xref: /openbmc/linux/arch/mips/kvm/emulate.c (revision 0ed076c7)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: Instruction/Exception emulation
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11 
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/ktime.h>
15 #include <linux/kvm_host.h>
16 #include <linux/vmalloc.h>
17 #include <linux/fs.h>
18 #include <linux/memblock.h>
19 #include <linux/random.h>
20 #include <asm/page.h>
21 #include <asm/cacheflush.h>
22 #include <asm/cacheops.h>
23 #include <asm/cpu-info.h>
24 #include <asm/mmu_context.h>
25 #include <asm/tlbflush.h>
26 #include <asm/inst.h>
27 
28 #undef CONFIG_MIPS_MT
29 #include <asm/r4kcache.h>
30 #define CONFIG_MIPS_MT
31 
32 #include "interrupt.h"
33 #include "commpage.h"
34 
35 #include "trace.h"
36 
37 /*
38  * Compute the return address and do emulate branch simulation, if required.
39  * This function should be called only in branch delay slot active.
40  */
41 static int kvm_compute_return_epc(struct kvm_vcpu *vcpu, unsigned long instpc,
42 				  unsigned long *out)
43 {
44 	unsigned int dspcontrol;
45 	union mips_instruction insn;
46 	struct kvm_vcpu_arch *arch = &vcpu->arch;
47 	long epc = instpc;
48 	long nextpc;
49 	int err;
50 
51 	if (epc & 3) {
52 		kvm_err("%s: unaligned epc\n", __func__);
53 		return -EINVAL;
54 	}
55 
56 	/* Read the instruction */
57 	err = kvm_get_badinstrp((u32 *)epc, vcpu, &insn.word);
58 	if (err)
59 		return err;
60 
61 	switch (insn.i_format.opcode) {
62 		/* jr and jalr are in r_format format. */
63 	case spec_op:
64 		switch (insn.r_format.func) {
65 		case jalr_op:
66 			arch->gprs[insn.r_format.rd] = epc + 8;
67 			fallthrough;
68 		case jr_op:
69 			nextpc = arch->gprs[insn.r_format.rs];
70 			break;
71 		default:
72 			return -EINVAL;
73 		}
74 		break;
75 
76 		/*
77 		 * This group contains:
78 		 * bltz_op, bgez_op, bltzl_op, bgezl_op,
79 		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
80 		 */
81 	case bcond_op:
82 		switch (insn.i_format.rt) {
83 		case bltz_op:
84 		case bltzl_op:
85 			if ((long)arch->gprs[insn.i_format.rs] < 0)
86 				epc = epc + 4 + (insn.i_format.simmediate << 2);
87 			else
88 				epc += 8;
89 			nextpc = epc;
90 			break;
91 
92 		case bgez_op:
93 		case bgezl_op:
94 			if ((long)arch->gprs[insn.i_format.rs] >= 0)
95 				epc = epc + 4 + (insn.i_format.simmediate << 2);
96 			else
97 				epc += 8;
98 			nextpc = epc;
99 			break;
100 
101 		case bltzal_op:
102 		case bltzall_op:
103 			arch->gprs[31] = epc + 8;
104 			if ((long)arch->gprs[insn.i_format.rs] < 0)
105 				epc = epc + 4 + (insn.i_format.simmediate << 2);
106 			else
107 				epc += 8;
108 			nextpc = epc;
109 			break;
110 
111 		case bgezal_op:
112 		case bgezall_op:
113 			arch->gprs[31] = epc + 8;
114 			if ((long)arch->gprs[insn.i_format.rs] >= 0)
115 				epc = epc + 4 + (insn.i_format.simmediate << 2);
116 			else
117 				epc += 8;
118 			nextpc = epc;
119 			break;
120 		case bposge32_op:
121 			if (!cpu_has_dsp) {
122 				kvm_err("%s: DSP branch but not DSP ASE\n",
123 					__func__);
124 				return -EINVAL;
125 			}
126 
127 			dspcontrol = rddsp(0x01);
128 
129 			if (dspcontrol >= 32)
130 				epc = epc + 4 + (insn.i_format.simmediate << 2);
131 			else
132 				epc += 8;
133 			nextpc = epc;
134 			break;
135 		default:
136 			return -EINVAL;
137 		}
138 		break;
139 
140 		/* These are unconditional and in j_format. */
141 	case jal_op:
142 		arch->gprs[31] = instpc + 8;
143 		fallthrough;
144 	case j_op:
145 		epc += 4;
146 		epc >>= 28;
147 		epc <<= 28;
148 		epc |= (insn.j_format.target << 2);
149 		nextpc = epc;
150 		break;
151 
152 		/* These are conditional and in i_format. */
153 	case beq_op:
154 	case beql_op:
155 		if (arch->gprs[insn.i_format.rs] ==
156 		    arch->gprs[insn.i_format.rt])
157 			epc = epc + 4 + (insn.i_format.simmediate << 2);
158 		else
159 			epc += 8;
160 		nextpc = epc;
161 		break;
162 
163 	case bne_op:
164 	case bnel_op:
165 		if (arch->gprs[insn.i_format.rs] !=
166 		    arch->gprs[insn.i_format.rt])
167 			epc = epc + 4 + (insn.i_format.simmediate << 2);
168 		else
169 			epc += 8;
170 		nextpc = epc;
171 		break;
172 
173 	case blez_op:	/* POP06 */
174 #ifndef CONFIG_CPU_MIPSR6
175 	case blezl_op:	/* removed in R6 */
176 #endif
177 		if (insn.i_format.rt != 0)
178 			goto compact_branch;
179 		if ((long)arch->gprs[insn.i_format.rs] <= 0)
180 			epc = epc + 4 + (insn.i_format.simmediate << 2);
181 		else
182 			epc += 8;
183 		nextpc = epc;
184 		break;
185 
186 	case bgtz_op:	/* POP07 */
187 #ifndef CONFIG_CPU_MIPSR6
188 	case bgtzl_op:	/* removed in R6 */
189 #endif
190 		if (insn.i_format.rt != 0)
191 			goto compact_branch;
192 		if ((long)arch->gprs[insn.i_format.rs] > 0)
193 			epc = epc + 4 + (insn.i_format.simmediate << 2);
194 		else
195 			epc += 8;
196 		nextpc = epc;
197 		break;
198 
199 		/* And now the FPA/cp1 branch instructions. */
200 	case cop1_op:
201 		kvm_err("%s: unsupported cop1_op\n", __func__);
202 		return -EINVAL;
203 
204 #ifdef CONFIG_CPU_MIPSR6
205 	/* R6 added the following compact branches with forbidden slots */
206 	case blezl_op:	/* POP26 */
207 	case bgtzl_op:	/* POP27 */
208 		/* only rt == 0 isn't compact branch */
209 		if (insn.i_format.rt != 0)
210 			goto compact_branch;
211 		return -EINVAL;
212 	case pop10_op:
213 	case pop30_op:
214 		/* only rs == rt == 0 is reserved, rest are compact branches */
215 		if (insn.i_format.rs != 0 || insn.i_format.rt != 0)
216 			goto compact_branch;
217 		return -EINVAL;
218 	case pop66_op:
219 	case pop76_op:
220 		/* only rs == 0 isn't compact branch */
221 		if (insn.i_format.rs != 0)
222 			goto compact_branch;
223 		return -EINVAL;
224 compact_branch:
225 		/*
226 		 * If we've hit an exception on the forbidden slot, then
227 		 * the branch must not have been taken.
228 		 */
229 		epc += 8;
230 		nextpc = epc;
231 		break;
232 #else
233 compact_branch:
234 		/* Fall through - Compact branches not supported before R6 */
235 #endif
236 	default:
237 		return -EINVAL;
238 	}
239 
240 	*out = nextpc;
241 	return 0;
242 }
243 
244 enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
245 {
246 	int err;
247 
248 	if (cause & CAUSEF_BD) {
249 		err = kvm_compute_return_epc(vcpu, vcpu->arch.pc,
250 					     &vcpu->arch.pc);
251 		if (err)
252 			return EMULATE_FAIL;
253 	} else {
254 		vcpu->arch.pc += 4;
255 	}
256 
257 	kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
258 
259 	return EMULATE_DONE;
260 }
261 
262 /**
263  * kvm_get_badinstr() - Get bad instruction encoding.
264  * @opc:	Guest pointer to faulting instruction.
265  * @vcpu:	KVM VCPU information.
266  *
267  * Gets the instruction encoding of the faulting instruction, using the saved
268  * BadInstr register value if it exists, otherwise falling back to reading guest
269  * memory at @opc.
270  *
271  * Returns:	The instruction encoding of the faulting instruction.
272  */
273 int kvm_get_badinstr(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
274 {
275 	if (cpu_has_badinstr) {
276 		*out = vcpu->arch.host_cp0_badinstr;
277 		return 0;
278 	} else {
279 		return kvm_get_inst(opc, vcpu, out);
280 	}
281 }
282 
283 /**
284  * kvm_get_badinstrp() - Get bad prior instruction encoding.
285  * @opc:	Guest pointer to prior faulting instruction.
286  * @vcpu:	KVM VCPU information.
287  *
288  * Gets the instruction encoding of the prior faulting instruction (the branch
289  * containing the delay slot which faulted), using the saved BadInstrP register
290  * value if it exists, otherwise falling back to reading guest memory at @opc.
291  *
292  * Returns:	The instruction encoding of the prior faulting instruction.
293  */
294 int kvm_get_badinstrp(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
295 {
296 	if (cpu_has_badinstrp) {
297 		*out = vcpu->arch.host_cp0_badinstrp;
298 		return 0;
299 	} else {
300 		return kvm_get_inst(opc, vcpu, out);
301 	}
302 }
303 
304 /**
305  * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
306  * @vcpu:	Virtual CPU.
307  *
308  * Returns:	1 if the CP0_Count timer is disabled by either the guest
309  *		CP0_Cause.DC bit or the count_ctl.DC bit.
310  *		0 otherwise (in which case CP0_Count timer is running).
311  */
312 int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
313 {
314 	struct mips_coproc *cop0 = vcpu->arch.cop0;
315 
316 	return	(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
317 		(kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
318 }
319 
320 /**
321  * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
322  *
323  * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
324  *
325  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
326  */
327 static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
328 {
329 	s64 now_ns, periods;
330 	u64 delta;
331 
332 	now_ns = ktime_to_ns(now);
333 	delta = now_ns + vcpu->arch.count_dyn_bias;
334 
335 	if (delta >= vcpu->arch.count_period) {
336 		/* If delta is out of safe range the bias needs adjusting */
337 		periods = div64_s64(now_ns, vcpu->arch.count_period);
338 		vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
339 		/* Recalculate delta with new bias */
340 		delta = now_ns + vcpu->arch.count_dyn_bias;
341 	}
342 
343 	/*
344 	 * We've ensured that:
345 	 *   delta < count_period
346 	 *
347 	 * Therefore the intermediate delta*count_hz will never overflow since
348 	 * at the boundary condition:
349 	 *   delta = count_period
350 	 *   delta = NSEC_PER_SEC * 2^32 / count_hz
351 	 *   delta * count_hz = NSEC_PER_SEC * 2^32
352 	 */
353 	return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
354 }
355 
356 /**
357  * kvm_mips_count_time() - Get effective current time.
358  * @vcpu:	Virtual CPU.
359  *
360  * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
361  * except when the master disable bit is set in count_ctl, in which case it is
362  * count_resume, i.e. the time that the count was disabled.
363  *
364  * Returns:	Effective monotonic ktime for CP0_Count.
365  */
366 static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
367 {
368 	if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
369 		return vcpu->arch.count_resume;
370 
371 	return ktime_get();
372 }
373 
374 /**
375  * kvm_mips_read_count_running() - Read the current count value as if running.
376  * @vcpu:	Virtual CPU.
377  * @now:	Kernel time to read CP0_Count at.
378  *
379  * Returns the current guest CP0_Count register at time @now and handles if the
380  * timer interrupt is pending and hasn't been handled yet.
381  *
382  * Returns:	The current value of the guest CP0_Count register.
383  */
384 static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
385 {
386 	struct mips_coproc *cop0 = vcpu->arch.cop0;
387 	ktime_t expires, threshold;
388 	u32 count, compare;
389 	int running;
390 
391 	/* Calculate the biased and scaled guest CP0_Count */
392 	count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
393 	compare = kvm_read_c0_guest_compare(cop0);
394 
395 	/*
396 	 * Find whether CP0_Count has reached the closest timer interrupt. If
397 	 * not, we shouldn't inject it.
398 	 */
399 	if ((s32)(count - compare) < 0)
400 		return count;
401 
402 	/*
403 	 * The CP0_Count we're going to return has already reached the closest
404 	 * timer interrupt. Quickly check if it really is a new interrupt by
405 	 * looking at whether the interval until the hrtimer expiry time is
406 	 * less than 1/4 of the timer period.
407 	 */
408 	expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
409 	threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
410 	if (ktime_before(expires, threshold)) {
411 		/*
412 		 * Cancel it while we handle it so there's no chance of
413 		 * interference with the timeout handler.
414 		 */
415 		running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
416 
417 		/* Nothing should be waiting on the timeout */
418 		kvm_mips_callbacks->queue_timer_int(vcpu);
419 
420 		/*
421 		 * Restart the timer if it was running based on the expiry time
422 		 * we read, so that we don't push it back 2 periods.
423 		 */
424 		if (running) {
425 			expires = ktime_add_ns(expires,
426 					       vcpu->arch.count_period);
427 			hrtimer_start(&vcpu->arch.comparecount_timer, expires,
428 				      HRTIMER_MODE_ABS);
429 		}
430 	}
431 
432 	return count;
433 }
434 
435 /**
436  * kvm_mips_read_count() - Read the current count value.
437  * @vcpu:	Virtual CPU.
438  *
439  * Read the current guest CP0_Count value, taking into account whether the timer
440  * is stopped.
441  *
442  * Returns:	The current guest CP0_Count value.
