1 /* 2 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved. 3 * 4 * This program is free software; you can distribute it and/or modify it 5 * under the terms of the GNU General Public License (Version 2) as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 11 * for more details. 12 * 13 * You should have received a copy of the GNU General Public License along 14 * with this program; if not, write to the Free Software Foundation, Inc., 15 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. 16 */ 17 18 /* 19 * VPE support module 20 * 21 * Provides support for loading a MIPS SP program on VPE1. 22 * The SP enviroment is rather simple, no tlb's. It needs to be relocatable 23 * (or partially linked). You should initialise your stack in the startup 24 * code. This loader looks for the symbol __start and sets up 25 * execution to resume from there. The MIPS SDE kit contains suitable examples. 26 * 27 * To load and run, simply cat a SP 'program file' to /dev/vpe1. 28 * i.e cat spapp >/dev/vpe1. 29 */ 30 31 #include <linux/kernel.h> 32 #include <linux/device.h> 33 #include <linux/module.h> 34 #include <linux/fs.h> 35 #include <linux/init.h> 36 #include <asm/uaccess.h> 37 #include <linux/slab.h> 38 #include <linux/list.h> 39 #include <linux/vmalloc.h> 40 #include <linux/elf.h> 41 #include <linux/seq_file.h> 42 #include <linux/syscalls.h> 43 #include <linux/moduleloader.h> 44 #include <linux/interrupt.h> 45 #include <linux/poll.h> 46 #include <linux/bootmem.h> 47 #include <asm/mipsregs.h> 48 #include <asm/mipsmtregs.h> 49 #include <asm/cacheflush.h> 50 #include <asm/atomic.h> 51 #include <asm/cpu.h> 52 #include <asm/mips_mt.h> 53 #include <asm/processor.h> 54 #include <asm/system.h> 55 #include <asm/vpe.h> 56 #include <asm/kspd.h> 57 58 typedef void *vpe_handle; 59 60 #ifndef ARCH_SHF_SMALL 61 #define ARCH_SHF_SMALL 0 62 #endif 63 64 /* If this is set, the section belongs in the init part of the module */ 65 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1)) 66 67 static char module_name[] = "vpe"; 68 static int major; 69 static const int minor = 1; /* fixed for now */ 70 71 #ifdef CONFIG_MIPS_APSP_KSPD 72 static struct kspd_notifications kspd_events; 73 static int kspd_events_reqd = 0; 74 #endif 75 76 /* grab the likely amount of memory we will need. */ 77 #ifdef CONFIG_MIPS_VPE_LOADER_TOM 78 #define P_SIZE (2 * 1024 * 1024) 79 #else 80 /* add an overhead to the max kmalloc size for non-striped symbols/etc */ 81 #define P_SIZE (256 * 1024) 82 #endif 83 84 extern unsigned long physical_memsize; 85 86 #define MAX_VPES 16 87 #define VPE_PATH_MAX 256 88 89 enum vpe_state { 90 VPE_STATE_UNUSED = 0, 91 VPE_STATE_INUSE, 92 VPE_STATE_RUNNING 93 }; 94 95 enum tc_state { 96 TC_STATE_UNUSED = 0, 97 TC_STATE_INUSE, 98 TC_STATE_RUNNING, 99 TC_STATE_DYNAMIC 100 }; 101 102 struct vpe { 103 enum vpe_state state; 104 105 /* (device) minor associated with this vpe */ 106 int minor; 107 108 /* elfloader stuff */ 109 void *load_addr; 110 unsigned long len; 111 char *pbuffer; 112 unsigned long plen; 113 unsigned int uid, gid; 114 char cwd[VPE_PATH_MAX]; 115 116 unsigned long __start; 117 118 /* tc's associated with this vpe */ 119 struct list_head tc; 120 121 /* The list of vpe's */ 122 struct list_head list; 123 124 /* shared symbol address */ 125 void *shared_ptr; 126 127 /* the list of who wants to know when something major happens */ 128 struct list_head notify; 129 }; 130 131 struct tc { 132 enum tc_state state; 133 int index; 134 135 /* parent VPE */ 136 struct vpe *pvpe; 137 138 /* The list of TC's with this VPE */ 139 struct list_head tc; 140 141 /* The global list of tc's */ 142 struct list_head list; 143 }; 144 145 struct { 146 /* Virtual processing elements */ 147 struct list_head vpe_list; 148 149 /* Thread contexts */ 150 struct list_head tc_list; 151 } vpecontrol = { 152 .vpe_list = LIST_HEAD_INIT(vpecontrol.vpe_list), 153 .tc_list = LIST_HEAD_INIT(vpecontrol.tc_list) 154 }; 155 156 static void release_progmem(void *ptr); 157 extern void save_gp_address(unsigned int secbase, unsigned int rel); 158 159 /* get the vpe associated with this minor */ 160 struct vpe *get_vpe(int minor) 161 { 162 struct vpe *v; 163 164 if (!cpu_has_mipsmt) 165 return NULL; 166 167 list_for_each_entry(v, &vpecontrol.vpe_list, list) { 168 if (v->minor == minor) 169 return v; 170 } 171 172 return NULL; 173 } 174 175 /* get the vpe associated with this minor */ 176 struct tc *get_tc(int index) 177 { 178 struct tc *t; 179 180 list_for_each_entry(t, &vpecontrol.tc_list, list) { 181 if (t->index == index) 182 return t; 183 } 184 185 return NULL; 186 } 187 188 struct tc *get_tc_unused(void) 189 { 190 struct tc *t; 191 192 list_for_each_entry(t, &vpecontrol.tc_list, list) { 193 if (t->state == TC_STATE_UNUSED) 194 return t; 195 } 196 197 return NULL; 198 } 199 200 /* allocate a vpe and associate it with this minor (or index) */ 201 struct vpe *alloc_vpe(int