xref: /openbmc/linux/arch/mips/kvm/emulate.c (revision a06c488d)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: Instruction/Exception emulation
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11 
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/ktime.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/fs.h>
19 #include <linux/bootmem.h>
20 #include <linux/random.h>
21 #include <asm/page.h>
22 #include <asm/cacheflush.h>
23 #include <asm/cacheops.h>
24 #include <asm/cpu-info.h>
25 #include <asm/mmu_context.h>
26 #include <asm/tlbflush.h>
27 #include <asm/inst.h>
28 
29 #undef CONFIG_MIPS_MT
30 #include <asm/r4kcache.h>
31 #define CONFIG_MIPS_MT
32 
33 #include "interrupt.h"
34 #include "commpage.h"
35 
36 #include "trace.h"
37 
38 /*
39  * Compute the return address and do emulate branch simulation, if required.
40  * This function should be called only in branch delay slot active.
41  */
42 unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu,
43 	unsigned long instpc)
44 {
45 	unsigned int dspcontrol;
46 	union mips_instruction insn;
47 	struct kvm_vcpu_arch *arch = &vcpu->arch;
48 	long epc = instpc;
49 	long nextpc = KVM_INVALID_INST;
50 
51 	if (epc & 3)
52 		goto unaligned;
53 
54 	/* Read the instruction */
55 	insn.word = kvm_get_inst((uint32_t *) epc, vcpu);
56 
57 	if (insn.word == KVM_INVALID_INST)
58 		return KVM_INVALID_INST;
59 
60 	switch (insn.i_format.opcode) {
61 		/* jr and jalr are in r_format format. */
62 	case spec_op:
63 		switch (insn.r_format.func) {
64 		case jalr_op:
65 			arch->gprs[insn.r_format.rd] = epc + 8;
66 			/* Fall through */
67 		case jr_op:
68 			nextpc = arch->gprs[insn.r_format.rs];
69 			break;
70 		}
71 		break;
72 
73 		/*
74 		 * This group contains:
75 		 * bltz_op, bgez_op, bltzl_op, bgezl_op,
76 		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
77 		 */
78 	case bcond_op:
79 		switch (insn.i_format.rt) {
80 		case bltz_op:
81 		case bltzl_op:
82 			if ((long)arch->gprs[insn.i_format.rs] < 0)
83 				epc = epc + 4 + (insn.i_format.simmediate << 2);
84 			else
85 				epc += 8;
86 			nextpc = epc;
87 			break;
88 
89 		case bgez_op:
90 		case bgezl_op:
91 			if ((long)arch->gprs[insn.i_format.rs] >= 0)
92 				epc = epc + 4 + (insn.i_format.simmediate << 2);
93 			else
94 				epc += 8;
95 			nextpc = epc;
96 			break;
97 
98 		case bltzal_op:
99 		case bltzall_op:
100 			arch->gprs[31] = epc + 8;
101 			if ((long)arch->gprs[insn.i_format.rs] < 0)
102 				epc = epc + 4 + (insn.i_format.simmediate << 2);
103 			else
104 				epc += 8;
105 			nextpc = epc;
106 			break;
107 
108 		case bgezal_op:
109 		case bgezall_op:
110 			arch->gprs[31] = epc + 8;
111 			if ((long)arch->gprs[insn.i_format.rs] >= 0)
112 				epc = epc + 4 + (insn.i_format.simmediate << 2);
113 			else
114 				epc += 8;
115 			nextpc = epc;
116 			break;
117 		case bposge32_op:
118 			if (!cpu_has_dsp)
119 				goto sigill;
120 
121 			dspcontrol = rddsp(0x01);
122 
123 			if (dspcontrol >= 32)
124 				epc = epc + 4 + (insn.i_format.simmediate << 2);
125 			else
126 				epc += 8;
127 			nextpc = epc;
128 			break;
129 		}
130 		break;
131 
132 		/* These are unconditional and in j_format. */
133 	case jal_op:
134 		arch->gprs[31] = instpc + 8;
135 	case j_op:
136 		epc += 4;
137 		epc >>= 28;
138 		epc <<= 28;
139 		epc |= (insn.j_format.target << 2);
140 		nextpc = epc;
141 		break;
142 
143 		/* These are conditional and in i_format. */
144 	case beq_op:
145 	case beql_op:
146 		if (arch->gprs[insn.i_format.rs] ==
147 		    arch->gprs[insn.i_format.rt])
148 			epc = epc + 4 + (insn.i_format.simmediate << 2);
149 		else
150 			epc += 8;
151 		nextpc = epc;
152 		break;
153 
154 	case bne_op:
155 	case bnel_op:
156 		if (arch->gprs[insn.i_format.rs] !=
157 		    arch->gprs[insn.i_format.rt])
158 			epc = epc + 4 + (insn.i_format.simmediate << 2);
159 		else
160 			epc += 8;
161 		nextpc = epc;
162 		break;
163 
164 	case blez_op:		/* not really i_format */
165 	case blezl_op:
166 		/* rt field assumed to be zero */
167 		if ((long)arch->gprs[insn.i_format.rs] <= 0)
168 			epc = epc + 4 + (insn.i_format.simmediate << 2);
169 		else
170 			epc += 8;
171 		nextpc = epc;
172 		break;
173 
174 	case bgtz_op:
175 	case bgtzl_op:
176 		/* rt field assumed to be zero */
177 		if ((long)arch->gprs[insn.i_format.rs] > 0)
178 			epc = epc + 4 + (insn.i_format.simmediate << 2);
179 		else
180 			epc += 8;
181 		nextpc = epc;
182 		break;
183 
184 		/* And now the FPA/cp1 branch instructions. */
185 	case cop1_op:
186 		kvm_err("%s: unsupported cop1_op\n", __func__);
187 		break;
188 	}
189 
190 	return nextpc;
191 
192 unaligned:
193 	kvm_err("%s: unaligned epc\n", __func__);
194 	return nextpc;
195 
196 sigill:
197 	kvm_err("%s: DSP branch but not DSP ASE\n", __func__);
198 	return nextpc;
199 }
200 
201 enum emulation_result update_pc(struct kvm_vcpu *vcpu, uint32_t cause)
202 {
203 	unsigned long branch_pc;
204 	enum emulation_result er = EMULATE_DONE;
205 
206 	if (cause & CAUSEF_BD) {
207 		branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc);
208 		if (branch_pc == KVM_INVALID_INST) {
209 			er = EMULATE_FAIL;
210 		} else {
211 			vcpu->arch.pc = branch_pc;
212 			kvm_debug("BD update_pc(): New PC: %#lx\n",
213 				  vcpu->arch.pc);
214 		}
215 	} else
216 		vcpu->arch.pc += 4;
217 
218 	kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
219 
220 	return er;
221 }
222 
223 /**
224  * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
225  * @vcpu:	Virtual CPU.
226  *
227  * Returns:	1 if the CP0_Count timer is disabled by either the guest
228  *		CP0_Cause.DC bit or the count_ctl.DC bit.
229  *		0 otherwise (in which case CP0_Count timer is running).
230  */
231 static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
232 {
233 	struct mips_coproc *cop0 = vcpu->arch.cop0;
234 
235 	return	(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
236 		(kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
237 }
238 
239 /**
240  * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
241  *
242  * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
243  *
244  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
245  */
246 static uint32_t kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
247 {
248 	s64 now_ns, periods;
249 	u64 delta;
250 
251 	now_ns = ktime_to_ns(now);
252 	delta = now_ns + vcpu->arch.count_dyn_bias;
253 
254 	if (delta >= vcpu->arch.count_period) {
255 		/* If delta is out of safe range the bias needs adjusting */
256 		periods = div64_s64(now_ns, vcpu->arch.count_period);
257 		vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
258 		/* Recalculate delta with new bias */
259 		delta = now_ns + vcpu->arch.count_dyn_bias;
260 	}
261 
262 	/*
263 	 * We've ensured that:
264 	 *   delta < count_period
265 	 *
266 	 * Therefore the intermediate delta*count_hz will never overflow since
267 	 * at the boundary condition:
268 	 *   delta = count_period
269 	 *   delta = NSEC_PER_SEC * 2^32 / count_hz
270 	 *   delta * count_hz = NSEC_PER_SEC * 2^32
271 	 */
272 	return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
273 }
274 
275 /**
276  * kvm_mips_count_time() - Get effective current time.
277  * @vcpu:	Virtual CPU.
278  *
279  * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
280  * except when the master disable bit is set in count_ctl, in which case it is
281  * count_resume, i.e. the time that the count was disabled.
282  *
283  * Returns:	Effective monotonic ktime for CP0_Count.
284  */
285 static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
286 {
287 	if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
288 		return vcpu->arch.count_resume;
289 
290 	return ktime_get();
291 }
292 
293 /**
294  * kvm_mips_read_count_running() - Read the current count value as if running.
295  * @vcpu:	Virtual CPU.
296  * @now:	Kernel time to read CP0_Count at.
297  *
298  * Returns the current guest CP0_Count register at time @now and handles if the
299  * timer interrupt is pending and hasn't been handled yet.
300  *
301  * Returns:	The current value of the guest CP0_Count register.
302  */
303 static uint32_t kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
304 {
305 	ktime_t expires;
306 	int running;
307 
308 	/* Is the hrtimer pending? */
309 	expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
310 	if (ktime_compare(now, expires) >= 0) {
311 		/*
312 		 * Cancel it while we handle it so there's no chance of
313 		 * interference with the timeout handler.
314 		 */
315 		running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
316 
317 		/* Nothing should be waiting on the timeout */
318 		kvm_mips_callbacks->queue_timer_int(vcpu);
319 
320 		/*
321 		 * Restart the timer if it was running based on the expiry time
322 		 * we read, so that we don't push it back 2 periods.
323 		 */
324 		if (running) {
325 			expires = ktime_add_ns(expires,
326 					       vcpu->arch.count_period);
327 			hrtimer_start(&vcpu->arch.comparecount_timer, expires,
328 				      HRTIMER_MODE_ABS);
329 		}
330 	}
331 
332 	/* Return the biased and scaled guest CP0_Count */
333 	return vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
334 }
335 
336 /**
337  * kvm_mips_read_count() - Read the current count value.
338  * @vcpu:	Virtual CPU.
339  *
340  * Read the current guest CP0_Count value, taking into account whether the timer
341  * is stopped.
342  *
343  * Returns:	The current guest CP0_Count value.