443  */
444 u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
445 {
446 	struct mips_coproc *cop0 = vcpu->arch.cop0;
447 
448 	/* If count disabled just read static copy of count */
449 	if (kvm_mips_count_disabled(vcpu))
450 		return kvm_read_c0_guest_count(cop0);
451 
452 	return kvm_mips_read_count_running(vcpu, ktime_get());
453 }
454 
455 /**
456  * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
457  * @vcpu:	Virtual CPU.
458  * @count:	Output pointer for CP0_Count value at point of freeze.
459  *
460  * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
461  * at the point it was frozen. It is guaranteed that any pending interrupts at
462  * the point it was frozen are handled, and none after that point.
463  *
464  * This is useful where the time/CP0_Count is needed in the calculation of the
465  * new parameters.
466  *
467  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
468  *
469  * Returns:	The ktime at the point of freeze.
470  */
471 ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
472 {
473 	ktime_t now;
474 
475 	/* stop hrtimer before finding time */
476 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
477 	now = ktime_get();
478 
479 	/* find count at this point and handle pending hrtimer */
480 	*count = kvm_mips_read_count_running(vcpu, now);
481 
482 	return now;
483 }
484 
485 /**
486  * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
487  * @vcpu:	Virtual CPU.
488  * @now:	ktime at point of resume.
489  * @count:	CP0_Count at point of resume.
490  *
491  * Resumes the timer and updates the timer expiry based on @now and @count.
492  * This can be used in conjunction with kvm_mips_freeze_timer() when timer
493  * parameters need to be changed.
494  *
495  * It is guaranteed that a timer interrupt immediately after resume will be
496  * handled, but not if CP_Compare is exactly at @count. That case is already
497  * handled by kvm_mips_freeze_timer().
498  *
499  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
500  */
501 static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
502 				    ktime_t now, u32 count)
503 {
504 	struct mips_coproc *cop0 = vcpu->arch.cop0;
505 	u32 compare;
506 	u64 delta;
507 	ktime_t expire;
508 
509 	/* Calculate timeout (wrap 0 to 2^32) */
510 	compare = kvm_read_c0_guest_compare(cop0);
511 	delta = (u64)(u32)(compare - count - 1) + 1;
512 	delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
513 	expire = ktime_add_ns(now, delta);
514 
515 	/* Update hrtimer to use new timeout */
516 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
517 	hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
518 }
519 
520 /**
521  * kvm_mips_restore_hrtimer() - Restore hrtimer after a gap, updating expiry.
522  * @vcpu:	Virtual CPU.
523  * @before:	Time before Count was saved, lower bound of drift calculation.
524  * @count:	CP0_Count at point of restore.
525  * @min_drift:	Minimum amount of drift permitted before correction.
526  *		Must be <= 0.
527  *
528  * Restores the timer from a particular @count, accounting for drift. This can
529  * be used in conjunction with kvm_mips_freeze_timer() when a hardware timer is
530  * to be used for a period of time, but the exact ktime corresponding to the
531  * final Count that must be restored is not known.
532  *
533  * It is gauranteed that a timer interrupt immediately after restore will be
534  * handled, but not if CP0_Compare is exactly at @count. That case should
535  * already be handled when the hardware timer state is saved.
536  *
537  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is not
538  * stopped).
539  *
540  * Returns:	Amount of correction to count_bias due to drift.
541  */
542 int kvm_mips_restore_hrtimer(struct kvm_vcpu *vcpu, ktime_t before,
543 			     u32 count, int min_drift)
544 {
545 	ktime_t now, count_time;
546 	u32 now_count, before_count;
547 	u64 delta;
548 	int drift, ret = 0;
549 
550 	/* Calculate expected count at before */
551 	before_count = vcpu->arch.count_bias +
552 			kvm_mips_ktime_to_count(vcpu, before);
553 
554 	/*
555 	 * Detect significantly negative drift, where count is lower than
556 	 * expected. Some negative drift is expected when hardware counter is
557 	 * set after kvm_mips_freeze_timer(), and it is harmless to allow the
558 	 * time to jump forwards a little, within reason. If the drift is too
559 	 * significant, adjust the bias to avoid a big Guest.CP0_Count jump.
560 	 */
561 	drift = count - before_count;
562 	if (drift < min_drift) {
563 		count_time = before;
564 		vcpu->arch.count_bias += drift;
565 		ret = drift;
566 		goto resume;
567 	}
568 
569 	/* Calculate expected count right now */
570 	now = ktime_get();
571 	now_count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
572 
573 	/*
574 	 * Detect positive drift, where count is higher than expected, and
575 	 * adjust the bias to avoid guest time going backwards.
576 	 */
577 	drift = count - now_count;
578 	if (drift > 0) {
579 		count_time = now;
580 		vcpu->arch.count_bias += drift;
581 		ret = drift;
582 		goto resume;
583 	}
584 
585 	/* Subtract nanosecond delta to find ktime when count was read */
586 	delta = (u64)(u32)(now_count - count);
587 	delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
588 	count_time = ktime_sub_ns(now, delta);
589 
590 resume:
591 	/* Resume using the calculated ktime */
592 	kvm_mips_resume_hrtimer(vcpu, count_time, count);
593 	return ret;
594 }
595 
596 /**
597  * kvm_mips_write_count() - Modify the count and update timer.
598  * @vcpu:	Virtual CPU.
599  * @count:	Guest CP0_Count value to set.
600  *
601  * Sets the CP0_Count value and updates the timer accordingly.
602  */
603 void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
604 {
605 	struct mips_coproc *cop0 = vcpu->arch.cop0;
606 	ktime_t now;
607 
608 	/* Calculate bias */
609 	now = kvm_mips_count_time(vcpu);
610 	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
611 
612 	if (kvm_mips_count_disabled(vcpu))
613 		/* The timer's disabled, adjust the static count */
614 		kvm_write_c0_guest_count(cop0, count);
615 	else
616 		/* Update timeout */
617 		kvm_mips_resume_hrtimer(vcpu, now, count);
618 }
619 
620 /**
621  * kvm_mips_init_count() - Initialise timer.
622  * @vcpu:	Virtual CPU.
623  * @count_hz:	Frequency of timer.
624  *
625  * Initialise the timer to the specified frequency, zero it, and set it going if
626  * it's enabled.
627  */
628 void kvm_mips_init_count(struct kvm_vcpu *vcpu, unsigned long count_hz)
629 {
630 	vcpu->arch.count_hz = count_hz;
631 	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
632 	vcpu->arch.count_dyn_bias = 0;
633 
634 	/* Starting at 0 */
635 	kvm_mips_write_count(vcpu, 0);
636 }
637 
638 /**
639  * kvm_mips_set_count_hz() - Update the frequency of the timer.
640  * @vcpu:	Virtual CPU.
641  * @count_hz:	Frequency of CP0_Count timer in Hz.
642  *
643  * Change the frequency of the CP0_Count timer. This is done atomically so that
644  * CP0_Count is continuous and no timer interrupt is lost.
645  *
646  * Returns:	-EINVAL if @count_hz is out of range.
647  *		0 on success.
648  */
649 int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
650 {
651 	struct mips_coproc *cop0 = vcpu->arch.cop0;
652 	int dc;
653 	ktime_t now;
654 	u32 count;
655 
656 	/* ensure the frequency is in a sensible range... */
657 	if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
658 		return -EINVAL;
659 	/* ... and has actually changed */
660 	if (vcpu->arch.count_hz == count_hz)
661 		return 0;
662 
663 	/* Safely freeze timer so we can keep it continuous */
664 	dc = kvm_mips_count_disabled(vcpu);
665 	if (dc) {
666 		now = kvm_mips_count_time(vcpu);
667 		count = kvm_read_c0_guest_count(cop0);
668 	} else {
669 		now = kvm_mips_freeze_hrtimer(vcpu, &count);
670 	}
671 
672 	/* Update the frequency */
673 	vcpu->arch.count_hz = count_hz;
674 	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
675 	vcpu->arch.count_dyn_bias = 0;
676 
677 	/* Calculate adjusted bias so dynamic count is unchanged */
678 	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
679 
680 	/* Update and resume hrtimer */
681 	if (!dc)
682 		kvm_mips_resume_hrtimer(vcpu, now, count);
683 	return 0;
684 }
685 
686 /**
687  * kvm_mips_write_compare() - Modify compare and update timer.
688  * @vcpu:	Virtual CPU.
689  * @compare:	New CP0_Compare value.
690  * @ack:	Whether to acknowledge timer interrupt.
691  *
692  * Update CP0_Compare to a new value and update the timeout.
693  * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
694  * any pending timer interrupt is preserved.
695  */
696 void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
697 {
698 	struct mips_coproc *cop0 = vcpu->arch.cop0;
699 	int dc;
700 	u32 old_compare = kvm_read_c0_guest_compare(cop0);
701 	s32 delta = compare - old_compare;
702 	u32 cause;
703 	ktime_t now = ktime_set(0, 0); /* silence bogus GCC warning */
704 	u32 count;
705 
706 	/* if unchanged, must just be an ack */
707 	if (old_compare == compare) {
708 		if (!ack)
709 			return;
710 		kvm_mips_callbacks->dequeue_timer_int(vcpu);
711 		kvm_write_c0_guest_compare(cop0, compare);
712 		return;
713 	}
714 
715 	/*
716 	 * If guest CP0_Compare moves forward, CP0_GTOffset should be adjusted
717 	 * too to prevent guest CP0_Count hitting guest CP0_Compare.
718 	 *
719 	 * The new GTOffset corresponds to the new value of CP0_Compare, and is
720 	 * set prior to it being written into the guest context. We disable
721 	 * preemption until the new value is written to prevent restore of a
722 	 * GTOffset corresponding to the old CP0_Compare value.
723 	 */
724 	if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta > 0) {
725 		preempt_disable();
726 		write_c0_gtoffset(compare - read_c0_count());
727 		back_to_back_c0_hazard();
728 	}
729 
730 	/* freeze_hrtimer() takes care of timer interrupts <= count */
731 	dc = kvm_mips_count_disabled(vcpu);
732 	if (!dc)
733 		now = kvm_mips_freeze_hrtimer(vcpu, &count);
734 
735 	if (ack)
736 		kvm_mips_callbacks->dequeue_timer_int(vcpu);
737 	else if (IS_ENABLED(CONFIG_KVM_MIPS_VZ))
738 		/*
739 		 * With VZ, writing CP0_Compare acks (clears) CP0_Cause.TI, so
740 		 * preserve guest CP0_Cause.TI if we don't want to ack it.
741 		 */
742 		cause = kvm_read_c0_guest_cause(cop0);
743 
744 	kvm_write_c0_guest_compare(cop0, compare);
745 
746 	if (IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
747 		if (delta > 0)
748 			preempt_enable();
749 
750 		back_to_back_c0_hazard();
751 
752 		if (!ack && cause & CAUSEF_TI)
753 			kvm_write_c0_guest_cause(cop0, cause);
754 	}
755 
756 	/* resume_hrtimer() takes care of timer interrupts > count */
757 	if (!dc)
758 		kvm_mips_resume_hrtimer(vcpu, now, count);
759 
760 	/*
761 	 * If guest CP0_Compare is moving backward, we delay CP0_GTOffset change
762 	 * until after the new CP0_Compare is written, otherwise new guest
763 	 * CP0_Count could hit new guest CP0_Compare.
764 	 */
765 	if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta <= 0)
766 		write_c0_gtoffset(compare - read_c0_count());
767 }
768 
769 /**
770  * kvm_mips_count_disable() - Disable count.
771  * @vcpu:	Virtual CPU.
772  *
773  * Disable the CP0_Count timer. A timer interrupt on or before the final stop
774  * time will be handled but not after.
775  *
776  * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
777  * count_ctl.DC has been set (count disabled).
778  *
779  * Returns:	The time that the timer was stopped.
780  */
781 static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
782 {
783 	struct mips_coproc *cop0 = vcpu->arch.cop0;
784 	u32 count;
785 	ktime_t now;
786 
787 	/* Stop hrtimer */
788 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
789 
790 	/* Set the static count from the dynamic count, handling pending TI */
791 	now = ktime_get();
792 	count = kvm_mips_read_count_running(vcpu, now);
793 	kvm_write_c0_guest_count(cop0, count);
794 
795 	return now;
796 }
797 
798 /**
799  * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
800  * @vcpu:	Virtual CPU.
801  *
802  * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
803  * before the final stop time will be handled if the timer isn't disabled by
804  * count_ctl.DC, but not after.
805  *
806  * Assumes CP0_Cause.DC is clear (count enabled).
807  */
808 void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
809 {
810 	struct mips_coproc *cop0 = vcpu->arch.cop0;
811 
812 	kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
813 	if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
814 		kvm_mips_count_disable(vcpu);
815 }
816 
817 /**
818  * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
819  * @vcpu:	Virtual CPU.
820  *
821  * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
822  * the start time will be handled if the timer isn't disabled by count_ctl.DC,
823  * potentially before even returning, so the caller should be careful with
824  * ordering of CP0_Cause modifications so as not to lose it.
825  *
826  * Assumes CP0_Cause.DC is set (count disabled).
827  */
828 void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
829 {
830 	struct mips_coproc *cop0 = vcpu->arch.cop0;
831 	u32 count;
832 
833 	kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
834 
835 	/*
836 	 * Set the dynamic count to match the static count.
837 	 * This starts the hrtimer if count_ctl.DC allows it.
838 	 * Otherwise it conveniently updates the biases.
839 	 */
840 	count = kvm_read_c0_guest_count(cop0);
841 	kvm_mips_write_count(vcpu, count);
842 }
843 
844 /**
845  * kvm_mips_set_count_ctl() - Update the count control KVM register.
846  * @vcpu:	Virtual CPU.
847  * @count_ctl:	Count control register new value.
848  *
849  * Set the count control KVM register. The timer is updated accordingly.
850  *
851  * Returns:	-EINVAL if reserved bits are set.
852  *		0 on success.