minor) 202 { 203 struct vpe *v; 204 205 if ((v = kzalloc(sizeof(struct vpe), GFP_KERNEL)) == NULL) { 206 return NULL; 207 } 208 209 INIT_LIST_HEAD(&v->tc); 210 list_add_tail(&v->list, &vpecontrol.vpe_list); 211 212 INIT_LIST_HEAD(&v->notify); 213 v->minor = minor; 214 return v; 215 } 216 217 /* allocate a tc. At startup only tc0 is running, all other can be halted. */ 218 struct tc *alloc_tc(int index) 219 { 220 struct tc *t; 221 222 if ((t = kzalloc(sizeof(struct tc), GFP_KERNEL)) == NULL) { 223 return NULL; 224 } 225 226 INIT_LIST_HEAD(&t->tc); 227 list_add_tail(&t->list, &vpecontrol.tc_list); 228 229 t->index = index; 230 231 return t; 232 } 233 234 /* clean up and free everything */ 235 void release_vpe(struct vpe *v) 236 { 237 list_del(&v->list); 238 if (v->load_addr) 239 release_progmem(v); 240 kfree(v); 241 } 242 243 void dump_mtregs(void) 244 { 245 unsigned long val; 246 247 val = read_c0_config3(); 248 printk("config3 0x%lx MT %ld\n", val, 249 (val & CONFIG3_MT) >> CONFIG3_MT_SHIFT); 250 251 val = read_c0_mvpcontrol(); 252 printk("MVPControl 0x%lx, STLB %ld VPC %ld EVP %ld\n", val, 253 (val & MVPCONTROL_STLB) >> MVPCONTROL_STLB_SHIFT, 254 (val & MVPCONTROL_VPC) >> MVPCONTROL_VPC_SHIFT, 255 (val & MVPCONTROL_EVP)); 256 257 val = read_c0_mvpconf0(); 258 printk("mvpconf0 0x%lx, PVPE %ld PTC %ld M %ld\n", val, 259 (val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT, 260 val & MVPCONF0_PTC, (val & MVPCONF0_M) >> MVPCONF0_M_SHIFT); 261 } 262 263 /* Find some VPE program space */ 264 static void *alloc_progmem(unsigned long len) 265 { 266 #ifdef CONFIG_MIPS_VPE_LOADER_TOM 267 /* this means you must tell linux to use less memory than you physically have */ 268 return pfn_to_kaddr(max_pfn); 269 #else 270 // simple grab some mem for now 271 return kmalloc(len, GFP_KERNEL); 272 #endif 273 } 274 275 static void release_progmem(void *ptr) 276 { 277 #ifndef CONFIG_MIPS_VPE_LOADER_TOM 278 kfree(ptr); 279 #endif 280 } 281 282 /* Update size with this section: return offset. */ 283 static long get_offset(unsigned long *size, Elf_Shdr * sechdr) 284 { 285 long ret; 286 287 ret = ALIGN(*size, sechdr->sh_addralign ? : 1); 288 *size = ret + sechdr->sh_size; 289 return ret; 290 } 291 292 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld 293 might -- code, read-only data, read-write data, small data. Tally 294 sizes, and place the offsets into sh_entsize fields: high bit means it 295 belongs in init. */ 296 static void layout_sections(struct module *mod, const Elf_Ehdr * hdr, 297 Elf_Shdr * sechdrs, const char *secstrings) 298 { 299 static unsigned long const masks[][2] = { 300 /* NOTE: all executable code must be the first section 301 * in this array; otherwise modify the text_size 302 * finder in the two loops below */ 303 {SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL}, 304 {SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL}, 305 {SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL}, 306 {ARCH_SHF_SMALL | SHF_ALLOC, 0} 307 }; 308 unsigned int m, i; 309 310 for (i = 0; i < hdr->e_shnum; i++) 311 sechdrs[i].sh_entsize = ~0UL; 312 313 for (m = 0; m < ARRAY_SIZE(masks); ++m) { 314 for (i = 0; i < hdr->e_shnum; ++i) { 315 Elf_Shdr *s = &sechdrs[i]; 316 317 // || strncmp(secstrings + s->sh_name, ".init", 5) == 0) 318 if ((s->sh_flags & masks[m][0]) != masks[m][0] 319 || (s->sh_flags & masks[m][1]) 320 || s->sh_entsize != ~0UL) 321 continue; 322 s->sh_entsize = get_offset(&mod->core_size, s); 323 } 324 325 if (m == 0) 326 mod->core_text_size = mod->core_size; 327 328 } 329 } 330 331 332 /* from module-elf32.c, but subverted a little */ 333 334 struct mips_hi16 { 335 struct mips_hi16 *next; 336 Elf32_Addr *addr; 337 Elf32_Addr value; 338 }; 339 340 static struct mips_hi16 *mips_hi16_list; 341 static unsigned int gp_offs, gp_addr; 342 343 static int apply_r_mips_none(struct module *me, uint32_t *location, 344 Elf32_Addr v) 345 { 346 return 0; 347 } 348 349 static int apply_r_mips_gprel16(struct module *me, uint32_t *location, 350 Elf32_Addr v) 351 { 352 int rel; 353 354 if( !(*location & 0xffff) ) { 355 rel = (int)v - gp_addr; 356 } 357 else { 358 /* .sbss + gp(relative) + offset */ 359 /* kludge! */ 360 rel = (int)(short)((int)v + gp_offs + 361 (int)(short)(*location & 0xffff) - gp_addr); 362 } 363 364 if( (rel > 32768) || (rel < -32768) ) { 365 printk(KERN_DEBUG "VPE loader: apply_r_mips_gprel16: " 366 "relative address 0x%x out of range of gp register\n", 367 rel); 368 return -ENOEXEC; 369 } 370 371 *location = (*location & 0xffff0000) | (rel & 0xffff); 372 373 return 0; 374 } 375 376 static int apply_r_mips_pc16(struct module *me, uint32_t *location, 377 Elf32_Addr v) 378 { 379 int rel; 380 rel = (((unsigned int)v - (unsigned int)location)); 381 rel >>= 2; // because the offset is in _instructions_ not bytes. 