xref: /openbmc/linux/arch/mips/kvm/emulate.c (revision 0984d159)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: Instruction/Exception emulation
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11 
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/ktime.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/fs.h>
19 #include <linux/bootmem.h>
20 #include <linux/random.h>
21 #include <asm/page.h>
22 #include <asm/cacheflush.h>
23 #include <asm/cacheops.h>
24 #include <asm/cpu-info.h>
25 #include <asm/mmu_context.h>
26 #include <asm/tlbflush.h>
27 #include <asm/inst.h>
28 
29 #undef CONFIG_MIPS_MT
30 #include <asm/r4kcache.h>
31 #define CONFIG_MIPS_MT
32 
33 #include "interrupt.h"
34 #include "commpage.h"
35 
36 #include "trace.h"
37 
38 /*
39  * Compute the return address and do emulate branch simulation, if required.
40  * This function should be called only in branch delay slot active.
41  */
42 unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu,
43 	unsigned long instpc)
44 {
45 	unsigned int dspcontrol;
46 	union mips_instruction insn;
47 	struct kvm_vcpu_arch *arch = &vcpu->arch;
48 	long epc = instpc;
49 	long nextpc = KVM_INVALID_INST;
50 
51 	if (epc & 3)
52 		goto unaligned;
53 
54 	/* Read the instruction */
55 	insn.word = kvm_get_inst((uint32_t *) epc, vcpu);
56 
57 	if (insn.word == KVM_INVALID_INST)
58 		return KVM_INVALID_INST;
59 
60 	switch (insn.i_format.opcode) {
61 		/* jr and jalr are in r_format format. */
62 	case spec_op:
63 		switch (insn.r_format.func) {
64 		case jalr_op:
65 			arch->gprs[insn.r_format.rd] = epc + 8;
66 			/* Fall through */
67 		case jr_op:
68 			nextpc = arch->gprs[insn.r_format.rs];
69 			break;
70 		}
71 		break;
72 
73 		/*
74 		 * This group contains:
75 		 * bltz_op, bgez_op, bltzl_op, bgezl_op,
76 		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
77 		 */
78 	case bcond_op:
79 		switch (insn.i_format.rt) {
80 		case bltz_op:
81 		case bltzl_op:
82 			if ((long)arch->gprs[insn.i_format.rs] < 0)
83 				epc = epc + 4 + (insn.i_format.simmediate << 2);
84 			else
85 				epc += 8;
86 			nextpc = epc;
87 			break;
88 
89 		case bgez_op:
90 		case bgezl_op:
91 			if ((long)arch->gprs[insn.i_format.rs] >= 0)
92 				epc = epc + 4 + (insn.i_format.simmediate << 2);
93 			else
94 				epc += 8;
95 			nextpc = epc;
96 			break;
97 
98 		case bltzal_op:
99 		case bltzall_op:
100 			arch->gprs[31] = epc + 8;
101 			if ((long)arch->gprs[insn.i_format.rs] < 0)
102 				epc = epc + 4 + (insn.i_format.simmediate << 2);
103 			else
104 				epc += 8;
105 			nextpc = epc;
106 			break;
107 
108 		case bgezal_op:
109 		case bgezall_op:
110 			arch->gprs[31] = epc + 8;
111 			if ((long)arch->gprs[insn.i_format.rs] >= 0)
112 				epc = epc + 4 + (insn.i_format.simmediate << 2);
113 			else
114 				epc += 8;
115 			nextpc = epc;
116 			break;
117 		case bposge32_op:
118 			if (!cpu_has_dsp)
119 				goto sigill;
120 
121 			dspcontrol = rddsp(0x01);
122 
123 			if (dspcontrol >= 32)
124 				epc = epc + 4 + (insn.i_format.simmediate << 2);
125 			else
126 				epc += 8;
127 			nextpc = epc;
128 			break;
129 		}
130 		break;
131 
132 		/* These are unconditional and in j_format. */
133 	case jal_op:
134 		arch->gprs[31] = instpc + 8;
135 	case j_op:
136 		epc += 4;
137 		epc >>= 28;
138 		epc <<= 28;
139 		epc |= (insn.j_format.target << 2);
140 		nextpc = epc;
141 		break;
142 
143 		/* These are conditional and in i_format. */
144 	case beq_op:
145 	case beql_op:
146 		if (arch->gprs[insn.i_format.rs] ==
147 		    arch->gprs[insn.i_format.rt])
148 			epc = epc + 4 + (insn.i_format.simmediate << 2);
149 		else
150 			epc += 8;
151 		nextpc = epc;
152 		break;
153 
154 	case bne_op:
155 	case bnel_op:
156 		if (arch->gprs[insn.i_format.rs] !=
157 		    arch->gprs[insn.i_format.rt])
158 			epc = epc + 4 + (insn.i_format.simmediate << 2);
159 		else
160 			epc += 8;
161 		nextpc = epc;
162 		break;
163 
164 	case blez_op:		/* not really i_format */
165 	case blezl_op:
166 		/* rt field assumed to be zero */
167 		if ((long)arch->gprs[insn.i_format.rs] <= 0)
168 			epc = epc + 4 + (insn.i_format.simmediate << 2);
169 		else
170 			epc += 8;
171 		nextpc = epc;
172 		break;
173 
174 	case bgtz_op:
175 	case bgtzl_op:
176 		/* rt field assumed to be zero */
177 		if ((long)arch->gprs[insn.i_format.rs] > 0)
178 			epc = epc + 4 + (insn.i_format.simmediate << 2);
179 		else
180 			epc += 8;
181 		nextpc = epc;
182 		break;
183 
184 		/* And now the FPA/cp1 branch instructions. */
185 	case cop1_op:
186 		kvm_err("%s: unsupported cop1_op\n", __func__);
187 		break;
188 	}
189 
190 	return nextpc;
191 
192 unaligned:
193 	kvm_err("%s: unaligned epc\n", __func__);
194 	return nextpc;
195 
196 sigill:
197 	kvm_err("%s: DSP branch but not DSP ASE\n", __func__);
198 	return nextpc;
199 }
200 
201 enum emulation_result update_pc(struct kvm_vcpu *vcpu, uint32_t cause)
202 {
203 	unsigned long branch_pc;
204 	enum emulation_result er = EMULATE_DONE;
205 
206 	if (cause & CAUSEF_BD) {
207 		branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc);
208 		if (branch_pc == KVM_INVALID_INST) {
209 			er = EMULATE_FAIL;
210 		} else {
211 			vcpu->arch.pc = branch_pc;
212 			kvm_debug("BD update_pc(): New PC: %#lx\n",
213 				  vcpu->arch.pc);
214 		}
215 	} else
216 		vcpu->arch.pc += 4;
217 
218 	kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
219 
220 	return er;
221 }
222 
223 /**
224  * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
225  * @vcpu:	Virtual CPU.
226  *
227  * Returns:	1 if the CP0_Count timer is disabled by either the guest
228  *		CP0_Cause.DC bit or the count_ctl.DC bit.
229  *		0 otherwise (in which case CP0_Count timer is running).
230  */
231 static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
232 {
233 	struct mips_coproc *cop0 = vcpu->arch.cop0;
234 
235 	return	(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
236 		(kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
237 }
238 
239 /**
240  * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
241  *
242  * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
243  *
244  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
245  */
246 static uint32_t kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
247 {
248 	s64 now_ns, periods;
249 	u64 delta;
250 
251 	now_ns = ktime_to_ns(now);
252 	delta = now_ns + vcpu->arch.count_dyn_bias;
253 
254 	if (delta >= vcpu->arch.count_period) {
255 		/* If delta is out of safe range the bias needs adjusting */
256 		periods = div64_s64(now_ns, vcpu->arch.count_period);
257 		vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
258 		/* Recalculate delta with new bias */
259 		delta = now_ns + vcpu->arch.count_dyn_bias;
260 	}
261 
262 	/*
263 	 * We've ensured that:
264 	 *   delta < count_period
265 	 *
266 	 * Therefore the intermediate delta*count_hz will never overflow since
267 	 * at the boundary condition:
268 	 *   delta = count_period
269 	 *   delta = NSEC_PER_SEC * 2^32 / count_hz
270 	 *   delta * count_hz = NSEC_PER_SEC * 2^32
271 	 */
272 	return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
273 }
274 
275 /**
276  * kvm_mips_count_time() - Get effective current time.
277  * @vcpu:	Virtual CPU.
278  *
279  * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
280  * except when the master disable bit is set in count_ctl, in which case it is
281  * count_resume, i.e. the time that the count was disabled.
282  *
283  * Returns:	Effective monotonic ktime for CP0_Count.
284  */
285 static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
286 {
287 	if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
288 		return vcpu->arch.count_resume;
289 
290 	return ktime_get();
291 }
292 
293 /**
294  * kvm_mips_read_count_running() - Read the current count value as if running.
295  * @vcpu:	Virtual CPU.
296  * @now:	Kernel time to read CP0_Count at.
297  *
298  * Returns the current guest CP0_Count register at time @now and handles if the
299  * timer interrupt is pending and hasn't been handled yet.
300  *
301  * Returns:	The current value of the guest CP0_Count register.
302  */
303 static uint32_t kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
304 {
305 	struct mips_coproc *cop0 = vcpu->arch.cop0;
306 	ktime_t expires, threshold;
307 	uint32_t count, compare;
308 	int running;
309 
310 	/* Calculate the biased and scaled guest CP0_Count */
311 	count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
312 	compare = kvm_read_c0_guest_compare(cop0);
313 
314 	/*
315 	 * Find whether CP0_Count has reached the closest timer interrupt. If
316 	 * not, we shouldn't inject it.
317 	 */
318 	if ((int32_t)(count - compare) < 0)
319 		return count;
320 
321 	/*
322 	 * The CP0_Count we're going to return has already reached the closest
323 	 * timer interrupt. Quickly check if it really is a new interrupt by
324 	 * looking at whether the interval until the hrtimer expiry time is
325 	 * less than 1/4 of the timer period.
326 	 */
327 	expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
328 	threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
329 	if (ktime_before(expires, threshold)) {
330 		/*
331 		 * Cancel it while we handle it so there's no chance of
332 		 * interference with the timeout handler.
333 		 */
334 		running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
335 
336 		/* Nothing should be waiting on the timeout */
337 		kvm_mips_callbacks->queue_timer_int(vcpu);
338 
339 		/*
340 		 * Restart the timer if it was running based on the expiry time
341 		 * we read, so that we don't push it back 2 periods.