853  */
854 int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
855 {
856 	struct mips_coproc *cop0 = vcpu->arch.cop0;
857 	s64 changed = count_ctl ^ vcpu->arch.count_ctl;
858 	s64 delta;
859 	ktime_t expire, now;
860 	u32 count, compare;
861 
862 	/* Only allow defined bits to be changed */
863 	if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
864 		return -EINVAL;
865 
866 	/* Apply new value */
867 	vcpu->arch.count_ctl = count_ctl;
868 
869 	/* Master CP0_Count disable */
870 	if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
871 		/* Is CP0_Cause.DC already disabling CP0_Count? */
872 		if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
873 			if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
874 				/* Just record the current time */
875 				vcpu->arch.count_resume = ktime_get();
876 		} else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
877 			/* disable timer and record current time */
878 			vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
879 		} else {
880 			/*
881 			 * Calculate timeout relative to static count at resume
882 			 * time (wrap 0 to 2^32).
883 			 */
884 			count = kvm_read_c0_guest_count(cop0);
885 			compare = kvm_read_c0_guest_compare(cop0);
886 			delta = (u64)(u32)(compare - count - 1) + 1;
887 			delta = div_u64(delta * NSEC_PER_SEC,
888 					vcpu->arch.count_hz);
889 			expire = ktime_add_ns(vcpu->arch.count_resume, delta);
890 
891 			/* Handle pending interrupt */
892 			now = ktime_get();
893 			if (ktime_compare(now, expire) >= 0)
894 				/* Nothing should be waiting on the timeout */
895 				kvm_mips_callbacks->queue_timer_int(vcpu);
896 
897 			/* Resume hrtimer without changing bias */
898 			count = kvm_mips_read_count_running(vcpu, now);
899 			kvm_mips_resume_hrtimer(vcpu, now, count);
900 		}
901 	}
902 
903 	return 0;
904 }
905 
906 /**
907  * kvm_mips_set_count_resume() - Update the count resume KVM register.
908  * @vcpu:		Virtual CPU.
909  * @count_resume:	Count resume register new value.
910  *
911  * Set the count resume KVM register.
912  *
913  * Returns:	-EINVAL if out of valid range (0..now).
914  *		0 on success.
915  */
916 int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
917 {
918 	/*
919 	 * It doesn't make sense for the resume time to be in the future, as it
920 	 * would be possible for the next interrupt to be more than a full
921 	 * period in the future.
922 	 */
923 	if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
924 		return -EINVAL;
925 
926 	vcpu->arch.count_resume = ns_to_ktime(count_resume);
927 	return 0;
928 }
929 
930 /**
931  * kvm_mips_count_timeout() - Push timer forward on timeout.
932  * @vcpu:	Virtual CPU.
933  *
934  * Handle an hrtimer event by push the hrtimer forward a period.
935  *
936  * Returns:	The hrtimer_restart value to return to the hrtimer subsystem.
937  */
938 enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
939 {
940 	/* Add the Count period to the current expiry time */
941 	hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
942 			       vcpu->arch.count_period);
943 	return HRTIMER_RESTART;
944 }
945 
946 enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
947 {
948 	struct mips_coproc *cop0 = vcpu->arch.cop0;
949 	enum emulation_result er = EMULATE_DONE;
950 
951 	if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
952 		kvm_clear_c0_guest_status(cop0, ST0_ERL);
953 		vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
954 	} else if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
955 		kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
956 			  kvm_read_c0_guest_epc(cop0));
957 		kvm_clear_c0_guest_status(cop0, ST0_EXL);
958 		vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
959 
960 	} else {
961 		kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
962 			vcpu->arch.pc);
963 		er = EMULATE_FAIL;
964 	}
965 
966 	return er;
967 }
968 
969 enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
970 {
971 	kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
972 		  vcpu->arch.pending_exceptions);
973 
974 	++vcpu->stat.wait_exits;
975 	trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
976 	if (!vcpu->arch.pending_exceptions) {
977 		kvm_vz_lose_htimer(vcpu);
978 		vcpu->arch.wait = 1;
979 		kvm_vcpu_block(vcpu);
980 
981 		/*
982 		 * We we are runnable, then definitely go off to user space to
983 		 * check if any I/O interrupts are pending.
984 		 */
985 		if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
986 			kvm_clear_request(KVM_REQ_UNHALT, vcpu);
987 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
988 		}
989 	}
990 
991 	return EMULATE_DONE;
992 }
993 
994 static void kvm_mips_change_entryhi(struct kvm_vcpu *vcpu,
995 				    unsigned long entryhi)
996 {
997 	struct mips_coproc *cop0 = vcpu->arch.cop0;
998 	struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
999 	int cpu, i;
1000 	u32 nasid = entryhi & KVM_ENTRYHI_ASID;
1001 
1002 	if (((kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID) != nasid)) {
1003 		trace_kvm_asid_change(vcpu, kvm_read_c0_guest_entryhi(cop0) &
1004 				      KVM_ENTRYHI_ASID, nasid);
1005 
1006 		/*
1007 		 * Flush entries from the GVA page tables.
1008 		 * Guest user page table will get flushed lazily on re-entry to
1009 		 * guest user if the guest ASID actually changes.
1010 		 */
1011 		kvm_mips_flush_gva_pt(kern_mm->pgd, KMF_KERN);
1012 
1013 		/*
1014 		 * Regenerate/invalidate kernel MMU context.
1015 		 * The user MMU context will be regenerated lazily on re-entry
1016 		 * to guest user if the guest ASID actually changes.
1017 		 */
1018 		preempt_disable();
1019 		cpu = smp_processor_id();
1020 		get_new_mmu_context(kern_mm);
1021 		for_each_possible_cpu(i)
1022 			if (i != cpu)
1023 				set_cpu_context(i, kern_mm, 0);
1024 		preempt_enable();
1025 	}
1026 	kvm_write_c0_guest_entryhi(cop0, entryhi);
1027 }
1028 
1029 enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
1030 {
1031 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1032 	struct kvm_mips_tlb *tlb;
1033 	unsigned long pc = vcpu->arch.pc;
1034 	int index;
1035 
1036 	index = kvm_read_c0_guest_index(cop0);
1037 	if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
1038 		/* UNDEFINED */
1039 		kvm_debug("[%#lx] TLBR Index %#x out of range\n", pc, index);
1040 		index &= KVM_MIPS_GUEST_TLB_SIZE - 1;
1041 	}
1042 
1043 	tlb = &vcpu->arch.guest_tlb[index];
1044 	kvm_write_c0_guest_pagemask(cop0, tlb->tlb_mask);
1045 	kvm_write_c0_guest_entrylo0(cop0, tlb->tlb_lo[0]);
1046 	kvm_write_c0_guest_entrylo1(cop0, tlb->tlb_lo[1]);
1047 	kvm_mips_change_entryhi(vcpu, tlb->tlb_hi);
1048 
1049 	return EMULATE_DONE;
1050 }
1051 
1052 /**
1053  * kvm_mips_invalidate_guest_tlb() - Indicates a change in guest MMU map.
1054  * @vcpu:	VCPU with changed mappings.
1055  * @tlb:	TLB entry being removed.
1056  *
1057  * This is called to indicate a single change in guest MMU mappings, so that we
1058  * can arrange TLB flushes on this and other CPUs.
1059  */
1060 static void kvm_mips_invalidate_guest_tlb(struct kvm_vcpu *vcpu,
1061 					  struct kvm_mips_tlb *tlb)
1062 {
1063 	struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
1064 	struct mm_struct *user_mm = &vcpu->arch.guest_user_mm;
1065 	int cpu, i;
1066 	bool user;
1067 
1068 	/* No need to flush for entries which are already invalid */
1069 	if (!((tlb->tlb_lo[0] | tlb->tlb_lo[1]) & ENTRYLO_V))
1070 		return;
1071 	/* Don't touch host kernel page tables or TLB mappings */
1072 	if ((unsigned long)tlb->tlb_hi > 0x7fffffff)
1073 		return;
1074 	/* User address space doesn't need flushing for KSeg2/3 changes */
1075 	user = tlb->tlb_hi < KVM_GUEST_KSEG0;
1076 
1077 	preempt_disable();
1078 
1079 	/* Invalidate page table entries */
1080 	kvm_trap_emul_invalidate_gva(vcpu, tlb->tlb_hi & VPN2_MASK, user);
1081 
1082 	/*
1083 	 * Probe the shadow host TLB for the entry being overwritten, if one
1084 	 * matches, invalidate it
1085 	 */
1086 	kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi, user, true);
1087 
1088 	/* Invalidate the whole ASID on other CPUs */
1089 	cpu = smp_processor_id();
1090 	for_each_possible_cpu(i) {
1091 		if (i == cpu)
1092 			continue;
1093 		if (user)
1094 			set_cpu_context(i, user_mm, 0);
1095 		set_cpu_context(i, kern_mm, 0);
1096 	}
1097 
1098 	preempt_enable();
1099 }
1100 
1101 /* Write Guest TLB Entry @ Index */
1102 enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
1103 {
1104 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1105 	int index = kvm_read_c0_guest_index(cop0);
1106 	struct kvm_mips_tlb *tlb = NULL;
1107 	unsigned long pc = vcpu->arch.pc;
1108 
1109 	if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
1110 		kvm_debug("%s: illegal index: %d\n", __func__, index);
1111 		kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
1112 			  pc, index, kvm_read_c0_guest_entryhi(cop0),
1113 			  kvm_read_c0_guest_entrylo0(cop0),
1114 			  kvm_read_c0_guest_entrylo1(cop0),
1115 			  kvm_read_c0_guest_pagemask(cop0));
1116 		index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
1117 	}
1118 
1119 	tlb = &vcpu->arch.guest_tlb[index];
1120 
1121 	kvm_mips_invalidate_guest_tlb(vcpu, tlb);
1122 
1123 	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
1124 	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
1125 	tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
1126 	tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
1127 
1128 	kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
1129 		  pc, index, kvm_read_c0_guest_entryhi(cop0),
1130 		  kvm_read_c0_guest_entrylo0(cop0),
1131 		  kvm_read_c0_guest_entrylo1(cop0),
1132 		  kvm_read_c0_guest_pagemask(cop0));
1133 
1134 	return EMULATE_DONE;
1135 }
1136 
1137 /* Write Guest TLB Entry @ Random Index */
1138 enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
1139 {
1140 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1141 	struct kvm_mips_tlb *tlb = NULL;
1142 	unsigned long pc = vcpu->arch.pc;
1143 	int index;
1144 
1145 	index = prandom_u32_max(KVM_MIPS_GUEST_TLB_SIZE);
1146 	tlb = &vcpu->arch.guest_tlb[index];
1147 
1148 	kvm_mips_invalidate_guest_tlb(vcpu, tlb);
1149 
1150 	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
1151 	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
1152 	tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
1153 	tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
1154 
1155 	kvm_debug("[%#lx] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
1156 		  pc, index, kvm_read_c0_guest_entryhi(cop0),
1157 		  kvm_read_c0_guest_entrylo0(cop0),
1158 		  kvm_read_c0_guest_entrylo1(cop0));
1159 
1160 	return EMULATE_DONE;
1161 }
1162 
1163 enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
1164 {
1165 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1166 	long entryhi = kvm_read_c0_guest_entryhi(cop0);
1167 	unsigned long pc = vcpu->arch.pc;
1168 	int index = -1;
1169 
1170 	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
1171 
1172 	kvm_write_c0_guest_index(cop0, index);
1173 
1174 	kvm_debug("[%#lx] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
1175 		  index);
1176 
1177 	return EMULATE_DONE;
1178 }
1179 
1180 /**
1181  * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
1182  * @vcpu:	Virtual CPU.
1183  *
1184  * Finds the mask of bits which are writable in the guest's Config1 CP0
1185  * register, by userland (currently read-only to the guest).
1186  */
1187 unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
1188 {
1189 	unsigned int mask = 0;
1190 
1191 	/* Permit FPU to be present if FPU is supported */
1192 	if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
1193 		mask |= MIPS_CONF1_FP;
1194 
1195 	return mask;
1196 }
1197 
1198 /**
1199  * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
1200  * @vcpu:	Virtual CPU.
1201  *
1202  * Finds the mask of bits which are writable in the guest's Config3 CP0
1203  * register, by userland (currently read-only to the guest).
1204  */
1205 unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
1206 {
1207 	/* Config4 and ULRI are optional */
1208 	unsigned int mask = MIPS_CONF_M | MIPS_CONF3_ULRI;
1209 
1210 	/* Permit MSA to be present if MSA is supported */
1211 	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
1212 		mask |= MIPS_CONF3_MSA;
1213 
1214 	return mask;
1215 }
1216 
1217 /**
1218  * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
1219  * @vcpu:	Virtual CPU.
1220  *
1221  * Finds the mask of bits which are writable in the guest's Config4 CP0
1222  * register, by userland (currently read-only to the guest).
1223  */
1224 unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
1225 {
1226 	/* Config5 is optional */
1227 	unsigned int mask = MIPS_CONF_M;
1228 
1229 	/* KScrExist */
1230 	mask |= 0xfc << MIPS_CONF4_KSCREXIST_SHIFT;
1231 
1232 	return mask;
1233 }
1234 
1235 /**
1236  * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
1237  * @vcpu:	Virtual CPU.
1238  *
1239  * Finds the mask of bits which are writable in the guest's Config5 CP0
1240  * register, by the guest itself.
1241  */
1242 unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
1243 {
1244 	unsigned int mask = 0;
1245 
1246 	/* Permit MSAEn changes if MSA supported and enabled */
1247 	if (kvm_mips_guest_has_msa(&vcpu->arch))
1248 		mask |= MIPS_CONF5_MSAEN;
1249 
1250 	/*
1251 	 * Permit guest FPU mode changes if FPU is enabled and the relevant
1252 	 * feature exists according to FIR register.