382 rel -= 1; // and one instruction less due to the branch delay slot. 383 384 if( (rel > 32768) || (rel < -32768) ) { 385 printk(KERN_DEBUG "VPE loader: " 386 "apply_r_mips_pc16: relative address out of range 0x%x\n", rel); 387 return -ENOEXEC; 388 } 389 390 *location = (*location & 0xffff0000) | (rel & 0xffff); 391 392 return 0; 393 } 394 395 static int apply_r_mips_32(struct module *me, uint32_t *location, 396 Elf32_Addr v) 397 { 398 *location += v; 399 400 return 0; 401 } 402 403 static int apply_r_mips_26(struct module *me, uint32_t *location, 404 Elf32_Addr v) 405 { 406 if (v % 4) { 407 printk(KERN_DEBUG "VPE loader: apply_r_mips_26 " 408 " unaligned relocation\n"); 409 return -ENOEXEC; 410 } 411 412 /* 413 * Not desperately convinced this is a good check of an overflow condition 414 * anyway. But it gets in the way of handling undefined weak symbols which 415 * we want to set to zero. 416 * if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) { 417 * printk(KERN_ERR 418 * "module %s: relocation overflow\n", 419 * me->name); 420 * return -ENOEXEC; 421 * } 422 */ 423 424 *location = (*location & ~0x03ffffff) | 425 ((*location + (v >> 2)) & 0x03ffffff); 426 return 0; 427 } 428 429 static int apply_r_mips_hi16(struct module *me, uint32_t *location, 430 Elf32_Addr v) 431 { 432 struct mips_hi16 *n; 433 434 /* 435 * We cannot relocate this one now because we don't know the value of 436 * the carry we need to add. Save the information, and let LO16 do the 437 * actual relocation. 438 */ 439 n = kmalloc(sizeof *n, GFP_KERNEL); 440 if (!n) 441 return -ENOMEM; 442 443 n->addr = location; 444 n->value = v; 445 n->next = mips_hi16_list; 446 mips_hi16_list = n; 447 448 return 0; 449 } 450 451 static int apply_r_mips_lo16(struct module *me, uint32_t *location, 452 Elf32_Addr v) 453 { 454 unsigned long insnlo = *location; 455 Elf32_Addr val, vallo; 456 457 /* Sign extend the addend we extract from the lo insn. */ 458 vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000; 459 460 if (mips_hi16_list != NULL) { 461 struct mips_hi16 *l; 462 463 l = mips_hi16_list; 464 while (l != NULL) { 465 struct mips_hi16 *next; 466 unsigned long insn; 467 468 /* 469 * The value for the HI16 had best be the same. 470 */ 471 if (v != l->value) { 472 printk(KERN_DEBUG "VPE loader: " 473 "apply_r_mips_lo16/hi16: " 474 "inconsistent value information\n"); 475 return -ENOEXEC; 476 } 477 478 /* 479 * Do the HI16 relocation. Note that we actually don't 480 * need to know anything about the LO16 itself, except 481 * where to find the low 16 bits of the addend needed 482 * by the LO16. 483 */ 484 insn = *l->addr; 485 val = ((insn & 0xffff) << 16) + vallo; 486 val += v; 487 488 /* 489 * Account for the sign extension that will happen in 490 * the low bits. 491 */ 492 val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff; 493 494 insn = (insn & ~0xffff) | val; 495 *l->addr = insn; 496 497 next = l->next; 498 kfree(l); 499 l = next; 500 } 501 502 mips_hi16_list = NULL; 503 } 504 505 /* 506 * Ok, we're done with the HI16 relocs. Now deal with the LO16. 507 */ 508 val = v + vallo; 509 insnlo = (insnlo & ~0xffff) | (val & 0xffff); 510 *location = insnlo; 511 512 return 0; 513 } 514 515 static int (*reloc_handlers[]) (struct module *me, uint32_t *location, 516 Elf32_Addr v) = { 517 [R_MIPS_NONE] = apply_r_mips_none, 518 [R_MIPS_32] = apply_r_mips_32, 519 [R_MIPS_26] = apply_r_mips_26, 520 [R_MIPS_HI16] = apply_r_mips_hi16, 521 [R_MIPS_LO16] = apply_r_mips_lo16, 522 [R_MIPS_GPREL16] = apply_r_mips_gprel16, 523 [R_MIPS_PC16] = apply_r_mips_pc16 524 }; 525 526 static char *rstrs[] = { 527 [R_MIPS_NONE] = "MIPS_NONE", 528 [R_MIPS_32] = "MIPS_32", 529 [R_MIPS_26] = "MIPS_26", 530 [R_MIPS_HI16] = "MIPS_HI16", 531 [R_MIPS_LO16] = "MIPS_LO16", 532 [R_MIPS_GPREL16] = "MIPS_GPREL16", 533 [R_MIPS_PC16] = "MIPS_PC16" 534 }; 535 536 int apply_relocations(Elf32_Shdr *sechdrs, 537 const char *strtab, 538 unsigned int symindex, 539 unsigned int relsec, 540 struct module *me) 541 { 542 Elf32_Rel *rel = (void *) sechdrs[relsec].sh_addr; 543 Elf32_Sym *sym; 544 uint32_t *location; 545 unsigned int i; 546 Elf32_Addr v; 547 int res; 548 549 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { 550 Elf32_Word r_info = rel[i].r_info; 551 552 /* This is where to make the change */ 553 location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr 554 + rel[i].r_offset; 555 /* This is the symbol it is referring to */ 556 sym = (Elf32_Sym *)sechdrs[symindex].sh_addr 557 + ELF32_R_SYM(r_info); 558 559 if (!sym->st_value) { 560 printk(KERN_DEBUG "%s: undefined weak symbol %s\n", 561 me->name, strtab + sym->st_name); 562 /* just print the warning, dont barf */ 563 } 564 565 v = sym->st_value; 566 567 res = reloc_handlers[ELF32_R_TYPE(r_info)](me, location, v); 568 if( res ) { 569 char *r = rstrs[ELF32_R_TYPE(r_info)]; 570 printk(KERN_WARNING "VPE loader: .text+0x%x " 571 "relocation type %s for symbol \"%s\" failed\n", 572 rel[i].r_offset, r ? r : "UNKNOWN", 573 strtab + sym->st_name); 574 