342 		 */
343 		if (running) {
344 			expires = ktime_add_ns(expires,
345 					       vcpu->arch.count_period);
346 			hrtimer_start(&vcpu->arch.comparecount_timer, expires,
347 				      HRTIMER_MODE_ABS);
348 		}
349 	}
350 
351 	return count;
352 }
353 
354 /**
355  * kvm_mips_read_count() - Read the current count value.
356  * @vcpu:	Virtual CPU.
357  *
358  * Read the current guest CP0_Count value, taking into account whether the timer
359  * is stopped.
360  *
361  * Returns:	The current guest CP0_Count value.
362  */
363 uint32_t kvm_mips_read_count(struct kvm_vcpu *vcpu)
364 {
365 	struct mips_coproc *cop0 = vcpu->arch.cop0;
366 
367 	/* If count disabled just read static copy of count */
368 	if (kvm_mips_count_disabled(vcpu))
369 		return kvm_read_c0_guest_count(cop0);
370 
371 	return kvm_mips_read_count_running(vcpu, ktime_get());
372 }
373 
374 /**
375  * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
376  * @vcpu:	Virtual CPU.
377  * @count:	Output pointer for CP0_Count value at point of freeze.
378  *
379  * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
380  * at the point it was frozen. It is guaranteed that any pending interrupts at
381  * the point it was frozen are handled, and none after that point.
382  *
383  * This is useful where the time/CP0_Count is needed in the calculation of the
384  * new parameters.
385  *
386  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
387  *
388  * Returns:	The ktime at the point of freeze.
389  */
390 static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu,
391 				       uint32_t *count)
392 {
393 	ktime_t now;
394 
395 	/* stop hrtimer before finding time */
396 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
397 	now = ktime_get();
398 
399 	/* find count at this point and handle pending hrtimer */
400 	*count = kvm_mips_read_count_running(vcpu, now);
401 
402 	return now;
403 }
404 
405 /**
406  * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
407  * @vcpu:	Virtual CPU.
408  * @now:	ktime at point of resume.
409  * @count:	CP0_Count at point of resume.
410  *
411  * Resumes the timer and updates the timer expiry based on @now and @count.
412  * This can be used in conjunction with kvm_mips_freeze_timer() when timer
413  * parameters need to be changed.
414  *
415  * It is guaranteed that a timer interrupt immediately after resume will be
416  * handled, but not if CP_Compare is exactly at @count. That case is already
417  * handled by kvm_mips_freeze_timer().
418  *
419  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
420  */
421 static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
422 				    ktime_t now, uint32_t count)
423 {
424 	struct mips_coproc *cop0 = vcpu->arch.cop0;
425 	uint32_t compare;
426 	u64 delta;
427 	ktime_t expire;
428 
429 	/* Calculate timeout (wrap 0 to 2^32) */
430 	compare = kvm_read_c0_guest_compare(cop0);
431 	delta = (u64)(uint32_t)(compare - count - 1) + 1;
432 	delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
433 	expire = ktime_add_ns(now, delta);
434 
435 	/* Update hrtimer to use new timeout */
436 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
437 	hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
438 }
439 
440 /**
441  * kvm_mips_write_count() - Modify the count and update timer.
442  * @vcpu:	Virtual CPU.
443  * @count:	Guest CP0_Count value to set.
444  *
445  * Sets the CP0_Count value and updates the timer accordingly.
446  */
447 void kvm_mips_write_count(struct kvm_vcpu *vcpu, uint32_t count)
448 {
449 	struct mips_coproc *cop0 = vcpu->arch.cop0;
450 	ktime_t now;
451 
452 	/* Calculate bias */
453 	now = kvm_mips_count_time(vcpu);
454 	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
455 
456 	if (kvm_mips_count_disabled(vcpu))
457 		/* The timer's disabled, adjust the static count */
458 		kvm_write_c0_guest_count(cop0, count);
459 	else
460 		/* Update timeout */
461 		kvm_mips_resume_hrtimer(vcpu, now, count);
462 }
463 
464 /**
465  * kvm_mips_init_count() - Initialise timer.
466  * @vcpu:	Virtual CPU.
467  *
468  * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
469  * it going if it's enabled.
470  */
471 void kvm_mips_init_count(struct kvm_vcpu *vcpu)
472 {
473 	/* 100 MHz */
474 	vcpu->arch.count_hz = 100*1000*1000;
475 	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
476 					  vcpu->arch.count_hz);
477 	vcpu->arch.count_dyn_bias = 0;
478 
479 	/* Starting at 0 */
480 	kvm_mips_write_count(vcpu, 0);
481 }
482 
483 /**
484  * kvm_mips_set_count_hz() - Update the frequency of the timer.
485  * @vcpu:	Virtual CPU.
486  * @count_hz:	Frequency of CP0_Count timer in Hz.
487  *
488  * Change the frequency of the CP0_Count timer. This is done atomically so that
489  * CP0_Count is continuous and no timer interrupt is lost.
490  *
491  * Returns:	-EINVAL if @count_hz is out of range.
492  *		0 on success.
493  */
494 int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
495 {
496 	struct mips_coproc *cop0 = vcpu->arch.cop0;
497 	int dc;
498 	ktime_t now;
499 	u32 count;
500 
501 	/* ensure the frequency is in a sensible range... */
502 	if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
503 		return -EINVAL;
504 	/* ... and has actually changed */
505 	if (vcpu->arch.count_hz == count_hz)
506 		return 0;
507 
508 	/* Safely freeze timer so we can keep it continuous */
509 	dc = kvm_mips_count_disabled(vcpu);
510 	if (dc) {
511 		now = kvm_mips_count_time(vcpu);
512 		count = kvm_read_c0_guest_count(cop0);
513 	} else {
514 		now = kvm_mips_freeze_hrtimer(vcpu, &count);
515 	}
516 
517 	/* Update the frequency */
518 	vcpu->arch.count_hz = count_hz;
519 	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
520 	vcpu->arch.count_dyn_bias = 0;
521 
522 	/* Calculate adjusted bias so dynamic count is unchanged */
523 	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
524 
525 	/* Update and resume hrtimer */
526 	if (!dc)
527 		kvm_mips_resume_hrtimer(vcpu, now, count);
528 	return 0;
529 }
530 
531 /**
532  * kvm_mips_write_compare() - Modify compare and update timer.
533  * @vcpu:	Virtual CPU.
534  * @compare:	New CP0_Compare value.
535  * @ack:	Whether to acknowledge timer interrupt.
536  *
537  * Update CP0_Compare to a new value and update the timeout.
538  * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
539  * any pending timer interrupt is preserved.
540  */
541 void kvm_mips_write_compare(struct kvm_vcpu *vcpu, uint32_t compare, bool ack)
542 {
543 	struct mips_coproc *cop0 = vcpu->arch.cop0;
544 	int dc;
545 	u32 old_compare = kvm_read_c0_guest_compare(cop0);
546 	ktime_t now;
547 	uint32_t count;
548 
549 	/* if unchanged, must just be an ack */
550 	if (old_compare == compare) {
551 		if (!ack)
552 			return;
553 		kvm_mips_callbacks->dequeue_timer_int(vcpu);
554 		kvm_write_c0_guest_compare(cop0, compare);
555 		return;
556 	}
557 
558 	/* freeze_hrtimer() takes care of timer interrupts <= count */
559 	dc = kvm_mips_count_disabled(vcpu);
560 	if (!dc)
561 		now = kvm_mips_freeze_hrtimer(vcpu, &count);
562 
563 	if (ack)
564 		kvm_mips_callbacks->dequeue_timer_int(vcpu);
565 
566 	kvm_write_c0_guest_compare(cop0, compare);
567 
568 	/* resume_hrtimer() takes care of timer interrupts > count */
569 	if (!dc)
570 		kvm_mips_resume_hrtimer(vcpu, now, count);
571 }
572 
573 /**
574  * kvm_mips_count_disable() - Disable count.
575  * @vcpu:	Virtual CPU.
576  *
577  * Disable the CP0_Count timer. A timer interrupt on or before the final stop
578  * time will be handled but not after.
579  *
580  * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
581  * count_ctl.DC has been set (count disabled).
582  *
583  * Returns:	The time that the timer was stopped.
584  */
585 static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
586 {
587 	struct mips_coproc *cop0 = vcpu->arch.cop0;
588 	uint32_t count;
589 	ktime_t now;
590 
591 	/* Stop hrtimer */
592 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
593 
594 	/* Set the static count from the dynamic count, handling pending TI */
595 	now = ktime_get();
596 	count = kvm_mips_read_count_running(vcpu, now);
597 	kvm_write_c0_guest_count(cop0, count);
598 
599 	return now;
600 }
601 
602 /**
603  * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
604  * @vcpu:	Virtual CPU.
605  *
606  * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
607  * before the final stop time will be handled if the timer isn't disabled by
608  * count_ctl.DC, but not after.
609  *
610  * Assumes CP0_Cause.DC is clear (count enabled).
611  */
612 void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
613 {
614 	struct mips_coproc *cop0 = vcpu->arch.cop0;
615 
616 	kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
617 	if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
618 		kvm_mips_count_disable(vcpu);
619 }
620 
621 /**
622  * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
623  * @vcpu:	Virtual CPU.
624  *
625  * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
626  * the start time will be handled if the timer isn't disabled by count_ctl.DC,
627  * potentially before even returning, so the caller should be careful with
628  * ordering of CP0_Cause modifications so as not to lose it.
629  *
630  * Assumes CP0_Cause.DC is set (count disabled).
631  */
632 void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
633 {
634 	struct mips_coproc *cop0 = vcpu->arch.cop0;
635 	uint32_t count;
636 
637 	kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
638 
639 	/*
640 	 * Set the dynamic count to match the static count.
641 	 * This starts the hrtimer if count_ctl.DC allows it.
642 	 * Otherwise it conveniently updates the biases.
643 	 */
644 	count = kvm_read_c0_guest_count(cop0);
645 	kvm_mips_write_count(vcpu, count);
646 }
647 
648 /**
649  * kvm_mips_set_count_ctl() - Update the count control KVM register.
650  * @vcpu:	Virtual CPU.
651  * @count_ctl:	Count control register new value.
652  *
653  * Set the count control KVM register. The timer is updated accordingly.
654  *
655  * Returns:	-EINVAL if reserved bits are set.
656  *		0 on success.