1253 	 */
1254 	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1255 		if (cpu_has_fre)
1256 			mask |= MIPS_CONF5_FRE;
1257 		/* We don't support UFR or UFE */
1258 	}
1259 
1260 	return mask;
1261 }
1262 
1263 enum emulation_result kvm_mips_emulate_CP0(union mips_instruction inst,
1264 					   u32 *opc, u32 cause,
1265 					   struct kvm_run *run,
1266 					   struct kvm_vcpu *vcpu)
1267 {
1268 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1269 	enum emulation_result er = EMULATE_DONE;
1270 	u32 rt, rd, sel;
1271 	unsigned long curr_pc;
1272 
1273 	/*
1274 	 * Update PC and hold onto current PC in case there is
1275 	 * an error and we want to rollback the PC
1276 	 */
1277 	curr_pc = vcpu->arch.pc;
1278 	er = update_pc(vcpu, cause);
1279 	if (er == EMULATE_FAIL)
1280 		return er;
1281 
1282 	if (inst.co_format.co) {
1283 		switch (inst.co_format.func) {
1284 		case tlbr_op:	/*  Read indexed TLB entry  */
1285 			er = kvm_mips_emul_tlbr(vcpu);
1286 			break;
1287 		case tlbwi_op:	/*  Write indexed  */
1288 			er = kvm_mips_emul_tlbwi(vcpu);
1289 			break;
1290 		case tlbwr_op:	/*  Write random  */
1291 			er = kvm_mips_emul_tlbwr(vcpu);
1292 			break;
1293 		case tlbp_op:	/* TLB Probe */
1294 			er = kvm_mips_emul_tlbp(vcpu);
1295 			break;
1296 		case rfe_op:
1297 			kvm_err("!!!COP0_RFE!!!\n");
1298 			break;
1299 		case eret_op:
1300 			er = kvm_mips_emul_eret(vcpu);
1301 			goto dont_update_pc;
1302 		case wait_op:
1303 			er = kvm_mips_emul_wait(vcpu);
1304 			break;
1305 		case hypcall_op:
1306 			er = kvm_mips_emul_hypcall(vcpu, inst);
1307 			break;
1308 		}
1309 	} else {
1310 		rt = inst.c0r_format.rt;
1311 		rd = inst.c0r_format.rd;
1312 		sel = inst.c0r_format.sel;
1313 
1314 		switch (inst.c0r_format.rs) {
1315 		case mfc_op:
1316 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1317 			cop0->stat[rd][sel]++;
1318 #endif
1319 			/* Get reg */
1320 			if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1321 				vcpu->arch.gprs[rt] =
1322 				    (s32)kvm_mips_read_count(vcpu);
1323 			} else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1324 				vcpu->arch.gprs[rt] = 0x0;
1325 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1326 				kvm_mips_trans_mfc0(inst, opc, vcpu);
1327 #endif
1328 			} else {
1329 				vcpu->arch.gprs[rt] = (s32)cop0->reg[rd][sel];
1330 
1331 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1332 				kvm_mips_trans_mfc0(inst, opc, vcpu);
1333 #endif
1334 			}
1335 
1336 			trace_kvm_hwr(vcpu, KVM_TRACE_MFC0,
1337 				      KVM_TRACE_COP0(rd, sel),
1338 				      vcpu->arch.gprs[rt]);
1339 			break;
1340 
1341 		case dmfc_op:
1342 			vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1343 
1344 			trace_kvm_hwr(vcpu, KVM_TRACE_DMFC0,
1345 				      KVM_TRACE_COP0(rd, sel),
1346 				      vcpu->arch.gprs[rt]);
1347 			break;
1348 
1349 		case mtc_op:
1350 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1351 			cop0->stat[rd][sel]++;
1352 #endif
1353 			trace_kvm_hwr(vcpu, KVM_TRACE_MTC0,
1354 				      KVM_TRACE_COP0(rd, sel),
1355 				      vcpu->arch.gprs[rt]);
1356 
1357 			if ((rd == MIPS_CP0_TLB_INDEX)
1358 			    && (vcpu->arch.gprs[rt] >=
1359 				KVM_MIPS_GUEST_TLB_SIZE)) {
1360 				kvm_err("Invalid TLB Index: %ld",
1361 					vcpu->arch.gprs[rt]);
1362 				er = EMULATE_FAIL;
1363 				break;
1364 			}
1365 			if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1366 				/*
1367 				 * Preserve core number, and keep the exception
1368 				 * base in guest KSeg0.
1369 				 */
1370 				kvm_change_c0_guest_ebase(cop0, 0x1ffff000,
1371 							  vcpu->arch.gprs[rt]);
1372 			} else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1373 				kvm_mips_change_entryhi(vcpu,
1374 							vcpu->arch.gprs[rt]);
1375 			}
1376 			/* Are we writing to COUNT */
1377 			else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1378 				kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1379 				goto done;
1380 			} else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1381 				/* If we are writing to COMPARE */
1382 				/* Clear pending timer interrupt, if any */
1383 				kvm_mips_write_compare(vcpu,
1384 						       vcpu->arch.gprs[rt],
1385 						       true);
1386 			} else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1387 				unsigned int old_val, val, change;
1388 
1389 				old_val = kvm_read_c0_guest_status(cop0);
1390 				val = vcpu->arch.gprs[rt];
1391 				change = val ^ old_val;
1392 
1393 				/* Make sure that the NMI bit is never set */
1394 				val &= ~ST0_NMI;
1395 
1396 				/*
1397 				 * Don't allow CU1 or FR to be set unless FPU
1398 				 * capability enabled and exists in guest
1399 				 * configuration.
1400 				 */
1401 				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1402 					val &= ~(ST0_CU1 | ST0_FR);
1403 
1404 				/*
1405 				 * Also don't allow FR to be set if host doesn't
1406 				 * support it.
1407 				 */
1408 				if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1409 					val &= ~ST0_FR;
1410 
1411 
1412 				/* Handle changes in FPU mode */
1413 				preempt_disable();
1414 
1415 				/*
1416 				 * FPU and Vector register state is made
1417 				 * UNPREDICTABLE by a change of FR, so don't
1418 				 * even bother saving it.
1419 				 */
1420 				if (change & ST0_FR)
1421 					kvm_drop_fpu(vcpu);
1422 
1423 				/*
1424 				 * If MSA state is already live, it is undefined
1425 				 * how it interacts with FR=0 FPU state, and we
1426 				 * don't want to hit reserved instruction
1427 				 * exceptions trying to save the MSA state later
1428 				 * when CU=1 && FR=1, so play it safe and save
1429 				 * it first.
1430 				 */
1431 				if (change & ST0_CU1 && !(val & ST0_FR) &&
1432 				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1433 					kvm_lose_fpu(vcpu);
1434 
1435 				/*
1436 				 * Propagate CU1 (FPU enable) changes
1437 				 * immediately if the FPU context is already
1438 				 * loaded. When disabling we leave the context
1439 				 * loaded so it can be quickly enabled again in
1440 				 * the near future.
1441 				 */
1442 				if (change & ST0_CU1 &&
1443 				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1444 					change_c0_status(ST0_CU1, val);
1445 
1446 				preempt_enable();
1447 
1448 				kvm_write_c0_guest_status(cop0, val);
1449 
1450 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1451 				/*
1452 				 * If FPU present, we need CU1/FR bits to take
1453 				 * effect fairly soon.
1454 				 */
1455 				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1456 					kvm_mips_trans_mtc0(inst, opc, vcpu);
1457 #endif
1458 			} else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1459 				unsigned int old_val, val, change, wrmask;
1460 
1461 				old_val = kvm_read_c0_guest_config5(cop0);
1462 				val = vcpu->arch.gprs[rt];
1463 
1464 				/* Only a few bits are writable in Config5 */
1465 				wrmask = kvm_mips_config5_wrmask(vcpu);
1466 				change = (val ^ old_val) & wrmask;
1467 				val = old_val ^ change;
1468 
1469 
1470 				/* Handle changes in FPU/MSA modes */
1471 				preempt_disable();
1472 
1473 				/*
1474 				 * Propagate FRE changes immediately if the FPU
1475 				 * context is already loaded.
1476 				 */
1477 				if (change & MIPS_CONF5_FRE &&
1478 				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1479 					change_c0_config5(MIPS_CONF5_FRE, val);
1480 
1481 				/*
1482 				 * Propagate MSAEn changes immediately if the
1483 				 * MSA context is already loaded. When disabling
1484 				 * we leave the context loaded so it can be
1485 				 * quickly enabled again in the near future.
1486 				 */
1487 				if (change & MIPS_CONF5_MSAEN &&
1488 				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1489 					change_c0_config5(MIPS_CONF5_MSAEN,
1490 							  val);
1491 
1492 				preempt_enable();
1493 
1494 				kvm_write_c0_guest_config5(cop0, val);
1495 			} else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1496 				u32 old_cause, new_cause;
1497 
1498 				old_cause = kvm_read_c0_guest_cause(cop0);
1499 				new_cause = vcpu->arch.gprs[rt];
1500 				/* Update R/W bits */
1501 				kvm_change_c0_guest_cause(cop0, 0x08800300,
1502 							  new_cause);
1503 				/* DC bit enabling/disabling timer? */
1504 				if ((old_cause ^ new_cause) & CAUSEF_DC) {
1505 					if (new_cause & CAUSEF_DC)
1506 						kvm_mips_count_disable_cause(vcpu);
1507 					else
1508 						kvm_mips_count_enable_cause(vcpu);
1509 				}
1510 			} else if ((rd == MIPS_CP0_HWRENA) && (sel == 0)) {
1511 				u32 mask = MIPS_HWRENA_CPUNUM |
1512 					   MIPS_HWRENA_SYNCISTEP |
1513 					   MIPS_HWRENA_CC |
1514 					   MIPS_HWRENA_CCRES;
1515 
1516 				if (kvm_read_c0_guest_config3(cop0) &
1517 				    MIPS_CONF3_ULRI)
1518 					mask |= MIPS_HWRENA_ULR;
1519 				cop0->reg[rd][sel] = vcpu->arch.gprs[rt] & mask;
1520 			} else {
1521 				cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1522 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1523 				kvm_mips_trans_mtc0(inst, opc, vcpu);
1524 #endif
1525 			}
1526 			break;
1527 
1528 		case dmtc_op:
1529 			kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1530 				vcpu->arch.pc, rt, rd, sel);
1531 			trace_kvm_hwr(vcpu, KVM_TRACE_DMTC0,
1532 				      KVM_TRACE_COP0(rd, sel),
1533 				      vcpu->arch.gprs[rt]);
1534 			er = EMULATE_FAIL;
1535 			break;
1536 
1537 		case mfmc0_op:
1538 #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1539 			cop0->stat[MIPS_CP0_STATUS][0]++;
1540 #endif
1541 			if (rt != 0)
1542 				vcpu->arch.gprs[rt] =
1543 				    kvm_read_c0_guest_status(cop0);
1544 			/* EI */
1545 			if (inst.mfmc0_format.sc) {
1546 				kvm_debug("[%#lx] mfmc0_op: EI\n",
1547 					  vcpu->arch.pc);
1548 				kvm_set_c0_guest_status(cop0, ST0_IE);
1549 			} else {
1550 				kvm_debug("[%#lx] mfmc0_op: DI\n",
1551 					  vcpu->arch.pc);
1552 				kvm_clear_c0_guest_status(cop0, ST0_IE);
1553 			}
1554 
1555 			break;
1556 
1557 		case wrpgpr_op:
1558 			{
1559 				u32 css = cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1560 				u32 pss =
1561 				    (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1562 				/*
1563 				 * We don't support any shadow register sets, so
1564 				 * SRSCtl[PSS] == SRSCtl[CSS] = 0
1565 				 */
1566 				if (css || pss) {
1567 					er = EMULATE_FAIL;
1568 					break;
1569 				}
1570 				kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1571 					  vcpu->arch.gprs[rt]);
1572 				vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1573 			}
1574 			break;
1575 		default:
1576 			kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1577 				vcpu->arch.pc, inst.c0r_format.rs);
1578 			er = EMULATE_FAIL;
1579 			break;
1580 		}
1581 	}
1582 
1583 done:
1584 	/* Rollback PC only if emulation was unsuccessful */
1585 	if (er == EMULATE_FAIL)
1586 		vcpu->arch.pc = curr_pc;
1587 
1588 dont_update_pc:
1589 	/*
1590 	 * This is for special instructions whose emulation
1591 	 * updates the PC, so do not overwrite the PC under
1592 	 * any circumstances
1593 	 */
1594 
1595 	return er;
1596 }
1597 
1598 enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
1599 					     u32 cause,
1600 					     struct kvm_run *run,
1601 					     struct kvm_vcpu *vcpu)
1602 {
1603 	int r;
1604 	enum emulation_result er;
1605 	u32 rt;
1606 	void *data = run->mmio.data;
1607 	unsigned int imme;
1608 	unsigned long curr_pc;
1609 
1610 	/*
1611 	 * Update PC and hold onto current PC in case there is
1612 	 * an error and we want to rollback the PC
1613 	 */
1614 	curr_pc = vcpu->arch.pc;
1615 	er = update_pc(vcpu, cause);
1616 	if (er == EMULATE_FAIL)
1617 		return er;
1618 
1619 	rt = inst.i_format.rt;
1620 
1621 	run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1622 						vcpu->arch.host_cp0_badvaddr);
1623 	if (run->mmio.phys_addr == KVM_INVALID_ADDR)
1624 		goto out_fail;
1625 
1626 	switch (inst.i_format.opcode) {
1627 #if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
1628 	case sd_op:
1629 		run->mmio.len = 8;
1630 		*(u64 *)data = vcpu->arch.gprs[rt];
1631 
1632 		kvm_debug("[%#lx] OP_SD: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
1633 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1634 			  vcpu->arch.gprs[rt], *(u64 *)data);
1635 		break;
1636 #endif
1637 
1638 	case sw_op:
1639 		run->mmio.len = 4;
1640 		*(u32 *)data = vcpu->arch.gprs[rt];
1641 
1642 		kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1643 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1644 			  vcpu->arch.gprs[rt], *(u32 *)data);
1645 		break;
1646 
1647 	case sh_op:
1648 		run->mmio.len = 2;
1649 		*(u16 *)data = vcpu->arch.gprs[rt];
1650 
