xref: /openbmc/linux/arch/mips/kernel/vpe.c (revision c21b37f6)
1 /*
2  * Copyright (C) 2004, 2005 MIPS Technologies, Inc.  All rights reserved.
3  *
4  *  This program is free software; you can distribute it and/or modify it
5  *  under the terms of the GNU General Public License (Version 2) as
6  *  published by the Free Software Foundation.
7  *
8  *  This program is distributed in the hope it will be useful, but WITHOUT
9  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
11  *  for more details.
12  *
13  *  You should have received a copy of the GNU General Public License along
14  *  with this program; if not, write to the Free Software Foundation, Inc.,
15  *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
16  */
17 
18 /*
19  * VPE support module
20  *
21  * Provides support for loading a MIPS SP program on VPE1.
22  * The SP enviroment is rather simple, no tlb's.  It needs to be relocatable
23  * (or partially linked). You should initialise your stack in the startup
24  * code. This loader looks for the symbol __start and sets up
25  * execution to resume from there. The MIPS SDE kit contains suitable examples.
26  *
27  * To load and run, simply cat a SP 'program file' to /dev/vpe1.
28  * i.e cat spapp >/dev/vpe1.
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/device.h>
33 #include <linux/module.h>
34 #include <linux/fs.h>
35 #include <linux/init.h>
36 #include <asm/uaccess.h>
37 #include <linux/slab.h>
38 #include <linux/list.h>
39 #include <linux/vmalloc.h>
40 #include <linux/elf.h>
41 #include <linux/seq_file.h>
42 #include <linux/syscalls.h>
43 #include <linux/moduleloader.h>
44 #include <linux/interrupt.h>
45 #include <linux/poll.h>
46 #include <linux/bootmem.h>
47 #include <asm/mipsregs.h>
48 #include <asm/mipsmtregs.h>
49 #include <asm/cacheflush.h>
50 #include <asm/atomic.h>
51 #include <asm/cpu.h>
52 #include <asm/mips_mt.h>
53 #include <asm/processor.h>
54 #include <asm/system.h>
55 #include <asm/vpe.h>
56 #include <asm/kspd.h>
57 
58 typedef void *vpe_handle;
59 
60 #ifndef ARCH_SHF_SMALL
61 #define ARCH_SHF_SMALL 0
62 #endif
63 
64 /* If this is set, the section belongs in the init part of the module */
65 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
66 
67 static char module_name[] = "vpe";
68 static int major;
69 static const int minor = 1;	/* fixed for now  */
70 
71 #ifdef CONFIG_MIPS_APSP_KSPD
72  static struct kspd_notifications kspd_events;
73 static int kspd_events_reqd = 0;
74 #endif
75 
76 /* grab the likely amount of memory we will need. */
77 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
78 #define P_SIZE (2 * 1024 * 1024)
79 #else
80 /* add an overhead to the max kmalloc size for non-striped symbols/etc */
81 #define P_SIZE (256 * 1024)
82 #endif
83 
84 extern unsigned long physical_memsize;
85 
86 #define MAX_VPES 16
87 #define VPE_PATH_MAX 256
88 
89 enum vpe_state {
90 	VPE_STATE_UNUSED = 0,
91 	VPE_STATE_INUSE,
92 	VPE_STATE_RUNNING
93 };
94 
95 enum tc_state {
96 	TC_STATE_UNUSED = 0,
97 	TC_STATE_INUSE,
98 	TC_STATE_RUNNING,
99 	TC_STATE_DYNAMIC
100 };
101 
102 struct vpe {
103 	enum vpe_state state;
104 
105 	/* (device) minor associated with this vpe */
106 	int minor;
107 
108 	/* elfloader stuff */
109 	void *load_addr;
110 	unsigned long len;
111 	char *pbuffer;
112 	unsigned long plen;
113 	unsigned int uid, gid;
114 	char cwd[VPE_PATH_MAX];
115 
116 	unsigned long __start;
117 
118 	/* tc's associated with this vpe */
119 	struct list_head tc;
120 
121 	/* The list of vpe's */
122 	struct list_head list;
123 
124 	/* shared symbol address */
125 	void *shared_ptr;
126 
127 	/* the list of who wants to know when something major happens */
128 	struct list_head notify;
129 };
130 
131 struct tc {
132 	enum tc_state state;
133 	int index;
134 
135 	/* parent VPE */
136 	struct vpe *pvpe;
137 
138 	/* The list of TC's with this VPE */
139 	struct list_head tc;
140 
141 	/* The global list of tc's */
142 	struct list_head list;
143 };
144 
145 struct {
146 	/* Virtual processing elements */
147 	struct list_head vpe_list;
148 
149 	/* Thread contexts */
150 	struct list_head tc_list;
151 } vpecontrol = {
152 	.vpe_list = LIST_HEAD_INIT(vpecontrol.vpe_list),
153 	.tc_list = LIST_HEAD_INIT(vpecontrol.tc_list)
154 };
155 
156 static void release_progmem(void *ptr);
157 extern void save_gp_address(unsigned int secbase, unsigned int rel);
158 
159 /* get the vpe associated with this minor */
160 struct vpe *get_vpe(int minor)
161 {
162 	struct vpe *v;
163 
164 	if (!cpu_has_mipsmt)
165 		return NULL;
166 
167 	list_for_each_entry(v, &vpecontrol.vpe_list, list) {
168 		if (v->minor == minor)
169 			return v;
170 	}
171 
172 	return NULL;
173 }
174 
175 /* get the vpe associated with this minor */
176 struct tc *get_tc(int index)
177 {
178 	struct tc *t;
179 
180 	list_for_each_entry(t, &vpecontrol.tc_list, list) {
181 		if (t->index == index)
182 			return t;
183 	}
184 
185 	return NULL;
186 }
187 
188 struct tc *get_tc_unused(void)
189 {
190 	struct tc *t;
191 
192 	list_for_each_entry(t, &vpecontrol.tc_list, list) {
193 		if (t->state == TC_STATE_UNUSED)
194 			return t;
195 	}
196 
197 	return NULL;
198 }
199 
200 /* allocate a vpe and associate it with this minor (or index) */
201 struct vpe *alloc_vpe(int minor)
202 {
203 	struct vpe *v;
204 
205 	if ((v = kzalloc(sizeof(struct vpe), GFP_KERNEL)) == NULL) {
206 		return NULL;
207 	}
208 
209 	INIT_LIST_HEAD(&v->tc);
210 	list_add_tail(&v->list, &vpecontrol.vpe_list);
211 
212 	INIT_LIST_HEAD(&v->notify);
213 	v->minor = minor;
214 	return v;
215 }
216 
217 /* allocate a tc. At startup only tc0 is running, all other can be halted. */
218 struct tc *alloc_tc(int index)