344  */
345 uint32_t kvm_mips_read_count(struct kvm_vcpu *vcpu)
346 {
347 	struct mips_coproc *cop0 = vcpu->arch.cop0;
348 
349 	/* If count disabled just read static copy of count */
350 	if (kvm_mips_count_disabled(vcpu))
351 		return kvm_read_c0_guest_count(cop0);
352 
353 	return kvm_mips_read_count_running(vcpu, ktime_get());
354 }
355 
356 /**
357  * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
358  * @vcpu:	Virtual CPU.
359  * @count:	Output pointer for CP0_Count value at point of freeze.
360  *
361  * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
362  * at the point it was frozen. It is guaranteed that any pending interrupts at
363  * the point it was frozen are handled, and none after that point.
364  *
365  * This is useful where the time/CP0_Count is needed in the calculation of the
366  * new parameters.
367  *
368  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
369  *
370  * Returns:	The ktime at the point of freeze.
371  */
372 static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu,
373 				       uint32_t *count)
374 {
375 	ktime_t now;
376 
377 	/* stop hrtimer before finding time */
378 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
379 	now = ktime_get();
380 
381 	/* find count at this point and handle pending hrtimer */
382 	*count = kvm_mips_read_count_running(vcpu, now);
383 
384 	return now;
385 }
386 
387 /**
388  * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
389  * @vcpu:	Virtual CPU.
390  * @now:	ktime at point of resume.
391  * @count:	CP0_Count at point of resume.
392  *
393  * Resumes the timer and updates the timer expiry based on @now and @count.
394  * This can be used in conjunction with kvm_mips_freeze_timer() when timer
395  * parameters need to be changed.
396  *
397  * It is guaranteed that a timer interrupt immediately after resume will be
398  * handled, but not if CP_Compare is exactly at @count. That case is already
399  * handled by kvm_mips_freeze_timer().
400  *
401  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
402  */
403 static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
404 				    ktime_t now, uint32_t count)
405 {
406 	struct mips_coproc *cop0 = vcpu->arch.cop0;
407 	uint32_t compare;
408 	u64 delta;
409 	ktime_t expire;
410 
411 	/* Calculate timeout (wrap 0 to 2^32) */
412 	compare = kvm_read_c0_guest_compare(cop0);
413 	delta = (u64)(uint32_t)(compare - count - 1) + 1;
414 	delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
415 	expire = ktime_add_ns(now, delta);
416 
417 	/* Update hrtimer to use new timeout */
418 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
419 	hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
420 }
421 
422 /**
423  * kvm_mips_update_hrtimer() - Update next expiry time of hrtimer.
424  * @vcpu:	Virtual CPU.
425  *
426  * Recalculates and updates the expiry time of the hrtimer. This can be used
427  * after timer parameters have been altered which do not depend on the time that
428  * the change occurs (in those cases kvm_mips_freeze_hrtimer() and
429  * kvm_mips_resume_hrtimer() are used directly).
430  *
431  * It is guaranteed that no timer interrupts will be lost in the process.
432  *
433  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
434  */
435 static void kvm_mips_update_hrtimer(struct kvm_vcpu *vcpu)
436 {
437 	ktime_t now;
438 	uint32_t count;
439 
440 	/*
441 	 * freeze_hrtimer takes care of a timer interrupts <= count, and
442 	 * resume_hrtimer the hrtimer takes care of a timer interrupts > count.
443 	 */
444 	now = kvm_mips_freeze_hrtimer(vcpu, &count);
445 	kvm_mips_resume_hrtimer(vcpu, now, count);
446 }
447 
448 /**
449  * kvm_mips_write_count() - Modify the count and update timer.
450  * @vcpu:	Virtual CPU.
451  * @count:	Guest CP0_Count value to set.
452  *
453  * Sets the CP0_Count value and updates the timer accordingly.
454  */
455 void kvm_mips_write_count(struct kvm_vcpu *vcpu, uint32_t count)
456 {
457 	struct mips_coproc *cop0 = vcpu->arch.cop0;
458 	ktime_t now;
459 
460 	/* Calculate bias */
461 	now = kvm_mips_count_time(vcpu);
462 	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
463 
464 	if (kvm_mips_count_disabled(vcpu))
465 		/* The timer's disabled, adjust the static count */
466 		kvm_write_c0_guest_count(cop0, count);
467 	else
468 		/* Update timeout */
469 		kvm_mips_resume_hrtimer(vcpu, now, count);
470 }
471 
472 /**
473  * kvm_mips_init_count() - Initialise timer.
474  * @vcpu:	Virtual CPU.
475  *
476  * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
477  * it going if it's enabled.
478  */
479 void kvm_mips_init_count(struct kvm_vcpu *vcpu)
480 {
481 	/* 100 MHz */
482 	vcpu->arch.count_hz = 100*1000*1000;
483 	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
484 					  vcpu->arch.count_hz);
485 	vcpu->arch.count_dyn_bias = 0;
486 
487 	/* Starting at 0 */
488 	kvm_mips_write_count(vcpu, 0);
489 }
490 
491 /**
492  * kvm_mips_set_count_hz() - Update the frequency of the timer.
493  * @vcpu:	Virtual CPU.
494  * @count_hz:	Frequency of CP0_Count timer in Hz.
495  *
496  * Change the frequency of the CP0_Count timer. This is done atomically so that
497  * CP0_Count is continuous and no timer interrupt is lost.
498  *
499  * Returns:	-EINVAL if @count_hz is out of range.
500  *		0 on success.
501  */
502 int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
503 {
504 	struct mips_coproc *cop0 = vcpu->arch.cop0;
505 	int dc;
506 	ktime_t now;
507 	u32 count;
508 
509 	/* ensure the frequency is in a sensible range... */
510 	if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
511 		return -EINVAL;
512 	/* ... and has actually changed */
513 	if (vcpu->arch.count_hz == count_hz)
514 		return 0;
515 
516 	/* Safely freeze timer so we can keep it continuous */
517 	dc = kvm_mips_count_disabled(vcpu);
518 	if (dc) {
519 		now = kvm_mips_count_time(vcpu);
520 		count = kvm_read_c0_guest_count(cop0);
521 	} else {
522 		now = kvm_mips_freeze_hrtimer(vcpu, &count);
523 	}
524 
525 	/* Update the frequency */
526 	vcpu->arch.count_hz = count_hz;
527 	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
528 	vcpu->arch.count_dyn_bias = 0;
529 
530 	/* Calculate adjusted bias so dynamic count is unchanged */
531 	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
532 
533 	/* Update and resume hrtimer */
534 	if (!dc)
535 		kvm_mips_resume_hrtimer(vcpu, now, count);
536 	return 0;
537 }
538 
539 /**
540  * kvm_mips_write_compare() - Modify compare and update timer.
541  * @vcpu:	Virtual CPU.
542  * @compare:	New CP0_Compare value.
543  *
544  * Update CP0_Compare to a new value and update the timeout.
545  */
546 void kvm_mips_write_compare(struct kvm_vcpu *vcpu, uint32_t compare)
547 {
548 	struct mips_coproc *cop0 = vcpu->arch.cop0;
549 
550 	/* if unchanged, must just be an ack */
551 	if (kvm_read_c0_guest_compare(cop0) == compare)
552 		return;
553 
554 	/* Update compare */
555 	kvm_write_c0_guest_compare(cop0, compare);
556 
557 	/* Update timeout if count enabled */
558 	if (!kvm_mips_count_disabled(vcpu))
559 		kvm_mips_update_hrtimer(vcpu);
560 }
561 
562 /**
563  * kvm_mips_count_disable() - Disable count.
564  * @vcpu:	Virtual CPU.
565  *
566  * Disable the CP0_Count timer. A timer interrupt on or before the final stop
567  * time will be handled but not after.
568  *
569  * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
570  * count_ctl.DC has been set (count disabled).
571  *
572  * Returns:	The time that the timer was stopped.
573  */
574 static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
575 {
576 	struct mips_coproc *cop0 = vcpu->arch.cop0;
577 	uint32_t count;
578 	ktime_t now;
579 
580 	/* Stop hrtimer */
581 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
582 
583 	/* Set the static count from the dynamic count, handling pending TI */
584 	now = ktime_get();
585 	count = kvm_mips_read_count_running(vcpu, now);
586 	kvm_write_c0_guest_count(cop0, count);
587 
588 	return now;
589 }
590 
591 /**
592  * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
593  * @vcpu:	Virtual CPU.
594  *
595  * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
596  * before the final stop time will be handled if the timer isn't disabled by
597  * count_ctl.DC, but not after.
598  *
599  * Assumes CP0_Cause.DC is clear (count enabled).
600  */
601 void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
602 {
603 	struct mips_coproc *cop0 = vcpu->arch.cop0;
604 
605 	kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
606 	if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
607 		kvm_mips_count_disable(vcpu);
608 }
609 
610 /**
611  * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
612  * @vcpu:	Virtual CPU.
613  *
614  * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
615  * the start time will be handled if the timer isn't disabled by count_ctl.DC,
616  * potentially before even returning, so the caller should be careful with
617  * ordering of CP0_Cause modifications so as not to lose it.
618  *
619  * Assumes CP0_Cause.DC is set (count disabled).
620  */
621 void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
622 {
623 	struct mips_coproc *cop0 = vcpu->arch.cop0;
624 	uint32_t count;
625 
626 	kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
627 
628 	/*
629 	 * Set the dynamic count to match the static count.
630 	 * This starts the hrtimer if count_ctl.DC allows it.
631 	 * Otherwise it conveniently updates the biases.
632 	 */
633 	count = kvm_read_c0_guest_count(cop0);
634 	kvm_mips_write_count(vcpu, count);
635 }
636 
637 /**
638  * kvm_mips_set_count_ctl() - Update the count control KVM register.
639  * @vcpu:	Virtual CPU.
640  * @count_ctl:	Count control register new value.
641  *
642  * Set the count control KVM register. The timer is updated accordingly.
643  *
644  * Returns:	-EINVAL if reserved bits are set.
645  *		0 on success.