1651 		kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1652 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1653 			  vcpu->arch.gprs[rt], *(u16 *)data);
1654 		break;
1655 
1656 	case sb_op:
1657 		run->mmio.len = 1;
1658 		*(u8 *)data = vcpu->arch.gprs[rt];
1659 
1660 		kvm_debug("[%#lx] OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1661 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1662 			  vcpu->arch.gprs[rt], *(u8 *)data);
1663 		break;
1664 
1665 	case swl_op:
1666 		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1667 					vcpu->arch.host_cp0_badvaddr) & (~0x3);
1668 		run->mmio.len = 4;
1669 		imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1670 		switch (imme) {
1671 		case 0:
1672 			*(u32 *)data = ((*(u32 *)data) & 0xffffff00) |
1673 					(vcpu->arch.gprs[rt] >> 24);
1674 			break;
1675 		case 1:
1676 			*(u32 *)data = ((*(u32 *)data) & 0xffff0000) |
1677 					(vcpu->arch.gprs[rt] >> 16);
1678 			break;
1679 		case 2:
1680 			*(u32 *)data = ((*(u32 *)data) & 0xff000000) |
1681 					(vcpu->arch.gprs[rt] >> 8);
1682 			break;
1683 		case 3:
1684 			*(u32 *)data = vcpu->arch.gprs[rt];
1685 			break;
1686 		default:
1687 			break;
1688 		}
1689 
1690 		kvm_debug("[%#lx] OP_SWL: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1691 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1692 			  vcpu->arch.gprs[rt], *(u32 *)data);
1693 		break;
1694 
1695 	case swr_op:
1696 		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1697 					vcpu->arch.host_cp0_badvaddr) & (~0x3);
1698 		run->mmio.len = 4;
1699 		imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1700 		switch (imme) {
1701 		case 0:
1702 			*(u32 *)data = vcpu->arch.gprs[rt];
1703 			break;
1704 		case 1:
1705 			*(u32 *)data = ((*(u32 *)data) & 0xff) |
1706 					(vcpu->arch.gprs[rt] << 8);
1707 			break;
1708 		case 2:
1709 			*(u32 *)data = ((*(u32 *)data) & 0xffff) |
1710 					(vcpu->arch.gprs[rt] << 16);
1711 			break;
1712 		case 3:
1713 			*(u32 *)data = ((*(u32 *)data) & 0xffffff) |
1714 					(vcpu->arch.gprs[rt] << 24);
1715 			break;
1716 		default:
1717 			break;
1718 		}
1719 
1720 		kvm_debug("[%#lx] OP_SWR: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1721 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1722 			  vcpu->arch.gprs[rt], *(u32 *)data);
1723 		break;
1724 
1725 	case sdl_op:
1726 		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1727 					vcpu->arch.host_cp0_badvaddr) & (~0x7);
1728 
1729 		run->mmio.len = 8;
1730 		imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1731 		switch (imme) {
1732 		case 0:
1733 			*(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff00) |
1734 					((vcpu->arch.gprs[rt] >> 56) & 0xff);
1735 			break;
1736 		case 1:
1737 			*(u64 *)data = ((*(u64 *)data) & 0xffffffffffff0000) |
1738 					((vcpu->arch.gprs[rt] >> 48) & 0xffff);
1739 			break;
1740 		case 2:
1741 			*(u64 *)data = ((*(u64 *)data) & 0xffffffffff000000) |
1742 					((vcpu->arch.gprs[rt] >> 40) & 0xffffff);
1743 			break;
1744 		case 3:
1745 			*(u64 *)data = ((*(u64 *)data) & 0xffffffff00000000) |
1746 					((vcpu->arch.gprs[rt] >> 32) & 0xffffffff);
1747 			break;
1748 		case 4:
1749 			*(u64 *)data = ((*(u64 *)data) & 0xffffff0000000000) |
1750 					((vcpu->arch.gprs[rt] >> 24) & 0xffffffffff);
1751 			break;
1752 		case 5:
1753 			*(u64 *)data = ((*(u64 *)data) & 0xffff000000000000) |
1754 					((vcpu->arch.gprs[rt] >> 16) & 0xffffffffffff);
1755 			break;
1756 		case 6:
1757 			*(u64 *)data = ((*(u64 *)data) & 0xff00000000000000) |
1758 					((vcpu->arch.gprs[rt] >> 8) & 0xffffffffffffff);
1759 			break;
1760 		case 7:
1761 			*(u64 *)data = vcpu->arch.gprs[rt];
1762 			break;
1763 		default:
1764 			break;
1765 		}
1766 
1767 		kvm_debug("[%#lx] OP_SDL: eaddr: %#lx, gpr: %#lx, data: %llx\n",
1768 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1769 			  vcpu->arch.gprs[rt], *(u64 *)data);
1770 		break;
1771 
1772 	case sdr_op:
1773 		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1774 					vcpu->arch.host_cp0_badvaddr) & (~0x7);
1775 
1776 		run->mmio.len = 8;
1777 		imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1778 		switch (imme) {
1779 		case 0:
1780 			*(u64 *)data = vcpu->arch.gprs[rt];
1781 			break;
1782 		case 1:
1783 			*(u64 *)data = ((*(u64 *)data) & 0xff) |
1784 					(vcpu->arch.gprs[rt] << 8);
1785 			break;
1786 		case 2:
1787 			*(u64 *)data = ((*(u64 *)data) & 0xffff) |
1788 					(vcpu->arch.gprs[rt] << 16);
1789 			break;
1790 		case 3:
1791 			*(u64 *)data = ((*(u64 *)data) & 0xffffff) |
1792 					(vcpu->arch.gprs[rt] << 24);
1793 			break;
1794 		case 4:
1795 			*(u64 *)data = ((*(u64 *)data) & 0xffffffff) |
1796 					(vcpu->arch.gprs[rt] << 32);
1797 			break;
1798 		case 5:
1799 			*(u64 *)data = ((*(u64 *)data) & 0xffffffffff) |
1800 					(vcpu->arch.gprs[rt] << 40);
1801 			break;
1802 		case 6:
1803 			*(u64 *)data = ((*(u64 *)data) & 0xffffffffffff) |
1804 					(vcpu->arch.gprs[rt] << 48);
1805 			break;
1806 		case 7:
1807 			*(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff) |
1808 					(vcpu->arch.gprs[rt] << 56);
1809 			break;
1810 		default:
1811 			break;
1812 		}
1813 
1814 		kvm_debug("[%#lx] OP_SDR: eaddr: %#lx, gpr: %#lx, data: %llx\n",
1815 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1816 			  vcpu->arch.gprs[rt], *(u64 *)data);
1817 		break;
1818 
1819 #ifdef CONFIG_CPU_LOONGSON64
1820 	case sdc2_op:
1821 		rt = inst.loongson3_lsdc2_format.rt;
1822 		switch (inst.loongson3_lsdc2_format.opcode1) {
1823 		/*
1824 		 * Loongson-3 overridden sdc2 instructions.
1825 		 * opcode1              instruction
1826 		 *   0x0          gssbx: store 1 bytes from GPR
1827 		 *   0x1          gsshx: store 2 bytes from GPR
1828 		 *   0x2          gsswx: store 4 bytes from GPR
1829 		 *   0x3          gssdx: store 8 bytes from GPR
1830 		 */
1831 		case 0x0:
1832 			run->mmio.len = 1;
1833 			*(u8 *)data = vcpu->arch.gprs[rt];
1834 
1835 			kvm_debug("[%#lx] OP_GSSBX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1836 				  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1837 				  vcpu->arch.gprs[rt], *(u8 *)data);
1838 			break;
1839 		case 0x1:
1840 			run->mmio.len = 2;
1841 			*(u16 *)data = vcpu->arch.gprs[rt];
1842 
1843 			kvm_debug("[%#lx] OP_GSSSHX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1844 				  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1845 				  vcpu->arch.gprs[rt], *(u16 *)data);
1846 			break;
1847 		case 0x2:
1848 			run->mmio.len = 4;
1849 			*(u32 *)data = vcpu->arch.gprs[rt];
1850 
1851 			kvm_debug("[%#lx] OP_GSSWX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1852 				  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1853 				  vcpu->arch.gprs[rt], *(u32 *)data);
1854 			break;
1855 		case 0x3:
1856 			run->mmio.len = 8;
1857 			*(u64 *)data = vcpu->arch.gprs[rt];
1858 
1859 			kvm_debug("[%#lx] OP_GSSDX: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
1860 				  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1861 				  vcpu->arch.gprs[rt], *(u64 *)data);
1862 			break;
1863 		default:
1864 			kvm_err("Godson Extended GS-Store not yet supported (inst=0x%08x)\n",
1865 				inst.word);
1866 			break;
1867 		}
1868 		break;
1869 #endif
1870 	default:
1871 		kvm_err("Store not yet supported (inst=0x%08x)\n",
1872 			inst.word);
1873 		goto out_fail;
1874 	}
1875 
1876 	vcpu->mmio_needed = 1;
1877 	run->mmio.is_write = 1;
1878 	vcpu->mmio_is_write = 1;
1879 
1880 	r = kvm_io_bus_write(vcpu, KVM_MMIO_BUS,
1881 			run->mmio.phys_addr, run->mmio.len, data);
1882 
1883 	if (!r) {
1884 		vcpu->mmio_needed = 0;
1885 		return EMULATE_DONE;
1886 	}
1887 
1888 	return EMULATE_DO_MMIO;
1889 
1890 out_fail:
1891 	/* Rollback PC if emulation was unsuccessful */
1892 	vcpu->arch.pc = curr_pc;
1893 	return EMULATE_FAIL;
1894 }
1895 
1896 enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
1897 					    u32 cause, struct kvm_run *run,
1898 					    struct kvm_vcpu *vcpu)
1899 {
1900 	int r;
1901 	enum emulation_result er;
1902 	unsigned long curr_pc;
1903 	u32 op, rt;
1904 	unsigned int imme;
1905 
1906 	rt = inst.i_format.rt;
1907 	op = inst.i_format.opcode;
1908 
1909 	/*
1910 	 * Find the resume PC now while we have safe and easy access to the
1911 	 * prior branch instruction, and save it for
1912 	 * kvm_mips_complete_mmio_load() to restore later.
1913 	 */
1914 	curr_pc = vcpu->arch.pc;
1915 	er = update_pc(vcpu, cause);
1916 	if (er == EMULATE_FAIL)
1917 		return er;
1918 	vcpu->arch.io_pc = vcpu->arch.pc;
1919 	vcpu->arch.pc = curr_pc;
1920 
1921 	vcpu->arch.io_gpr = rt;
1922 
1923 	run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1924 						vcpu->arch.host_cp0_badvaddr);
1925 	if (run->mmio.phys_addr == KVM_INVALID_ADDR)
1926 		return EMULATE_FAIL;
1927 
1928 	vcpu->mmio_needed = 2;	/* signed */
1929 	switch (op) {
1930 #if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
1931 	case ld_op:
1932 		run->mmio.len = 8;
1933 		break;
1934 
1935 	case lwu_op:
1936 		vcpu->mmio_needed = 1;	/* unsigned */
1937 		/* fall through */
1938 #endif
1939 	case lw_op:
1940 		run->mmio.len = 4;
1941 		break;
1942 
1943 	case lhu_op:
1944 		vcpu->mmio_needed = 1;	/* unsigned */
1945 		fallthrough;
1946 	case lh_op:
1947 		run->mmio.len = 2;
1948 		break;
1949 
1950 	case lbu_op:
1951 		vcpu->mmio_needed = 1;	/* unsigned */
1952 		fallthrough;
1953 	case lb_op:
1954 		run->mmio.len = 1;
1955 		break;
1956 
1957 	case lwl_op:
1958 		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1959 					vcpu->arch.host_cp0_badvaddr) & (~0x3);
1960 
1961 		run->mmio.len = 4;
1962 		imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1963 		switch (imme) {
1964 		case 0:
1965 			vcpu->mmio_needed = 3;	/* 1 byte */
1966 			break;
1967 		case 1:
1968 			vcpu->mmio_needed = 4;	/* 2 bytes */
1969 			break;
1970 		case 2:
1971 			vcpu->mmio_needed = 5;	/* 3 bytes */
1972 			break;
1973 		case 3:
1974 			vcpu->mmio_needed = 6;	/* 4 bytes */
1975 			break;
1976 		default:
1977 			break;
1978 		}
1979 		break;
1980 
1981 	case lwr_op:
1982 		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1983 					vcpu->arch.host_cp0_badvaddr) & (~0x3);
1984 
1985 		run->mmio.len = 4;
1986 		imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1987 		switch (imme) {
1988 		case 0:
1989 			vcpu->mmio_needed = 7;	/* 4 bytes */
1990 			break;
1991 		case 1:
1992 			vcpu->mmio_needed = 8;	/* 3 bytes */
1993 			break;
1994 		case 2:
1995 			vcpu->mmio_needed = 9;	/* 2 bytes */
1996 			break;
1997 		case 3:
1998 			vcpu->mmio_needed = 10;	/* 1 byte */
1999 			break;
2000 		default:
2001 			break;
2002 		}
2003 		break;
2004 
2005 	case ldl_op:
2006 		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
2007 					vcpu->arch.host_cp0_badvaddr) & (~0x7);
2008 
2009 		run->mmio.len = 8;
2010 		imme = vcpu->arch.host_cp0_badvaddr & 0x7;
2011 		switch (imme) {
2012 		case 0:
2013 			vcpu->mmio_needed = 11;	/* 1 byte */
2014 			break;
2015 		case 1:
2016 			vcpu->mmio_needed = 12;	/* 2 bytes */
2017 			break;
2018 		case 2:
2019 			vcpu->mmio_needed = 13;	/* 3 bytes */
2020 			break;
2021 		case 3:
2022 			vcpu->mmio_needed = 14;	/* 4 bytes */
2023 			break;
2024 		case 4:
2025 			vcpu->mmio_needed = 15;	/* 5 bytes */
2026 			break;
2027 		case 5:
2028 			vcpu->mmio_needed = 16;	/* 6 bytes */
2029 			break;
2030 		case 6:
2031 			vcpu->mmio_needed = 17;	/* 7 bytes */
2032 			break;
2033 		case 7:
2034 			vcpu->mmio_needed = 18;	/* 8 bytes */
2035 			break;
2036 		default:
2037 			break;
2038 		}
2039 		break;
2040 
2041 	case ldr_op:
2042 		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
2043 					vcpu->arch.host_cp0_badvaddr) & (~0x7);
2044 
2045 		run->mmio.len = 8;
2046 		imme = vcpu->arch.host_cp0_badvaddr & 0x7;
2047 		switch (imme) {
2048 		case 0:
2049 			vcpu->mmio_needed = 19;	/* 8 bytes */
2050 			break;
2051 		case 1:
2052 			vcpu->mmio_needed = 20;	/* 7 bytes */
2053 			break;
2054 		case 2:
2055 			vcpu->mmio_needed = 21;	/* 6 bytes */
2056 			break;
2057 		case 3:
2058 			vcpu->mmio_needed = 22;	/* 5 bytes */
2059 			break;
2060 		case 4:
2061 			vcpu->mmio_needed = 23;	/* 4 bytes */
2062 			break;
2063 		case 5:
2064 			vcpu->mmio_needed = 24;	/* 3 bytes */
2065 			break;
2066 		case 6:
2067 			vcpu->mmio_needed = 25;	/* 2 bytes */
2068 			break;
2069 		case 7:
2070 			vcpu->mmio_needed = 26;	/* 1 byte */
2071 			break;
2072 		default:
2073 			break;
2074 		}
2075 		break;
2076 
2077 #ifdef CONFIG_CPU_LOONGSON64
2078 	case ldc2_op:
2079 		rt = inst.loongson3_lsdc2_format.rt;
2080 		switch (inst.loongson3_lsdc2_format.opcode1) {
2081 		/*
2082 		 * Loongson-3 overridden ldc2 instructions.