219 {
220 	struct tc *t;
221 
222 	if ((t = kzalloc(sizeof(struct tc), GFP_KERNEL)) == NULL) {
223 		return NULL;
224 	}
225 
226 	INIT_LIST_HEAD(&t->tc);
227 	list_add_tail(&t->list, &vpecontrol.tc_list);
228 
229 	t->index = index;
230 
231 	return t;
232 }
233 
234 /* clean up and free everything */
235 void release_vpe(struct vpe *v)
236 {
237 	list_del(&v->list);
238 	if (v->load_addr)
239 		release_progmem(v);
240 	kfree(v);
241 }
242 
243 void dump_mtregs(void)
244 {
245 	unsigned long val;
246 
247 	val = read_c0_config3();
248 	printk("config3 0x%lx MT %ld\n", val,
249 	       (val & CONFIG3_MT) >> CONFIG3_MT_SHIFT);
250 
251 	val = read_c0_mvpcontrol();
252 	printk("MVPControl 0x%lx, STLB %ld VPC %ld EVP %ld\n", val,
253 	       (val & MVPCONTROL_STLB) >> MVPCONTROL_STLB_SHIFT,
254 	       (val & MVPCONTROL_VPC) >> MVPCONTROL_VPC_SHIFT,
255 	       (val & MVPCONTROL_EVP));
256 
257 	val = read_c0_mvpconf0();
258 	printk("mvpconf0 0x%lx, PVPE %ld PTC %ld M %ld\n", val,
259 	       (val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT,
260 	       val & MVPCONF0_PTC, (val & MVPCONF0_M) >> MVPCONF0_M_SHIFT);
261 }
262 
263 /* Find some VPE program space  */
264 static void *alloc_progmem(unsigned long len)
265 {
266 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
267 	/* this means you must tell linux to use less memory than you physically have */
268 	return pfn_to_kaddr(max_pfn);
269 #else
270 	// simple grab some mem for now
271 	return kmalloc(len, GFP_KERNEL);
272 #endif
273 }
274 
275 static void release_progmem(void *ptr)
276 {
277 #ifndef CONFIG_MIPS_VPE_LOADER_TOM
278 	kfree(ptr);
279 #endif
280 }
281 
282 /* Update size with this section: return offset. */
283 static long get_offset(unsigned long *size, Elf_Shdr * sechdr)
284 {
285 	long ret;
286 
287 	ret = ALIGN(*size, sechdr->sh_addralign ? : 1);
288 	*size = ret + sechdr->sh_size;
289 	return ret;
290 }
291 
292 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
293    might -- code, read-only data, read-write data, small data.  Tally
294    sizes, and place the offsets into sh_entsize fields: high bit means it
295    belongs in init. */
296 static void layout_sections(struct module *mod, const Elf_Ehdr * hdr,
297 			    Elf_Shdr * sechdrs, const char *secstrings)
298 {
299 	static unsigned long const masks[][2] = {
300 		/* NOTE: all executable code must be the first section
301 		 * in this array; otherwise modify the text_size
302 		 * finder in the two loops below */
303 		{SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL},
304 		{SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL},
305 		{SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL},
306 		{ARCH_SHF_SMALL | SHF_ALLOC, 0}
307 	};
308 	unsigned int m, i;
309 
310 	for (i = 0; i < hdr->e_shnum; i++)
311 		sechdrs[i].sh_entsize = ~0UL;
312 
313 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
314 		for (i = 0; i < hdr->e_shnum; ++i) {
315 			Elf_Shdr *s = &sechdrs[i];
316 
317 			//  || strncmp(secstrings + s->sh_name, ".init", 5) == 0)
318 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
319 			    || (s->sh_flags & masks[m][1])
320 			    || s->sh_entsize != ~0UL)
321 				continue;
322 			s->sh_entsize = get_offset(&mod->core_size, s);
323 		}
324 
325 		if (m == 0)
326 			mod->core_text_size = mod->core_size;
327 
328 	}
329 }
330 
331 
332 /* from module-elf32.c, but subverted a little */
333 
334 struct mips_hi16 {
335 	struct mips_hi16 *next;
336 	Elf32_Addr *addr;
337 	Elf32_Addr value;
338 };
339 
340 static struct mips_hi16 *mips_hi16_list;
341 static unsigned int gp_offs, gp_addr;
342 
343 static int apply_r_mips_none(struct module *me, uint32_t *location,
344 			     Elf32_Addr v)
345 {
346 	return 0;
347 }
348 
349 static int apply_r_mips_gprel16(struct module *me, uint32_t *location,
350 				Elf32_Addr v)
351 {
352 	int rel;
353 
354 	if( !(*location & 0xffff) ) {
355 		rel = (int)v - gp_addr;
356 	}
357 	else {
358 		/* .sbss + gp(relative) + offset */
359 		/* kludge! */
360 		rel =  (int)(short)((int)v + gp_offs +
361 				    (int)(short)(*location & 0xffff) - gp_addr);
362 	}
363 
364 	if( (rel > 32768) || (rel < -32768) ) {
365 		printk(KERN_DEBUG "VPE loader: apply_r_mips_gprel16: "
366 		       "relative address 0x%x out of range of gp register\n",
367 		       rel);
368 		return -ENOEXEC;
369 	}
370 
371 	*location = (*location & 0xffff0000) | (rel & 0xffff);
372 
373 	return 0;
374 }
375 
376 static int apply_r_mips_pc16(struct module *me, uint32_t *location,
377 			     Elf32_Addr v)
378 {
379 	int rel;
380 	rel = (((unsigned int)v - (unsigned int)location));
381 	rel >>= 2;		// because the offset is in _instructions_ not bytes.
382 	rel -= 1;		// and one instruction less due to the branch delay slot.
383 
384 	if( (rel > 32768) || (rel < -32768) ) {
385 		printk(KERN_DEBUG "VPE loader: "
386  		       "apply_r_mips_pc16: relative address out of range 0x%x\n", rel);
387 		return -ENOEXEC;
388 	}
389 
390 	*location = (*location & 0xffff0000) | (rel & 0xffff);
391 
392 	return 0;
393 }
394 
395 static int apply_r_mips_32(struct module *me, uint32_t *location,
396 			   Elf32_Addr v)
397 {
398 	*location += v;
399 
400 	return 0;
401 }
402 
403 static int apply_r_mips_26(struct module *me, uint32_t *location,
404 			   Elf32_Addr v)
405 {
406 	if (v % 4) {
407 		printk(KERN_DEBUG "VPE loader: apply_r_mips_26 "
408 		       " unaligned relocation\n");
409 		return -ENOEXEC;
410 	}
411 
412 /*
413  * Not desperately convinced this is a good check of an overflow condition
414  * anyway. But it gets in the way of handling undefined weak symbols which
415  * we want to set to zero.