return res; 575 } 576 } 577 578 return 0; 579 } 580 581 void save_gp_address(unsigned int secbase, unsigned int rel) 582 { 583 gp_addr = secbase + rel; 584 gp_offs = gp_addr - (secbase & 0xffff0000); 585 } 586 /* end module-elf32.c */ 587 588 589 590 /* Change all symbols so that sh_value encodes the pointer directly. */ 591 static void simplify_symbols(Elf_Shdr * sechdrs, 592 unsigned int symindex, 593 const char *strtab, 594 const char *secstrings, 595 unsigned int nsecs, struct module *mod) 596 { 597 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr; 598 unsigned long secbase, bssbase = 0; 599 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym); 600 int size; 601 602 /* find the .bss section for COMMON symbols */ 603 for (i = 0; i < nsecs; i++) { 604 if (strncmp(secstrings + sechdrs[i].sh_name, ".bss", 4) == 0) { 605 bssbase = sechdrs[i].sh_addr; 606 break; 607 } 608 } 609 610 for (i = 1; i < n; i++) { 611 switch (sym[i].st_shndx) { 612 case SHN_COMMON: 613 /* Allocate space for the symbol in the .bss section. 614 st_value is currently size. 615 We want it to have the address of the symbol. */ 616 617 size = sym[i].st_value; 618 sym[i].st_value = bssbase; 619 620 bssbase += size; 621 break; 622 623 case SHN_ABS: 624 /* Don't need to do anything */ 625 break; 626 627 case SHN_UNDEF: 628 /* ret = -ENOENT; */ 629 break; 630 631 case SHN_MIPS_SCOMMON: 632 printk(KERN_DEBUG "simplify_symbols: ignoring SHN_MIPS_SCOMMON" 633 "symbol <%s> st_shndx %d\n", strtab + sym[i].st_name, 634 sym[i].st_shndx); 635 // .sbss section 636 break; 637 638 default: 639 secbase = sechdrs[sym[i].st_shndx].sh_addr; 640 641 if (strncmp(strtab + sym[i].st_name, "_gp", 3) == 0) { 642 save_gp_address(secbase, sym[i].st_value); 643 } 644 645 sym[i].st_value += secbase; 646 break; 647 } 648 } 649 } 650 651 #ifdef DEBUG_ELFLOADER 652 static void dump_elfsymbols(Elf_Shdr * sechdrs, unsigned int symindex, 653 const char *strtab, struct module *mod) 654 { 655 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr; 656 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym); 657 658 printk(KERN_DEBUG "dump_elfsymbols: n %d\n", n); 659 for (i = 1; i < n; i++) { 660 printk(KERN_DEBUG " i %d name <%s> 0x%x\n", i, 661 strtab + sym[i].st_name, sym[i].st_value); 662 } 663 } 664 #endif 665 666 static void dump_tc(struct tc *t) 667 { 668 unsigned long val; 669 670 settc(t->index); 671 printk(KERN_DEBUG "VPE loader: TC index %d targtc %ld " 672 "TCStatus 0x%lx halt 0x%lx\n", 673 t->index, read_c0_vpecontrol() & VPECONTROL_TARGTC, 674 read_tc_c0_tcstatus(), read_tc_c0_tchalt()); 675 676 printk(KERN_DEBUG " tcrestart 0x%lx\n", read_tc_c0_tcrestart()); 677 printk(KERN_DEBUG " tcbind 0x%lx\n", read_tc_c0_tcbind()); 678 679 val = read_c0_vpeconf0(); 680 printk(KERN_DEBUG " VPEConf0 0x%lx MVP %ld\n", val, 681 (val & VPECONF0_MVP) >> VPECONF0_MVP_SHIFT); 682 683 printk(KERN_DEBUG " c0 status 0x%lx\n", read_vpe_c0_status()); 684 printk(KERN_DEBUG " c0 cause 0x%lx\n", read_vpe_c0_cause()); 685 686 printk(KERN_DEBUG " c0 badvaddr 0x%lx\n", read_vpe_c0_badvaddr()); 687 printk(KERN_DEBUG " c0 epc 0x%lx\n", read_vpe_c0_epc()); 688 } 689 690 static void dump_tclist(void) 691 { 692 struct tc *t; 693 694 list_for_each_entry(t, &vpecontrol.tc_list, list) { 695 dump_tc(t); 696 } 697 } 698 699 /* We are prepared so configure and start the VPE... */ 700 static int vpe_run(struct vpe * v) 701 { 702 struct vpe_notifications *n; 703 unsigned long val, dmt_flag; 704 struct tc *t; 705 706 /* check we are the Master VPE */ 707 val = read_c0_vpeconf0(); 708 if (!(val & VPECONF0_MVP)) { 709 printk(KERN_WARNING 710 "VPE loader: only Master VPE's are allowed to configure MT\n"); 711 return -1; 712 } 713 714 /* disable MT (using dvpe) */ 715 dvpe(); 716 717 if (!list_empty(&v->tc)) { 718 if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) { 719 printk(KERN_WARNING "VPE loader: TC %d is already in use.\n", 720 t->index); 721 return -ENOEXEC; 722 } 723 } else { 724 printk(KERN_WARNING "VPE loader: No TC's associated with VPE %d\n", 725 v->minor); 726 return -ENOEXEC; 727 } 728 729 /* Put MVPE's into 'configuration state' */ 730 set_c0_mvpcontrol(MVPCONTROL_VPC); 731 732 settc(t->index); 733 734 /* should check it is halted, and not activated */ 735 if ((read_tc_c0_tcstatus() & TCSTATUS_A) || !(read_tc_c0_tchalt() & TCHALT_H)) { 736 printk(KERN_WARNING "VPE loader: TC %d is already doing something!