646  */
647 int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
648 {
649 	struct mips_coproc *cop0 = vcpu->arch.cop0;
650 	s64 changed = count_ctl ^ vcpu->arch.count_ctl;
651 	s64 delta;
652 	ktime_t expire, now;
653 	uint32_t count, compare;
654 
655 	/* Only allow defined bits to be changed */
656 	if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
657 		return -EINVAL;
658 
659 	/* Apply new value */
660 	vcpu->arch.count_ctl = count_ctl;
661 
662 	/* Master CP0_Count disable */
663 	if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
664 		/* Is CP0_Cause.DC already disabling CP0_Count? */
665 		if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
666 			if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
667 				/* Just record the current time */
668 				vcpu->arch.count_resume = ktime_get();
669 		} else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
670 			/* disable timer and record current time */
671 			vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
672 		} else {
673 			/*
674 			 * Calculate timeout relative to static count at resume
675 			 * time (wrap 0 to 2^32).
676 			 */
677 			count = kvm_read_c0_guest_count(cop0);
678 			compare = kvm_read_c0_guest_compare(cop0);
679 			delta = (u64)(uint32_t)(compare - count - 1) + 1;
680 			delta = div_u64(delta * NSEC_PER_SEC,
681 					vcpu->arch.count_hz);
682 			expire = ktime_add_ns(vcpu->arch.count_resume, delta);
683 
684 			/* Handle pending interrupt */
685 			now = ktime_get();
686 			if (ktime_compare(now, expire) >= 0)
687 				/* Nothing should be waiting on the timeout */
688 				kvm_mips_callbacks->queue_timer_int(vcpu);
689 
690 			/* Resume hrtimer without changing bias */
691 			count = kvm_mips_read_count_running(vcpu, now);
692 			kvm_mips_resume_hrtimer(vcpu, now, count);
693 		}
694 	}
695 
696 	return 0;
697 }
698 
699 /**
700  * kvm_mips_set_count_resume() - Update the count resume KVM register.
701  * @vcpu:		Virtual CPU.
702  * @count_resume:	Count resume register new value.
703  *
704  * Set the count resume KVM register.
705  *
706  * Returns:	-EINVAL if out of valid range (0..now).
707  *		0 on success.
708  */
709 int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
710 {
711 	/*
712 	 * It doesn't make sense for the resume time to be in the future, as it
713 	 * would be possible for the next interrupt to be more than a full
714 	 * period in the future.
715 	 */
716 	if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
717 		return -EINVAL;
718 
719 	vcpu->arch.count_resume = ns_to_ktime(count_resume);
720 	return 0;
721 }
722 
723 /**
724  * kvm_mips_count_timeout() - Push timer forward on timeout.
725  * @vcpu:	Virtual CPU.
726  *
727  * Handle an hrtimer event by push the hrtimer forward a period.
728  *
729  * Returns:	The hrtimer_restart value to return to the hrtimer subsystem.
730  */
731 enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
732 {
733 	/* Add the Count period to the current expiry time */
734 	hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
735 			       vcpu->arch.count_period);
736 	return HRTIMER_RESTART;
737 }
738 
739 enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
740 {
741 	struct mips_coproc *cop0 = vcpu->arch.cop0;
742 	enum emulation_result er = EMULATE_DONE;
743 
744 	if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
745 		kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
746 			  kvm_read_c0_guest_epc(cop0));
747 		kvm_clear_c0_guest_status(cop0, ST0_EXL);
748 		vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
749 
750 	} else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
751 		kvm_clear_c0_guest_status(cop0, ST0_ERL);
752 		vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
753 	} else {
754 		kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
755 			vcpu->arch.pc);
756 		er = EMULATE_FAIL;
757 	}
758 
759 	return er;
760 }
761 
762 enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
763 {
764 	kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
765 		  vcpu->arch.pending_exceptions);
766 
767 	++vcpu->stat.wait_exits;
768 	trace_kvm_exit(vcpu, WAIT_EXITS);
769 	if (!vcpu->arch.pending_exceptions) {
770 		vcpu->arch.wait = 1;
771 		kvm_vcpu_block(vcpu);
772 
773 		/*
774 		 * We we are runnable, then definitely go off to user space to
775 		 * check if any I/O interrupts are pending.
776 		 */
777 		if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
778 			clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
779 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
780 		}
781 	}
782 
783 	return EMULATE_DONE;
784 }
785 
786 /*
787  * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
788  * we can catch this, if things ever change
789  */
790 enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
791 {
792 	struct mips_coproc *cop0 = vcpu->arch.cop0;
793 	uint32_t pc = vcpu->arch.pc;
794 
795 	kvm_err("[%#x] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
796 	return EMULATE_FAIL;
797 }
798 
799 /* Write Guest TLB Entry @ Index */
800 enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
801 {
802 	struct mips_coproc *cop0 = vcpu->arch.cop0;
803 	int index = kvm_read_c0_guest_index(cop0);
804 	struct kvm_mips_tlb *tlb = NULL;
805 	uint32_t pc = vcpu->arch.pc;
806 
807 	if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
808 		kvm_debug("%s: illegal index: %d\n", __func__, index);
809 		kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
810 			  pc, index, kvm_read_c0_guest_entryhi(cop0),
811 			  kvm_read_c0_guest_entrylo0(cop0),
812 			  kvm_read_c0_guest_entrylo1(cop0),
813 			  kvm_read_c0_guest_pagemask(cop0));
814 		index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
815 	}
816 
817 	tlb = &vcpu->arch.guest_tlb[index];
818 	/*
819 	 * Probe the shadow host TLB for the entry being overwritten, if one
820 	 * matches, invalidate it
821 	 */
822 	kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
823 
824 	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
825 	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
826 	tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
827 	tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
828 
829 	kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
830 		  pc, index, kvm_read_c0_guest_entryhi(cop0),
831 		  kvm_read_c0_guest_entrylo0(cop0),
832 		  kvm_read_c0_guest_entrylo1(cop0),
833 		  kvm_read_c0_guest_pagemask(cop0));
834 
835 	return EMULATE_DONE;
836 }
837 
838 /* Write Guest TLB Entry @ Random Index */
839 enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
840 {
841 	struct mips_coproc *cop0 = vcpu->arch.cop0;
842 	struct kvm_mips_tlb *tlb = NULL;
843 	uint32_t pc = vcpu->arch.pc;
844 	int index;
845 
846 	get_random_bytes(&index, sizeof(index));
847 	index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
848 
849 	tlb = &vcpu->arch.guest_tlb[index];
850 
851 	/*
852 	 * Probe the shadow host TLB for the entry being overwritten, if one
853 	 * matches, invalidate it
854 	 */
855 	kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
856 
857 	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
858 	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
859 	tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
860 	tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
861 
862 	kvm_debug("[%#x] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
863 		  pc, index, kvm_read_c0_guest_entryhi(cop0),
864 		  kvm_read_c0_guest_entrylo0(cop0),
865 		  kvm_read_c0_guest_entrylo1(cop0));
866 
867 	return EMULATE_DONE;
868 }
869 
870 enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
871 {
872 	struct mips_coproc *cop0 = vcpu->arch.cop0;
873 	long entryhi = kvm_read_c0_guest_entryhi(cop0);
874 	uint32_t pc = vcpu->arch.pc;
875 	int index = -1;
876 
877 	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
878 
879 	kvm_write_c0_guest_index(cop0, index);
880 
881 	kvm_debug("[%#x] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
882 		  index);
883 
884 	return EMULATE_DONE;
885 }
886 
887 /**
888  * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
889  * @vcpu:	Virtual CPU.
890  *
891  * Finds the mask of bits which are writable in the guest's Config1 CP0
892  * register, by userland (currently read-only to the guest).
893  */
894 unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
895 {
896 	unsigned int mask = 0;
897 
898 	/* Permit FPU to be present if FPU is supported */
899 	if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
900 		mask |= MIPS_CONF1_FP;
901 
902 	return mask;
903 }
904 
905 /**
906  * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
907  * @vcpu:	Virtual CPU.
908  *
909  * Finds the mask of bits which are writable in the guest's Config3 CP0
910  * register, by userland (currently read-only to the guest).
911  */
912 unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
913 {
914 	/* Config4 is optional */
915 	unsigned int mask = MIPS_CONF_M;
916 
917 	/* Permit MSA to be present if MSA is supported */
918 	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
919 		mask |= MIPS_CONF3_MSA;
920 
921 	return mask;
922 }
923 
924 /**
925  * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
926  * @vcpu:	Virtual CPU.
927  *
928  * Finds the mask of bits which are writable in the guest's Config4 CP0
929  * register, by userland (currently read-only to the guest).
930  */
931 unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
932 {
933 	/* Config5 is optional */
934 	return MIPS_CONF_M;
935 }
936 
937 /**
938  * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
939  * @vcpu:	Virtual CPU.
940  *
941  * Finds the mask of bits which are writable in the guest's Config5 CP0
942  * register, by the guest itself.
943  */
944 unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
945 {
946 	unsigned int mask = 0;
947 
948 	/* Permit MSAEn changes if MSA supported and enabled */
949 	if (kvm_mips_guest_has_msa(&vcpu->arch))
950 		mask |= MIPS_CONF5_MSAEN;
951 
952 	/*
953 	 * Permit guest FPU mode changes if FPU is enabled and the relevant
954 	 * feature exists according to FIR register.