416  * if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) {
417  * printk(KERN_ERR
418  * "module %s: relocation overflow\n",
419  * me->name);
420  * return -ENOEXEC;
421  * }
422  */
423 
424 	*location = (*location & ~0x03ffffff) |
425 		((*location + (v >> 2)) & 0x03ffffff);
426 	return 0;
427 }
428 
429 static int apply_r_mips_hi16(struct module *me, uint32_t *location,
430 			     Elf32_Addr v)
431 {
432 	struct mips_hi16 *n;
433 
434 	/*
435 	 * We cannot relocate this one now because we don't know the value of
436 	 * the carry we need to add.  Save the information, and let LO16 do the
437 	 * actual relocation.
438 	 */
439 	n = kmalloc(sizeof *n, GFP_KERNEL);
440 	if (!n)
441 		return -ENOMEM;
442 
443 	n->addr = location;
444 	n->value = v;
445 	n->next = mips_hi16_list;
446 	mips_hi16_list = n;
447 
448 	return 0;
449 }
450 
451 static int apply_r_mips_lo16(struct module *me, uint32_t *location,
452 			     Elf32_Addr v)
453 {
454 	unsigned long insnlo = *location;
455 	Elf32_Addr val, vallo;
456 
457 	/* Sign extend the addend we extract from the lo insn.  */
458 	vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000;
459 
460 	if (mips_hi16_list != NULL) {
461 		struct mips_hi16 *l;
462 
463 		l = mips_hi16_list;
464 		while (l != NULL) {
465 			struct mips_hi16 *next;
466 			unsigned long insn;
467 
468 			/*
469 			 * The value for the HI16 had best be the same.
470 			 */
471  			if (v != l->value) {
472 				printk(KERN_DEBUG "VPE loader: "
473 				       "apply_r_mips_lo16/hi16: 	"
474 				       "inconsistent value information\n");
475 				return -ENOEXEC;
476 			}
477 
478 			/*
479 			 * Do the HI16 relocation.  Note that we actually don't
480 			 * need to know anything about the LO16 itself, except
481 			 * where to find the low 16 bits of the addend needed
482 			 * by the LO16.
483 			 */
484 			insn = *l->addr;
485 			val = ((insn & 0xffff) << 16) + vallo;
486 			val += v;
487 
488 			/*
489 			 * Account for the sign extension that will happen in
490 			 * the low bits.
491 			 */
492 			val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff;
493 
494 			insn = (insn & ~0xffff) | val;
495 			*l->addr = insn;
496 
497 			next = l->next;
498 			kfree(l);
499 			l = next;
500 		}
501 
502 		mips_hi16_list = NULL;
503 	}
504 
505 	/*
506 	 * Ok, we're done with the HI16 relocs.  Now deal with the LO16.
507 	 */
508 	val = v + vallo;
509 	insnlo = (insnlo & ~0xffff) | (val & 0xffff);
510 	*location = insnlo;
511 
512 	return 0;
513 }
514 
515 static int (*reloc_handlers[]) (struct module *me, uint32_t *location,
516 				Elf32_Addr v) = {
517 	[R_MIPS_NONE]	= apply_r_mips_none,
518 	[R_MIPS_32]	= apply_r_mips_32,
519 	[R_MIPS_26]	= apply_r_mips_26,
520 	[R_MIPS_HI16]	= apply_r_mips_hi16,
521 	[R_MIPS_LO16]	= apply_r_mips_lo16,
522 	[R_MIPS_GPREL16] = apply_r_mips_gprel16,
523 	[R_MIPS_PC16] = apply_r_mips_pc16
524 };
525 
526 static char *rstrs[] = {
527 	[R_MIPS_NONE]	= "MIPS_NONE",
528 	[R_MIPS_32]	= "MIPS_32",
529 	[R_MIPS_26]	= "MIPS_26",
530 	[R_MIPS_HI16]	= "MIPS_HI16",
531 	[R_MIPS_LO16]	= "MIPS_LO16",
532 	[R_MIPS_GPREL16] = "MIPS_GPREL16",
533 	[R_MIPS_PC16] = "MIPS_PC16"
534 };
535 
536 int apply_relocations(Elf32_Shdr *sechdrs,
537 		      const char *strtab,
538 		      unsigned int symindex,
539 		      unsigned int relsec,
540 		      struct module *me)
541 {
542 	Elf32_Rel *rel = (void *) sechdrs[relsec].sh_addr;
543 	Elf32_Sym *sym;
544 	uint32_t *location;
545 	unsigned int i;
546 	Elf32_Addr v;
547 	int res;
548 
549 	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
550 		Elf32_Word r_info = rel[i].r_info;
551 
552 		/* This is where to make the change */
553 		location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
554 			+ rel[i].r_offset;
555 		/* This is the symbol it is referring to */
556 		sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
557 			+ ELF32_R_SYM(r_info);
558 
559 		if (!sym->st_value) {
560 			printk(KERN_DEBUG "%s: undefined weak symbol %s\n",
561 			       me->name, strtab + sym->st_name);
562 			/* just print the warning, dont barf */
563 		}
564 
565 		v = sym->st_value;
566 
567 		res = reloc_handlers[ELF32_R_TYPE(r_info)](me, location, v);
568 		if( res ) {
569 			char *r = rstrs[ELF32_R_TYPE(r_info)];
570 		    	printk(KERN_WARNING "VPE loader: .text+0x%x "
571 			       "relocation type %s for symbol \"%s\" failed\n",
572 			       rel[i].r_offset, r ? r : "UNKNOWN",
573 			       strtab + sym->st_name);
574 			return res;
575 		}
576 	}
577 
578 	return 0;
579 }
580 
581 void save_gp_address(unsigned int secbase, unsigned int rel)
582 {
583 	gp_addr = secbase + rel;
584 	gp_offs = gp_addr - (secbase & 0xffff0000);
585 }
586 /* end module-elf32.c */
587 
588 
589 
590 /* Change all symbols so that sh_value encodes the pointer directly. */
591 static void simplify_symbols(Elf_Shdr * sechdrs,
592 			    unsigned int symindex,
593 			    const char *strtab,
594 			    const char *secstrings,
595 			    unsigned int nsecs, struct module *mod)
596 {
597 	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
598 	unsigned long secbase, bssbase = 0;
599 	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
600 	int size;
601 
602 	/* find the .bss section for COMMON symbols */
603 	for (i = 0; i < nsecs; i++) {
604 		if (strncmp(secstrings + sechdrs[i].sh_name, ".bss", 4) == 0) {
605 			bssbase = sechdrs[i].sh_addr;
606 			break;
607 		}
608 	}
609 
610 	for (i = 1; i < n; i++) {
611 		switch (sym[i].st_shndx) {
612 		case SHN_COMMON:
613 			/* Allocate space for the symbol in the .bss section.