\n", 737 t->index); 738 dump_tclist(); 739 return -ENOEXEC; 740 } 741 742 /* 743 * Disable multi-threaded execution whilst we activate, clear the 744 * halt bit and bound the tc to the other VPE... 745 */ 746 dmt_flag = dmt(); 747 748 /* Write the address we want it to start running from in the TCPC register. */ 749 write_tc_c0_tcrestart((unsigned long)v->__start); 750 write_tc_c0_tccontext((unsigned long)0); 751 /* 752 * Mark the TC as activated, not interrupt exempt and not dynamically 753 * allocatable 754 */ 755 val = read_tc_c0_tcstatus(); 756 val = (val & ~(TCSTATUS_DA | TCSTATUS_IXMT)) | TCSTATUS_A; 757 write_tc_c0_tcstatus(val); 758 759 write_tc_c0_tchalt(read_tc_c0_tchalt() & ~TCHALT_H); 760 761 /* 762 * The sde-kit passes 'memsize' to __start in $a3, so set something 763 * here... Or set $a3 to zero and define DFLT_STACK_SIZE and 764 * DFLT_HEAP_SIZE when you compile your program 765 */ 766 mttgpr(7, physical_memsize); 767 768 769 /* set up VPE1 */ 770 /* 771 * bind the TC to VPE 1 as late as possible so we only have the final 772 * VPE registers to set up, and so an EJTAG probe can trigger on it 773 */ 774 write_tc_c0_tcbind((read_tc_c0_tcbind() & ~TCBIND_CURVPE) | v->minor); 775 776 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~(VPECONF0_VPA)); 777 778 back_to_back_c0_hazard(); 779 780 /* Set up the XTC bit in vpeconf0 to point at our tc */ 781 write_vpe_c0_vpeconf0( (read_vpe_c0_vpeconf0() & ~(VPECONF0_XTC)) 782 | (t->index << VPECONF0_XTC_SHIFT)); 783 784 back_to_back_c0_hazard(); 785 786 /* enable this VPE */ 787 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA); 788 789 /* clear out any left overs from a previous program */ 790 write_vpe_c0_status(0); 791 write_vpe_c0_cause(0); 792 793 /* take system out of configuration state */ 794 clear_c0_mvpcontrol(MVPCONTROL_VPC); 795 796 /* now safe to re-enable multi-threading */ 797 emt(dmt_flag); 798 799 /* set it running */ 800 evpe(EVPE_ENABLE); 801 802 list_for_each_entry(n, &v->notify, list) { 803 n->start(v->minor); 804 } 805 806 return 0; 807 } 808 809 static int find_vpe_symbols(struct vpe * v, Elf_Shdr * sechdrs, 810 unsigned int symindex, const char *strtab, 811 struct module *mod) 812 { 813 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr; 814 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym); 815 816 for (i = 1; i < n; i++) { 817 if (strcmp(strtab + sym[i].st_name, "__start") == 0) { 818 v->__start = sym[i].st_value; 819 } 820 821 if (strcmp(strtab + sym[i].st_name, "vpe_shared") == 0) { 822 v->shared_ptr = (void *)sym[i].st_value; 823 } 824 } 825 826 if ( (v->__start == 0) || (v->shared_ptr == NULL)) 827 return -1; 828 829 return 0; 830 } 831 832 /* 833 * Allocates a VPE with some program code space(the load address), copies the 834 * contents of the program (p)buffer performing relocatations/etc, free's it 835 * when finished. 836 */ 837 static int vpe_elfload(struct vpe * v) 838 { 839 Elf_Ehdr *hdr; 840 Elf_Shdr *sechdrs; 841 long err = 0; 842 char *secstrings, *strtab = NULL; 843 unsigned int len, i, symindex = 0, strindex = 0, relocate = 0; 844 struct module mod; // so we can re-use the relocations code 845 846 memset(&mod, 0, sizeof(struct module)); 847 strcpy(mod.name, "VPE loader"); 848 849 hdr = (Elf_Ehdr *) v->pbuffer; 850 len = v->plen; 851 852 /* Sanity checks against insmoding binaries or wrong arch, 853 weird elf version */ 854 if (memcmp(hdr->e_ident, ELFMAG, 4) != 0 855 || (hdr->e_type != ET_REL && hdr->e_type != ET_EXEC) 856 || !elf_check_arch(hdr) 857 || hdr->e_shentsize != sizeof(*sechdrs)) { 858 printk(KERN_WARNING 859 "VPE loader: program wrong arch or weird elf version\n"); 860 861 return -ENOEXEC; 862 } 863 864 if (hdr->e_type == ET_REL) 865 relocate = 1; 866 867 if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) { 868 printk(KERN_ERR "VPE loader: program length %u truncated\n", 869 len); 870 871 return -ENOEXEC; 872 } 873 874 /* Convenience variables */ 875 sechdrs = (void *)hdr + hdr->e_shoff; 876 secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset; 877 sechdrs[0].sh_addr = 0; 878 879 /* And these should exist, but gcc whinges if we don't init them */ 880 symindex = strindex = 0; 881 882 if (relocate) { 883 for (i = 1; i < hdr->e_shnum; i++) { 884 if (sechdrs[i].sh_type != SHT_NOBITS 885 && len < sechdrs[i].sh_offset + sechdrs[i].sh_size) { 886 printk(KERN_ERR "VPE program length %u truncated\n", 887 len); 888 return -ENOEXEC; 889 } 890 891 /* Mark all sections sh_addr with their address in the 892 temporary image. */ 893 sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset; 894 895 /* Internal symbols and strings. */ 896 if (sechdrs[i].sh_type == SHT_SYMTAB) { 897 symindex = i; 898 strindex = sechdrs[i].sh_link; 899 strtab = (char *)hdr + sechdrs[strindex].sh_offset; 900 } 901 } 902 layout_sections(&mod, hdr, sechdrs, secstrings); 903 } 904 905 v->load_addr = alloc_progmem(mod.core_size); 906 memset(v->load_addr, 0, mod.core_size); 907 908 printk("VPE loader: loading to %p\n", v->load_addr); 909 910 if (relocate) { 911 for (i = 0; i < hdr->e_shnum; i++) { 912 void *dest; 913 914 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 915 continue; 916 917 dest = v->load_addr + sechdrs[i].sh_entsize; 918 919 if (sechdrs[i].sh_type != SHT_NOBITS) 920 memcpy(dest, (void *)sechdrs[i].sh_addr, 921 sechdrs[i].sh_size); 922 /* Update sh_addr to point to copy in image. */ 923 sechdrs[i].sh_addr = (unsigned long)dest; 924 925 printk(KERN_DEBUG " section sh_name %s sh_addr 0x%x\n", 926 secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr); 927 } 928 929 /* Fix up syms, so that st_value is a pointer to location. */ 930 simplify_symbols(sechdrs, symindex, strtab, secstrings, 931 hdr->e_shnum, &mod); 932 933 /* Now do relocations. */ 934 for (i = 1; i < hdr->e_shnum; i++) { 935 const char *strtab = (char *)sechdrs[strindex].sh_addr; 936 unsigned int info = sechdrs[i].sh_info; 937 938 /* Not a valid relocation section? */ 939 if (info >= hdr->e_shnum) 940 continue; 941 942 /* Don't bother with non-allocated sections */ 943 if (!