955 	 */
956 	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
957 		if (cpu_has_fre)
958 			mask |= MIPS_CONF5_FRE;
959 		/* We don't support UFR or UFE */
960 	}
961 
962 	return mask;
963 }
964 
965 enum emulation_result kvm_mips_emulate_CP0(uint32_t inst, uint32_t *opc,
966 					   uint32_t cause, struct kvm_run *run,
967 					   struct kvm_vcpu *vcpu)
968 {
969 	struct mips_coproc *cop0 = vcpu->arch.cop0;
970 	enum emulation_result er = EMULATE_DONE;
971 	int32_t rt, rd, copz, sel, co_bit, op;
972 	uint32_t pc = vcpu->arch.pc;
973 	unsigned long curr_pc;
974 
975 	/*
976 	 * Update PC and hold onto current PC in case there is
977 	 * an error and we want to rollback the PC
978 	 */
979 	curr_pc = vcpu->arch.pc;
980 	er = update_pc(vcpu, cause);
981 	if (er == EMULATE_FAIL)
982 		return er;
983 
984 	copz = (inst >> 21) & 0x1f;
985 	rt = (inst >> 16) & 0x1f;
986 	rd = (inst >> 11) & 0x1f;
987 	sel = inst & 0x7;
988 	co_bit = (inst >> 25) & 1;
989 
990 	if (co_bit) {
991 		op = (inst) & 0xff;
992 
993 		switch (op) {
994 		case tlbr_op:	/*  Read indexed TLB entry  */
995 			er = kvm_mips_emul_tlbr(vcpu);
996 			break;
997 		case tlbwi_op:	/*  Write indexed  */
998 			er = kvm_mips_emul_tlbwi(vcpu);
999 			break;
1000 		case tlbwr_op:	/*  Write random  */
1001 			er = kvm_mips_emul_tlbwr(vcpu);
1002 			break;
1003 		case tlbp_op:	/* TLB Probe */
1004 			er = kvm_mips_emul_tlbp(vcpu);
1005 			break;
1006 		case rfe_op:
1007 			kvm_err("!!!COP0_RFE!!!\n");
1008 			break;
1009 		case eret_op:
1010 			er = kvm_mips_emul_eret(vcpu);
1011 			goto dont_update_pc;
1012 			break;
1013 		case wait_op:
1014 			er = kvm_mips_emul_wait(vcpu);
1015 			break;
1016 		}
1017 	} else {
1018 		switch (copz) {
1019 		case mfc_op:
1020 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1021 			cop0->stat[rd][sel]++;
1022 #endif
1023 			/* Get reg */
1024 			if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1025 				vcpu->arch.gprs[rt] = kvm_mips_read_count(vcpu);
1026 			} else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1027 				vcpu->arch.gprs[rt] = 0x0;
1028 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1029 				kvm_mips_trans_mfc0(inst, opc, vcpu);
1030 #endif
1031 			} else {
1032 				vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1033 
1034 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1035 				kvm_mips_trans_mfc0(inst, opc, vcpu);
1036 #endif
1037 			}
1038 
1039 			kvm_debug
1040 			    ("[%#x] MFCz[%d][%d], vcpu->arch.gprs[%d]: %#lx\n",
1041 			     pc, rd, sel, rt, vcpu->arch.gprs[rt]);
1042 
1043 			break;
1044 
1045 		case dmfc_op:
1046 			vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1047 			break;
1048 
1049 		case mtc_op:
1050 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1051 			cop0->stat[rd][sel]++;
1052 #endif
1053 			if ((rd == MIPS_CP0_TLB_INDEX)
1054 			    && (vcpu->arch.gprs[rt] >=
1055 				KVM_MIPS_GUEST_TLB_SIZE)) {
1056 				kvm_err("Invalid TLB Index: %ld",
1057 					vcpu->arch.gprs[rt]);
1058 				er = EMULATE_FAIL;
1059 				break;
1060 			}
1061 #define C0_EBASE_CORE_MASK 0xff
1062 			if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1063 				/* Preserve CORE number */
1064 				kvm_change_c0_guest_ebase(cop0,
1065 							  ~(C0_EBASE_CORE_MASK),
1066 							  vcpu->arch.gprs[rt]);
1067 				kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n",
1068 					kvm_read_c0_guest_ebase(cop0));
1069 			} else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1070 				uint32_t nasid =
1071 					vcpu->arch.gprs[rt] & ASID_MASK;
1072 				if ((KSEGX(vcpu->arch.gprs[rt]) != CKSEG0) &&
1073 				    ((kvm_read_c0_guest_entryhi(cop0) &
1074 				      ASID_MASK) != nasid)) {
1075 					kvm_debug("MTCz, change ASID from %#lx to %#lx\n",
1076 						kvm_read_c0_guest_entryhi(cop0)
1077 						& ASID_MASK,
1078 						vcpu->arch.gprs[rt]
1079 						& ASID_MASK);
1080 
1081 					/* Blow away the shadow host TLBs */
1082 					kvm_mips_flush_host_tlb(1);
1083 				}
1084 				kvm_write_c0_guest_entryhi(cop0,
1085 							   vcpu->arch.gprs[rt]);
1086 			}
1087 			/* Are we writing to COUNT */
1088 			else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1089 				kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1090 				goto done;
1091 			} else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1092 				kvm_debug("[%#x] MTCz, COMPARE %#lx <- %#lx\n",
1093 					  pc, kvm_read_c0_guest_compare(cop0),
1094 					  vcpu->arch.gprs[rt]);
1095 
1096 				/* If we are writing to COMPARE */
1097 				/* Clear pending timer interrupt, if any */
1098 				kvm_mips_callbacks->dequeue_timer_int(vcpu);
1099 				kvm_mips_write_compare(vcpu,
1100 						       vcpu->arch.gprs[rt]);
1101 			} else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1102 				unsigned int old_val, val, change;
1103 
1104 				old_val = kvm_read_c0_guest_status(cop0);
1105 				val = vcpu->arch.gprs[rt];
1106 				change = val ^ old_val;
1107 
1108 				/* Make sure that the NMI bit is never set */
1109 				val &= ~ST0_NMI;
1110 
1111 				/*
1112 				 * Don't allow CU1 or FR to be set unless FPU
1113 				 * capability enabled and exists in guest
1114 				 * configuration.
1115 				 */
1116 				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1117 					val &= ~(ST0_CU1 | ST0_FR);
1118 
1119 				/*
1120 				 * Also don't allow FR to be set if host doesn't
1121 				 * support it.
1122 				 */
1123 				if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1124 					val &= ~ST0_FR;
1125 
1126 
1127 				/* Handle changes in FPU mode */
1128 				preempt_disable();
1129 
1130 				/*
1131 				 * FPU and Vector register state is made
1132 				 * UNPREDICTABLE by a change of FR, so don't
1133 				 * even bother saving it.
1134 				 */
1135 				if (change & ST0_FR)
1136 					kvm_drop_fpu(vcpu);
1137 
1138 				/*
1139 				 * If MSA state is already live, it is undefined
1140 				 * how it interacts with FR=0 FPU state, and we
1141 				 * don't want to hit reserved instruction
1142 				 * exceptions trying to save the MSA state later
1143 				 * when CU=1 && FR=1, so play it safe and save
1144 				 * it first.
1145 				 */
1146 				if (change & ST0_CU1 && !(val & ST0_FR) &&
1147 				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1148 					kvm_lose_fpu(vcpu);
1149 
1150 				/*
1151 				 * Propagate CU1 (FPU enable) changes
1152 				 * immediately if the FPU context is already
1153 				 * loaded. When disabling we leave the context
1154 				 * loaded so it can be quickly enabled again in
1155 				 * the near future.
1156 				 */
1157 				if (change & ST0_CU1 &&
1158 				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1159 					change_c0_status(ST0_CU1, val);
1160 
1161 				preempt_enable();
1162 
1163 				kvm_write_c0_guest_status(cop0, val);
1164 
1165 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1166 				/*
1167 				 * If FPU present, we need CU1/FR bits to take
1168 				 * effect fairly soon.
1169 				 */
1170 				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1171 					kvm_mips_trans_mtc0(inst, opc, vcpu);
1172 #endif
1173 			} else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1174 				unsigned int old_val, val, change, wrmask;
1175 
1176 				old_val = kvm_read_c0_guest_config5(cop0);
1177 				val = vcpu->arch.gprs[rt];
1178 
1179 				/* Only a few bits are writable in Config5 */
1180 				wrmask = kvm_mips_config5_wrmask(vcpu);
1181 				change = (val ^ old_val) & wrmask;
1182 				val = old_val ^ change;
1183 
1184 
1185 				/* Handle changes in FPU/MSA modes */
1186 				preempt_disable();
1187 
1188 				/*
1189 				 * Propagate FRE changes immediately if the FPU
1190 				 * context is already loaded.
1191 				 */
1192 				if (change & MIPS_CONF5_FRE &&
1193 				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1194 					change_c0_config5(MIPS_CONF5_FRE, val);
1195 
1196 				/*
1197 				 * Propagate MSAEn changes immediately if the
1198 				 * MSA context is already loaded. When disabling
1199 				 * we leave the context loaded so it can be
1200 				 * quickly enabled again in the near future.