614 			   st_value is currently size.
615 			   We want it to have the address of the symbol. */
616 
617 			size = sym[i].st_value;
618 			sym[i].st_value = bssbase;
619 
620 			bssbase += size;
621 			break;
622 
623 		case SHN_ABS:
624 			/* Don't need to do anything */
625 			break;
626 
627 		case SHN_UNDEF:
628 			/* ret = -ENOENT; */
629 			break;
630 
631 		case SHN_MIPS_SCOMMON:
632 			printk(KERN_DEBUG "simplify_symbols: ignoring SHN_MIPS_SCOMMON"
633 			       "symbol <%s> st_shndx %d\n", strtab + sym[i].st_name,
634 			       sym[i].st_shndx);
635 			// .sbss section
636 			break;
637 
638 		default:
639 			secbase = sechdrs[sym[i].st_shndx].sh_addr;
640 
641 			if (strncmp(strtab + sym[i].st_name, "_gp", 3) == 0) {
642 				save_gp_address(secbase, sym[i].st_value);
643 			}
644 
645 			sym[i].st_value += secbase;
646 			break;
647 		}
648 	}
649 }
650 
651 #ifdef DEBUG_ELFLOADER
652 static void dump_elfsymbols(Elf_Shdr * sechdrs, unsigned int symindex,
653 			    const char *strtab, struct module *mod)
654 {
655 	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
656 	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
657 
658 	printk(KERN_DEBUG "dump_elfsymbols: n %d\n", n);
659 	for (i = 1; i < n; i++) {
660 		printk(KERN_DEBUG " i %d name <%s> 0x%x\n", i,
661 		       strtab + sym[i].st_name, sym[i].st_value);
662 	}
663 }
664 #endif
665 
666 static void dump_tc(struct tc *t)
667 {
668   	unsigned long val;
669 
670   	settc(t->index);
671  	printk(KERN_DEBUG "VPE loader: TC index %d targtc %ld "
672  	       "TCStatus 0x%lx halt 0x%lx\n",
673   	       t->index, read_c0_vpecontrol() & VPECONTROL_TARGTC,
674   	       read_tc_c0_tcstatus(), read_tc_c0_tchalt());
675 
676  	printk(KERN_DEBUG " tcrestart 0x%lx\n", read_tc_c0_tcrestart());
677  	printk(KERN_DEBUG " tcbind 0x%lx\n", read_tc_c0_tcbind());
678 
679   	val = read_c0_vpeconf0();
680  	printk(KERN_DEBUG " VPEConf0 0x%lx MVP %ld\n", val,
681   	       (val & VPECONF0_MVP) >> VPECONF0_MVP_SHIFT);
682 
683  	printk(KERN_DEBUG " c0 status 0x%lx\n", read_vpe_c0_status());
684  	printk(KERN_DEBUG " c0 cause 0x%lx\n", read_vpe_c0_cause());
685 
686  	printk(KERN_DEBUG " c0 badvaddr 0x%lx\n", read_vpe_c0_badvaddr());
687  	printk(KERN_DEBUG " c0 epc 0x%lx\n", read_vpe_c0_epc());
688 }
689 
690 static void dump_tclist(void)
691 {
692 	struct tc *t;
693 
694 	list_for_each_entry(t, &vpecontrol.tc_list, list) {
695 		dump_tc(t);
696 	}
697 }
698 
699 /* We are prepared so configure and start the VPE... */
700 static int vpe_run(struct vpe * v)
701 {
702 	struct vpe_notifications *n;
703 	unsigned long val, dmt_flag;
704 	struct tc *t;
705 
706 	/* check we are the Master VPE */
707 	val = read_c0_vpeconf0();
708 	if (!(val & VPECONF0_MVP)) {
709 		printk(KERN_WARNING
710 		       "VPE loader: only Master VPE's are allowed to configure MT\n");
711 		return -1;
712 	}
713 
714 	/* disable MT (using dvpe) */
715 	dvpe();
716 
717 	if (!list_empty(&v->tc)) {
718 		if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
719 			printk(KERN_WARNING "VPE loader: TC %d is already in use.\n",
720 			       t->index);
721 			return -ENOEXEC;
722 		}
723 	} else {
724 		printk(KERN_WARNING "VPE loader: No TC's associated with VPE %d\n",
725 		       v->minor);
726 		return -ENOEXEC;
727 	}
728 
729 	/* Put MVPE's into 'configuration state' */
730 	set_c0_mvpcontrol(MVPCONTROL_VPC);
731 
732 	settc(t->index);
733 
734 	/* should check it is halted, and not activated */
735 	if ((read_tc_c0_tcstatus() & TCSTATUS_A) || !(read_tc_c0_tchalt() & TCHALT_H)) {
736 		printk(KERN_WARNING "VPE loader: TC %d is already doing something!\n",
737 		       t->index);
738 		dump_tclist();
739 		return -ENOEXEC;
740 	}
741 
742 	/*
743 	 * Disable multi-threaded execution whilst we activate, clear the
744 	 * halt bit and bound the tc to the other VPE...