2083 		 * opcode1              instruction
2084 		 *   0x0          gslbx: store 1 bytes from GPR
2085 		 *   0x1          gslhx: store 2 bytes from GPR
2086 		 *   0x2          gslwx: store 4 bytes from GPR
2087 		 *   0x3          gsldx: store 8 bytes from GPR
2088 		 */
2089 		case 0x0:
2090 			run->mmio.len = 1;
2091 			vcpu->mmio_needed = 27;	/* signed */
2092 			break;
2093 		case 0x1:
2094 			run->mmio.len = 2;
2095 			vcpu->mmio_needed = 28;	/* signed */
2096 			break;
2097 		case 0x2:
2098 			run->mmio.len = 4;
2099 			vcpu->mmio_needed = 29;	/* signed */
2100 			break;
2101 		case 0x3:
2102 			run->mmio.len = 8;
2103 			vcpu->mmio_needed = 30;	/* signed */
2104 			break;
2105 		default:
2106 			kvm_err("Godson Extended GS-Load for float not yet supported (inst=0x%08x)\n",
2107 				inst.word);
2108 			break;
2109 		}
2110 		break;
2111 #endif
2112 
2113 	default:
2114 		kvm_err("Load not yet supported (inst=0x%08x)\n",
2115 			inst.word);
2116 		vcpu->mmio_needed = 0;
2117 		return EMULATE_FAIL;
2118 	}
2119 
2120 	run->mmio.is_write = 0;
2121 	vcpu->mmio_is_write = 0;
2122 
2123 	r = kvm_io_bus_read(vcpu, KVM_MMIO_BUS,
2124 			run->mmio.phys_addr, run->mmio.len, run->mmio.data);
2125 
2126 	if (!r) {
2127 		kvm_mips_complete_mmio_load(vcpu, run);
2128 		vcpu->mmio_needed = 0;
2129 		return EMULATE_DONE;
2130 	}
2131 
2132 	return EMULATE_DO_MMIO;
2133 }
2134 
2135 #ifndef CONFIG_KVM_MIPS_VZ
2136 static enum emulation_result kvm_mips_guest_cache_op(int (*fn)(unsigned long),
2137 						     unsigned long curr_pc,
2138 						     unsigned long addr,
2139 						     struct kvm_run *run,
2140 						     struct kvm_vcpu *vcpu,
2141 						     u32 cause)
2142 {
2143 	int err;
2144 
2145 	for (;;) {
2146 		/* Carefully attempt the cache operation */
2147 		kvm_trap_emul_gva_lockless_begin(vcpu);
2148 		err = fn(addr);
2149 		kvm_trap_emul_gva_lockless_end(vcpu);
2150 
2151 		if (likely(!err))
2152 			return EMULATE_DONE;
2153 
2154 		/*
2155 		 * Try to handle the fault and retry, maybe we just raced with a
2156 		 * GVA invalidation.
2157 		 */
2158 		switch (kvm_trap_emul_gva_fault(vcpu, addr, false)) {
2159 		case KVM_MIPS_GVA:
2160 		case KVM_MIPS_GPA:
2161 			/* bad virtual or physical address */
2162 			return EMULATE_FAIL;
2163 		case KVM_MIPS_TLB:
2164 			/* no matching guest TLB */
2165 			vcpu->arch.host_cp0_badvaddr = addr;
2166 			vcpu->arch.pc = curr_pc;
2167 			kvm_mips_emulate_tlbmiss_ld(cause, NULL, run, vcpu);
2168 			return EMULATE_EXCEPT;
2169 		case KVM_MIPS_TLBINV:
2170 			/* invalid matching guest TLB */
2171 			vcpu->arch.host_cp0_badvaddr = addr;
2172 			vcpu->arch.pc = curr_pc;
2173 			kvm_mips_emulate_tlbinv_ld(cause, NULL, run, vcpu);
2174 			return EMULATE_EXCEPT;
2175 		default:
2176 			break;
2177 		}
2178 	}
2179 }
2180 
2181 enum emulation_result kvm_mips_emulate_cache(union mips_instruction inst,
2182 					     u32 *opc, u32 cause,
2183 					     struct kvm_run *run,
2184 					     struct kvm_vcpu *vcpu)
2185 {
2186 	enum emulation_result er = EMULATE_DONE;
2187 	u32 cache, op_inst, op, base;
2188 	s16 offset;
2189 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2190 	unsigned long va;
2191 	unsigned long curr_pc;
2192 
2193 	/*
2194 	 * Update PC and hold onto current PC in case there is
2195 	 * an error and we want to rollback the PC
2196 	 */
2197 	curr_pc = vcpu->arch.pc;
2198 	er = update_pc(vcpu, cause);
2199 	if (er == EMULATE_FAIL)
2200 		return er;
2201 
2202 	base = inst.i_format.rs;
2203 	op_inst = inst.i_format.rt;
2204 	if (cpu_has_mips_r6)
2205 		offset = inst.spec3_format.simmediate;
2206 	else
2207 		offset = inst.i_format.simmediate;
2208 	cache = op_inst & CacheOp_Cache;
2209 	op = op_inst & CacheOp_Op;
2210 
2211 	va = arch->gprs[base] + offset;
2212 
2213 	kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
2214 		  cache, op, base, arch->gprs[base], offset);
2215 
2216 	/*
2217 	 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
2218 	 * invalidate the caches entirely by stepping through all the
2219 	 * ways/indexes
2220 	 */
2221 	if (op == Index_Writeback_Inv) {
2222 		kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
2223 			  vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
2224 			  arch->gprs[base], offset);
2225 
2226 		if (cache == Cache_D) {
2227 #ifdef CONFIG_CPU_R4K_CACHE_TLB
2228 			r4k_blast_dcache();
2229 #else
2230 			switch (boot_cpu_type()) {
2231 			case CPU_CAVIUM_OCTEON3:
2232 				/* locally flush icache */
2233 				local_flush_icache_range(0, 0);
2234 				break;
2235 			default:
2236 				__flush_cache_all();
2237 				break;
2238 			}
2239 #endif
2240 		} else if (cache == Cache_I) {
2241 #ifdef CONFIG_CPU_R4K_CACHE_TLB
2242 			r4k_blast_icache();
2243 #else
2244 			switch (boot_cpu_type()) {
2245 			case CPU_CAVIUM_OCTEON3:
2246 				/* locally flush icache */
2247 				local_flush_icache_range(0, 0);
2248 				break;
2249 			default:
2250 				flush_icache_all();
2251 				break;
2252 			}
2253 #endif
2254 		} else {
2255 			kvm_err("%s: unsupported CACHE INDEX operation\n",
2256 				__func__);
2257 			return EMULATE_FAIL;
2258 		}
2259 
2260 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
2261 		kvm_mips_trans_cache_index(inst, opc, vcpu);
2262 #endif
2263 		goto done;
2264 	}
2265 
2266 	/* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
2267 	if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
2268 		/*
2269 		 * Perform the dcache part of icache synchronisation on the
2270 		 * guest's behalf.
2271 		 */
2272 		er = kvm_mips_guest_cache_op(protected_writeback_dcache_line,
2273 					     curr_pc, va, run, vcpu, cause);
2274 		if (er != EMULATE_DONE)
2275 			goto done;
2276 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
2277 		/*
2278 		 * Replace the CACHE instruction, with a SYNCI, not the same,
2279 		 * but avoids a trap
2280 		 */
2281 		kvm_mips_trans_cache_va(inst, opc, vcpu);
2282 #endif
2283 	} else if (op_inst == Hit_Invalidate_I) {
2284 		/* Perform the icache synchronisation on the guest's behalf */
2285 		er = kvm_mips_guest_cache_op(protected_writeback_dcache_line,
2286 					     curr_pc, va, run, vcpu, cause);
2287 		if (er != EMULATE_DONE)
2288 			goto done;
2289 		er = kvm_mips_guest_cache_op(protected_flush_icache_line,
2290 					     curr_pc, va, run, vcpu, cause);
2291 		if (er != EMULATE_DONE)
2292 			goto done;
2293 
2294 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
2295 		/* Replace the CACHE instruction, with a SYNCI */
2296 		kvm_mips_trans_cache_va(inst, opc, vcpu);
2297 #endif
2298 	} else {
2299 		kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
2300 			cache, op, base, arch->gprs[base], offset);
2301 		er = EMULATE_FAIL;
2302 	}
2303 
2304 done:
2305 	/* Rollback PC only if emulation was unsuccessful */
2306 	if (er == EMULATE_FAIL)
2307 		vcpu->arch.pc = curr_pc;
2308 	/* Guest exception needs guest to resume */
2309 	if (er == EMULATE_EXCEPT)
2310 		er = EMULATE_DONE;
2311 
2312 	return er;
2313 }
2314 
2315 enum emulation_result kvm_mips_emulate_inst(u32 cause, u32 *opc,
2316 					    struct kvm_run *run,
2317 					    struct kvm_vcpu *vcpu)
2318 {
2319 	union mips_instruction inst;
2320 	enum emulation_result er = EMULATE_DONE;
2321 	int err;
2322 
2323 	/* Fetch the instruction. */
2324 	if (cause & CAUSEF_BD)
2325 		opc += 1;
2326 	err = kvm_get_badinstr(opc, vcpu, &inst.word);
2327 	if (err)
2328 		return EMULATE_FAIL;
2329 
2330 	switch (inst.r_format.opcode) {
2331 	case cop0_op:
2332 		er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
2333 		break;
2334 
2335 #ifndef CONFIG_CPU_MIPSR6
2336 	case cache_op:
2337 		++vcpu->stat.cache_exits;
2338 		trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
2339 		er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
2340 		break;
2341 #else
2342 	case spec3_op:
2343 		switch (inst.spec3_format.func) {
2344 		case cache6_op:
2345 			++vcpu->stat.cache_exits;
2346 			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
2347 			er = kvm_mips_emulate_cache(inst, opc, cause, run,
2348 						    vcpu);
2349 			break;
2350 		default:
2351 			goto unknown;
2352 		}
2353 		break;
2354 unknown:
2355 #endif
2356 
2357 	default:
2358 		kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
2359 			inst.word);
2360 		kvm_arch_vcpu_dump_regs(vcpu);
2361 		er = EMULATE_FAIL;
2362 		break;
2363 	}
2364 
2365 	return er;
2366 }
2367 #endif /* CONFIG_KVM_MIPS_VZ */
2368 
2369 /**
2370  * kvm_mips_guest_exception_base() - Find guest exception vector base address.
2371  *
2372  * Returns:	The base address of the current guest exception vector, taking
2373  *		both Guest.CP0_Status.BEV and Guest.CP0_EBase into account.