1201 				 */
1202 				if (change & MIPS_CONF5_MSAEN &&
1203 				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1204 					change_c0_config5(MIPS_CONF5_MSAEN,
1205 							  val);
1206 
1207 				preempt_enable();
1208 
1209 				kvm_write_c0_guest_config5(cop0, val);
1210 			} else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1211 				uint32_t old_cause, new_cause;
1212 
1213 				old_cause = kvm_read_c0_guest_cause(cop0);
1214 				new_cause = vcpu->arch.gprs[rt];
1215 				/* Update R/W bits */
1216 				kvm_change_c0_guest_cause(cop0, 0x08800300,
1217 							  new_cause);
1218 				/* DC bit enabling/disabling timer? */
1219 				if ((old_cause ^ new_cause) & CAUSEF_DC) {
1220 					if (new_cause & CAUSEF_DC)
1221 						kvm_mips_count_disable_cause(vcpu);
1222 					else
1223 						kvm_mips_count_enable_cause(vcpu);
1224 				}
1225 			} else {
1226 				cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1227 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1228 				kvm_mips_trans_mtc0(inst, opc, vcpu);
1229 #endif
1230 			}
1231 
1232 			kvm_debug("[%#x] MTCz, cop0->reg[%d][%d]: %#lx\n", pc,
1233 				  rd, sel, cop0->reg[rd][sel]);
1234 			break;
1235 
1236 		case dmtc_op:
1237 			kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1238 				vcpu->arch.pc, rt, rd, sel);
1239 			er = EMULATE_FAIL;
1240 			break;
1241 
1242 		case mfmc0_op:
1243 #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1244 			cop0->stat[MIPS_CP0_STATUS][0]++;
1245 #endif
1246 			if (rt != 0)
1247 				vcpu->arch.gprs[rt] =
1248 				    kvm_read_c0_guest_status(cop0);
1249 			/* EI */
1250 			if (inst & 0x20) {
1251 				kvm_debug("[%#lx] mfmc0_op: EI\n",
1252 					  vcpu->arch.pc);
1253 				kvm_set_c0_guest_status(cop0, ST0_IE);
1254 			} else {
1255 				kvm_debug("[%#lx] mfmc0_op: DI\n",
1256 					  vcpu->arch.pc);
1257 				kvm_clear_c0_guest_status(cop0, ST0_IE);
1258 			}
1259 
1260 			break;
1261 
1262 		case wrpgpr_op:
1263 			{
1264 				uint32_t css =
1265 				    cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1266 				uint32_t pss =
1267 				    (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1268 				/*
1269 				 * We don't support any shadow register sets, so
1270 				 * SRSCtl[PSS] == SRSCtl[CSS] = 0
1271 				 */
1272 				if (css || pss) {
1273 					er = EMULATE_FAIL;
1274 					break;
1275 				}
1276 				kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1277 					  vcpu->arch.gprs[rt]);
1278 				vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1279 			}
1280 			break;
1281 		default:
1282 			kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1283 				vcpu->arch.pc, copz);
1284 			er = EMULATE_FAIL;
1285 			break;
1286 		}
1287 	}
1288 
1289 done:
1290 	/* Rollback PC only if emulation was unsuccessful */
1291 	if (er == EMULATE_FAIL)
1292 		vcpu->arch.pc = curr_pc;
1293 
1294 dont_update_pc:
1295 	/*
1296 	 * This is for special instructions whose emulation
1297 	 * updates the PC, so do not overwrite the PC under
1298 	 * any circumstances
1299 	 */
1300 
1301 	return er;
1302 }
1303 
1304 enum emulation_result kvm_mips_emulate_store(uint32_t inst, uint32_t cause,
1305 					     struct kvm_run *run,
1306 					     struct kvm_vcpu *vcpu)
1307 {
1308 	enum emulation_result er = EMULATE_DO_MMIO;
1309 	int32_t op, base, rt, offset;
1310 	uint32_t bytes;
1311 	void *data = run->mmio.data;
1312 	unsigned long curr_pc;
1313 
1314 	/*
1315 	 * Update PC and hold onto current PC in case there is
1316 	 * an error and we want to rollback the PC
1317 	 */
1318 	curr_pc = vcpu->arch.pc;
1319 	er = update_pc(vcpu, cause);
1320 	if (er == EMULATE_FAIL)
1321 		return er;
1322 
1323 	rt = (inst >> 16) & 0x1f;
1324 	base = (inst >> 21) & 0x1f;
1325 	offset = inst & 0xffff;
1326 	op = (inst >> 26) & 0x3f;
1327 
1328 	switch (op) {
1329 	case sb_op:
1330 		bytes = 1;
1331 		if (bytes > sizeof(run->mmio.data)) {
1332 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1333 			       run->mmio.len);
1334 		}
1335 		run->mmio.phys_addr =
1336 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1337 						   host_cp0_badvaddr);
1338 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1339 			er = EMULATE_FAIL;
1340 			break;
1341 		}
1342 		run->mmio.len = bytes;
1343 		run->mmio.is_write = 1;
1344 		vcpu->mmio_needed = 1;
1345 		vcpu->mmio_is_write = 1;
1346 		*(u8 *) data = vcpu->arch.gprs[rt];
1347 		kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1348 			  vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
1349 			  *(uint8_t *) data);
1350 
1351 		break;
1352 
1353 	case sw_op:
1354 		bytes = 4;
1355 		if (bytes > sizeof(run->mmio.data)) {
1356 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1357 			       run->mmio.len);
1358 		}
1359 		run->mmio.phys_addr =
1360 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1361 						   host_cp0_badvaddr);
1362 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1363 			er = EMULATE_FAIL;
1364 			break;
1365 		}
1366 
1367 		run->mmio.len = bytes;
1368 		run->mmio.is_write = 1;
1369 		vcpu->mmio_needed = 1;
1370 		vcpu->mmio_is_write = 1;
1371 		*(uint32_t *) data = vcpu->arch.gprs[rt];
1372 
1373 		kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1374 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1375 			  vcpu->arch.gprs[rt], *(uint32_t *) data);
1376 		break;
1377 
1378 	case sh_op:
1379 		bytes = 2;
1380 		if (bytes > sizeof(run->mmio.data)) {
1381 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1382 			       run->mmio.len);
1383 		}
1384 		run->mmio.phys_addr =
1385 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1386 						   host_cp0_badvaddr);
1387 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1388 			er = EMULATE_FAIL;
1389 			break;
1390 		}
1391 
1392 		run->mmio.len = bytes;
1393 		run->mmio.is_write = 1;
1394 		vcpu->mmio_needed = 1;
1395 		vcpu->mmio_is_write = 1;
1396 		*(uint16_t *) data = vcpu->arch.gprs[rt];
1397 
1398 		kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1399 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1400 			  vcpu->arch.gprs[rt], *(uint32_t *) data);
1401 		break;
1402 
1403 	default:
1404 		kvm_err("Store not yet supported");
1405 		er = EMULATE_FAIL;
1406 		break;
1407 	}
1408 
1409 	/* Rollback PC if emulation was unsuccessful */
1410 	if (er == EMULATE_FAIL)
1411 		vcpu->arch.pc = curr_pc;
1412 
1413 	return er;
1414 }
1415 
1416 enum emulation_result kvm_mips_emulate_load(uint32_t inst, uint32_t cause,
1417 					    struct kvm_run *run,
1418 					    struct kvm_vcpu *vcpu)
1419 {
1420 	enum emulation_result er = EMULATE_DO_MMIO;
1421 	int32_t op, base, rt, offset;
1422 	uint32_t bytes;
1423 
1424 	rt = (inst >> 16) & 0x1f;
1425 	base = (inst >> 21) & 0x1f;
1426 	offset = inst & 0xffff;
1427 	op = (inst >> 26) & 0x3f;
1428 
1429 	vcpu->arch.pending_load_cause = cause;
1430 	vcpu->arch.io_gpr = rt;
1431 
1432 	switch (op) {
1433 	case lw_op:
1434 		bytes = 4;
1435 		if (bytes > sizeof(run->mmio.data)) {
1436 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1437 			       run->mmio.len);
1438 			er = EMULATE_FAIL;
1439 			break;
1440 		}
1441 		run->mmio.phys_addr =
1442 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1443 						   host_cp0_badvaddr);
1444 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1445 			er = EMULATE_FAIL;
1446 			break;
1447 		}
1448 
1449 		run->mmio.len = bytes;
1450 		run->mmio.is_write = 0;
1451 		vcpu->mmio_needed = 1;
1452 		vcpu->mmio_is_write = 0;
1453 		break;
1454 
1455 	case lh_op:
1456 	case lhu_op:
1457 		bytes = 2;
1458 		if (bytes > sizeof(run->mmio.data)) {
1459 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1460 			       run->mmio.len);
1461 			er = EMULATE_FAIL;
1462 			break;
1463 		}
1464 		run->mmio.phys_addr =
1465 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1466 						   host_cp0_badvaddr);
1467 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1468 			er = EMULATE_FAIL;
1469 			break;
1470 		}
1471 
1472 		run->mmio.len = bytes;
1473 		run->mmio.is_write = 0;
1474 		vcpu->mmio_needed = 1;
1475 		vcpu->mmio_is_write = 0;
1476 
1477 		if (op == lh_op)
1478 			vcpu->mmio_needed = 2;
1479 		else
1480 			vcpu->mmio_needed = 1;
1481 
1482 		break;
1483 
1484 	case lbu_op:
1485 	case lb_op:
1486 		bytes = 1;
1487 		if (bytes > sizeof(run->mmio.data)) {
1488 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1489 			       run->mmio.len);
1490 			er = EMULATE_FAIL;
1491 			break;
1492 		}
1493 		run->mmio.phys_addr =
1494 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1495 						   host_cp0_badvaddr);
1496 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1497 			er = EMULATE_FAIL;
1498 			break;
1499 		}
1500 
1501 		run->mmio.len = bytes;
1502 		run->mmio.is_write = 0;
1503 		vcpu->mmio_is_write = 0;
1504 
1505 		if (op == lb_op)
1506 			vcpu->mmio_needed = 2;
1507 		else
1508 			vcpu->mmio_needed = 1;
1509 
1510 		break;
1511 
1512 	default:
1513 		kvm_err("Load not yet supported");
1514 		er = EMULATE_FAIL;
1515 		break;
1516 	}
1517 
1518 	return er;
1519 }
1520 
1521 int kvm_mips_sync_icache(unsigned long va, struct kvm_vcpu *vcpu)
1522 {
1523 	unsigned long offset = (va & ~PAGE_MASK);
1524 	struct kvm *kvm = vcpu->kvm;
1525 	unsigned long pa;
1526 	gfn_t gfn;
1527 	kvm_pfn_t pfn;
1528 
1529 	gfn = va >> PAGE_SHIFT;
1530 
1531 	if (gfn >= kvm->arch.guest_pmap_npages) {
1532 		kvm_err("%s: Invalid gfn: %#llx\n", __func__, gfn);
1533 		kvm_mips_dump_host_tlbs();
1534 		kvm_arch_vcpu_dump_regs(vcpu);
1535 		return -1;
1536 	}
1537 	pfn = kvm->arch.guest_pmap[gfn];
1538 	pa = (pfn << PAGE_SHIFT) | offset;
1539 
1540 	kvm_debug("%s: va: %#lx, unmapped: %#x\n", __func__, va,
1541 		  CKSEG0ADDR(pa));
1542 
1543 	local_flush_icache_range(CKSEG0ADDR(pa), 32);
1544 	return 0;
1545 }
1546 
1547 enum emulation_result kvm_mips_emulate_cache(uint32_t inst, uint32_t *opc,
1548 					     uint32_t cause,
1549 					     struct kvm_run *run,
1550 					     struct kvm_vcpu *vcpu)
1551 {
1552 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1553 	enum emulation_result er = EMULATE_DONE;
1554 	int32_t offset, cache, op_inst, op, base;
1555 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1556 	unsigned long va;
1557 	unsigned long curr_pc;
1558 
1559 	/*
1560 	 * Update PC and hold onto current PC in case there is
1561 	 * an error and we want to rollback the PC
1562 	 */
1563 	curr_pc = vcpu->arch.pc;
1564 	er = update_pc(vcpu, cause);
1565 	if (er == EMULATE_FAIL)
1566 		return er;
1567 
1568 	base = (inst >> 21) & 0x1f;
1569 	op_inst = (inst >> 16) & 0x1f;
1570 	offset = (int16_t)inst;
1571 	cache = op_inst & CacheOp_Cache;
1572 	op = op_inst & CacheOp_Op;
1573 
1574 	va = arch->gprs[base] + offset;
1575 
1576 	kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1577 		  cache, op, base, arch->gprs[base], offset);
1578 
1579 	/*
1580 	 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1581 	 * invalidate the caches entirely by stepping through all the
1582 	 * ways/indexes
1583 	 */
1584 	if (op == Index_Writeback_Inv) {
1585 		kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1586 			  vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1587 			  arch->gprs[base], offset);
1588 
1589 		if (cache == Cache_D)
1590 			r4k_blast_dcache();
1591 		else if (cache == Cache_I)
1592 			r4k_blast_icache();
1593 		else {
1594 			kvm_err("%s: unsupported CACHE INDEX operation\n",
1595 				__func__);
1596 			return EMULATE_FAIL;
1597 		}
1598 
1599 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1600 		kvm_mips_trans_cache_index(inst, opc, vcpu);
1601 #endif
1602 		goto done;
1603 	}
1604 
1605 	preempt_disable();
1606 	if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
1607 		if (kvm_mips_host_tlb_lookup(vcpu, va) < 0)
1608 			kvm_mips_handle_kseg0_tlb_fault(va, vcpu);
1609 	} else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) ||
1610 		   KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
1611 		int index;
1612 
1613 		/* If an entry already exists then skip */
1614 		if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0)
1615 			goto skip_fault;
1616 
1617 		/*
1618 		 * If address not in the guest TLB, then give the guest a fault,
1619 		 * the resulting handler will do the right thing