745 	 */
746 	dmt_flag = dmt();
747 
748 	/* Write the address we want it to start running from in the TCPC register. */
749 	write_tc_c0_tcrestart((unsigned long)v->__start);
750 	write_tc_c0_tccontext((unsigned long)0);
751 	/*
752 	 * Mark the TC as activated, not interrupt exempt and not dynamically
753 	 * allocatable
754 	 */
755 	val = read_tc_c0_tcstatus();
756 	val = (val & ~(TCSTATUS_DA | TCSTATUS_IXMT)) | TCSTATUS_A;
757 	write_tc_c0_tcstatus(val);
758 
759 	write_tc_c0_tchalt(read_tc_c0_tchalt() & ~TCHALT_H);
760 
761 	/*
762 	 * The sde-kit passes 'memsize' to __start in $a3, so set something
763 	 * here...  Or set $a3 to zero and define DFLT_STACK_SIZE and
764 	 * DFLT_HEAP_SIZE when you compile your program
765 	 */
766  	mttgpr(7, physical_memsize);
767 
768 
769 	/* set up VPE1 */
770 	/*
771 	 * bind the TC to VPE 1 as late as possible so we only have the final
772 	 * VPE registers to set up, and so an EJTAG probe can trigger on it
773 	 */
774  	write_tc_c0_tcbind((read_tc_c0_tcbind() & ~TCBIND_CURVPE) | v->minor);
775 
776 	write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~(VPECONF0_VPA));
777 
778 	back_to_back_c0_hazard();
779 
780 	/* Set up the XTC bit in vpeconf0 to point at our tc */
781 	write_vpe_c0_vpeconf0( (read_vpe_c0_vpeconf0() & ~(VPECONF0_XTC))
782 	                      | (t->index << VPECONF0_XTC_SHIFT));
783 
784 	back_to_back_c0_hazard();
785 
786 	/* enable this VPE */
787 	write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
788 
789 	/* clear out any left overs from a previous program */
790 	write_vpe_c0_status(0);
791 	write_vpe_c0_cause(0);
792 
793 	/* take system out of configuration state */
794 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
795 
796 	/* now safe to re-enable multi-threading */
797 	emt(dmt_flag);
798 
799 	/* set it running */
800 	evpe(EVPE_ENABLE);
801 
802 	list_for_each_entry(n, &v->notify, list) {
803 		n->start(v->minor);
804 	}
805 
806 	return 0;
807 }
808 
809 static int find_vpe_symbols(struct vpe * v, Elf_Shdr * sechdrs,
810 				      unsigned int symindex, const char *strtab,
811 				      struct module *mod)
812 {
813 	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
814 	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
815 
816 	for (i = 1; i < n; i++) {
817 		if (strcmp(strtab + sym[i].st_name, "__start") == 0) {
818 			v->__start = sym[i].st_value;
819 		}
820 
821 		if (strcmp(strtab + sym[i].st_name, "vpe_shared") == 0) {
822 			v->shared_ptr = (void *)sym[i].st_value;
823 		}
824 	}
825 
826 	if ( (v->__start == 0) || (v->shared_ptr == NULL))
827 		return -1;
828 
829 	return 0;
830 }
831 
832 /*
833  * Allocates a VPE with some program code space(the load address), copies the
834  * contents of the program (p)buffer performing relocatations/etc, free's it
835  * when finished.
836  */
837 static int vpe_elfload(struct vpe * v)
838 {
839 	Elf_Ehdr *hdr;
840 	Elf_Shdr *sechdrs;
841 	long err = 0;
842 	char *secstrings, *strtab = NULL;
843 	unsigned int len, i, symindex = 0, strindex = 0, relocate = 0;
844 	struct module mod;	// so we can re-use the relocations code
845 
846 	memset(&mod, 0, sizeof(struct module));
847 	strcpy(mod.name, "VPE loader");
848 
849 	hdr = (Elf_Ehdr *) v->pbuffer;
850 	len = v->plen;
851 
852 	/* Sanity checks against insmoding binaries or wrong arch,
853 	   weird elf version */
854 	if (memcmp(hdr->e_ident, ELFMAG, 4) != 0
855 	    || (hdr->e_type != ET_REL && hdr->e_type != ET_EXEC)
856 	    || !elf_check_arch(hdr)
857 	    || hdr->e_shentsize != sizeof(*sechdrs)) {
858 		printk(KERN_WARNING
859 		       "VPE loader: program wrong arch or weird elf version\n");
860 
861 		return -ENOEXEC;
862 	}
863 
864 	if (hdr->e_type == ET_REL)
865 		relocate = 1;
866 
867 	if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) {
868 		printk(KERN_ERR "VPE loader: program length %u truncated\n",
869 		       len);
870 
871 		return -ENOEXEC;
872 	}
873 
874 	/* Convenience variables */
875 	sechdrs = (void *)hdr + hdr->e_shoff;
876 	secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
877 	sechdrs[0].sh_addr = 0;
878 
879 	/* And these should exist, but gcc whinges if we don't init them */
880 	symindex = strindex = 0;
881 
882 	if (relocate) {
883 		for (i = 1; i < hdr->e_shnum; i++) {
884 			if (sechdrs[i].sh_type != SHT_NOBITS
885 			    && len < sechdrs[i].sh_offset + sechdrs[i].sh_size) {
886 				printk(KERN_ERR "VPE program length %u truncated\n",
887 				       len);
888 				return -ENOEXEC;
889 			}
890 
891 			/* Mark all sections sh_addr with their address in the
892 			   temporary image. */
893 			sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
894 
895 			/* Internal symbols and strings. */
896 			if (sechdrs[i].sh_type == SHT_SYMTAB) {
897 				symindex = i;
898 				strindex = sechdrs[i].sh_link;
899 				strtab = (char *)hdr + sechdrs[strindex].sh_offset;
900 			}
901 		}
902 		layout_sections(&mod, hdr, sechdrs, secstrings);
903 	}
904 
905 	v->load_addr = alloc_progmem(mod.core_size);
906 	memset(v->load_addr, 0, mod.core_size);
907 
908 	printk("VPE loader: loading to %p\n", v->load_addr);
909 
910 	if (relocate) {
911 		for (i = 0; i < hdr->e_shnum; i++) {
912 			void *dest;
913 
914 			if (!(sechdrs[i].sh_flags & SHF_ALLOC))
915 				continue;
916 
917 			dest = v->load_addr + sechdrs[i].sh_entsize;
918 
919 			if (sechdrs[i].sh_type != SHT_NOBITS)
920 				memcpy(dest, (void *)sechdrs[i].sh_addr,
921 				       sechdrs[i].sh_size);
922 			/* Update sh_addr to point to copy in image. */
923 			sechdrs[i].sh_addr = (unsigned long)dest;
924 
925 			printk(KERN_DEBUG " section sh_name %s sh_addr 0x%x\n",
926 			       secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr);
927 		}
928 
929  		/* Fix up syms, so that st_value is a pointer to location. */
930  		simplify_symbols(sechdrs, symindex, strtab, secstrings,
931  				 hdr->e_shnum, &mod);
932 
933  		/* Now do relocations. */
934  		for (i = 1; i < hdr->e_shnum; i++) {
935  			const char *strtab = (char *)sechdrs[strindex].sh_addr;
936  			unsigned int info = sechdrs[i].sh_info;
937 
938  			/* Not a valid relocation section? */
939  			if (info >= hdr->e_shnum)
940  				continue;