657  */
658 int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
659 {
660 	struct mips_coproc *cop0 = vcpu->arch.cop0;
661 	s64 changed = count_ctl ^ vcpu->arch.count_ctl;
662 	s64 delta;
663 	ktime_t expire, now;
664 	uint32_t count, compare;
665 
666 	/* Only allow defined bits to be changed */
667 	if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
668 		return -EINVAL;
669 
670 	/* Apply new value */
671 	vcpu->arch.count_ctl = count_ctl;
672 
673 	/* Master CP0_Count disable */
674 	if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
675 		/* Is CP0_Cause.DC already disabling CP0_Count? */
676 		if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
677 			if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
678 				/* Just record the current time */
679 				vcpu->arch.count_resume = ktime_get();
680 		} else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
681 			/* disable timer and record current time */
682 			vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
683 		} else {
684 			/*
685 			 * Calculate timeout relative to static count at resume
686 			 * time (wrap 0 to 2^32).
687 			 */
688 			count = kvm_read_c0_guest_count(cop0);
689 			compare = kvm_read_c0_guest_compare(cop0);
690 			delta = (u64)(uint32_t)(compare - count - 1) + 1;
691 			delta = div_u64(delta * NSEC_PER_SEC,
692 					vcpu->arch.count_hz);
693 			expire = ktime_add_ns(vcpu->arch.count_resume, delta);
694 
695 			/* Handle pending interrupt */
696 			now = ktime_get();
697 			if (ktime_compare(now, expire) >= 0)
698 				/* Nothing should be waiting on the timeout */
699 				kvm_mips_callbacks->queue_timer_int(vcpu);
700 
701 			/* Resume hrtimer without changing bias */
702 			count = kvm_mips_read_count_running(vcpu, now);
703 			kvm_mips_resume_hrtimer(vcpu, now, count);
704 		}
705 	}
706 
707 	return 0;
708 }
709 
710 /**
711  * kvm_mips_set_count_resume() - Update the count resume KVM register.
712  * @vcpu:		Virtual CPU.
713  * @count_resume:	Count resume register new value.
714  *
715  * Set the count resume KVM register.
716  *
717  * Returns:	-EINVAL if out of valid range (0..now).
718  *		0 on success.
719  */
720 int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
721 {
722 	/*
723 	 * It doesn't make sense for the resume time to be in the future, as it
724 	 * would be possible for the next interrupt to be more than a full
725 	 * period in the future.
726 	 */
727 	if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
728 		return -EINVAL;
729 
730 	vcpu->arch.count_resume = ns_to_ktime(count_resume);
731 	return 0;
732 }
733 
734 /**
735  * kvm_mips_count_timeout() - Push timer forward on timeout.
736  * @vcpu:	Virtual CPU.
737  *
738  * Handle an hrtimer event by push the hrtimer forward a period.
739  *
740  * Returns:	The hrtimer_restart value to return to the hrtimer subsystem.
741  */
742 enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
743 {
744 	/* Add the Count period to the current expiry time */
745 	hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
746 			       vcpu->arch.count_period);
747 	return HRTIMER_RESTART;
748 }
749 
750 enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
751 {
752 	struct mips_coproc *cop0 = vcpu->arch.cop0;
753 	enum emulation_result er = EMULATE_DONE;
754 
755 	if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
756 		kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
757 			  kvm_read_c0_guest_epc(cop0));
758 		kvm_clear_c0_guest_status(cop0, ST0_EXL);
759 		vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
760 
761 	} else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
762 		kvm_clear_c0_guest_status(cop0, ST0_ERL);
763 		vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
764 	} else {
765 		kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
766 			vcpu->arch.pc);
767 		er = EMULATE_FAIL;
768 	}
769 
770 	return er;
771 }
772 
773 enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
774 {
775 	kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
776 		  vcpu->arch.pending_exceptions);
777 
778 	++vcpu->stat.wait_exits;
779 	trace_kvm_exit(vcpu, WAIT_EXITS);
780 	if (!vcpu->arch.pending_exceptions) {
781 		vcpu->arch.wait = 1;
782 		kvm_vcpu_block(vcpu);
783 
784 		/*
785 		 * We we are runnable, then definitely go off to user space to
786 		 * check if any I/O interrupts are pending.
787 		 */
788 		if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
789 			clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
790 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
791 		}
792 	}
793 
794 	return EMULATE_DONE;
795 }
796 
797 /*
798  * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
799  * we can catch this, if things ever change
800  */
801 enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
802 {
803 	struct mips_coproc *cop0 = vcpu->arch.cop0;
804 	uint32_t pc = vcpu->arch.pc;
805 
806 	kvm_err("[%#x] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
807 	return EMULATE_FAIL;
808 }
809 
810 /* Write Guest TLB Entry @ Index */
811 enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
812 {
813 	struct mips_coproc *cop0 = vcpu->arch.cop0;
814 	int index = kvm_read_c0_guest_index(cop0);
815 	struct kvm_mips_tlb *tlb = NULL;
816 	uint32_t pc = vcpu->arch.pc;
817 
818 	if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
819 		kvm_debug("%s: illegal index: %d\n", __func__, index);
820 		kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
821 			  pc, index, kvm_read_c0_guest_entryhi(cop0),
822 			  kvm_read_c0_guest_entrylo0(cop0),
823 			  kvm_read_c0_guest_entrylo1(cop0),
824 			  kvm_read_c0_guest_pagemask(cop0));
825 		index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
826 	}
827 
828 	tlb = &vcpu->arch.guest_tlb[index];
829 	/*
830 	 * Probe the shadow host TLB for the entry being overwritten, if one
831 	 * matches, invalidate it
832 	 */
833 	kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
834 
835 	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
836 	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
837 	tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
838 	tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
839 
840 	kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
841 		  pc, index, kvm_read_c0_guest_entryhi(cop0),
842 		  kvm_read_c0_guest_entrylo0(cop0),
843 		  kvm_read_c0_guest_entrylo1(cop0),
844 		  kvm_read_c0_guest_pagemask(cop0));
845 
846 	return EMULATE_DONE;
847 }
848 
849 /* Write Guest TLB Entry @ Random Index */
850 enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
851 {
852 	struct mips_coproc *cop0 = vcpu->arch.cop0;
853 	struct kvm_mips_tlb *tlb = NULL;
854 	uint32_t pc = vcpu->arch.pc;
855 	int index;
856 
857 	get_random_bytes(&index, sizeof(index));
858 	index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
859 
860 	tlb = &vcpu->arch.guest_tlb[index];
861 
862 	/*
863 	 * Probe the shadow host TLB for the entry being overwritten, if one
864 	 * matches, invalidate it
865 	 */
866 	kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
867 
868 	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
869 	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
870 	tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
871 	tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
872 
873 	kvm_debug("[%#x] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
874 		  pc, index, kvm_read_c0_guest_entryhi(cop0),
875 		  kvm_read_c0_guest_entrylo0(cop0),
876 		  kvm_read_c0_guest_entrylo1(cop0));
877 
878 	return EMULATE_DONE;
879 }
880 
881 enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
882 {
883 	struct mips_coproc *cop0 = vcpu->arch.cop0;
884 	long entryhi = kvm_read_c0_guest_entryhi(cop0);
885 	uint32_t pc = vcpu->arch.pc;
886 	int index = -1;
887 
888 	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
889 
890 	kvm_write_c0_guest_index(cop0, index);
891 
892 	kvm_debug("[%#x] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
893 		  index);
894 
895 	return EMULATE_DONE;
896 }
897 
898 /**
899  * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
900  * @vcpu:	Virtual CPU.
901  *
902  * Finds the mask of bits which are writable in the guest's Config1 CP0
903  * register, by userland (currently read-only to the guest).
904  */
905 unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
906 {
907 	unsigned int mask = 0;
908 
909 	/* Permit FPU to be present if FPU is supported */
910 	if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
911 		mask |= MIPS_CONF1_FP;
912 
913 	return mask;
914 }
915 
916 /**
917  * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
918  * @vcpu:	Virtual CPU.
919  *
920  * Finds the mask of bits which are writable in the guest's Config3 CP0
921  * register, by userland (currently read-only to the guest).
922  */
923 unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
924 {
925 	/* Config4 is optional */
926 	unsigned int mask = MIPS_CONF_M;
927 
928 	/* Permit MSA to be present if MSA is supported */
929 	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
930 		mask |= MIPS_CONF3_MSA;
931 
932 	return mask;
933 }
934 
935 /**
936  * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
937  * @vcpu:	Virtual CPU.
938  *
939  * Finds the mask of bits which are writable in the guest's Config4 CP0
940  * register, by userland (currently read-only to the guest).
941  */
942 unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
943 {
944 	/* Config5 is optional */
945 	return MIPS_CONF_M;
946 }
947 
948 /**
949  * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
950  * @vcpu:	Virtual CPU.
951  *
952  * Finds the mask of bits which are writable in the guest's Config5 CP0
953  * register, by the guest itself.
954  */
955 unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
956 {
957 	unsigned int mask = 0;
958 
959 	/* Permit MSAEn changes if MSA supported and enabled */
960 	if (kvm_mips_guest_has_msa(&vcpu->arch))
961 		mask |= MIPS_CONF5_MSAEN;
962 
963 	/*
964 	 * Permit guest FPU mode changes if FPU is enabled and the relevant
965 	 * feature exists according to FIR register.