1620 		 */
1621 		index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) |
1622 						  (kvm_read_c0_guest_entryhi
1623 						   (cop0) & ASID_MASK));
1624 
1625 		if (index < 0) {
1626 			vcpu->arch.host_cp0_entryhi = (va & VPN2_MASK);
1627 			vcpu->arch.host_cp0_badvaddr = va;
1628 			er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run,
1629 							 vcpu);
1630 			preempt_enable();
1631 			goto dont_update_pc;
1632 		} else {
1633 			struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
1634 			/*
1635 			 * Check if the entry is valid, if not then setup a TLB
1636 			 * invalid exception to the guest
1637 			 */
1638 			if (!TLB_IS_VALID(*tlb, va)) {
1639 				er = kvm_mips_emulate_tlbinv_ld(cause, NULL,
1640 								run, vcpu);
1641 				preempt_enable();
1642 				goto dont_update_pc;
1643 			} else {
1644 				/*
1645 				 * We fault an entry from the guest tlb to the
1646 				 * shadow host TLB
1647 				 */
1648 				kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb,
1649 								     NULL,
1650 								     NULL);
1651 			}
1652 		}
1653 	} else {
1654 		kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1655 			cache, op, base, arch->gprs[base], offset);
1656 		er = EMULATE_FAIL;
1657 		preempt_enable();
1658 		goto dont_update_pc;
1659 
1660 	}
1661 
1662 skip_fault:
1663 	/* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1664 	if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
1665 		flush_dcache_line(va);
1666 
1667 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1668 		/*
1669 		 * Replace the CACHE instruction, with a SYNCI, not the same,
1670 		 * but avoids a trap
1671 		 */
1672 		kvm_mips_trans_cache_va(inst, opc, vcpu);
1673 #endif
1674 	} else if (op_inst == Hit_Invalidate_I) {
1675 		flush_dcache_line(va);
1676 		flush_icache_line(va);
1677 
1678 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1679 		/* Replace the CACHE instruction, with a SYNCI */
1680 		kvm_mips_trans_cache_va(inst, opc, vcpu);
1681 #endif
1682 	} else {
1683 		kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1684 			cache, op, base, arch->gprs[base], offset);
1685 		er = EMULATE_FAIL;
1686 		preempt_enable();
1687 		goto dont_update_pc;
1688 	}
1689 
1690 	preempt_enable();
1691 
1692 dont_update_pc:
1693 	/* Rollback PC */
1694 	vcpu->arch.pc = curr_pc;
1695 done:
1696 	return er;
1697 }
1698 
1699 enum emulation_result kvm_mips_emulate_inst(unsigned long cause, uint32_t *opc,
1700 					    struct kvm_run *run,
1701 					    struct kvm_vcpu *vcpu)
1702 {
1703 	enum emulation_result er = EMULATE_DONE;
1704 	uint32_t inst;
1705 
1706 	/* Fetch the instruction. */
1707 	if (cause & CAUSEF_BD)
1708 		opc += 1;
1709 
1710 	inst = kvm_get_inst(opc, vcpu);
1711 
1712 	switch (((union mips_instruction)inst).r_format.opcode) {
1713 	case cop0_op:
1714 		er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1715 		break;
1716 	case sb_op:
1717 	case sh_op:
1718 	case sw_op:
1719 		er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1720 		break;
1721 	case lb_op:
1722 	case lbu_op:
1723 	case lhu_op:
1724 	case lh_op:
1725 	case lw_op:
1726 		er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1727 		break;
1728 
1729 	case cache_op:
1730 		++vcpu->stat.cache_exits;
1731 		trace_kvm_exit(vcpu, CACHE_EXITS);
1732 		er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1733 		break;
1734 
1735 	default:
1736 		kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1737 			inst);
1738 		kvm_arch_vcpu_dump_regs(vcpu);
1739 		er = EMULATE_FAIL;
1740 		break;
1741 	}
1742 
1743 	return er;
1744 }
1745 
1746 enum emulation_result kvm_mips_emulate_syscall(unsigned long cause,
1747 					       uint32_t *opc,
1748 					       struct kvm_run *run,
1749 					       struct kvm_vcpu *vcpu)
1750 {
1751 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1752 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1753 	enum emulation_result er = EMULATE_DONE;
1754 
1755 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1756 		/* save old pc */
1757 		kvm_write_c0_guest_epc(cop0, arch->pc);
1758 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1759 
1760 		if (cause & CAUSEF_BD)
1761 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1762 		else
1763 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1764 
1765 		kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
1766 
1767 		kvm_change_c0_guest_cause(cop0, (0xff),
1768 					  (EXCCODE_SYS << CAUSEB_EXCCODE));
1769 
1770 		/* Set PC to the exception entry point */
1771 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1772 
1773 	} else {
1774 		kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
1775 		er = EMULATE_FAIL;
1776 	}
1777 
1778 	return er;
1779 }
1780 
1781 enum emulation_result kvm_mips_emulate_tlbmiss_ld(unsigned long cause,
1782 						  uint32_t *opc,
1783 						  struct kvm_run *run,
1784 						  struct kvm_vcpu *vcpu)
1785 {
1786 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1787 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1788 	unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) |
1789 				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1790 
1791 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1792 		/* save old pc */
1793 		kvm_write_c0_guest_epc(cop0, arch->pc);
1794 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1795 
1796 		if (cause & CAUSEF_BD)
1797 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1798 		else
1799 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1800 
1801 		kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
1802 			  arch->pc);
1803 
1804 		/* set pc to the exception entry point */
1805 		arch->pc = KVM_GUEST_KSEG0 + 0x0;
1806 
1807 	} else {
1808 		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1809 			  arch->pc);
1810 
1811 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1812 	}
1813 
1814 	kvm_change_c0_guest_cause(cop0, (0xff),
1815 				  (EXCCODE_TLBL << CAUSEB_EXCCODE));
1816 
1817 	/* setup badvaddr, context and entryhi registers for the guest */
1818 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1819 	/* XXXKYMA: is the context register used by linux??? */
1820 	kvm_write_c0_guest_entryhi(cop0, entryhi);
1821 	/* Blow away the shadow host TLBs */
1822 	kvm_mips_flush_host_tlb(1);
1823 
1824 	return EMULATE_DONE;
1825 }
1826 
1827 enum emulation_result kvm_mips_emulate_tlbinv_ld(unsigned long cause,
1828 						 uint32_t *opc,
1829 						 struct kvm_run *run,
1830 						 struct kvm_vcpu *vcpu)
1831 {
1832 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1833 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1834 	unsigned long entryhi =
1835 		(vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1836 		(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1837 
1838 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1839 		/* save old pc */
1840 		kvm_write_c0_guest_epc(cop0, arch->pc);
1841 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1842 
1843 		if (cause & CAUSEF_BD)
1844 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1845 		else
1846 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1847 
1848 		kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
1849 			  arch->pc);
1850 
1851 		/* set pc to the exception entry point */
1852 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1853 
1854 	} else {
1855 		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1856 			  arch->pc);
1857 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1858 	}
1859 
1860 	kvm_change_c0_guest_cause(cop0, (0xff),
1861 				  (EXCCODE_TLBL << CAUSEB_EXCCODE));
1862 
1863 	/* setup badvaddr, context and entryhi registers for the guest */
1864 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1865 	/* XXXKYMA: is the context register used by linux??? */
1866 	kvm_write_c0_guest_entryhi(cop0, entryhi);
1867 	/* Blow away the shadow host TLBs */
1868 	kvm_mips_flush_host_tlb(1);
1869 
1870 	return EMULATE_DONE;
1871 }
1872 
1873 enum emulation_result kvm_mips_emulate_tlbmiss_st(unsigned long cause,
1874 						  uint32_t *opc,
1875 						  struct kvm_run *run,
1876 						  struct kvm_vcpu *vcpu)
1877 {
1878 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1879 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1880 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1881 				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1882 
1883 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1884 		/* save old pc */
1885 		kvm_write_c0_guest_epc(cop0, arch->pc);
1886 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1887 
1888 		if (cause & CAUSEF_BD)
1889 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1890 		else
1891 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1892 
1893 		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1894 			  arch->pc);
1895 
1896 		/* Set PC to the exception entry point */
1897 		arch->pc = KVM_GUEST_KSEG0 + 0x0;
1898 	} else {
1899 		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1900 			  arch->pc);
1901 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1902 	}
1903 
1904 	kvm_change_c0_guest_cause(cop0, (0xff),
1905 				  (EXCCODE_TLBS << CAUSEB_EXCCODE));
1906 
1907 	/* setup badvaddr, context and entryhi registers for the guest */
1908 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1909 	/* XXXKYMA: is the context register used by linux??? */
1910 	kvm_write_c0_guest_entryhi(cop0, entryhi);
1911 	/* Blow away the shadow host TLBs */
1912 	kvm_mips_flush_host_tlb(1);
1913 
1914 	return EMULATE_DONE;
1915 }
1916 
1917 enum emulation_result kvm_mips_emulate_tlbinv_st(unsigned long cause,
1918 						 uint32_t *opc,
1919 						 struct kvm_run *run,
1920 						 struct kvm_vcpu *vcpu)
1921 {
1922 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1923 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1924 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1925 		(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1926 
1927 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1928 		/* save old pc */
1929 		kvm_write_c0_guest_epc(cop0, arch->pc);
1930 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1931 
1932 		if (cause & CAUSEF_BD)
1933 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1934 		else
1935 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1936 
1937 		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1938 			  arch->pc);
1939 
1940 		/* Set PC to the exception entry point */
1941 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1942 	} else {
1943 		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1944 			  arch->pc);
1945 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1946 	}
1947 
1948 	kvm_change_c0_guest_cause(cop0, (0xff),
1949 				  (EXCCODE_TLBS << CAUSEB_EXCCODE));
1950 
1951 	/* setup badvaddr, context and entryhi registers for the guest */
1952 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1953 	/* XXXKYMA: is the context register used by linux??? */
1954 	kvm_write_c0_guest_entryhi(cop0, entryhi);
1955 	/* Blow away the shadow host TLBs */
1956 	kvm_mips_flush_host_tlb(1);
1957 
1958 	return EMULATE_DONE;
1959 }
1960 
1961 /* TLBMOD: store into address matching TLB with Dirty bit off */
1962 enum emulation_result kvm_mips_handle_tlbmod(unsigned long cause, uint32_t *opc,
1963 					     struct kvm_run *run,
1964 					     struct kvm_vcpu *vcpu)
1965 {
1966 	enum emulation_result er = EMULATE_DONE;
1967 #ifdef DEBUG
1968 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1969 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1970 				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1971 	int index;
1972 
1973 	/* If address not in the guest TLB, then we are in trouble */
1974 	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
1975 	if (index < 0) {
1976 		/* XXXKYMA Invalidate and retry */
1977 		kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr);
1978 		kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
1979 		     __func__, entryhi);
1980 		kvm_mips_dump_guest_tlbs(vcpu);
1981 		kvm_mips_dump_host_tlbs();
1982 		return EMULATE_FAIL;
1983 	}
1984 #endif
1985 
1986 	er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
1987 	return er;
1988 }
1989 