941 
942  			/* Don't bother with non-allocated sections */
943  			if (!(sechdrs[info].sh_flags & SHF_ALLOC))
944  				continue;
945 
946  			if (sechdrs[i].sh_type == SHT_REL)
947  				err = apply_relocations(sechdrs, strtab, symindex, i,
948  							&mod);
949  			else if (sechdrs[i].sh_type == SHT_RELA)
950  				err = apply_relocate_add(sechdrs, strtab, symindex, i,
951  							 &mod);
952  			if (err < 0)
953  				return err;
954 
955   		}
956   	} else {
957   		for (i = 0; i < hdr->e_shnum; i++) {
958 
959  			/* Internal symbols and strings. */
960  			if (sechdrs[i].sh_type == SHT_SYMTAB) {
961  				symindex = i;
962  				strindex = sechdrs[i].sh_link;
963  				strtab = (char *)hdr + sechdrs[strindex].sh_offset;
964 
965  				/* mark the symtab's address for when we try to find the
966  				   magic symbols */
967  				sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
968  			}
969 
970  			/* filter sections we dont want in the final image */
971  			if (!(sechdrs[i].sh_flags & SHF_ALLOC) ||
972  			    (sechdrs[i].sh_type == SHT_MIPS_REGINFO)) {
973  				printk( KERN_DEBUG " ignoring section, "
974  					"name %s type %x address 0x%x \n",
975  					secstrings + sechdrs[i].sh_name,
976  					sechdrs[i].sh_type, sechdrs[i].sh_addr);
977  				continue;
978  			}
979 
980   			if (sechdrs[i].sh_addr < (unsigned int)v->load_addr) {
981  				printk( KERN_WARNING "VPE loader: "
982  					"fully linked image has invalid section, "
983  					"name %s type %x address 0x%x, before load "
984  					"address of 0x%x\n",
985  					secstrings + sechdrs[i].sh_name,
986  					sechdrs[i].sh_type, sechdrs[i].sh_addr,
987  					(unsigned int)v->load_addr);
988   				return -ENOEXEC;
989   			}
990 
991  			printk(KERN_DEBUG " copying section sh_name %s, sh_addr 0x%x "
992 			       "size 0x%x0 from x%p\n",
993 			       secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr,
994 			       sechdrs[i].sh_size, hdr + sechdrs[i].sh_offset);
995 
996   			if (sechdrs[i].sh_type != SHT_NOBITS)
997 				memcpy((void *)sechdrs[i].sh_addr,
998 				       (char *)hdr + sechdrs[i].sh_offset,
999  				       sechdrs[i].sh_size);
1000 			else
1001 				memset((void *)sechdrs[i].sh_addr, 0, sechdrs[i].sh_size);
1002 		}
1003 	}
1004 
1005 	/* make sure it's physically written out */
1006 	flush_icache_range((unsigned long)v->load_addr,
1007 			   (unsigned long)v->load_addr + v->len);
1008 
1009 	if ((find_vpe_symbols(v, sechdrs, symindex, strtab, &mod)) < 0) {
1010 		if (v->__start == 0) {
1011 			printk(KERN_WARNING "VPE loader: program does not contain "
1012 			       "a __start symbol\n");
1013 			return -ENOEXEC;
1014 		}
1015 
1016 		if (v->shared_ptr == NULL)
1017 			printk(KERN_WARNING "VPE loader: "
1018 			       "program does not contain vpe_shared symbol.\n"
1019 			       " Unable to use AMVP (AP/SP) facilities.\n");
1020 	}
1021 
1022 	printk(" elf loaded\n");
1023 	return 0;
1024 }
1025 
1026 void __used dump_vpe(struct vpe * v)
1027 {
1028 	struct tc *t;
1029 
1030 	settc(v->minor);
1031 
1032 	printk(KERN_DEBUG "VPEControl 0x%lx\n", read_vpe_c0_vpecontrol());
1033 	printk(KERN_DEBUG "VPEConf0 0x%lx\n", read_vpe_c0_vpeconf0());
1034 
1035 	list_for_each_entry(t, &vpecontrol.tc_list, list)
1036 		dump_tc(t);
1037 }
1038 
1039 static void cleanup_tc(struct tc *tc)
1040 {
1041 	int tmp;
1042 
1043 	/* Put MVPE's into 'configuration state' */
1044 	set_c0_mvpcontrol(MVPCONTROL_VPC);
1045 
1046 	settc(tc->index);
1047 	tmp = read_tc_c0_tcstatus();
1048 
1049 	/* mark not allocated and not dynamically allocatable */
1050 	tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1051 	tmp |= TCSTATUS_IXMT;	/* interrupt exempt */
1052 	write_tc_c0_tcstatus(tmp);
1053 
1054 	write_tc_c0_tchalt(TCHALT_H);
1055 
1056 	/* bind it to anything other than VPE1 */
1057 	write_tc_c0_tcbind(read_tc_c0_tcbind() & ~TCBIND_CURVPE); // | TCBIND_CURVPE
1058 
1059 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
1060 }
1061 
1062 static int getcwd(char *buff, int size)
1063 {
1064 	mm_segment_t old_fs;
1065 	int ret;
1066 
1067 	old_fs = get_fs();
1068 	set_fs(KERNEL_DS);
1069 
1070 	ret = sys_getcwd(buff,size);
1071 
1072 	set_fs(old_fs);
1073 
1074 	return ret;
1075 }
1076 
1077 /* checks VPE is unused and gets ready to load program  */
1078 static int vpe_open(struct inode *inode, struct file *filp)
1079 {
1080 	int minor, ret;
1081 	enum vpe_state state;
1082 	struct vpe *v;
1083 	struct vpe_notifications *not;
1084 
1085 	/* assume only 1 device at the mo. */
1086 	if ((minor = iminor(inode)) != 1) {
1087 		printk(KERN_WARNING "VPE loader: only vpe1 is supported\n");
1088 		return -ENODEV;
1089 	}
1090 
1091 	if ((v = get_vpe(minor)) == NULL) {
1092 		printk(KERN_WARNING "VPE loader: unable to get vpe\n");
1093 		return -ENODEV;
1094 	}
1095 
1096 	state = xchg(&v->state, VPE_STATE_INUSE);
1097 	if (state != VPE_STATE_UNUSED) {
1098 		dvpe();
1099 
1100 		printk(KERN_DEBUG "VPE loader: tc in use dumping regs\n");
1101 
1102 		dump_tc(get_tc(minor));
1103 
1104 		list_for_each_entry(not, &v->notify, list) {
1105 			not->stop(minor);
1106 		}
1107 
1108 		release_progmem(v->load_addr);
1109 		cleanup_tc(get_tc(minor));
1110 	}
1111 
1112 	/* this of-course trashes what was there before... */
1113 	v->pbuffer = vmalloc(P_SIZE);
1114 	v->plen = P_SIZE;
1115 	v->load_addr = NULL;
1116 	v->len = 0;
1117 
1118 	v->uid = filp->f_uid;
1119 	v->gid = filp->f_gid;
1120 
1121 #ifdef CONFIG_MIPS_APSP_KSPD
1122 	/* get kspd to tell us when a syscall_exit happens */
1123 	if (!kspd_events_reqd) {
1124 		kspd_notify(&kspd_events);
1125 		kspd_events_reqd++;
1126 	}
1127 #endif
1128 
1129 	v->cwd[0] = 0;
1130 	ret = getcwd(v->cwd, VPE_PATH_MAX);
1131 	if (ret < 0)
1132 		printk(KERN_WARNING "VPE loader: open, getcwd returned %d\n", ret);
1133 
1134 	v->shared_ptr = NULL;
1135 	v->__start = 0;
1136 	return 0;
1137 }
1138 
1139 static int vpe_release(struct inode *inode, struct file *filp)
1140 {
1141 	int minor, ret = 0;
1142 	struct vpe *v;
1143 	Elf_Ehdr *hdr;
1144 
1145 	minor = iminor(inode);
1146 	if ((v = get_vpe(minor)) == NULL)
1147 		return -ENODEV;
1148 
1149 	// simple case of fire and forget, so tell the VPE to run...
