause,
2685 					      u32 *opc,
2686 					      struct kvm_run *run,
2687 					      struct kvm_vcpu *vcpu,
2688 					      bool write_fault)
2689 {
2690 	enum emulation_result er = EMULATE_DONE;
2691 	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2692 	unsigned long va = vcpu->arch.host_cp0_badvaddr;
2693 	int index;
2694 
2695 	kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n",
2696 		  vcpu->arch.host_cp0_badvaddr);
2697 
2698 	/*
2699 	 * KVM would not have got the exception if this entry was valid in the
2700 	 * shadow host TLB. Check the Guest TLB, if the entry is not there then
2701 	 * send the guest an exception. The guest exc handler should then inject
2702 	 * an entry into the guest TLB.
2703 	 */
2704 	index = kvm_mips_guest_tlb_lookup(vcpu,
2705 		      (va & VPN2_MASK) |
2706 		      (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) &
2707 		       KVM_ENTRYHI_ASID));
2708 	if (index < 0) {
2709 		if (exccode == EXCCODE_TLBL) {
2710 			er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
2711 		} else if (exccode == EXCCODE_TLBS) {
2712 			er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2713 		} else {
2714 			kvm_err("%s: invalid exc code: %d\n", __func__,
2715 				exccode);
2716 			er = EMULATE_FAIL;
2717 		}
2718 	} else {
2719 		struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2720 
2721 		/*
2722 		 * Check if the entry is valid, if not then setup a TLB invalid
2723 		 * exception to the guest
2724 		 */
2725 		if (!TLB_IS_VALID(*tlb, va)) {
2726 			if (exccode == EXCCODE_TLBL) {
2727 				er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2728 								vcpu);
2729 			} else if (exccode == EXCCODE_TLBS) {
2730 				er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2731 								vcpu);
2732 			} else {
2733 				kvm_err("%s: invalid exc code: %d\n", __func__,
2734 					exccode);
2735 				er = EMULATE_FAIL;
2736 			}
2737 		} else {
2738 			kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2739 				  tlb->tlb_hi, tlb->tlb_lo[0], tlb->tlb_lo[1]);
2740 			/*
2741 			 * OK we have a Guest TLB entry, now inject it into the
2742 			 * shadow host TLB
2743 			 */
2744 			if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, va,
2745 								 write_fault)) {
2746 				kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
2747 					__func__, va, index, vcpu,
2748 					read_c0_entryhi());
2749 				er = EMULATE_FAIL;
2750 			}
2751 		}
2752 	}
2753 
2754 	return er;
2755 }
2756