1990 enum emulation_result kvm_mips_emulate_tlbmod(unsigned long cause,
1991 					      uint32_t *opc,
1992 					      struct kvm_run *run,
1993 					      struct kvm_vcpu *vcpu)
1994 {
1995 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1996 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1997 				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1998 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1999 
2000 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2001 		/* save old pc */
2002 		kvm_write_c0_guest_epc(cop0, arch->pc);
2003 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2004 
2005 		if (cause & CAUSEF_BD)
2006 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2007 		else
2008 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2009 
2010 		kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2011 			  arch->pc);
2012 
2013 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2014 	} else {
2015 		kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2016 			  arch->pc);
2017 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2018 	}
2019 
2020 	kvm_change_c0_guest_cause(cop0, (0xff),
2021 				  (EXCCODE_MOD << CAUSEB_EXCCODE));
2022 
2023 	/* setup badvaddr, context and entryhi registers for the guest */
2024 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2025 	/* XXXKYMA: is the context register used by linux??? */
2026 	kvm_write_c0_guest_entryhi(cop0, entryhi);
2027 	/* Blow away the shadow host TLBs */
2028 	kvm_mips_flush_host_tlb(1);
2029 
2030 	return EMULATE_DONE;
2031 }
2032 
2033 enum emulation_result kvm_mips_emulate_fpu_exc(unsigned long cause,
2034 					       uint32_t *opc,
2035 					       struct kvm_run *run,
2036 					       struct kvm_vcpu *vcpu)
2037 {
2038 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2039 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2040 
2041 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2042 		/* save old pc */
2043 		kvm_write_c0_guest_epc(cop0, arch->pc);
2044 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2045 
2046 		if (cause & CAUSEF_BD)
2047 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2048 		else
2049 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2050 
2051 	}
2052 
2053 	arch->pc = KVM_GUEST_KSEG0 + 0x180;
2054 
2055 	kvm_change_c0_guest_cause(cop0, (0xff),
2056 				  (EXCCODE_CPU << CAUSEB_EXCCODE));
2057 	kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2058 
2059 	return EMULATE_DONE;
2060 }
2061 
2062 enum emulation_result kvm_mips_emulate_ri_exc(unsigned long cause,
2063 					      uint32_t *opc,
2064 					      struct kvm_run *run,
2065 					      struct kvm_vcpu *vcpu)
2066 {
2067 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2068 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2069 	enum emulation_result er = EMULATE_DONE;
2070 
2071 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2072 		/* save old pc */
2073 		kvm_write_c0_guest_epc(cop0, arch->pc);
2074 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2075 
2076 		if (cause & CAUSEF_BD)
2077 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2078 		else
2079 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2080 
2081 		kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2082 
2083 		kvm_change_c0_guest_cause(cop0, (0xff),
2084 					  (EXCCODE_RI << CAUSEB_EXCCODE));
2085 
2086 		/* Set PC to the exception entry point */
2087 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2088 
2089 	} else {
2090 		kvm_err("Trying to deliver RI when EXL is already set\n");
2091 		er = EMULATE_FAIL;
2092 	}
2093 
2094 	return er;
2095 }
2096 
2097 enum emulation_result kvm_mips_emulate_bp_exc(unsigned long cause,
2098 					      uint32_t *opc,
2099 					      struct kvm_run *run,
2100 					      struct kvm_vcpu *vcpu)
2101 {
2102 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2103 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2104 	enum emulation_result er = EMULATE_DONE;
2105 
2106 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2107 		/* save old pc */
2108 		kvm_write_c0_guest_epc(cop0, arch->pc);
2109 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2110 
2111 		if (cause & CAUSEF_BD)
2112 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2113 		else
2114 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2115 
2116 		kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2117 
2118 		kvm_change_c0_guest_cause(cop0, (0xff),
2119 					  (EXCCODE_BP << CAUSEB_EXCCODE));
2120 
2121 		/* Set PC to the exception entry point */
2122 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2123 
2124 	} else {
2125 		kvm_err("Trying to deliver BP when EXL is already set\n");
2126 		er = EMULATE_FAIL;
2127 	}
2128 
2129 	return er;
2130 }
2131 
2132 enum emulation_result kvm_mips_emulate_trap_exc(unsigned long cause,
2133 						uint32_t *opc,
2134 						struct kvm_run *run,
2135 						struct kvm_vcpu *vcpu)
2136 {
2137 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2138 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2139 	enum emulation_result er = EMULATE_DONE;
2140 
2141 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2142 		/* save old pc */
2143 		kvm_write_c0_guest_epc(cop0, arch->pc);
2144 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2145 
2146 		if (cause & CAUSEF_BD)
2147 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2148 		else
2149 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2150 
2151 		kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2152 
2153 		kvm_change_c0_guest_cause(cop0, (0xff),
2154 					  (EXCCODE_TR << CAUSEB_EXCCODE));
2155 
2156 		/* Set PC to the exception entry point */
2157 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2158 
2159 	} else {
2160 		kvm_err("Trying to deliver TRAP when EXL is already set\n");
2161 		er = EMULATE_FAIL;
2162 	}
2163 
2164 	return er;
2165 }
2166 
2167 enum emulation_result kvm_mips_emulate_msafpe_exc(unsigned long cause,
2168 						  uint32_t *opc,
2169 						  struct kvm_run *run,
2170 						  struct kvm_vcpu *vcpu)
2171 {
2172 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2173 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2174 	enum emulation_result er = EMULATE_DONE;
2175 
2176 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2177 		/* save old pc */
2178 		kvm_write_c0_guest_epc(cop0, arch->pc);
2179 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2180 
2181 		if (cause & CAUSEF_BD)
2182 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2183 		else
2184 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2185 
2186 		kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2187 
2188 		kvm_change_c0_guest_cause(cop0, (0xff),
2189 					  (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
2190 
2191 		/* Set PC to the exception entry point */
2192 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2193 
2194 	} else {
2195 		kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2196 		er = EMULATE_FAIL;
2197 	}
2198 
2199 	return er;
2200 }
2201 
2202 enum emulation_result kvm_mips_emulate_fpe_exc(unsigned long cause,
2203 					       uint32_t *opc,
2204 					       struct kvm_run *run,
2205 					       struct kvm_vcpu *vcpu)
2206 {
2207 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2208 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2209 	enum emulation_result er = EMULATE_DONE;
2210 
2211 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2212 		/* save old pc */
2213 		kvm_write_c0_guest_epc(cop0, arch->pc);
2214 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2215 
2216 		if (cause & CAUSEF_BD)
2217 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2218 		else
2219 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2220 
2221 		kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2222 
2223 		kvm_change_c0_guest_cause(cop0, (0xff),
2224 					  (EXCCODE_FPE << CAUSEB_EXCCODE));
2225 
2226 		/* Set PC to the exception entry point */
2227 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2228 
2229 	} else {
2230 		kvm_err("Trying to deliver FPE when EXL is already set\n");
2231 		er = EMULATE_FAIL;
2232 	}
2233 
2234 	return er;
2235 }
2236 
2237 enum emulation_result kvm_mips_emulate_msadis_exc(unsigned long cause,
2238 						  uint32_t *opc,
2239 						  struct kvm_run *run,
2240 						  struct kvm_vcpu *vcpu)
2241 {
2242 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2243 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2244 	enum emulation_result er = EMULATE_DONE;
2245 
2246 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2247 		/* save old pc */
2248 		kvm_write_c0_guest_epc(cop0, arch->pc);
2249 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2250 
2251 		if (cause & CAUSEF_BD)
2252 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2253 		else
2254 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2255 
2256 		kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2257 
2258 		kvm_change_c0_guest_cause(cop0, (0xff),
2259 					  (EXCCODE_MSADIS << CAUSEB_EXCCODE));
2260 
2261 		/* Set PC to the exception entry point */
2262 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2263 
2264 	} else {
2265 		kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2266 		er = EMULATE_FAIL;
2267 	}
2268 
2269 	return er;
2270 }
2271 
2272 /* ll/sc, rdhwr, sync emulation */
2273 
2274 #define OPCODE 0xfc000000
2275 #define BASE   0x03e00000
2276 #define RT     0x001f0000
2277 #define OFFSET 0x0000ffff
2278 #define LL     0xc0000000
2279 #define SC     0xe0000000
2280 #define SPEC0  0x00000000
2281 #define SPEC3  0x7c000000
2282 #define RD     0x0000f800
2283 #define FUNC   0x0000003f
2284 #define SYNC   0x0000000f
2285 #define RDHWR  0x0000003b
2286 
2287 enum emulation_result kvm_mips_handle_ri(unsigned long cause, uint32_t *opc,
2288 					 struct kvm_run *run,
2289 					 struct kvm_vcpu *vcpu)
2290 {
2291 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2292 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2293 	enum emulation_result er = EMULATE_DONE;
2294 	unsigned long curr_pc;
2295 	uint32_t inst;
2296 
2297 	/*
2298 	 * Update PC and hold onto current PC in case there is
2299 	 * an error and we want to rollback the PC
2300 	 */
2301 	curr_pc = vcpu->arch.pc;
2302 	er = update_pc(vcpu, cause);
2303 	if (er == EMULATE_FAIL)
2304 		return er;
2305 
2306 	/* Fetch the instruction. */
2307 	if (cause & CAUSEF_BD)
2308 		opc += 1;
2309 
2310 	inst = kvm_get_inst(opc, vcpu);
2311 
2312 	if (inst == KVM_INVALID_INST) {
2313 		kvm_err("%s: Cannot get inst @ %p\n", __func__, opc);
2314 		return EMULATE_FAIL;
2315 	}
2316 
2317 	if ((inst & OPCODE) == SPEC3 && (inst & FUNC) == RDHWR) {
2318 		int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2319 		int rd = (inst & RD) >> 11;
2320 		int rt = (inst & RT) >> 16;
2321 		/* If usermode, check RDHWR rd is allowed by guest HWREna */
2322 		if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2323 			kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2324 				  rd, opc);
2325 			goto emulate_ri;
2326 		}
2327 		switch (rd) {
2328 		case 0:	/* CPU number */
2329 			arch->gprs[rt] = 0;
2330 			break;
2331 		case 1:	/* SYNCI length */
2332 			arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2333 					     current_cpu_data.icache.linesz);
2334 			break;
2335 		case 2:	/* Read count register */
2336 			arch->gprs[rt] = kvm_mips_read_count(vcpu);
2337 			break;
2338 		case 3:	/* Count register resolution */
2339 			switch (current_cpu_data.cputype) {
2340 			case CPU_20KC:
2341 			case CPU_25KF:
2342 				arch->gprs[rt] = 1;
2343 				break;
2344 			default:
2345 				arch->gprs[rt] = 2;
2346 			}
2347 			break;
2348 		case 29:
2349 			arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2350 			break;
2351 
2352 		default:
2353 			kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2354 			goto emulate_ri;
2355 		}
2356 	} else {
2357 		kvm_debug("Emulate RI not supported @ %p: %#x\n", opc, inst);
2358 		goto emulate_ri;
2359 	}
2360 
2361 	return EMULATE_DONE;
2362 
2363 emulate_ri:
2364 	/*
2365 	 * Rollback PC (if in branch delay slot then the PC already points to
2366 	 * branch target), and pass the RI exception to the guest OS.