(sechdrs[info].sh_flags & SHF_ALLOC)) 944 continue; 945 946 if (sechdrs[i].sh_type == SHT_REL) 947 err = apply_relocations(sechdrs, strtab, symindex, i, 948 &mod); 949 else if (sechdrs[i].sh_type == SHT_RELA) 950 err = apply_relocate_add(sechdrs, strtab, symindex, i, 951 &mod); 952 if (err < 0) 953 return err; 954 955 } 956 } else { 957 for (i = 0; i < hdr->e_shnum; i++) { 958 959 /* Internal symbols and strings. */ 960 if (sechdrs[i].sh_type == SHT_SYMTAB) { 961 symindex = i; 962 strindex = sechdrs[i].sh_link; 963 strtab = (char *)hdr + sechdrs[strindex].sh_offset; 964 965 /* mark the symtab's address for when we try to find the 966 magic symbols */ 967 sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset; 968 } 969 970 /* filter sections we dont want in the final image */ 971 if (!(sechdrs[i].sh_flags & SHF_ALLOC) || 972 (sechdrs[i].sh_type == SHT_MIPS_REGINFO)) { 973 printk( KERN_DEBUG " ignoring section, " 974 "name %s type %x address 0x%x \n", 975 secstrings + sechdrs[i].sh_name, 976 sechdrs[i].sh_type, sechdrs[i].sh_addr); 977 continue; 978 } 979 980 if (sechdrs[i].sh_addr < (unsigned int)v->load_addr) { 981 printk( KERN_WARNING "VPE loader: " 982 "fully linked image has invalid section, " 983 "name %s type %x address 0x%x, before load " 984 "address of 0x%x\n", 985 secstrings + sechdrs[i].sh_name, 986 sechdrs[i].sh_type, sechdrs[i].sh_addr, 987 (unsigned int)v->load_addr); 988 return -ENOEXEC; 989 } 990 991 printk(KERN_DEBUG " copying section sh_name %s, sh_addr 0x%x " 992 "size 0x%x0 from x%p\n", 993 secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr, 994 sechdrs[i].sh_size, hdr + sechdrs[i].sh_offset); 995 996 if (sechdrs[i].sh_type != SHT_NOBITS) 997 memcpy((void *)sechdrs[i].sh_addr, 998 (char *)hdr + sechdrs[i].sh_offset, 999 sechdrs[i].sh_size); 1000 else 1001 memset((void *)sechdrs[i].sh_addr, 0, sechdrs[i].sh_size); 1002 } 1003 } 1004 1005 /* make sure it's physically written out */ 1006 flush_icache_range((unsigned long)v->load_addr, 1007 (unsigned long)v->load_addr + v->len); 1008 1009 if ((find_vpe_symbols(v, sechdrs, symindex, strtab, &mod)) < 0) { 1010 if (v->__start == 0) { 1011 printk(KERN_WARNING "VPE loader: program does not contain " 1012 "a __start symbol\n"); 1013 return -ENOEXEC; 1014 } 1015 1016 if (v->shared_ptr == NULL) 1017 printk(KERN_WARNING "VPE loader: " 1018 "program does not contain vpe_shared symbol.\n" 1019 " Unable to use AMVP (AP/SP) facilities.\n"); 1020 } 1021 1022 printk(" elf loaded\n"); 1023 return 0; 1024 } 1025 1026 void __used dump_vpe(struct vpe * v) 1027 { 1028 struct tc *t; 1029 1030 settc(v->minor); 1031 1032 printk(KERN_DEBUG "VPEControl 0x%lx\n", read_vpe_c0_vpecontrol()); 1033 printk(KERN_DEBUG "VPEConf0 0x%lx\n", read_vpe_c0_vpeconf0()); 1034 1035 list_for_each_entry(t, &vpecontrol.tc_list, list) 1036 dump_tc(t); 1037 } 1038 1039 static void cleanup_tc(struct tc *tc) 1040 { 1041 int tmp; 1042 1043 /* Put MVPE's into 'configuration state' */ 1044 set_c0_mvpcontrol(MVPCONTROL_VPC); 1045 1046 settc(tc->index); 1047 tmp = read_tc_c0_tcstatus(); 1048 1049 /* mark not allocated and not dynamically allocatable */ 1050 tmp &= ~(TCSTATUS_A | TCSTATUS_DA); 1051 tmp |= TCSTATUS_IXMT; /* interrupt exempt */ 1052 write_tc_c0_tcstatus(tmp); 1053 1054 write_tc_c0_tchalt(TCHALT_H); 1055 1056 /* bind it to anything other than VPE1 */ 1057 write_tc_c0_tcbind(read_tc_c0_tcbind() & ~TCBIND_CURVPE); // | TCBIND_CURVPE 1058 1059 clear_c0_mvpcontrol(MVPCONTROL_VPC); 1060 } 1061 1062 static int getcwd(char *buff, int size) 1063 { 1064 mm_segment_t old_fs; 1065 int ret; 1066 1067 old_fs = get_fs(); 1068 set_fs(KERNEL_DS); 1069 1070 ret = sys_getcwd(buff,size); 1071 1072 set_fs(old_fs); 1073 1074 return ret; 1075 } 1076 1077 /* checks VPE is unused and gets ready to load program */ 1078 static int vpe_open(struct inode *inode, struct file *filp) 1079 { 1080 int minor, ret; 1081 enum vpe_state state; 1082 struct vpe *v; 1083 struct vpe_notifications *not; 1084 1085 /* assume only 1 device at the mo. */ 1086 if ((minor = iminor(inode)) != 1) { 1087 printk(KERN_WARNING "VPE loader: only vpe1 is supported\n"); 1088 return -ENODEV; 1089 } 1090 1091 if ((v = get_vpe(minor)) == NULL) { 1092 printk(KERN_WARNING "VPE loader: unable to get vpe\n"); 1093 return -ENODEV; 1094 } 1095 1096 state = xchg(&v->state, VPE_STATE_INUSE); 1097 if (state != VPE_STATE_UNUSED) { 1098 dvpe(); 1099 1100 printk(KERN_DEBUG "VPE loader: tc in use dumping regs\n"); 1101 1102 dump_tc(get_tc(minor)); 1103 1104 list_for_each_entry(not, &v->notify, list) { 1105 not->stop(minor); 1106 } 1107 1108 release_progmem(v->load_addr); 1109 cleanup_tc(get_tc(minor)); 1110 } 1111 1112 /* this of-course trashes what was there before... */ 1113 v->pbuffer = vmalloc(P_SIZE); 1114 v->plen = P_SIZE; 1115 v->load_addr = NULL; 1116 v->len = 0; 1117 1118 v->uid = filp->f_uid; 1119 v->gid = filp->f_gid; 1120 1121 #ifdef CONFIG_MIPS_APSP_KSPD 1122 /* get kspd to tell us when a syscall_exit happens */ 1123 if (!kspd_events_reqd) { 1124 kspd_notify(&kspd_events); 1125 kspd_events_reqd++; 1126 } 1127 #endif 1128 1129 v->cwd[0] = 0; 1130 ret = getcwd(v->cwd, VPE_PATH_MAX); 1131 if (ret < 0) 1132 printk(KERN_WARNING "VPE loader: open, getcwd returned %d\n", ret); 1133 1134 v->shared_ptr = NULL; 1135 v->__start = 0; 1136 return 0; 1137 } 1138 1139 static int vpe_release(struct inode *inode, struct file *filp) 1140 { 1141 int minor, ret = 0; 1142 struct vpe *v; 1143 Elf_Ehdr *hdr; 1144 1145 minor = iminor(inode); 1146 if ((v = get_vpe(minor)) == NULL) 1147 return -ENODEV; 1148 1149 // simple case of fire and forget, so tell the VPE to run... 1150 1151 hdr = (Elf_Ehdr *) v->pbuffer; 1152 if (memcmp(hdr->e_ident, ELFMAG, 4) == 0) { 1153 if (vpe_elfload(v) >= 0) 1154 vpe_run(v); 1155 else { 1156 printk(KERN_WARNING "VPE loader: ELF load failed.\n"); 1157 ret = -ENOEXEC; 1158 } 1159 } else { 1160 printk(KERN_WARNING "VPE loader: only elf files are supported\n"); 1161 ret = -ENOEXEC; 1162 } 1163 1164 /* It's good to be able to run the SP and if it chokes have a look at 1165 the /dev/rt?. But if we reset the pointer to the shared struct we 1166 loose what has happened. So perhaps if garbage is sent to the vpe 1167 device, use it as a trigger for the reset. Hopefully a nice 1168 executable will be along shortly. */ 1169 if (ret < 0) 1170 v->shared_ptr = NULL; 1171 1172 // cleanup any temp buffers 1173 if (v->pbuffer) 1174 vfree(v->pbuffer); 1175 v->plen = 0; 1176 return ret; 1177 } 1178 1179 static ssize_t vpe_write(struct file *file, const char __user * buffer, 1180 size_t count, loff_t * ppos) 1181 { 1182 int minor; 1183 size_t ret = count; 1184 struct vpe *v; 1185 1186 minor = iminor(file->f_path.dentry->d_inode); 1187 if ((v = get_vpe(minor)) == NULL) 1188 return -ENODEV; 1189 1190 if (v->pbuffer == NULL) { 1191 printk(KERN_ERR "VPE loader: no buffer for program\n"); 1192 return -ENOMEM; 1193 } 1194 1195 if ((count + v->len) > v->plen) { 1196 printk(KERN_WARNING 1197 "VPE loader: elf size too big. Perhaps strip uneeded symbols\n"); 1198 return -ENOMEM; 1199 } 1200 1201 count -= copy_from_user(v->pbuffer + v->len, buffer, count); 1202 if (!count) 1203 return -EFAULT; 1204 1205 v->len += count; 1206 return ret; 1207 } 1208 1209 static const struct file_operations vpe_fops = { 1210 .owner = THIS_MODULE, 1211 .open = vpe_open, 1212 .release = vpe_release, 1213 .write = vpe_write 1214 }; 1215 1216 /* module wrapper entry points */ 1217 /* give me a vpe */ 1218 vpe_handle vpe_alloc(void) 1219 { 1220 int i; 1221 struct vpe *v; 1222 1223 /* find a vpe */ 1224 for (i = 1; i < MAX_VPES; i++) { 1225 if ((v = get_vpe(i)) != NULL) { 1226 v->state = VPE_STATE_INUSE; 1227 return v; 1228 } 1229 } 1230 return NULL; 1231 } 1232 1233 EXPORT_SYMBOL(vpe_alloc); 1234 1235 /* start running from here */ 1236 int vpe_start(vpe_handle vpe, unsigned long start) 1237 { 1238 struct vpe *v = vpe; 1239 1240 v->__start = start; 1241 return vpe_run(v); 1242 } 1243 1244 EXPORT_SYMBOL(vpe_start); 1245 1246 /* halt it for now */ 1247 int vpe_stop(vpe_handle vpe) 1248 { 1249 struct vpe *v = vpe; 1250 struct tc *t; 1251 unsigned int evpe_flags; 1252 1253 evpe_flags = dvpe(); 1254 1255 if ((t = list_entry(v->tc.next, struct tc, tc)) != NULL) { 1256 1257 settc(t->index); 1258 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA); 1259 } 1260 1261 evpe(evpe_flags); 1262 1263 return 0; 1264 } 1265 1266 EXPORT_SYMBOL(vpe_stop); 1267 1268 /* I've done with it thank you */ 1269 int vpe_free(vpe_handle vpe) 1270 { 1271 struct vpe *v = vpe; 1272 struct tc *t; 1273 unsigned int evpe_flags; 1274 1275 if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) { 1276 return -ENOEXEC; 1277 } 1278 1279 evpe_flags = dvpe(); 1280 1281 /* Put MVPE's into 'configuration state' */ 1282 set_c0_mvpcontrol(MVPCONTROL_VPC); 1283 1284 settc(t->index); 1285 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA); 1286 1287 /* mark the TC unallocated and halt'ed */ 1288 write_tc_c0_tcstatus(read_tc_c0_tcstatus() & ~TCSTATUS_A); 1289 write_tc_c0_tchalt(TCHALT_H); 1290 1291 v->state = VPE_STATE_UNUSED; 1292 1293 clear_c0_mvpcontrol(MVPCONTROL_VPC); 1294 evpe(evpe_flags); 1295 1296 return 0; 1297 } 1298 