966 	 */
967 	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
968 		if (cpu_has_fre)
969 			mask |= MIPS_CONF5_FRE;
970 		/* We don't support UFR or UFE */
971 	}
972 
973 	return mask;
974 }
975 
976 enum emulation_result kvm_mips_emulate_CP0(uint32_t inst, uint32_t *opc,
977 					   uint32_t cause, struct kvm_run *run,
978 					   struct kvm_vcpu *vcpu)
979 {
980 	struct mips_coproc *cop0 = vcpu->arch.cop0;
981 	enum emulation_result er = EMULATE_DONE;
982 	int32_t rt, rd, copz, sel, co_bit, op;
983 	uint32_t pc = vcpu->arch.pc;
984 	unsigned long curr_pc;
985 
986 	/*
987 	 * Update PC and hold onto current PC in case there is
988 	 * an error and we want to rollback the PC
989 	 */
990 	curr_pc = vcpu->arch.pc;
991 	er = update_pc(vcpu, cause);
992 	if (er == EMULATE_FAIL)
993 		return er;
994 
995 	copz = (inst >> 21) & 0x1f;
996 	rt = (inst >> 16) & 0x1f;
997 	rd = (inst >> 11) & 0x1f;
998 	sel = inst & 0x7;
999 	co_bit = (inst >> 25) & 1;
1000 
1001 	if (co_bit) {
1002 		op = (inst) & 0xff;
1003 
1004 		switch (op) {
1005 		case tlbr_op:	/*  Read indexed TLB entry  */
1006 			er = kvm_mips_emul_tlbr(vcpu);
1007 			break;
1008 		case tlbwi_op:	/*  Write indexed  */
1009 			er = kvm_mips_emul_tlbwi(vcpu);
1010 			break;
1011 		case tlbwr_op:	/*  Write random  */
1012 			er = kvm_mips_emul_tlbwr(vcpu);
1013 			break;
1014 		case tlbp_op:	/* TLB Probe */
1015 			er = kvm_mips_emul_tlbp(vcpu);
1016 			break;
1017 		case rfe_op:
1018 			kvm_err("!!!COP0_RFE!!!\n");
1019 			break;
1020 		case eret_op:
1021 			er = kvm_mips_emul_eret(vcpu);
1022 			goto dont_update_pc;
1023 			break;
1024 		case wait_op:
1025 			er = kvm_mips_emul_wait(vcpu);
1026 			break;
1027 		}
1028 	} else {
1029 		switch (copz) {
1030 		case mfc_op:
1031 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1032 			cop0->stat[rd][sel]++;
1033 #endif
1034 			/* Get reg */
1035 			if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1036 				vcpu->arch.gprs[rt] = kvm_mips_read_count(vcpu);
1037 			} else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1038 				vcpu->arch.gprs[rt] = 0x0;
1039 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1040 				kvm_mips_trans_mfc0(inst, opc, vcpu);
1041 #endif
1042 			} else {
1043 				vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1044 
1045 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1046 				kvm_mips_trans_mfc0(inst, opc, vcpu);
1047 #endif
1048 			}
1049 
1050 			kvm_debug
1051 			    ("[%#x] MFCz[%d][%d], vcpu->arch.gprs[%d]: %#lx\n",
1052 			     pc, rd, sel, rt, vcpu->arch.gprs[rt]);
1053 
1054 			break;
1055 
1056 		case dmfc_op:
1057 			vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1058 			break;
1059 
1060 		case mtc_op:
1061 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1062 			cop0->stat[rd][sel]++;
1063 #endif
1064 			if ((rd == MIPS_CP0_TLB_INDEX)
1065 			    && (vcpu->arch.gprs[rt] >=
1066 				KVM_MIPS_GUEST_TLB_SIZE)) {
1067 				kvm_err("Invalid TLB Index: %ld",
1068 					vcpu->arch.gprs[rt]);
1069 				er = EMULATE_FAIL;
1070 				break;
1071 			}
1072 #define C0_EBASE_CORE_MASK 0xff
1073 			if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1074 				/* Preserve CORE number */
1075 				kvm_change_c0_guest_ebase(cop0,
1076 							  ~(C0_EBASE_CORE_MASK),
1077 							  vcpu->arch.gprs[rt]);
1078 				kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n",
1079 					kvm_read_c0_guest_ebase(cop0));
1080 			} else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1081 				uint32_t nasid =
1082 					vcpu->arch.gprs[rt] & KVM_ENTRYHI_ASID;
1083 				if ((KSEGX(vcpu->arch.gprs[rt]) != CKSEG0) &&
1084 				    ((kvm_read_c0_guest_entryhi(cop0) &
1085 				      KVM_ENTRYHI_ASID) != nasid)) {
1086 					kvm_debug("MTCz, change ASID from %#lx to %#lx\n",
1087 						kvm_read_c0_guest_entryhi(cop0)
1088 						& KVM_ENTRYHI_ASID,
1089 						vcpu->arch.gprs[rt]
1090 						& KVM_ENTRYHI_ASID);
1091 
1092 					/* Blow away the shadow host TLBs */
1093 					kvm_mips_flush_host_tlb(1);
1094 				}
1095 				kvm_write_c0_guest_entryhi(cop0,
1096 							   vcpu->arch.gprs[rt]);
1097 			}
1098 			/* Are we writing to COUNT */
1099 			else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1100 				kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1101 				goto done;
1102 			} else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1103 				kvm_debug("[%#x] MTCz, COMPARE %#lx <- %#lx\n",
1104 					  pc, kvm_read_c0_guest_compare(cop0),
1105 					  vcpu->arch.gprs[rt]);
1106 
1107 				/* If we are writing to COMPARE */
1108 				/* Clear pending timer interrupt, if any */
1109 				kvm_mips_write_compare(vcpu,
1110 						       vcpu->arch.gprs[rt],
1111 						       true);
1112 			} else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1113 				unsigned int old_val, val, change;
1114 
1115 				old_val = kvm_read_c0_guest_status(cop0);
1116 				val = vcpu->arch.gprs[rt];
1117 				change = val ^ old_val;
1118 
1119 				/* Make sure that the NMI bit is never set */
1120 				val &= ~ST0_NMI;
1121 
1122 				/*
1123 				 * Don't allow CU1 or FR to be set unless FPU
1124 				 * capability enabled and exists in guest
1125 				 * configuration.
1126 				 */
1127 				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1128 					val &= ~(ST0_CU1 | ST0_FR);
1129 
1130 				/*
1131 				 * Also don't allow FR to be set if host doesn't
1132 				 * support it.
1133 				 */
1134 				if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1135 					val &= ~ST0_FR;
1136 
1137 
1138 				/* Handle changes in FPU mode */
1139 				preempt_disable();
1140 
1141 				/*
1142 				 * FPU and Vector register state is made
1143 				 * UNPREDICTABLE by a change of FR, so don't
1144 				 * even bother saving it.
1145 				 */
1146 				if (change & ST0_FR)
1147 					kvm_drop_fpu(vcpu);
1148 
1149 				/*
1150 				 * If MSA state is already live, it is undefined
1151 				 * how it interacts with FR=0 FPU state, and we
1152 				 * don't want to hit reserved instruction
1153 				 * exceptions trying to save the MSA state later
1154 				 * when CU=1 && FR=1, so play it safe and save
1155 				 * it first.
1156 				 */
1157 				if (change & ST0_CU1 && !(val & ST0_FR) &&
1158 				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1159 					kvm_lose_fpu(vcpu);
1160 
1161 				/*
1162 				 * Propagate CU1 (FPU enable) changes
1163 				 * immediately if the FPU context is already
1164 				 * loaded. When disabling we leave the context
1165 				 * loaded so it can be quickly enabled again in
1166 				 * the near future.
1167 				 */
1168 				if (change & ST0_CU1 &&
1169 				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1170 					change_c0_status(ST0_CU1, val);
1171 
1172 				preempt_enable();
1173 
1174 				kvm_write_c0_guest_status(cop0, val);
1175 
1176 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1177 				/*
1178 				 * If FPU present, we need CU1/FR bits to take
1179 				 * effect fairly soon.
1180 				 */
1181 				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1182 					kvm_mips_trans_mtc0(inst, opc, vcpu);
1183 #endif
1184 			} else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1185 				unsigned int old_val, val, change, wrmask;
1186 
1187 				old_val = kvm_read_c0_guest_config5(cop0);
1188 				val = vcpu->arch.gprs[rt];
1189 
1190 				/* Only a few bits are writable in Config5 */
1191 				wrmask = kvm_mips_config5_wrmask(vcpu);
1192 				change = (val ^ old_val) & wrmask;
1193 				val = old_val ^ change;
1194 
1195 
1196 				/* Handle changes in FPU/MSA modes */
1197 				preempt_disable();
1198 
1199 				/*
1200 				 * Propagate FRE changes immediately if the FPU
1201 				 * context is already loaded.
1202 				 */
1203 				if (change & MIPS_CONF5_FRE &&
1204 				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1205 					change_c0_config5(MIPS_CONF5_FRE, val);
1206 
1207 				/*
1208 				 * Propagate MSAEn changes immediately if the
1209 				 * MSA context is already loaded. When disabling
1210 				 * we leave the context loaded so it can be
1211 				 * quickly enabled again in the near future.