2367 	 */
2368 	vcpu->arch.pc = curr_pc;
2369 	return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
2370 }
2371 
2372 enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2373 						  struct kvm_run *run)
2374 {
2375 	unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2376 	enum emulation_result er = EMULATE_DONE;
2377 
2378 	if (run->mmio.len > sizeof(*gpr)) {
2379 		kvm_err("Bad MMIO length: %d", run->mmio.len);
2380 		er = EMULATE_FAIL;
2381 		goto done;
2382 	}
2383 
2384 	er = update_pc(vcpu, vcpu->arch.pending_load_cause);
2385 	if (er == EMULATE_FAIL)
2386 		return er;
2387 
2388 	switch (run->mmio.len) {
2389 	case 4:
2390 		*gpr = *(int32_t *) run->mmio.data;
2391 		break;
2392 
2393 	case 2:
2394 		if (vcpu->mmio_needed == 2)
2395 			*gpr = *(int16_t *) run->mmio.data;
2396 		else
2397 			*gpr = *(uint16_t *)run->mmio.data;
2398 
2399 		break;
2400 	case 1:
2401 		if (vcpu->mmio_needed == 2)
2402 			*gpr = *(int8_t *) run->mmio.data;
2403 		else
2404 			*gpr = *(u8 *) run->mmio.data;
2405 		break;
2406 	}
2407 
2408 	if (vcpu->arch.pending_load_cause & CAUSEF_BD)
2409 		kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n",
2410 			  vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr,
2411 			  vcpu->mmio_needed);
2412 
2413 done:
2414 	return er;
2415 }
2416 
2417 static enum emulation_result kvm_mips_emulate_exc(unsigned long cause,
2418 						  uint32_t *opc,
2419 						  struct kvm_run *run,
2420 						  struct kvm_vcpu *vcpu)
2421 {
2422 	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2423 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2424 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2425 	enum emulation_result er = EMULATE_DONE;
2426 
2427 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2428 		/* save old pc */
2429 		kvm_write_c0_guest_epc(cop0, arch->pc);
2430 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2431 
2432 		if (cause & CAUSEF_BD)
2433 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2434 		else
2435 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2436 
2437 		kvm_change_c0_guest_cause(cop0, (0xff),
2438 					  (exccode << CAUSEB_EXCCODE));
2439 
2440 		/* Set PC to the exception entry point */
2441 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2442 		kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2443 
2444 		kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2445 			  exccode, kvm_read_c0_guest_epc(cop0),
2446 			  kvm_read_c0_guest_badvaddr(cop0));
2447 	} else {
2448 		kvm_err("Trying to deliver EXC when EXL is already set\n");
2449 		er = EMULATE_FAIL;
2450 	}
2451 
2452 	return er;
2453 }
2454 
2455 enum emulation_result kvm_mips_check_privilege(unsigned long cause,
2456 					       uint32_t *opc,
2457 					       struct kvm_run *run,
2458 					       struct kvm_vcpu *vcpu)
2459 {
2460 	enum emulation_result er = EMULATE_DONE;
2461 	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2462 	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2463 
2464 	int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2465 
2466 	if (usermode) {
2467 		switch (exccode) {
2468 		case EXCCODE_INT:
2469 		case EXCCODE_SYS:
2470 		case EXCCODE_BP:
2471 		case EXCCODE_RI:
2472 		case EXCCODE_TR:
2473 		case EXCCODE_MSAFPE:
2474 		case EXCCODE_FPE:
2475 		case EXCCODE_MSADIS:
2476 			break;
2477 
2478 		case EXCCODE_CPU:
2479 			if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2480 				er = EMULATE_PRIV_FAIL;
2481 			break;
2482 
2483 		case EXCCODE_MOD:
2484 			break;
2485 
2486 		case EXCCODE_TLBL:
2487 			/*
2488 			 * We we are accessing Guest kernel space, then send an
2489 			 * address error exception to the guest
2490 			 */
2491 			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2492 				kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2493 					  badvaddr);
2494 				cause &= ~0xff;
2495 				cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
2496 				er = EMULATE_PRIV_FAIL;
2497 			}
2498 			break;
2499 
2500 		case EXCCODE_TLBS:
2501 			/*
2502 			 * We we are accessing Guest kernel space, then send an
2503 			 * address error exception to the guest
2504 			 */
2505 			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2506 				kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2507 					  badvaddr);
2508 				cause &= ~0xff;
2509 				cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
2510 				er = EMULATE_PRIV_FAIL;
2511 			}
2512 			break;
2513 
2514 		case EXCCODE_ADES:
2515 			kvm_debug("%s: address error ST @ %#lx\n", __func__,
2516 				  badvaddr);
2517 			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2518 				cause &= ~0xff;
2519 				cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
2520 			}
2521 			er = EMULATE_PRIV_FAIL;
2522 			break;
2523 		case EXCCODE_ADEL:
2524 			kvm_debug("%s: address error LD @ %#lx\n", __func__,
2525 				  badvaddr);
2526 			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2527 				cause &= ~0xff;
2528 				cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
2529 			}
2530 			er = EMULATE_PRIV_FAIL;
2531 			break;
2532 		default:
2533 			er = EMULATE_PRIV_FAIL;
2534 			break;
2535 		}
2536 	}
2537 
2538 	if (er == EMULATE_PRIV_FAIL)
2539 		kvm_mips_emulate_exc(cause, opc, run, vcpu);
2540 
2541 	return er;
2542 }
2543 
2544 /*
2545  * User Address (UA) fault, this could happen if
2546  * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2547  *     case we pass on the fault to the guest kernel and let it handle it.
2548  * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2549  *     case we inject the TLB from the Guest TLB into the shadow host TLB
2550  */
2551 enum emulation_result kvm_mips_handle_tlbmiss(unsigned long cause,
2552 					      uint32_t *opc,
2553 					      struct kvm_run *run,
2554 					      struct kvm_vcpu *vcpu)
2555 {
2556 	enum emulation_result er = EMULATE_DONE;
2557 	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2558 	unsigned long va = vcpu->arch.host_cp0_badvaddr;
2559 	int index;
2560 
2561 	kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx, entryhi: %#lx\n",
2562 		  vcpu->arch.host_cp0_badvaddr, vcpu->arch.host_cp0_entryhi);
2563 
2564 	/*
2565 	 * KVM would not have got the exception if this entry was valid in the
2566 	 * shadow host TLB. Check the Guest TLB, if the entry is not there then
2567 	 * send the guest an exception. The guest exc handler should then inject
2568 	 * an entry into the guest TLB.
2569 	 */
2570 	index = kvm_mips_guest_tlb_lookup(vcpu,
2571 		      (va & VPN2_MASK) |
2572 		      (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) & ASID_MASK));
2573 	if (index < 0) {
2574 		if (exccode == EXCCODE_TLBL) {
2575 			er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
2576 		} else if (exccode == EXCCODE_TLBS) {
2577 			er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2578 		} else {
2579 			kvm_err("%s: invalid exc code: %d\n", __func__,
2580 				exccode);
2581 			er = EMULATE_FAIL;
2582 		}
2583 	} else {
2584 		struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2585 
2586 		/*
2587 		 * Check if the entry is valid, if not then setup a TLB invalid
2588 		 * exception to the guest
2589 		 */
2590 		if (!TLB_IS_VALID(*tlb, va)) {
2591 			if (exccode == EXCCODE_TLBL) {
2592 				er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2593 								vcpu);
2594 			} else if (exccode == EXCCODE_TLBS) {
2595 				er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2596 								vcpu);
2597 			} else {
2598 				kvm_err("%s: invalid exc code: %d\n", __func__,
2599 					exccode);
2600 				er = EMULATE_FAIL;
2601 			}
2602 		} else {
2603 			kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2604 				  tlb->tlb_hi, tlb->tlb_lo0, tlb->tlb_lo1);
2605 			/*
2606 			 * OK we have a Guest TLB entry, now inject it into the
2607 			 * shadow host TLB
2608 			 */
2609 			kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, NULL,
2610 							     NULL);
2611 		}
2612 	}
2613 
2614 	return er;
2615 }
2616