1150 
1151 	hdr = (Elf_Ehdr *) v->pbuffer;
1152 	if (memcmp(hdr->e_ident, ELFMAG, 4) == 0) {
1153 		if (vpe_elfload(v) >= 0)
1154 			vpe_run(v);
1155 		else {
1156  			printk(KERN_WARNING "VPE loader: ELF load failed.\n");
1157 			ret = -ENOEXEC;
1158 		}
1159 	} else {
1160  		printk(KERN_WARNING "VPE loader: only elf files are supported\n");
1161 		ret = -ENOEXEC;
1162 	}
1163 
1164 	/* It's good to be able to run the SP and if it chokes have a look at
1165 	   the /dev/rt?. But if we reset the pointer to the shared struct we
1166 	   loose what has happened. So perhaps if garbage is sent to the vpe
1167 	   device, use it as a trigger for the reset. Hopefully a nice
1168 	   executable will be along shortly. */
1169 	if (ret < 0)
1170 		v->shared_ptr = NULL;
1171 
1172 	// cleanup any temp buffers
1173 	if (v->pbuffer)
1174 		vfree(v->pbuffer);
1175 	v->plen = 0;
1176 	return ret;
1177 }
1178 
1179 static ssize_t vpe_write(struct file *file, const char __user * buffer,
1180 			 size_t count, loff_t * ppos)
1181 {
1182 	int minor;
1183 	size_t ret = count;
1184 	struct vpe *v;
1185 
1186 	minor = iminor(file->f_path.dentry->d_inode);
1187 	if ((v = get_vpe(minor)) == NULL)
1188 		return -ENODEV;
1189 
1190 	if (v->pbuffer == NULL) {
1191 		printk(KERN_ERR "VPE loader: no buffer for program\n");
1192 		return -ENOMEM;
1193 	}
1194 
1195 	if ((count + v->len) > v->plen) {
1196 		printk(KERN_WARNING
1197 		       "VPE loader: elf size too big. Perhaps strip uneeded symbols\n");
1198 		return -ENOMEM;
1199 	}
1200 
1201 	count -= copy_from_user(v->pbuffer + v->len, buffer, count);
1202 	if (!count)
1203 		return -EFAULT;
1204 
1205 	v->len += count;
1206 	return ret;
1207 }
1208 
1209 static const struct file_operations vpe_fops = {
1210 	.owner = THIS_MODULE,
1211 	.open = vpe_open,
1212 	.release = vpe_release,
1213 	.write = vpe_write
1214 };
1215 
1216 /* module wrapper entry points */
1217 /* give me a vpe */
1218 vpe_handle vpe_alloc(void)
1219 {
1220 	int i;
1221 	struct vpe *v;
1222 
1223 	/* find a vpe */
1224 	for (i = 1; i < MAX_VPES; i++) {
1225 		if ((v = get_vpe(i)) != NULL) {
1226 			v->state = VPE_STATE_INUSE;
1227 			return v;
1228 		}
1229 	}
1230 	return NULL;
1231 }
1232 
1233 EXPORT_SYMBOL(vpe_alloc);
1234 
1235 /* start running from here */
1236 int vpe_start(vpe_handle vpe, unsigned long start)
1237 {
1238 	struct vpe *v = vpe;
1239 
1240 	v->__start = start;
1241 	return vpe_run(v);
1242 }
1243 
1244 EXPORT_SYMBOL(vpe_start);
1245 
1246 /* halt it for now */
1247 int vpe_stop(vpe_handle vpe)
1248 {
1249 	struct vpe *v = vpe;
1250 	struct tc *t;
1251 	unsigned int evpe_flags;
1252 
1253 	evpe_flags = dvpe();
1254 
1255 	if ((t = list_entry(v->tc.next, struct tc, tc)) != NULL) {
1256 
1257 		settc(t->index);
1258 		write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1259 	}
1260 
1261 	evpe(evpe_flags);
1262 
1263 	return 0;
1264 }
1265 
1266 EXPORT_SYMBOL(vpe_stop);
1267 
1268 /* I've done with it thank you */
1269 int vpe_free(vpe_handle vpe)
1270 {
1271 	struct vpe *v = vpe;
1272 	struct tc *t;
1273 	unsigned int evpe_flags;
1274 
1275 	if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
1276 		return -ENOEXEC;
1277 	}
1278 
1279 	evpe_flags = dvpe();
1280 
1281 	/* Put MVPE's into 'configuration state' */
1282 	set_c0_mvpcontrol(MVPCONTROL_VPC);
1283 
1284 	settc(t->index);
1285 	write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1286 
1287 	/* mark the TC unallocated and halt'ed */
1288 	write_tc_c0_tcstatus(read_tc_c0_tcstatus() & ~TCSTATUS_A);
1289 	write_tc_c0_tchalt(TCHALT_H);
1290 
1291 	v->state = VPE_STATE_UNUSED;
1292 
1293 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
1294 	evpe(evpe_flags);
1295 
1296 	return 0;
1297 }
1298 
1299 EXPORT_SYMBOL(vpe_free);
1300 
1301 void *vpe_get_shared(int index)
1302 {
1303 	struct vpe *v;
1304 
1305 	if ((v = get_vpe(index)) == NULL)
1306 		return NULL;
1307 
1308 	return v->shared_ptr;
1309 }
1310 
1311 EXPORT_SYMBOL(vpe_get_shared);
1312 
1313 int vpe_getuid(int index)
1314 {
1315 	struct vpe *v;
1316 
1317 	if ((v = get_vpe(index)) == NULL)
1318 		return -1;
1319 
1320 	return v->uid;
1321 }
1322 
1323 EXPORT_SYMBOL(vpe_getuid);
1324 
1325 int vpe_getgid(int index)
1326 {
1327 	struct vpe *v;
1328 
1329 	if ((v = get_vpe(index)) == NULL)
1330 		return -1;
1331 
1332 	return v->gid;
1333 }
1334 
1335 EXPORT_SYMBOL(vpe_getgid);
1336 
1337 int vpe_notify(int index, struct vpe_notifications *notify)
1338 {
1339 	struct vpe *v;
1340 