1212 				 */
1213 				if (change & MIPS_CONF5_MSAEN &&
1214 				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1215 					change_c0_config5(MIPS_CONF5_MSAEN,
1216 							  val);
1217 
1218 				preempt_enable();
1219 
1220 				kvm_write_c0_guest_config5(cop0, val);
1221 			} else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1222 				uint32_t old_cause, new_cause;
1223 
1224 				old_cause = kvm_read_c0_guest_cause(cop0);
1225 				new_cause = vcpu->arch.gprs[rt];
1226 				/* Update R/W bits */
1227 				kvm_change_c0_guest_cause(cop0, 0x08800300,
1228 							  new_cause);
1229 				/* DC bit enabling/disabling timer? */
1230 				if ((old_cause ^ new_cause) & CAUSEF_DC) {
1231 					if (new_cause & CAUSEF_DC)
1232 						kvm_mips_count_disable_cause(vcpu);
1233 					else
1234 						kvm_mips_count_enable_cause(vcpu);
1235 				}
1236 			} else {
1237 				cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1238 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1239 				kvm_mips_trans_mtc0(inst, opc, vcpu);
1240 #endif
1241 			}
1242 
1243 			kvm_debug("[%#x] MTCz, cop0->reg[%d][%d]: %#lx\n", pc,
1244 				  rd, sel, cop0->reg[rd][sel]);
1245 			break;
1246 
1247 		case dmtc_op:
1248 			kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1249 				vcpu->arch.pc, rt, rd, sel);
1250 			er = EMULATE_FAIL;
1251 			break;
1252 
1253 		case mfmc0_op:
1254 #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1255 			cop0->stat[MIPS_CP0_STATUS][0]++;
1256 #endif
1257 			if (rt != 0)
1258 				vcpu->arch.gprs[rt] =
1259 				    kvm_read_c0_guest_status(cop0);
1260 			/* EI */
1261 			if (inst & 0x20) {
1262 				kvm_debug("[%#lx] mfmc0_op: EI\n",
1263 					  vcpu->arch.pc);
1264 				kvm_set_c0_guest_status(cop0, ST0_IE);
1265 			} else {
1266 				kvm_debug("[%#lx] mfmc0_op: DI\n",
1267 					  vcpu->arch.pc);
1268 				kvm_clear_c0_guest_status(cop0, ST0_IE);
1269 			}
1270 
1271 			break;
1272 
1273 		case wrpgpr_op:
1274 			{
1275 				uint32_t css =
1276 				    cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1277 				uint32_t pss =
1278 				    (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1279 				/*
1280 				 * We don't support any shadow register sets, so
1281 				 * SRSCtl[PSS] == SRSCtl[CSS] = 0
1282 				 */
1283 				if (css || pss) {
1284 					er = EMULATE_FAIL;
1285 					break;
1286 				}
1287 				kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1288 					  vcpu->arch.gprs[rt]);
1289 				vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1290 			}
1291 			break;
1292 		default:
1293 			kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1294 				vcpu->arch.pc, copz);
1295 			er = EMULATE_FAIL;
1296 			break;
1297 		}
1298 	}
1299 
1300 done:
1301 	/* Rollback PC only if emulation was unsuccessful */
1302 	if (er == EMULATE_FAIL)
1303 		vcpu->arch.pc = curr_pc;
1304 
1305 dont_update_pc:
1306 	/*
1307 	 * This is for special instructions whose emulation
1308 	 * updates the PC, so do not overwrite the PC under
1309 	 * any circumstances
1310 	 */
1311 
1312 	return er;
1313 }
1314 
1315 enum emulation_result kvm_mips_emulate_store(uint32_t inst, uint32_t cause,
1316 					     struct kvm_run *run,
1317 					     struct kvm_vcpu *vcpu)
1318 {
1319 	enum emulation_result er = EMULATE_DO_MMIO;
1320 	int32_t op, base, rt, offset;
1321 	uint32_t bytes;
1322 	void *data = run->mmio.data;
1323 	unsigned long curr_pc;
1324 
1325 	/*
1326 	 * Update PC and hold onto current PC in case there is
1327 	 * an error and we want to rollback the PC
1328 	 */
1329 	curr_pc = vcpu->arch.pc;
1330 	er = update_pc(vcpu, cause);
1331 	if (er == EMULATE_FAIL)
1332 		return er;
1333 
1334 	rt = (inst >> 16) & 0x1f;
1335 	base = (inst >> 21) & 0x1f;
1336 	offset = inst & 0xffff;
1337 	op = (inst >> 26) & 0x3f;
1338 
1339 	switch (op) {
1340 	case sb_op:
1341 		bytes = 1;
1342 		if (bytes > sizeof(run->mmio.data)) {
1343 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1344 			       run->mmio.len);
1345 		}
1346 		run->mmio.phys_addr =
1347 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1348 						   host_cp0_badvaddr);
1349 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1350 			er = EMULATE_FAIL;
1351 			break;
1352 		}
1353 		run->mmio.len = bytes;
1354 		run->mmio.is_write = 1;
1355 		vcpu->mmio_needed = 1;
1356 		vcpu->mmio_is_write = 1;
1357 		*(u8 *) data = vcpu->arch.gprs[rt];
1358 		kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1359 			  vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
1360 			  *(uint8_t *) data);
1361 
1362 		break;
1363 
1364 	case sw_op:
1365 		bytes = 4;
1366 		if (bytes > sizeof(run->mmio.data)) {
1367 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1368 			       run->mmio.len);
1369 		}
1370 		run->mmio.phys_addr =
1371 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1372 						   host_cp0_badvaddr);
1373 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1374 			er = EMULATE_FAIL;
1375 			break;
1376 		}
1377 
1378 		run->mmio.len = bytes;
1379 		run->mmio.is_write = 1;
1380 		vcpu->mmio_needed = 1;
1381 		vcpu->mmio_is_write = 1;
1382 		*(uint32_t *) data = vcpu->arch.gprs[rt];
1383 
1384 		kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1385 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1386 			  vcpu->arch.gprs[rt], *(uint32_t *) data);
1387 		break;
1388 
1389 	case sh_op:
1390 		bytes = 2;
1391 		if (bytes > sizeof(run->mmio.data)) {
1392 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1393 			       run->mmio.len);
1394 		}
1395 		run->mmio.phys_addr =
1396 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1397 						   host_cp0_badvaddr);
1398 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1399 			er = EMULATE_FAIL;
1400 			break;
1401 		}
1402 
1403 		run->mmio.len = bytes;
1404 		run->mmio.is_write = 1;
1405 		vcpu->mmio_needed = 1;
1406 		vcpu->mmio_is_write = 1;
1407 		*(uint16_t *) data = vcpu->arch.gprs[rt];
1408 
1409 		kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1410 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1411 			  vcpu->arch.gprs[rt], *(uint32_t *) data);
1412 		break;
1413 
1414 	default:
1415 		kvm_err("Store not yet supported");
1416 		er = EMULATE_FAIL;
1417 		break;
1418 	}
1419 
1420 	/* Rollback PC if emulation was unsuccessful */
1421 	if (er == EMULATE_FAIL)
1422 		vcpu->arch.pc = curr_pc;
1423 
1424 	return er;
1425 }
1426 
1427 enum emulation_result kvm_mips_emulate_load(uint32_t inst, uint32_t cause,
1428 					    struct kvm_run *run,
1429 					    struct kvm_vcpu *vcpu)
1430 {
1431 	enum emulation_result er = EMULATE_DO_MMIO;
1432 	int32_t op, base, rt, offset;
1433 	uint32_t bytes;
1434 
1435 	rt = (inst >> 16) & 0x1f;
1436 	base = (inst >> 21) & 0x1f;
1437 	offset = inst & 0xffff;
1438 	op = (inst >> 26) & 0x3f;
1439 
1440 	vcpu->arch.pending_load_cause = cause;
1441 	vcpu->arch.io_gpr = rt;
1442 
1443 	switch (op) {
1444 	case lw_op:
1445 		bytes = 4;
1446 		if (bytes > sizeof(run->mmio.data)) {
1447 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1448 			       run->mmio.len);
1449 			er = EMULATE_FAIL;
1450 			break;
1451 		}
1452 		run->mmio.phys_addr =
1453 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1454 						   host_cp0_badvaddr);
1455 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1456 			er = EMULATE_FAIL;
1457 			break;
1458 		}
1459 
1460 		run->mmio.len = bytes;
1461 		run->mmio.is_write = 0;
1462 		vcpu->mmio_needed = 1;
1463 		vcpu->mmio_is_write = 0;
1464 		break;
1465 
1466 	case lh_op:
1467 	case lhu_op:
1468 		bytes = 2;
1469 		if (bytes > sizeof(run->mmio.data)) {
1470 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1471 			       run->mmio.len);
1472 			er = EMULATE_FAIL;
1473 			break;
1474 		}
1475 		run->mmio.phys_addr =
1476 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1477 						   host_cp0_badvaddr);
1478 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1479 			er = EMULATE_FAIL;
1480 			break;
1481 		}
1482 
1483 		run->mmio.len = bytes;
1484 		run->mmio.is_write = 0;
1485 		vcpu->mmio_needed = 1;
1486 		vcpu->mmio_is_write = 0;
1487 
1488 		if (op == lh_op)
1489 			vcpu->mmio_needed = 2;
1490 		else
1491 			vcpu->mmio_needed = 1;
1492 
1493 		break;
1494 
1495 	case lbu_op:
1496 	case lb_op:
1497 		bytes = 1;
1498 		if (bytes > sizeof(run->mmio.data)) {
1499 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1500 			       run->mmio.len);
1501 			er = EMULATE_FAIL;
1502 			break;
1503 		}
1504 		run->mmio.phys_addr =
1505 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1506 						   host_cp0_badvaddr);
1507 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1508 			er = EMULATE_FAIL;
1509 			break;
1510 		}
1511 
1512 		run->mmio.len = bytes;
1513 		run->mmio.is_write = 0;
1514 		vcpu->mmio_is_write = 0;
1515 
1516 		if (op == lb_op)
1517 			vcpu->mmio_needed = 2;
1518 		else
1519 			vcpu->mmio_needed = 1;
1520 
1521 		break;
1522 
1523 	default:
1524 		kvm_err("Load not yet supported");
1525 		er = EMULATE_FAIL;
1526 		break;
1527 	}
1528 
1529 	return er;
1530 }
1531 
1532 int kvm_mips_sync_icache(unsigned long va, struct kvm_vcpu *vcpu)
1533 {
1534 	unsigned long offset = (va & ~PAGE_MASK);
1535 	struct kvm *kvm = vcpu->kvm;
1536 	unsigned long pa;
1537 	gfn_t gfn;
1538 	kvm_pfn_t pfn;
1539 
1540 	gfn = va >> PAGE_SHIFT;
1541 
1542 	if (gfn >= kvm->arch.guest_pmap_npages) {
1543 		kvm_err("%s: Invalid gfn: %#llx\n", __func__, gfn);
1544 		kvm_mips_dump_host_tlbs();
1545 		kvm_arch_vcpu_dump_regs(vcpu);
1546 		return -1;
1547 	}
1548 	pfn = kvm->arch.guest_pmap[gfn];
1549 	pa = (pfn << PAGE_SHIFT) | offset;
1550 
1551 	kvm_debug("%s: va: %#lx, unmapped: %#x\n", __func__, va,
1552 		  CKSEG0ADDR(pa));
1553 
1554 	local_flush_icache_range(CKSEG0ADDR(pa), 32);
1555 	return 0;
1556 }
1557 
1558 enum emulation_result kvm_mips_emulate_cache(uint32_t inst, uint32_t *opc,
1559 					     uint32_t cause,
1560 					     struct kvm_run *run,
1561 					     struct kvm_vcpu *vcpu)
1562 {
1563 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1564 	enum emulation_result er = EMULATE_DONE;
1565 	int32_t offset, cache, op_inst, op, base;
1566 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1567 	unsigned long va;
1568 	unsigned long curr_pc;
1569 
1570 	/*
1571 	 * Update PC and hold onto current PC in case there is
1572 	 * an error and we want to rollback the PC
1573 	 */
1574 	curr_pc = vcpu->arch.pc;
1575 	er = update_pc(vcpu, cause);
1576 	if (er == EMULATE_FAIL)
1577 		return er;
1578 
1579 	base = (inst >> 21) & 0x1f;
1580 	op_inst = (inst >> 16) & 0x1f;
1581 	offset = (int16_t)inst;
1582 	cache = op_inst & CacheOp_Cache;
1583 	op = op_inst & CacheOp_Op;
1584 
1585 	va = arch->gprs[base] + offset;
1586 
1587 	kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1588 		  cache, op, base, arch->gprs[base], offset);
1589 
1590 	/*
1591 	 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1592 	 * invalidate the caches entirely by stepping through all the
1593 	 * ways/indexes
1594 	 */
1595 	if (op == Index_Writeback_Inv) {
1596 		kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1597 			  vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1598 			  arch->gprs[base], offset);
1599 
1600 		if (cache == Cache_D)
1601 			r4k_blast_dcache();
1602 		else if (cache == Cache_I)
1603 			r4k_blast_icache();
1604 		else {
1605 			kvm_err("%s: unsupported CACHE INDEX operation\n",
1606 				__func__);
1607 			return EMULATE_FAIL;
1608 		}
1609 
1610 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1611 		kvm_mips_trans_cache_index(inst, opc, vcpu);
1612 #endif
1613 		goto done;
1614 	}
1615 
1616 	preempt_disable();
1617 	if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
1618 		if (kvm_mips_host_tlb_lookup(vcpu, va) < 0)
1619 			kvm_mips_handle_kseg0_tlb_fault(va, vcpu);
1620 	} else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) ||
1621 		   KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
1622 		int index;
1623 
1624 		/* If an entry already exists then skip */
1625 		if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0)
1626 			goto skip_fault;
1627 
1628 		/*
1629 		 * If address not in the guest TLB, then give the guest a fault,
1630 		 * the resulting handler will do the right thing
1631 		 */
1632 		index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) |