2374  */
2375 long kvm_mips_guest_exception_base(struct kvm_vcpu *vcpu)
2376 {
2377 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2378 
2379 	if (kvm_read_c0_guest_status(cop0) & ST0_BEV)
2380 		return KVM_GUEST_CKSEG1ADDR(0x1fc00200);
2381 	else
2382 		return kvm_read_c0_guest_ebase(cop0) & MIPS_EBASE_BASE;
2383 }
2384 
2385 enum emulation_result kvm_mips_emulate_syscall(u32 cause,
2386 					       u32 *opc,
2387 					       struct kvm_run *run,
2388 					       struct kvm_vcpu *vcpu)
2389 {
2390 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2391 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2392 	enum emulation_result er = EMULATE_DONE;
2393 
2394 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2395 		/* save old pc */
2396 		kvm_write_c0_guest_epc(cop0, arch->pc);
2397 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2398 
2399 		if (cause & CAUSEF_BD)
2400 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2401 		else
2402 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2403 
2404 		kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
2405 
2406 		kvm_change_c0_guest_cause(cop0, (0xff),
2407 					  (EXCCODE_SYS << CAUSEB_EXCCODE));
2408 
2409 		/* Set PC to the exception entry point */
2410 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2411 
2412 	} else {
2413 		kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
2414 		er = EMULATE_FAIL;
2415 	}
2416 
2417 	return er;
2418 }
2419 
2420 enum emulation_result kvm_mips_emulate_tlbmiss_ld(u32 cause,
2421 						  u32 *opc,
2422 						  struct kvm_run *run,
2423 						  struct kvm_vcpu *vcpu)
2424 {
2425 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2426 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2427 	unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) |
2428 			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2429 
2430 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2431 		/* save old pc */
2432 		kvm_write_c0_guest_epc(cop0, arch->pc);
2433 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2434 
2435 		if (cause & CAUSEF_BD)
2436 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2437 		else
2438 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2439 
2440 		kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
2441 			  arch->pc);
2442 
2443 		/* set pc to the exception entry point */
2444 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0;
2445 
2446 	} else {
2447 		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
2448 			  arch->pc);
2449 
2450 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2451 	}
2452 
2453 	kvm_change_c0_guest_cause(cop0, (0xff),
2454 				  (EXCCODE_TLBL << CAUSEB_EXCCODE));
2455 
2456 	/* setup badvaddr, context and entryhi registers for the guest */
2457 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2458 	/* XXXKYMA: is the context register used by linux??? */
2459 	kvm_write_c0_guest_entryhi(cop0, entryhi);
2460 
2461 	return EMULATE_DONE;
2462 }
2463 
2464 enum emulation_result kvm_mips_emulate_tlbinv_ld(u32 cause,
2465 						 u32 *opc,
2466 						 struct kvm_run *run,
2467 						 struct kvm_vcpu *vcpu)
2468 {
2469 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2470 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2471 	unsigned long entryhi =
2472 		(vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2473 		(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2474 
2475 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2476 		/* save old pc */
2477 		kvm_write_c0_guest_epc(cop0, arch->pc);
2478 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2479 
2480 		if (cause & CAUSEF_BD)
2481 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2482 		else
2483 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2484 
2485 		kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
2486 			  arch->pc);
2487 	} else {
2488 		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
2489 			  arch->pc);
2490 	}
2491 
2492 	/* set pc to the exception entry point */
2493 	arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2494 
2495 	kvm_change_c0_guest_cause(cop0, (0xff),
2496 				  (EXCCODE_TLBL << CAUSEB_EXCCODE));
2497 
2498 	/* setup badvaddr, context and entryhi registers for the guest */
2499 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2500 	/* XXXKYMA: is the context register used by linux??? */
2501 	kvm_write_c0_guest_entryhi(cop0, entryhi);
2502 
2503 	return EMULATE_DONE;
2504 }
2505 
2506 enum emulation_result kvm_mips_emulate_tlbmiss_st(u32 cause,
2507 						  u32 *opc,
2508 						  struct kvm_run *run,
2509 						  struct kvm_vcpu *vcpu)
2510 {
2511 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2512 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2513 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2514 			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2515 
2516 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2517 		/* save old pc */
2518 		kvm_write_c0_guest_epc(cop0, arch->pc);
2519 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2520 
2521 		if (cause & CAUSEF_BD)
2522 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2523 		else
2524 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2525 
2526 		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2527 			  arch->pc);
2528 
2529 		/* Set PC to the exception entry point */
2530 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0;
2531 	} else {
2532 		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2533 			  arch->pc);
2534 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2535 	}
2536 
2537 	kvm_change_c0_guest_cause(cop0, (0xff),
2538 				  (EXCCODE_TLBS << CAUSEB_EXCCODE));
2539 
2540 	/* setup badvaddr, context and entryhi registers for the guest */
2541 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2542 	/* XXXKYMA: is the context register used by linux??? */
2543 	kvm_write_c0_guest_entryhi(cop0, entryhi);
2544 
2545 	return EMULATE_DONE;
2546 }
2547 
2548 enum emulation_result kvm_mips_emulate_tlbinv_st(u32 cause,
2549 						 u32 *opc,
2550 						 struct kvm_run *run,
2551 						 struct kvm_vcpu *vcpu)
2552 {
2553 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2554 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2555 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2556 		(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2557 
2558 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2559 		/* save old pc */
2560 		kvm_write_c0_guest_epc(cop0, arch->pc);
2561 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2562 
2563 		if (cause & CAUSEF_BD)
2564 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2565 		else
2566 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2567 
2568 		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2569 			  arch->pc);
2570 	} else {
2571 		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2572 			  arch->pc);
2573 	}
2574 
2575 	/* Set PC to the exception entry point */
2576 	arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2577 
2578 	kvm_change_c0_guest_cause(cop0, (0xff),
2579 				  (EXCCODE_TLBS << CAUSEB_EXCCODE));
2580 
2581 	/* setup badvaddr, context and entryhi registers for the guest */
2582 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2583 	/* XXXKYMA: is the context register used by linux??? */
2584 	kvm_write_c0_guest_entryhi(cop0, entryhi);
2585 
2586 	return EMULATE_DONE;
2587 }
2588 
2589 enum emulation_result kvm_mips_emulate_tlbmod(u32 cause,
2590 					      u32 *opc,
2591 					      struct kvm_run *run,
2592 					      struct kvm_vcpu *vcpu)
2593 {
2594 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2595 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2596 			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2597 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2598 
2599 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2600 		/* save old pc */
2601 		kvm_write_c0_guest_epc(cop0, arch->pc);
2602 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2603 
2604 		if (cause & CAUSEF_BD)
2605 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2606 		else
2607 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2608 
2609 		kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2610 			  arch->pc);
2611 	} else {
2612 		kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2613 			  arch->pc);
2614 	}
2615 
2616 	arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2617 
2618 	kvm_change_c0_guest_cause(cop0, (0xff),
2619 				  (EXCCODE_MOD << CAUSEB_EXCCODE));
2620 
2621 	/* setup badvaddr, context and entryhi registers for the guest */
2622 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2623 	/* XXXKYMA: is the context register used by linux??? */
2624 	kvm_write_c0_guest_entryhi(cop0, entryhi);
2625 
2626 	return EMULATE_DONE;
2627 }
2628 
2629 enum emulation_result kvm_mips_emulate_fpu_exc(u32 cause,
2630 					       u32 *opc,
2631 					       struct kvm_run *run,
2632 					       struct kvm_vcpu *vcpu)
2633 {
2634 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2635 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2636 
2637 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2638 		/* save old pc */
2639 		kvm_write_c0_guest_epc(cop0, arch->pc);
2640 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2641 
2642 		if (cause & CAUSEF_BD)
2643 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2644 		else
2645 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2646 
2647 	}
2648 
2649 	arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2650 
2651 	kvm_change_c0_guest_cause(cop0, (0xff),
2652 				  (EXCCODE_CPU << CAUSEB_EXCCODE));
2653 	kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2654 
2655 	return EMULATE_DONE;
2656 }
2657 
2658 enum emulation_result kvm_mips_emulate_ri_exc(u32 cause,
2659 					      u32 *opc,
2660 					      struct kvm_run *run,
2661 					      struct kvm_vcpu *vcpu)
2662 {
2663 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2664 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2665 	enum emulation_result er = EMULATE_DONE;
2666 
2667 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2668 		/* save old pc */
2669 		kvm_write_c0_guest_epc(cop0, arch->pc);
2670 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2671 
2672 		if (cause & CAUSEF_BD)
2673 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2674 		else
2675 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2676 
2677 		kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2678 
2679 		kvm_change_c0_guest_cause(cop0, (0xff),
2680 					  (EXCCODE_RI << CAUSEB_EXCCODE));
2681 
2682 		/* Set PC to the exception entry point */
2683 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2684 
2685 	} else {
2686 		kvm_err("Trying to deliver RI when EXL is already set\n");
2687 		er = EMULATE_FAIL;
2688 	}
2689 
2690 	return er;
2691 }
2692 
2693 enum emulation_result kvm_mips_emulate_bp_exc(u32 cause,
2694 					      u32 *opc,
2695 					      struct kvm_run *run,
2696 					      struct kvm_vcpu *vcpu)
2697 {
2698 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2699 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2700 	enum emulation_result er = EMULATE_DONE;
2701 
2702 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2703 		/* save old pc */
2704 		kvm_write_c0_guest_epc(cop0, arch->pc);
2705 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2706 
2707 		if (cause & CAUSEF_BD)
2708 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2709 		else
2710 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2711 
2712 		kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2713 
2714 		kvm_change_c0_guest_cause(cop0, (0xff),
2715 					  (EXCCODE_BP << CAUSEB_EXCCODE));
2716 
2717 		/* Set PC to the exception entry point */
2718 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2719 
2720 	} else {
2721 		kvm_err("Trying to deliver BP when EXL is already set\n");
2722 		er = EMULATE_FAIL;
2723 	}
2724 
2725 	return er;
2726 }
2727 
2728 enum emulation_result kvm_mips_emulate_trap_exc(u32 cause,
2729 						u32 *opc,
2730 						struct kvm_run *run,
2731 						struct kvm_vcpu *vcpu)
2732 {
2733 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2734 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2735 	enum emulation_result er = EMULATE_DONE;
2736 
2737 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2738 		/* save old pc */
2739 		kvm_write_c0_guest_epc(cop0, arch->pc);
2740 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2741 
2742 		if (cause & CAUSEF_BD)
2743 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2744 		else
2745 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2746 
2747 		kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2748 
2749 		kvm_change_c0_guest_cause(cop0, (0xff),
2750 					  (EXCCODE_TR << CAUSEB_EXCCODE));
2751 
2752 		/* Set PC to the exception entry point */
2753 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2754 
2755 	} else {
2756 		kvm_err("Trying to deliver TRAP when EXL is already set\n");
2757 		er = EMULATE_FAIL;
2758 	}
2759 
2760 	return er;
2761 }
2762 
2763 enum emulation_result kvm_mips_emulate_msafpe_exc(u32 cause,
2764 						  u32 *opc,
2765 						  struct kvm_run *run,
2766 						  struct kvm_vcpu *vcpu)
2767 {
2768 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2769 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2770 	enum emulation_result er = EMULATE_DONE;
2771 
2772 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2773 		/* save old pc */
2774 		kvm_write_c0_guest_epc(cop0, arch->pc);
2775 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2776 
2777 		if (cause & CAUSEF_BD)
2778 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2779 		else
2780 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2781 
2782 		kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2783 
2784 		kvm_change_c0_guest_cause(cop0, (0xff),
2785 					  (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
2786 
2787 		/* Set PC to the exception entry point */
2788 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2789 
2790 	} else {
2791 		kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2792 		er = EMULATE_FAIL;
2793 	}
2794 
2795 	return er;
2796 }
2797 
2798 enum emulation_result kvm_mips_emulate_fpe_exc(u32 cause,
2799 					       u32 *opc,
2800 					       struct kvm_run *run,
2801 					       struct kvm_vcpu *vcpu)
2802 {
2803 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2804 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2805 	enum emulation_result er = EMULATE_DONE;
2806 
2807 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2808 		/* save old pc */
2809 		kvm_write_c0_guest_epc(cop0, arch->pc);
2810 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2811 
2812 		if (cause & CAUSEF_BD)
2813 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2814 		else
2815 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2816 
2817 		kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2818 
2819 		kvm_change_c0_guest_cause(cop0, (0xff),
2820 					  (EXCCODE_FPE << CAUSEB_EXCCODE));
2821 
2822 		/* Set PC to the exception entry point */
2823 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2824 
2825 	} else {
2826 		kvm_err("Trying to deliver FPE when EXL is already set\n");
2827 		er = EMULATE_FAIL;
2828 	}
2829 
2830 	return er;
2831 }
2832 
2833 enum emulation_result kvm_mips_emulate_msadis_exc(u32 cause,
2834 						  u32 *opc,
2835 						  struct kvm_run *run,
2836 						  struct kvm_vcpu *vcpu)
2837 {
2838 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2839 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2840 	enum emulation_result er = EMULATE_DONE;
2841 
2842 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2843 		/* save old pc */
2844 		kvm_write_c0_guest_epc(cop0, arch->pc);
2845 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2846 
2847 		if (cause & CAUSEF_BD)
2848 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2849 		else
2850 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2851 
2852 		kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2853 
2854 		kvm_change_c0_guest_cause(cop0, (0xff),
2855 					  (EXCCODE_MSADIS << CAUSEB_EXCCODE));
2856 
2857 		/* Set PC to the exception entry point */
2858 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2859 
2860 	} else {
2861 		kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2862 		er = EMULATE_FAIL;
2863 	}
2864 
2865 	return er;
2866 }
2867 
2868 enum emulation_result kvm_mips_handle_ri(u32 cause, u32 *opc,
2869 					 struct kvm_run *run,
2870 					 struct kvm_vcpu *vcpu)
2871 {
2872 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2873 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2874 	enum emulation_result er = EMULATE_DONE;
2875 	unsigned long curr_pc;
2876 	union mips_instruction inst;
2877 	int err;
2878 
2879 	/*
2880 	 * Update PC and hold onto current PC in case there is
2881 	 * an error and we want to rollback the PC
2882 	 */
2883 	curr_pc = vcpu->arch.pc;
2884 	er = update_pc(vcpu, cause);
2885 	if (er == EMULATE_FAIL)
2886 		return er;
2887 
2888 	/* Fetch the instruction. */
2889 	if (cause & CAUSEF_BD)
2890 		opc += 1;
2891 	err = kvm_get_badinstr(opc, vcpu, &inst.word);
2892 	if (err) {
2893 		kvm_err("%s: Cannot get inst @ %p (%d)\n", __func__, opc, err);
2894 		return EMULATE_FAIL;
2895 	}
2896 
2897 	if (inst.r_format.opcode == spec3_op &&
2898 	    inst.r_format.func == rdhwr_op &&
2899 	    inst.r_format.rs == 0 &&
2900 	    (inst.r_format.re >> 3) == 0) {
2901 		int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2902 		int rd = inst.r_format.rd;
2903 		int rt = inst.r_format.rt;
2904 		int sel = inst.r_format.re & 0x7;
2905 
2906 		/* If usermode, check RDHWR rd is allowed by guest HWREna */
2907 		if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2908 			kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2909 				  rd, opc);
2910 			goto emulate_ri;
2911 		}
2912 		switch (rd) {
2913 		case MIPS_HWR_CPUNUM:		/* CPU number */
2914 			arch->gprs[rt] = vcpu->vcpu_id;
2915 			break;
2916 		case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
2917 			arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2918 					     current_cpu_data.icache.linesz);
2919 			break;
2920 		case MIPS_HWR_CC:		/* Read count register */
2921 			arch->gprs[rt] = (s32)kvm_mips_read_count(vcpu);
2922 			break;
2923 		case MIPS_HWR_CCRES:		/* Count register resolution */
2924 			switch (current_cpu_data.cputype) {
2925 			case CPU_20KC:
2926 			case CPU_25KF:
2927 				arch->gprs[rt] = 1;
2928 				break;
2929 			default:
2930 				arch->gprs[rt] = 2;
2931 			}
2932 			break;
2933 		case MIPS_HWR_ULR:		/* Read UserLocal register */
2934 			arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2935 			break;
2936 
2937 		default:
2938 			kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2939 			goto emulate_ri;
2940 		}
2941 
2942 		trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, KVM_TRACE_HWR(rd, sel),
2943 			      vcpu->arch.gprs[rt]);
2944 	} else {
2945 		kvm_debug("Emulate RI not supported @ %p: %#x\n",
2946 			  opc, inst.word);
2947 		goto emulate_ri;
2948 	}
2949 
2950 	return EMULATE_DONE;
2951 
2952 emulate_ri:
2953 	/*
2954 	 * Rollback PC (if in branch delay slot then the PC already points to
2955 	 * branch target), and pass the RI exception to the guest OS.