1341 	if ((v = get_vpe(index)) == NULL)
1342 		return -1;
1343 
1344 	list_add(&notify->list, &v->notify);
1345 	return 0;
1346 }
1347 
1348 EXPORT_SYMBOL(vpe_notify);
1349 
1350 char *vpe_getcwd(int index)
1351 {
1352 	struct vpe *v;
1353 
1354 	if ((v = get_vpe(index)) == NULL)
1355 		return NULL;
1356 
1357 	return v->cwd;
1358 }
1359 
1360 EXPORT_SYMBOL(vpe_getcwd);
1361 
1362 #ifdef CONFIG_MIPS_APSP_KSPD
1363 static void kspd_sp_exit( int sp_id)
1364 {
1365 	cleanup_tc(get_tc(sp_id));
1366 }
1367 #endif
1368 
1369 static struct device *vpe_dev;
1370 
1371 static int __init vpe_module_init(void)
1372 {
1373 	struct vpe *v = NULL;
1374 	struct device *dev;
1375 	struct tc *t;
1376 	unsigned long val;
1377 	int i, err;
1378 
1379 	if (!cpu_has_mipsmt) {
1380 		printk("VPE loader: not a MIPS MT capable processor\n");
1381 		return -ENODEV;
1382 	}
1383 
1384 	major = register_chrdev(0, module_name, &vpe_fops);
1385 	if (major < 0) {
1386 		printk("VPE loader: unable to register character device\n");
1387 		return major;
1388 	}
1389 
1390 	dev = device_create(mt_class, NULL, MKDEV(major, minor),
1391 	                    "tc%d", minor);
1392 	if (IS_ERR(dev)) {
1393 		err = PTR_ERR(dev);
1394 		goto out_chrdev;
1395 	}
1396 	vpe_dev = dev;
1397 
1398 	dmt();
1399 	dvpe();
1400 
1401 	/* Put MVPE's into 'configuration state' */
1402 	set_c0_mvpcontrol(MVPCONTROL_VPC);
1403 
1404 	/* dump_mtregs(); */
1405 
1406 
1407 	val = read_c0_mvpconf0();
1408 	for (i = 0; i < ((val & MVPCONF0_PTC) + 1); i++) {
1409 		t = alloc_tc(i);
1410 
1411 		/* VPE's */
1412 		if (i < ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1) {
1413 			settc(i);
1414 
1415 			if ((v = alloc_vpe(i)) == NULL) {
1416 				printk(KERN_WARNING "VPE: unable to allocate VPE\n");
1417 				return -ENODEV;
1418 			}
1419 
1420 			/* add the tc to the list of this vpe's tc's. */
1421 			list_add(&t->tc, &v->tc);
1422 
1423 			/* deactivate all but vpe0 */
1424 			if (i != 0) {
1425 				unsigned long tmp = read_vpe_c0_vpeconf0();
1426 
1427 				tmp &= ~VPECONF0_VPA;
1428 
1429 				/* master VPE */
1430 				tmp |= VPECONF0_MVP;
1431 				write_vpe_c0_vpeconf0(tmp);
1432 			}
1433 
1434 			/* disable multi-threading with TC's */
1435 			write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() & ~VPECONTROL_TE);
1436 
1437 			if (i != 0) {
1438 				/*
1439 				 * Set config to be the same as vpe0,
1440 				 * particularly kseg0 coherency alg
1441 				 */
1442 				write_vpe_c0_config(read_c0_config());
1443 			}
1444 		}
1445 
1446 		/* TC's */
1447 		t->pvpe = v;	/* set the parent vpe */
1448 
1449 		if (i != 0) {
1450 			unsigned long tmp;
1451 
1452 			settc(i);
1453 
1454 			/* Any TC that is bound to VPE0 gets left as is - in case
1455 			   we are running SMTC on VPE0. A TC that is bound to any
1456 			   other VPE gets bound to VPE0, ideally I'd like to make
1457 			   it homeless but it doesn't appear to let me bind a TC
1458 			   to a non-existent VPE. Which is perfectly reasonable.
1459 
1460 			   The (un)bound state is visible to an EJTAG probe so may
1461 			   notify GDB...
1462 			*/
1463 
1464 			if (((tmp = read_tc_c0_tcbind()) & TCBIND_CURVPE)) {
1465 				/* tc is bound >vpe0 */
1466 				write_tc_c0_tcbind(tmp & ~TCBIND_CURVPE);
1467 
1468 				t->pvpe = get_vpe(0);	/* set the parent vpe */
1469 			}
1470 
1471 			tmp = read_tc_c0_tcstatus();
1472 
1473 			/* mark not activated and not dynamically allocatable */
1474 			tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1475 			tmp |= TCSTATUS_IXMT;	/* interrupt exempt */
1476 			write_tc_c0_tcstatus(tmp);
1477 
1478 			write_tc_c0_tchalt(TCHALT_H);
1479 		}
1480 	}
1481 
1482 	/* release config state */
1483 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
1484 
1485 #ifdef CONFIG_MIPS_APSP_KSPD
1486 	kspd_events.kspd_sp_exit = kspd_sp_exit;
1487 #endif
1488 	return 0;
1489 
1490 out_chrdev:
1491 	unregister_chrdev(major, module_name);
1492 
1493 	return err;
1494 }
1495 
1496 static void __exit vpe_module_exit(void)
1497 {
1498 	struct vpe *v, *n;
1499 
1500 	list_for_each_entry_safe(v, n, &vpecontrol.vpe_list, list) {
1501 		if (v->state != VPE_STATE_UNUSED) {
1502 			release_vpe(v);
1503 		}
1504 	}
1505 
1506 	device_destroy(mt_class, MKDEV(major, minor));
1507 	unregister_chrdev(major, module_name);
1508 }
1509 
1510 module_init(vpe_module_init);
1511 module_exit(vpe_module_exit);
1512 MODULE_DESCRIPTION("MIPS VPE Loader");
1513 MODULE_AUTHOR("Elizabeth Oldham, MIPS Technologies, Inc.");
1514 MODULE_LICENSE("GPL");
1515