1633 						  (kvm_read_c0_guest_entryhi
1634 						   (cop0) & KVM_ENTRYHI_ASID));
1635 
1636 		if (index < 0) {
1637 			vcpu->arch.host_cp0_entryhi = (va & VPN2_MASK);
1638 			vcpu->arch.host_cp0_badvaddr = va;
1639 			vcpu->arch.pc = curr_pc;
1640 			er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run,
1641 							 vcpu);
1642 			preempt_enable();
1643 			goto dont_update_pc;
1644 		} else {
1645 			struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
1646 			/*
1647 			 * Check if the entry is valid, if not then setup a TLB
1648 			 * invalid exception to the guest
1649 			 */
1650 			if (!TLB_IS_VALID(*tlb, va)) {
1651 				vcpu->arch.host_cp0_badvaddr = va;
1652 				vcpu->arch.pc = curr_pc;
1653 				er = kvm_mips_emulate_tlbinv_ld(cause, NULL,
1654 								run, vcpu);
1655 				preempt_enable();
1656 				goto dont_update_pc;
1657 			} else {
1658 				/*
1659 				 * We fault an entry from the guest tlb to the
1660 				 * shadow host TLB
1661 				 */
1662 				kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb,
1663 								     NULL,
1664 								     NULL);
1665 			}
1666 		}
1667 	} else {
1668 		kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1669 			cache, op, base, arch->gprs[base], offset);
1670 		er = EMULATE_FAIL;
1671 		preempt_enable();
1672 		goto done;
1673 
1674 	}
1675 
1676 skip_fault:
1677 	/* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1678 	if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
1679 		flush_dcache_line(va);
1680 
1681 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1682 		/*
1683 		 * Replace the CACHE instruction, with a SYNCI, not the same,
1684 		 * but avoids a trap
1685 		 */
1686 		kvm_mips_trans_cache_va(inst, opc, vcpu);
1687 #endif
1688 	} else if (op_inst == Hit_Invalidate_I) {
1689 		flush_dcache_line(va);
1690 		flush_icache_line(va);
1691 
1692 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1693 		/* Replace the CACHE instruction, with a SYNCI */
1694 		kvm_mips_trans_cache_va(inst, opc, vcpu);
1695 #endif
1696 	} else {
1697 		kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1698 			cache, op, base, arch->gprs[base], offset);
1699 		er = EMULATE_FAIL;
1700 	}
1701 
1702 	preempt_enable();
1703 done:
1704 	/* Rollback PC only if emulation was unsuccessful */
1705 	if (er == EMULATE_FAIL)
1706 		vcpu->arch.pc = curr_pc;
1707 
1708 dont_update_pc:
1709 	/*
1710 	 * This is for exceptions whose emulation updates the PC, so do not
1711 	 * overwrite the PC under any circumstances
1712 	 */
1713 
1714 	return er;
1715 }
1716 
1717 enum emulation_result kvm_mips_emulate_inst(unsigned long cause, uint32_t *opc,
1718 					    struct kvm_run *run,
1719 					    struct kvm_vcpu *vcpu)
1720 {
1721 	enum emulation_result er = EMULATE_DONE;
1722 	uint32_t inst;
1723 
1724 	/* Fetch the instruction. */
1725 	if (cause & CAUSEF_BD)
1726 		opc += 1;
1727 
1728 	inst = kvm_get_inst(opc, vcpu);
1729 
1730 	switch (((union mips_instruction)inst).r_format.opcode) {
1731 	case cop0_op:
1732 		er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1733 		break;
1734 	case sb_op:
1735 	case sh_op:
1736 	case sw_op:
1737 		er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1738 		break;
1739 	case lb_op:
1740 	case lbu_op:
1741 	case lhu_op:
1742 	case lh_op:
1743 	case lw_op:
1744 		er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1745 		break;
1746 
1747 	case cache_op:
1748 		++vcpu->stat.cache_exits;
1749 		trace_kvm_exit(vcpu, CACHE_EXITS);
1750 		er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1751 		break;
1752 
1753 	default:
1754 		kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1755 			inst);
1756 		kvm_arch_vcpu_dump_regs(vcpu);
1757 		er = EMULATE_FAIL;
1758 		break;
1759 	}
1760 
1761 	return er;
1762 }
1763 
1764 enum emulation_result kvm_mips_emulate_syscall(unsigned long cause,
1765 					       uint32_t *opc,
1766 					       struct kvm_run *run,
1767 					       struct kvm_vcpu *vcpu)
1768 {
1769 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1770 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1771 	enum emulation_result er = EMULATE_DONE;
1772 
1773 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1774 		/* save old pc */
1775 		kvm_write_c0_guest_epc(cop0, arch->pc);
1776 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1777 
1778 		if (cause & CAUSEF_BD)
1779 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1780 		else
1781 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1782 
1783 		kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
1784 
1785 		kvm_change_c0_guest_cause(cop0, (0xff),
1786 					  (EXCCODE_SYS << CAUSEB_EXCCODE));
1787 
1788 		/* Set PC to the exception entry point */
1789 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1790 
1791 	} else {
1792 		kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
1793 		er = EMULATE_FAIL;
1794 	}
1795 
1796 	return er;
1797 }
1798 
1799 enum emulation_result kvm_mips_emulate_tlbmiss_ld(unsigned long cause,
1800 						  uint32_t *opc,
1801 						  struct kvm_run *run,
1802 						  struct kvm_vcpu *vcpu)
1803 {
1804 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1805 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1806 	unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) |
1807 			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1808 
1809 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1810 		/* save old pc */
1811 		kvm_write_c0_guest_epc(cop0, arch->pc);
1812 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1813 
1814 		if (cause & CAUSEF_BD)
1815 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1816 		else
1817 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1818 
1819 		kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
1820 			  arch->pc);
1821 
1822 		/* set pc to the exception entry point */
1823 		arch->pc = KVM_GUEST_KSEG0 + 0x0;
1824 
1825 	} else {
1826 		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1827 			  arch->pc);
1828 
1829 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1830 	}
1831 
1832 	kvm_change_c0_guest_cause(cop0, (0xff),
1833 				  (EXCCODE_TLBL << CAUSEB_EXCCODE));
1834 
1835 	/* setup badvaddr, context and entryhi registers for the guest */
1836 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1837 	/* XXXKYMA: is the context register used by linux??? */
1838 	kvm_write_c0_guest_entryhi(cop0, entryhi);
1839 	/* Blow away the shadow host TLBs */
1840 	kvm_mips_flush_host_tlb(1);
1841 
1842 	return EMULATE_DONE;
1843 }
1844 
1845 enum emulation_result kvm_mips_emulate_tlbinv_ld(unsigned long cause,
1846 						 uint32_t *opc,
1847 						 struct kvm_run *run,
1848 						 struct kvm_vcpu *vcpu)
1849 {
1850 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1851 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1852 	unsigned long entryhi =
1853 		(vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1854 		(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1855 
1856 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1857 		/* save old pc */
1858 		kvm_write_c0_guest_epc(cop0, arch->pc);
1859 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1860 
1861 		if (cause & CAUSEF_BD)
1862 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1863 		else
1864 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1865 
1866 		kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
1867 			  arch->pc);
1868 
1869 		/* set pc to the exception entry point */
1870 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1871 
1872 	} else {
1873 		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1874 			  arch->pc);
1875 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1876 	}
1877 
1878 	kvm_change_c0_guest_cause(cop0, (0xff),
1879 				  (EXCCODE_TLBL << CAUSEB_EXCCODE));
1880 
1881 	/* setup badvaddr, context and entryhi registers for the guest */
1882 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1883 	/* XXXKYMA: is the context register used by linux??? */
1884 	kvm_write_c0_guest_entryhi(cop0, entryhi);
1885 	/* Blow away the shadow host TLBs */
1886 	kvm_mips_flush_host_tlb(1);
1887 
1888 	return EMULATE_DONE;
1889 }
1890 
1891 enum emulation_result kvm_mips_emulate_tlbmiss_st(unsigned long cause,
1892 						  uint32_t *opc,
1893 						  struct kvm_run *run,
1894 						  struct kvm_vcpu *vcpu)
1895 {
1896 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1897 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1898 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1899 			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1900 
1901 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1902 		/* save old pc */
1903 		kvm_write_c0_guest_epc(cop0, arch->pc);
1904 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1905 
1906 		if (cause & CAUSEF_BD)
1907 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1908 		else
1909 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1910 
1911 		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1912 			  arch->pc);
1913 
1914 		/* Set PC to the exception entry point */
1915 		arch->pc = KVM_GUEST_KSEG0 + 0x0;
1916 	} else {
1917 		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1918 			  arch->pc);
1919 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1920 	}
1921 
1922 	kvm_change_c0_guest_cause(cop0, (0xff),
1923 				  (EXCCODE_TLBS << CAUSEB_EXCCODE));
1924 
1925 	/* setup badvaddr, context and entryhi registers for the guest */
1926 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1927 	/* XXXKYMA: is the context register used by linux??? */
1928 	kvm_write_c0_guest_entryhi(cop0, entryhi);
1929 	/* Blow away the shadow host TLBs */
1930 	kvm_mips_flush_host_tlb(1);
1931 
1932 	return EMULATE_DONE;
1933 }
1934 
1935 enum emulation_result kvm_mips_emulate_tlbinv_st(unsigned long cause,
1936 						 uint32_t *opc,
1937 						 struct kvm_run *run,
1938 						 struct kvm_vcpu *vcpu)
1939 {
1940 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1941 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1942 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1943 		(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1944 
1945 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1946 		/* save old pc */
1947 		kvm_write_c0_guest_epc(cop0, arch->pc);
1948 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1949 
1950 		if (cause & CAUSEF_BD)
1951 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1952 		else
1953 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1954 
1955 		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1956 			  arch->pc);
1957 
1958 		/* Set PC to the exception entry point */
1959 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1960 	} else {
1961 		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1962 			  arch->pc);
1963 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1964 	}
1965 
1966 	kvm_change_c0_guest_cause(cop0, (0xff),
1967 				  (EXCCODE_TLBS << CAUSEB_EXCCODE));
1968 
1969 	/* setup badvaddr, context and entryhi registers for the guest */
1970 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1971 	/* XXXKYMA: is the context register used by linux??? */
1972 	kvm_write_c0_guest_entryhi(cop0, entryhi);
1973 	/* Blow away the shadow host TLBs */
1974 	kvm_mips_flush_host_tlb(1);
1975 
1976 	return EMULATE_DONE;
1977 }
1978 
1979 /* TLBMOD: store into address matching TLB with Dirty bit off */
1980 enum emulation_result kvm_mips_handle_tlbmod(unsigned long cause, uint32_t *opc,
1981 					     struct kvm_run *run,
1982 					     struct kvm_vcpu *vcpu)
1983 {
1984 	enum emulation_result er = EMULATE_DONE;
1985 #ifdef DEBUG
1986 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1987 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1988 			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1989 	int index;
1990 
1991 	/* If address not in the guest TLB, then we are in trouble */
1992 	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
1993 	if (index < 0) {
1994 		/* XXXKYMA Invalidate and retry */
1995 		kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr);
1996 		kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
1997 		     __func__, entryhi);
1998 		kvm_mips_dump_guest_tlbs(vcpu);
1999 		kvm_mips_dump_host_tlbs();
2000 		return EMULATE_FAIL;
2001 	}
2002 #endif
2003 