1299 EXPORT_SYMBOL(vpe_free); 1300 1301 void *vpe_get_shared(int index) 1302 { 1303 struct vpe *v; 1304 1305 if ((v = get_vpe(index)) == NULL) 1306 return NULL; 1307 1308 return v->shared_ptr; 1309 } 1310 1311 EXPORT_SYMBOL(vpe_get_shared); 1312 1313 int vpe_getuid(int index) 1314 { 1315 struct vpe *v; 1316 1317 if ((v = get_vpe(index)) == NULL) 1318 return -1; 1319 1320 return v->uid; 1321 } 1322 1323 EXPORT_SYMBOL(vpe_getuid); 1324 1325 int vpe_getgid(int index) 1326 { 1327 struct vpe *v; 1328 1329 if ((v = get_vpe(index)) == NULL) 1330 return -1; 1331 1332 return v->gid; 1333 } 1334 1335 EXPORT_SYMBOL(vpe_getgid); 1336 1337 int vpe_notify(int index, struct vpe_notifications *notify) 1338 { 1339 struct vpe *v; 1340 1341 if ((v = get_vpe(index)) == NULL) 1342 return -1; 1343 1344 list_add(¬ify->list, &v->notify); 1345 return 0; 1346 } 1347 1348 EXPORT_SYMBOL(vpe_notify); 1349 1350 char *vpe_getcwd(int index) 1351 { 1352 struct vpe *v; 1353 1354 if ((v = get_vpe(index)) == NULL) 1355 return NULL; 1356 1357 return v->cwd; 1358 } 1359 1360 EXPORT_SYMBOL(vpe_getcwd); 1361 1362 #ifdef CONFIG_MIPS_APSP_KSPD 1363 static void kspd_sp_exit( int sp_id) 1364 { 1365 cleanup_tc(get_tc(sp_id)); 1366 } 1367 #endif 1368 1369 static struct device *vpe_dev; 1370 1371 static int __init vpe_module_init(void) 1372 { 1373 struct vpe *v = NULL; 1374 struct device *dev; 1375 struct tc *t; 1376 unsigned long val; 1377 int i, err; 1378 1379 if (!cpu_has_mipsmt) { 1380 printk("VPE loader: not a MIPS MT capable processor\n"); 1381 return -ENODEV; 1382 } 1383 1384 major = register_chrdev(0, module_name, &vpe_fops); 1385 if (major < 0) { 1386 printk("VPE loader: unable to register character device\n"); 1387 return major; 1388 } 1389 1390 dev = device_create(mt_class, NULL, MKDEV(major, minor), 1391 "tc%d", minor); 1392 if (IS_ERR(dev)) { 1393 err = PTR_ERR(dev); 1394 goto out_chrdev; 1395 } 1396 vpe_dev = dev; 1397 1398 dmt(); 1399 dvpe(); 1400 1401 /* Put MVPE's into 'configuration state' */ 1402 set_c0_mvpcontrol(MVPCONTROL_VPC); 1403 1404 /* dump_mtregs(); */ 1405 1406 1407 val = read_c0_mvpconf0(); 1408 for (i = 0; i < ((val & MVPCONF0_PTC) + 1); i++) { 1409 t = alloc_tc(i); 1410 1411 /* VPE's */ 1412 if (i < ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1) { 1413 settc(i); 1414 1415 if ((v = alloc_vpe(i)) == NULL) { 1416 printk(KERN_WARNING "VPE: unable to allocate VPE\n"); 1417 return -ENODEV; 1418 } 1419 1420 /* add the tc to the list of this vpe's tc's. */ 1421 list_add(&t->tc, &v->tc); 1422 1423 /* deactivate all but vpe0 */ 1424 if (i != 0) { 1425 unsigned long tmp = read_vpe_c0_vpeconf0(); 1426 1427 tmp &= ~VPECONF0_VPA; 1428 1429 /* master VPE */ 1430 tmp |= VPECONF0_MVP; 1431 write_vpe_c0_vpeconf0(tmp); 1432 } 1433 1434 /* disable multi-threading with TC's */ 1435 write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() & ~VPECONTROL_TE); 1436 1437 if (i != 0) { 1438 /* 1439 * Set config to be the same as vpe0, 1440 * particularly kseg0 coherency alg 1441 */ 1442 write_vpe_c0_config(read_c0_config()); 1443 } 1444 } 1445 1446 /* TC's */ 1447 t->pvpe = v; /* set the parent vpe */ 1448 1449 if (i != 0) { 1450 unsigned long tmp; 1451 1452 settc(i); 1453 1454 /* Any TC that is bound to VPE0 gets left as is - in case 1455 we are running SMTC on VPE0. A TC that is bound to any 1456 other VPE gets bound to VPE0, ideally I'd like to make 1457 it homeless but it doesn't appear to let me bind a TC 1458 to a non-existent VPE. Which is perfectly reasonable. 1459 1460 The (un)bound state is visible to an EJTAG probe so may 1461 notify GDB... 1462 */ 1463 1464 if (((tmp = read_tc_c0_tcbind()) & TCBIND_CURVPE)) { 1465 /* tc is bound >vpe0 */ 1466 write_tc_c0_tcbind(tmp & ~TCBIND_CURVPE); 1467 1468 t->pvpe = get_vpe(0); /* set the parent vpe */ 1469 } 1470 1471 tmp = read_tc_c0_tcstatus(); 1472 1473 /* mark not activated and not dynamically allocatable */ 1474 tmp &= ~(TCSTATUS_A | TCSTATUS_DA); 1475 tmp |= TCSTATUS_IXMT; /* interrupt exempt */ 1476 write_tc_c0_tcstatus(tmp); 1477 1478 write_tc_c0_tchalt(TCHALT_H); 1479 } 1480 } 1481 1482 /* release config state */ 1483 clear_c0_mvpcontrol(MVPCONTROL_VPC); 1484 1485 #ifdef CONFIG_MIPS_APSP_KSPD 1486 kspd_events.kspd_sp_exit = kspd_sp_exit; 1487 #endif 1488 return 0; 1489 1490 out_chrdev: 1491 unregister_chrdev(major, module_name); 1492 1493 return err; 1494 } 1495 1496 static void __exit vpe_module_exit(void) 1497 { 1498 struct vpe *v, *n; 1499 1500 list_for_each_entry_safe(v, n, &vpecontrol.vpe_list, list) { 1501 if (v->state != VPE_STATE_UNUSED) { 1502 release_vpe(v); 1503 } 1504 } 1505 1506 device_destroy(mt_class, MKDEV(major, minor)); 1507 unregister_chrdev(major, module_name); 1508 } 1509 1510 module_init(vpe_module_init); 1511 module_exit(vpe_module_exit); 1512 MODULE_DESCRIPTION("MIPS VPE Loader"); 1513 MODULE_AUTHOR("Elizabeth Oldham, MIPS Technologies, Inc."); 1514 MODULE_LICENSE("GPL"); 1515