2956 	 */
2957 	vcpu->arch.pc = curr_pc;
2958 	return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
2959 }
2960 
2961 enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2962 						  struct kvm_run *run)
2963 {
2964 	unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2965 	enum emulation_result er = EMULATE_DONE;
2966 
2967 	if (run->mmio.len > sizeof(*gpr)) {
2968 		kvm_err("Bad MMIO length: %d", run->mmio.len);
2969 		er = EMULATE_FAIL;
2970 		goto done;
2971 	}
2972 
2973 	/* Restore saved resume PC */
2974 	vcpu->arch.pc = vcpu->arch.io_pc;
2975 
2976 	switch (run->mmio.len) {
2977 	case 8:
2978 		switch (vcpu->mmio_needed) {
2979 		case 11:
2980 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff) |
2981 				(((*(s64 *)run->mmio.data) & 0xff) << 56);
2982 			break;
2983 		case 12:
2984 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff) |
2985 				(((*(s64 *)run->mmio.data) & 0xffff) << 48);
2986 			break;
2987 		case 13:
2988 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff) |
2989 				(((*(s64 *)run->mmio.data) & 0xffffff) << 40);
2990 			break;
2991 		case 14:
2992 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff) |
2993 				(((*(s64 *)run->mmio.data) & 0xffffffff) << 32);
2994 			break;
2995 		case 15:
2996 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) |
2997 				(((*(s64 *)run->mmio.data) & 0xffffffffff) << 24);
2998 			break;
2999 		case 16:
3000 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) |
3001 				(((*(s64 *)run->mmio.data) & 0xffffffffffff) << 16);
3002 			break;
3003 		case 17:
3004 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) |
3005 				(((*(s64 *)run->mmio.data) & 0xffffffffffffff) << 8);
3006 			break;
3007 		case 18:
3008 		case 19:
3009 			*gpr = *(s64 *)run->mmio.data;
3010 			break;
3011 		case 20:
3012 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff00000000000000) |
3013 				((((*(s64 *)run->mmio.data)) >> 8) & 0xffffffffffffff);
3014 			break;
3015 		case 21:
3016 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff000000000000) |
3017 				((((*(s64 *)run->mmio.data)) >> 16) & 0xffffffffffff);
3018 			break;
3019 		case 22:
3020 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff0000000000) |
3021 				((((*(s64 *)run->mmio.data)) >> 24) & 0xffffffffff);
3022 			break;
3023 		case 23:
3024 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff00000000) |
3025 				((((*(s64 *)run->mmio.data)) >> 32) & 0xffffffff);
3026 			break;
3027 		case 24:
3028 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff000000) |
3029 				((((*(s64 *)run->mmio.data)) >> 40) & 0xffffff);
3030 			break;
3031 		case 25:
3032 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff0000) |
3033 				((((*(s64 *)run->mmio.data)) >> 48) & 0xffff);
3034 			break;
3035 		case 26:
3036 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff00) |
3037 				((((*(s64 *)run->mmio.data)) >> 56) & 0xff);
3038 			break;
3039 		default:
3040 			*gpr = *(s64 *)run->mmio.data;
3041 		}
3042 		break;
3043 
3044 	case 4:
3045 		switch (vcpu->mmio_needed) {
3046 		case 1:
3047 			*gpr = *(u32 *)run->mmio.data;
3048 			break;
3049 		case 2:
3050 			*gpr = *(s32 *)run->mmio.data;
3051 			break;
3052 		case 3:
3053 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) |
3054 				(((*(s32 *)run->mmio.data) & 0xff) << 24);
3055 			break;
3056 		case 4:
3057 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) |
3058 				(((*(s32 *)run->mmio.data) & 0xffff) << 16);
3059 			break;
3060 		case 5:
3061 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) |
3062 				(((*(s32 *)run->mmio.data) & 0xffffff) << 8);
3063 			break;
3064 		case 6:
3065 		case 7:
3066 			*gpr = *(s32 *)run->mmio.data;
3067 			break;
3068 		case 8:
3069 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff000000) |
3070 				((((*(s32 *)run->mmio.data)) >> 8) & 0xffffff);
3071 			break;
3072 		case 9:
3073 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff0000) |
3074 				((((*(s32 *)run->mmio.data)) >> 16) & 0xffff);
3075 			break;
3076 		case 10:
3077 			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff00) |
3078 				((((*(s32 *)run->mmio.data)) >> 24) & 0xff);
3079 			break;
3080 		default:
3081 			*gpr = *(s32 *)run->mmio.data;
3082 		}
3083 		break;
3084 
3085 	case 2:
3086 		if (vcpu->mmio_needed == 1)
3087 			*gpr = *(u16 *)run->mmio.data;
3088 		else
3089 			*gpr = *(s16 *)run->mmio.data;
3090 
3091 		break;
3092 	case 1:
3093 		if (vcpu->mmio_needed == 1)
3094 			*gpr = *(u8 *)run->mmio.data;
3095 		else
3096 			*gpr = *(s8 *)run->mmio.data;
3097 		break;
3098 	}
3099 
3100 done:
3101 	return er;
3102 }
3103 
3104 static enum emulation_result kvm_mips_emulate_exc(u32 cause,
3105 						  u32 *opc,
3106 						  struct kvm_run *run,
3107 						  struct kvm_vcpu *vcpu)
3108 {
3109 	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
3110 	struct mips_coproc *cop0 = vcpu->arch.cop0;
3111 	struct kvm_vcpu_arch *arch = &vcpu->arch;
3112 	enum emulation_result er = EMULATE_DONE;
3113 
3114 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
3115 		/* save old pc */
3116 		kvm_write_c0_guest_epc(cop0, arch->pc);
3117 		kvm_set_c0_guest_status(cop0, ST0_EXL);
3118 
3119 		if (cause & CAUSEF_BD)
3120 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
3121 		else
3122 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
3123 
3124 		kvm_change_c0_guest_cause(cop0, (0xff),
3125 					  (exccode << CAUSEB_EXCCODE));
3126 
3127 		/* Set PC to the exception entry point */
3128 		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
3129 		kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
3130 
3131 		kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
3132 			  exccode, kvm_read_c0_guest_epc(cop0),
3133 			  kvm_read_c0_guest_badvaddr(cop0));
3134 	} else {
3135 		kvm_err("Trying to deliver EXC when EXL is already set\n");
3136 		er = EMULATE_FAIL;
3137 	}
3138 
3139 	return er;
3140 }
3141 
3142 enum emulation_result kvm_mips_check_privilege(u32 cause,
3143 					       u32 *opc,
3144 					       struct kvm_run *run,
3145 					       struct kvm_vcpu *vcpu)
3146 {
3147 	enum emulation_result er = EMULATE_DONE;
3148 	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
3149 	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
3150 
3151 	int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
3152 
3153 	if (usermode) {
3154 		switch (exccode) {
3155 		case EXCCODE_INT:
3156 		case EXCCODE_SYS:
3157 		case EXCCODE_BP:
3158 		case EXCCODE_RI:
3159 		case EXCCODE_TR:
3160 		case EXCCODE_MSAFPE:
3161 		case EXCCODE_FPE:
3162 		case EXCCODE_MSADIS:
3163 			break;
3164 
3165 		case EXCCODE_CPU:
3166 			if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
3167 				er = EMULATE_PRIV_FAIL;
3168 			break;
3169 
3170 		case EXCCODE_MOD:
3171 			break;
3172 
3173 		case EXCCODE_TLBL:
3174 			/*
3175 			 * We we are accessing Guest kernel space, then send an
3176 			 * address error exception to the guest
3177 			 */
3178 			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
3179 				kvm_debug("%s: LD MISS @ %#lx\n", __func__,
3180 					  badvaddr);
3181 				cause &= ~0xff;
3182 				cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
3183 				er = EMULATE_PRIV_FAIL;
3184 			}
3185 			break;
3186 
3187 		case EXCCODE_TLBS:
3188 			/*
3189 			 * We we are accessing Guest kernel space, then send an
3190 			 * address error exception to the guest
3191 			 */
3192 			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
3193 				kvm_debug("%s: ST MISS @ %#lx\n", __func__,
3194 					  badvaddr);
3195 				cause &= ~0xff;
3196 				cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
3197 				er = EMULATE_PRIV_FAIL;
3198 			}
3199 			break;
3200 
3201 		case EXCCODE_ADES:
3202 			kvm_debug("%s: address error ST @ %#lx\n", __func__,
3203 				  badvaddr);
3204 			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
3205 				cause &= ~0xff;
3206 				cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
3207 			}
3208 			er = EMULATE_PRIV_FAIL;
3209 			break;
3210 		case EXCCODE_ADEL:
3211 			kvm_debug("%s: address error LD @ %#lx\n", __func__,
3212 				  badvaddr);
3213 			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
3214 				cause &= ~0xff;
3215 				cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
3216 			}
3217 			er = EMULATE_PRIV_FAIL;
3218 			break;
3219 		default:
3220 			er = EMULATE_PRIV_FAIL;
3221 			break;
3222 		}
3223 	}
3224 
3225 	if (er == EMULATE_PRIV_FAIL)
3226 		kvm_mips_emulate_exc(cause, opc, run, vcpu);
3227 
3228 	return er;
3229 }
3230 
3231 /*
3232  * User Address (UA) fault, this could happen if
3233  * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
3234  *     case we pass on the fault to the guest kernel and let it handle it.
3235  * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
3236  *     case we inject the TLB from the Guest TLB into the shadow host TLB
3237  */
3238 enum emulation_result kvm_mips_handle_tlbmiss(u32 cause,
3239 					      u32 *opc,
3240 					      struct kvm_run *run,
3241 					      struct kvm_vcpu *vcpu,
3242 					      bool write_fault)
3243 {
3244 	enum emulation_result er = EMULATE_DONE;
3245 	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
3246 	unsigned long va = vcpu->arch.host_cp0_badvaddr;
3247 	int index;
3248 
3249 	kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n",
3250 		  vcpu->arch.host_cp0_badvaddr);
3251 
3252 	/*
3253 	 * KVM would not have got the exception if this entry was valid in the
3254 	 * shadow host TLB. Check the Guest TLB, if the entry is not there then
3255 	 * send the guest an exception. The guest exc handler should then inject
3256 	 * an entry into the guest TLB.
3257 	 */
3258 	index = kvm_mips_guest_tlb_lookup(vcpu,
3259 		      (va & VPN2_MASK) |
3260 		      (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) &
3261 		       KVM_ENTRYHI_ASID));
3262 	if (index < 0) {
3263 		if (exccode == EXCCODE_TLBL) {
3264 			er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
3265 		} else if (exccode == EXCCODE_TLBS) {
3266 			er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
3267 		} else {
3268 			kvm_err("%s: invalid exc code: %d\n", __func__,
3269 				exccode);
3270 			er = EMULATE_FAIL;
3271 		}
3272 	} else {
3273 		struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
3274 
3275 		/*
3276 		 * Check if the entry is valid, if not then setup a TLB invalid
3277 		 * exception to the guest
3278 		 */
3279 		if (!TLB_IS_VALID(*tlb, va)) {
3280 			if (exccode == EXCCODE_TLBL) {
3281 				er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
3282 								vcpu);
3283 			} else if (exccode == EXCCODE_TLBS) {
3284 				er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
3285 								vcpu);
3286 			} else {
3287 				kvm_err("%s: invalid exc code: %d\n", __func__,
3288 					exccode);
3289 				er = EMULATE_FAIL;
3290 			}
3291 		} else {
3292 			kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
3293 				  tlb->tlb_hi, tlb->tlb_lo[0], tlb->tlb_lo[1]);
3294 			/*
3295 			 * OK we have a Guest TLB entry, now inject it into the
3296 			 * shadow host TLB
3297 			 */
3298 			if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, va,
3299 								 write_fault)) {
3300 				kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
3301 					__func__, va, index, vcpu,
3302 					read_c0_entryhi());
3303 				er = EMULATE_FAIL;
3304 			}
3305 		}
3306 	}
3307 
3308 	return er;
3309 }
3310