2004 	er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
2005 	return er;
2006 }
2007 
2008 enum emulation_result kvm_mips_emulate_tlbmod(unsigned long cause,
2009 					      uint32_t *opc,
2010 					      struct kvm_run *run,
2011 					      struct kvm_vcpu *vcpu)
2012 {
2013 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2014 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2015 			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2016 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2017 
2018 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2019 		/* save old pc */
2020 		kvm_write_c0_guest_epc(cop0, arch->pc);
2021 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2022 
2023 		if (cause & CAUSEF_BD)
2024 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2025 		else
2026 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2027 
2028 		kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2029 			  arch->pc);
2030 
2031 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2032 	} else {
2033 		kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2034 			  arch->pc);
2035 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2036 	}
2037 
2038 	kvm_change_c0_guest_cause(cop0, (0xff),
2039 				  (EXCCODE_MOD << CAUSEB_EXCCODE));
2040 
2041 	/* setup badvaddr, context and entryhi registers for the guest */
2042 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2043 	/* XXXKYMA: is the context register used by linux??? */
2044 	kvm_write_c0_guest_entryhi(cop0, entryhi);
2045 	/* Blow away the shadow host TLBs */
2046 	kvm_mips_flush_host_tlb(1);
2047 
2048 	return EMULATE_DONE;
2049 }
2050 
2051 enum emulation_result kvm_mips_emulate_fpu_exc(unsigned long cause,
2052 					       uint32_t *opc,
2053 					       struct kvm_run *run,
2054 					       struct kvm_vcpu *vcpu)
2055 {
2056 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2057 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2058 
2059 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2060 		/* save old pc */
2061 		kvm_write_c0_guest_epc(cop0, arch->pc);
2062 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2063 
2064 		if (cause & CAUSEF_BD)
2065 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2066 		else
2067 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2068 
2069 	}
2070 
2071 	arch->pc = KVM_GUEST_KSEG0 + 0x180;
2072 
2073 	kvm_change_c0_guest_cause(cop0, (0xff),
2074 				  (EXCCODE_CPU << CAUSEB_EXCCODE));
2075 	kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2076 
2077 	return EMULATE_DONE;
2078 }
2079 
2080 enum emulation_result kvm_mips_emulate_ri_exc(unsigned long cause,
2081 					      uint32_t *opc,
2082 					      struct kvm_run *run,
2083 					      struct kvm_vcpu *vcpu)
2084 {
2085 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2086 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2087 	enum emulation_result er = EMULATE_DONE;
2088 
2089 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2090 		/* save old pc */
2091 		kvm_write_c0_guest_epc(cop0, arch->pc);
2092 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2093 
2094 		if (cause & CAUSEF_BD)
2095 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2096 		else
2097 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2098 
2099 		kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2100 
2101 		kvm_change_c0_guest_cause(cop0, (0xff),
2102 					  (EXCCODE_RI << CAUSEB_EXCCODE));
2103 
2104 		/* Set PC to the exception entry point */
2105 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2106 
2107 	} else {
2108 		kvm_err("Trying to deliver RI when EXL is already set\n");
2109 		er = EMULATE_FAIL;
2110 	}
2111 
2112 	return er;
2113 }
2114 
2115 enum emulation_result kvm_mips_emulate_bp_exc(unsigned long cause,
2116 					      uint32_t *opc,
2117 					      struct kvm_run *run,
2118 					      struct kvm_vcpu *vcpu)
2119 {
2120 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2121 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2122 	enum emulation_result er = EMULATE_DONE;
2123 
2124 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2125 		/* save old pc */
2126 		kvm_write_c0_guest_epc(cop0, arch->pc);
2127 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2128 
2129 		if (cause & CAUSEF_BD)
2130 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2131 		else
2132 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2133 
2134 		kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2135 
2136 		kvm_change_c0_guest_cause(cop0, (0xff),
2137 					  (EXCCODE_BP << CAUSEB_EXCCODE));
2138 
2139 		/* Set PC to the exception entry point */
2140 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2141 
2142 	} else {
2143 		kvm_err("Trying to deliver BP when EXL is already set\n");
2144 		er = EMULATE_FAIL;
2145 	}
2146 
2147 	return er;
2148 }
2149 
2150 enum emulation_result kvm_mips_emulate_trap_exc(unsigned long cause,
2151 						uint32_t *opc,
2152 						struct kvm_run *run,
2153 						struct kvm_vcpu *vcpu)
2154 {
2155 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2156 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2157 	enum emulation_result er = EMULATE_DONE;
2158 
2159 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2160 		/* save old pc */
2161 		kvm_write_c0_guest_epc(cop0, arch->pc);
2162 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2163 
2164 		if (cause & CAUSEF_BD)
2165 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2166 		else
2167 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2168 
2169 		kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2170 
2171 		kvm_change_c0_guest_cause(cop0, (0xff),
2172 					  (EXCCODE_TR << CAUSEB_EXCCODE));
2173 
2174 		/* Set PC to the exception entry point */
2175 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2176 
2177 	} else {
2178 		kvm_err("Trying to deliver TRAP when EXL is already set\n");
2179 		er = EMULATE_FAIL;
2180 	}
2181 
2182 	return er;
2183 }
2184 
2185 enum emulation_result kvm_mips_emulate_msafpe_exc(unsigned long cause,
2186 						  uint32_t *opc,
2187 						  struct kvm_run *run,
2188 						  struct kvm_vcpu *vcpu)
2189 {
2190 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2191 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2192 	enum emulation_result er = EMULATE_DONE;
2193 
2194 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2195 		/* save old pc */
2196 		kvm_write_c0_guest_epc(cop0, arch->pc);
2197 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2198 
2199 		if (cause & CAUSEF_BD)
2200 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2201 		else
2202 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2203 
2204 		kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2205 
2206 		kvm_change_c0_guest_cause(cop0, (0xff),
2207 					  (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
2208 
2209 		/* Set PC to the exception entry point */
2210 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2211 
2212 	} else {
2213 		kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2214 		er = EMULATE_FAIL;
2215 	}
2216 
2217 	return er;
2218 }
2219 
2220 enum emulation_result kvm_mips_emulate_fpe_exc(unsigned long cause,
2221 					       uint32_t *opc,
2222 					       struct kvm_run *run,
2223 					       struct kvm_vcpu *vcpu)
2224 {
2225 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2226 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2227 	enum emulation_result er = EMULATE_DONE;
2228 
2229 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2230 		/* save old pc */
2231 		kvm_write_c0_guest_epc(cop0, arch->pc);
2232 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2233 
2234 		if (cause & CAUSEF_BD)
2235 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2236 		else
2237 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2238 
2239 		kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2240 
2241 		kvm_change_c0_guest_cause(cop0, (0xff),
2242 					  (EXCCODE_FPE << CAUSEB_EXCCODE));
2243 
2244 		/* Set PC to the exception entry point */
2245 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2246 
2247 	} else {
2248 		kvm_err("Trying to deliver FPE when EXL is already set\n");
2249 		er = EMULATE_FAIL;
2250 	}
2251 
2252 	return er;
2253 }
2254 
2255 enum emulation_result kvm_mips_emulate_msadis_exc(unsigned long cause,
2256 						  uint32_t *opc,
2257 						  struct kvm_run *run,
2258 						  struct kvm_vcpu *vcpu)
2259 {
2260 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2261 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2262 	enum emulation_result er = EMULATE_DONE;
2263 
2264 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2265 		/* save old pc */
2266 		kvm_write_c0_guest_epc(cop0, arch->pc);
2267 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2268 
2269 		if (cause & CAUSEF_BD)
2270 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2271 		else
2272 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2273 
2274 		kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2275 
2276 		kvm_change_c0_guest_cause(cop0, (0xff),
2277 					  (EXCCODE_MSADIS << CAUSEB_EXCCODE));
2278 
2279 		/* Set PC to the exception entry point */
2280 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2281 
2282 	} else {
2283 		kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2284 		er = EMULATE_FAIL;
2285 	}
2286 
2287 	return er;
2288 }
2289 
2290 /* ll/sc, rdhwr, sync emulation */
2291 
2292 #define OPCODE 0xfc000000
2293 #define BASE   0x03e00000
2294 #define RT     0x001f0000
2295 #define OFFSET 0x0000ffff
2296 #define LL     0xc0000000
2297 #define SC     0xe0000000
2298 #define SPEC0  0x00000000
2299 #define SPEC3  0x7c000000
2300 #define RD     0x0000f800
2301 #define FUNC   0x0000003f
2302 #define SYNC   0x0000000f
2303 #define RDHWR  0x0000003b
2304 
2305 enum emulation_result kvm_mips_handle_ri(unsigned long cause, uint32_t *opc,
2306 					 struct kvm_run *run,
2307 					 struct kvm_vcpu *vcpu)
2308 {
2309 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2310 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2311 	enum emulation_result er = EMULATE_DONE;
2312 	unsigned long curr_pc;
2313 	uint32_t inst;
2314 
2315 	/*
2316 	 * Update PC and hold onto current PC in case there is
2317 	 * an error and we want to rollback the PC
2318 	 */
2319 	curr_pc = vcpu->arch.pc;
2320 	er = update_pc(vcpu, cause);
2321 	if (er == EMULATE_FAIL)
2322 		return er;
2323 
2324 	/* Fetch the instruction. */
2325 	if (cause & CAUSEF_BD)
2326 		opc += 1;
2327 
2328 	inst = kvm_get_inst(opc, vcpu);
2329 
2330 	if (inst == KVM_INVALID_INST) {
2331 		kvm_err("%s: Cannot get inst @ %p\n", __func__, opc);
2332 		return EMULATE_FAIL;
2333 	}
2334 
2335 	if ((inst & OPCODE) == SPEC3 && (inst & FUNC) == RDHWR) {
2336 		int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2337 		int rd = (inst & RD) >> 11;
2338 		int rt = (inst & RT) >> 16;
2339 		/* If usermode, check RDHWR rd is allowed by guest HWREna */
2340 		if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2341 			kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2342 				  rd, opc);
2343 			goto emulate_ri;
2344 		}
2345 		switch (rd) {
2346 		case 0:	/* CPU number */
2347 			arch->gprs[rt] = 0;
2348 			break;
2349 		case 1:	/* SYNCI length */
2350 			arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2351 					     current_cpu_data.icache.linesz);
2352 			break;
2353 		case 2:	/* Read count register */
2354 			arch->gprs[rt] = kvm_mips_read_count(vcpu);
2355 			break;
2356 		case 3:	/* Count register resolution */
2357 			switch (current_cpu_data.cputype) {
2358 			case CPU_20KC:
2359 			case CPU_25KF:
2360 				arch->gprs[rt] = 1;
2361 				break;
2362 			default:
2363 				arch->gprs[rt] = 2;
2364 			}
2365 			break;
2366 		case 29:
2367 			arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2368 			break;
2369 
2370 		default:
2371 			kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2372 			goto emulate_ri;
2373 		}
2374 	} else {
2375 		kvm_debug("Emulate RI not supported @ %p: %#x\n", opc, inst);
2376 		goto emulate_ri;
2377 	}
2378 
2379 	return EMULATE_DONE;
2380 
2381 emulate_ri:
2382 	/*
2383 	 * Rollback PC (if in branch delay slot then the PC already points to
2384 	 * branch target), and pass the RI exception to the guest OS.
2385 	 */
2386 	vcpu->arch.pc = curr_pc;
2387 	return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
2388 }
2389 
2390 enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2391 						  struct kvm_run *run)
2392 {
2393 	unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2394 	enum emulation_result er = EMULATE_DONE;
2395 
2396 	if (run->mmio.len > sizeof(*gpr)) {
2397 		kvm_err("Bad MMIO length: %d", run->mmio.len);
2398 		er = EMULATE_FAIL;
2399 		goto done;
2400 	}
2401 
2402 	er = update_pc(vcpu, vcpu->arch.pending_load_cause);
2403 	if (er == EMULATE_FAIL)
2404 		return er;
2405 
2406 	switch (run->mmio.len) {
2407 	case 4:
2408 		*gpr = *(int32_t *) run->mmio.data;
2409 		break;
2410 
2411 	case 2:
2412 		if (vcpu->mmio_needed == 2)
2413 			*gpr = *(int16_t *) run->mmio.data;
2414 		else
2415 			*gpr = *(uint16_t *)run->mmio.data;
2416 
2417 		break;
2418 	case 1:
2419 		if (vcpu->mmio_needed == 2)
2420 			*gpr = *(int8_t *) run->mmio.data;
2421 		else
2422 			*gpr = *(u8 *) run->mmio.data;
2423 		break;
2424 	}
2425 
2426 	if (vcpu->arch.pending_load_cause & CAUSEF_BD)
2427 		kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n",
2428 			  vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr,
2429 			  vcpu->mmio_needed);
2430 
2431 done:
2432 	return er;
2433 }
2434 
2435 static enum emulation_result kvm_mips_emulate_exc(unsigned long cause,
2436 						  uint32_t *opc,
2437 						  struct kvm_run *run,
2438 						  struct kvm_vcpu *vcpu)
2439 {
2440 	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2441 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2442 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2443 	enum emulation_result er = EMULATE_DONE;
2444 
2445 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2446 		/* save old pc */
2447 		kvm_write_c0_guest_epc(cop0, arch->pc);
2448 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2449 
2450 		if (cause & CAUSEF_BD)
2451 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2452 		else
2453 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2454 
2455 		kvm_change_c0_guest_cause(cop0, (0xff),
2456 					  (exccode << CAUSEB_EXCCODE));
2457 
2458 		/* Set PC to the exception entry point */
2459 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2460 		kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2461 
2462 		kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2463 			  exccode, kvm_read_c0_guest_epc(cop0),
2464 			  kvm_read_c0_guest_badvaddr(cop0));
2465 	} else {
2466 		kvm_err("Trying to deliver EXC when EXL is already set\n");
2467 		er = EMULATE_FAIL;
2468 	}
2469 
2470 	return er;
2471 }
2472 
2473 enum emulation_result kvm_mips_check_privilege(unsigned long cause,
2474 					       uint32_t *opc,
2475 					       struct kvm_run *run,
2476 					       struct kvm_vcpu *vcpu)
2477 {
2478 	enum emulation_result er = EMULATE_DONE;
2479 	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2480 	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2481 
2482 	int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2483 
2484 	if (usermode) {
2485 		switch (exccode) {
2486 		case EXCCODE_INT:
2487 		case EXCCODE_SYS:
2488 		case EXCCODE_BP:
2489 		case EXCCODE_RI:
2490 		case EXCCODE_TR:
2491 		case EXCCODE_MSAFPE:
2492 		case EXCCODE_FPE:
2493 		case EXCCODE_MSADIS:
2494 			break;
2495 
2496 		case EXCCODE_CPU:
2497 			if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2498 				er = EMULATE_PRIV_FAIL;
2499 			break;
2500 
2501 		case EXCCODE_MOD:
2502 			break;
2503 
2504 		case EXCCODE_TLBL:
2505 			/*
2506 			 * We we are accessing Guest kernel space, then send an
2507 			 * address error exception to the guest
2508 			 */
2509 			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2510 				kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2511 					  badvaddr);
2512 				cause &= ~0xff;
2513 				cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
2514 				er = EMULATE_PRIV_FAIL;
2515 			}
2516 			break;
2517 
2518 		case EXCCODE_TLBS:
2519 			/*
2520 			 * We we are accessing Guest kernel space, then send an
2521 			 * address error exception to the guest
2522 			 */
2523 			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2524 				kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2525 					  badvaddr);
2526 				cause &= ~0xff;
2527 				cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
2528 				er = EMULATE_PRIV_FAIL;
2529 			}
2530 			break;
2531 
2532 		case EXCCODE_ADES:
2533 			kvm_debug("%s: address error ST @ %#lx\n", __func__,
2534 				  badvaddr);
2535 			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2536 				cause &= ~0xff;
2537 				cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
2538 			}
2539 			er = EMULATE_PRIV_FAIL;
2540 			break;
2541 		case EXCCODE_ADEL:
2542 			kvm_debug("%s: address error LD @ %#lx\n", __func__,
2543 				  badvaddr);
2544 			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2545 				cause &= ~0xff;
2546 				cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
2547 			}
2548 			er = EMULATE_PRIV_FAIL;
2549 			break;
2550 		default:
2551 			er = EMULATE_PRIV_FAIL;
2552 			break;
2553 		}
2554 	}
2555 
2556 	if (er == EMULATE_PRIV_FAIL)
2557 		kvm_mips_emulate_exc(cause, opc, run, vcpu);
2558 
2559 	return er;
2560 }
2561 
2562 /*
2563  * User Address (UA) fault, this could happen if
2564  * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2565  *     case we pass on the fault to the guest kernel and let it handle it.
2566  * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2567  *     case we inject the TLB from the Guest TLB into the shadow host TLB
2568  */
2569 enum emulation_result kvm_mips_handle_tlbmiss(unsigned long cause,
2570 					      uint32_t *opc,
2571 					      struct kvm_run *run,
2572 					      struct kvm_vcpu *vcpu)
2573 {
2574 	enum emulation_result er = EMULATE_DONE;
2575 	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2576 	unsigned long va = vcpu->arch.host_cp0_badvaddr;
2577 	int index;
2578 
2579 	kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx, entryhi: %#lx\n",
2580 		  vcpu->arch.host_cp0_badvaddr, vcpu->arch.host_cp0_entryhi);
2581 
2582 	/*
2583 	 * KVM would not have got the exception if this entry was valid in the
2584 	 * shadow host TLB. Check the Guest TLB, if the entry is not there then
2585 	 * send the guest an exception. The guest exc handler should then inject
2586 	 * an entry into the guest TLB.
2587 	 */
2588 	index = kvm_mips_guest_tlb_lookup(vcpu,
2589 		      (va & VPN2_MASK) |
2590 		      (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) &
2591 		       KVM_ENTRYHI_ASID));
2592 	if (index < 0) {
2593 		if (exccode == EXCCODE_TLBL) {
2594 			er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
2595 		} else if (exccode == EXCCODE_TLBS) {
2596 			er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2597 		} else {
2598 			kvm_err("%s: invalid exc code: %d\n", __func__,
2599 				exccode);
2600 			er = EMULATE_FAIL;
2601 		}
2602 	} else {
2603 		struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2604 
2605 		/*
2606 		 * Check if the entry is valid, if not then setup a TLB invalid
2607 		 * exception to the guest
2608 		 */
2609 		if (!TLB_IS_VALID(*tlb, va)) {
2610 			if (exccode == EXCCODE_TLBL) {
2611 				er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2612 								vcpu);
2613 			} else if (exccode == EXCCODE_TLBS) {
2614 				er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2615 								vcpu);
2616 			} else {
2617 				kvm_err("%s: invalid exc code: %d\n", __func__,
2618 					exccode);
2619 				er = EMULATE_FAIL;
2620 			}
2621 		} else {
2622 			kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2623 				  tlb->tlb_hi, tlb->tlb_lo0, tlb->tlb_lo1);
2624 			/*
2625 			 * OK we have a Guest TLB entry, now inject it into the
2626 			 * shadow host TLB
2627 			 */
2628 			kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, NULL,
2629 							     NULL);
2630 		}
2631 	}
2632 
2633 	return er;
2634 }
2635