xref: /openbmc/linux/arch/mips/kernel/vpe.c (revision 9fbcbd7e)
1 /*
2  * Copyright (C) 2004, 2005 MIPS Technologies, Inc.  All rights reserved.
3  *
4  *  This program is free software; you can distribute it and/or modify it
5  *  under the terms of the GNU General Public License (Version 2) as
6  *  published by the Free Software Foundation.
7  *
8  *  This program is distributed in the hope it will be useful, but WITHOUT
9  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
11  *  for more details.
12  *
13  *  You should have received a copy of the GNU General Public License along
14  *  with this program; if not, write to the Free Software Foundation, Inc.,
15  *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
16  */
17 
18 /*
19  * VPE support module
20  *
21  * Provides support for loading a MIPS SP program on VPE1.
22  * The SP environment is rather simple, no tlb's.  It needs to be relocatable
23  * (or partially linked). You should initialise your stack in the startup
24  * code. This loader looks for the symbol __start and sets up
25  * execution to resume from there. The MIPS SDE kit contains suitable examples.
26  *
27  * To load and run, simply cat a SP 'program file' to /dev/vpe1.
28  * i.e cat spapp >/dev/vpe1.
29  */
30 #include <linux/kernel.h>
31 #include <linux/device.h>
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/init.h>
35 #include <asm/uaccess.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/vmalloc.h>
39 #include <linux/elf.h>
40 #include <linux/seq_file.h>
41 #include <linux/syscalls.h>
42 #include <linux/moduleloader.h>
43 #include <linux/interrupt.h>
44 #include <linux/poll.h>
45 #include <linux/bootmem.h>
46 #include <asm/mipsregs.h>
47 #include <asm/mipsmtregs.h>
48 #include <asm/cacheflush.h>
49 #include <linux/atomic.h>
50 #include <asm/cpu.h>
51 #include <asm/mips_mt.h>
52 #include <asm/processor.h>
53 #include <asm/system.h>
54 #include <asm/vpe.h>
55 #include <asm/kspd.h>
56 
57 typedef void *vpe_handle;
58 
59 #ifndef ARCH_SHF_SMALL
60 #define ARCH_SHF_SMALL 0
61 #endif
62 
63 /* If this is set, the section belongs in the init part of the module */
64 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
65 
66 /*
67  * The number of TCs and VPEs physically available on the core
68  */
69 static int hw_tcs, hw_vpes;
70 static char module_name[] = "vpe";
71 static int major;
72 static const int minor = 1;	/* fixed for now  */
73 
74 #ifdef CONFIG_MIPS_APSP_KSPD
75 static struct kspd_notifications kspd_events;
76 static int kspd_events_reqd;
77 #endif
78 
79 /* grab the likely amount of memory we will need. */
80 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
81 #define P_SIZE (2 * 1024 * 1024)
82 #else
83 /* add an overhead to the max kmalloc size for non-striped symbols/etc */
84 #define P_SIZE (256 * 1024)
85 #endif
86 
87 extern unsigned long physical_memsize;
88 
89 #define MAX_VPES 16
90 #define VPE_PATH_MAX 256
91 
92 enum vpe_state {
93 	VPE_STATE_UNUSED = 0,
94 	VPE_STATE_INUSE,
95 	VPE_STATE_RUNNING
96 };
97 
98 enum tc_state {
99 	TC_STATE_UNUSED = 0,
100 	TC_STATE_INUSE,
101 	TC_STATE_RUNNING,
102 	TC_STATE_DYNAMIC
103 };
104 
105 struct vpe {
106 	enum vpe_state state;
107 
108 	/* (device) minor associated with this vpe */
109 	int minor;
110 
111 	/* elfloader stuff */
112 	void *load_addr;
113 	unsigned long len;
114 	char *pbuffer;
115 	unsigned long plen;
116 	unsigned int uid, gid;
117 	char cwd[VPE_PATH_MAX];
118 
119 	unsigned long __start;
120 
121 	/* tc's associated with this vpe */
122 	struct list_head tc;
123 
124 	/* The list of vpe's */
125 	struct list_head list;
126 
127 	/* shared symbol address */
128 	void *shared_ptr;
129 
130 	/* the list of who wants to know when something major happens */
131 	struct list_head notify;
132 
133 	unsigned int ntcs;
134 };
135 
136 struct tc {
137 	enum tc_state state;
138 	int index;
139 
140 	struct vpe *pvpe;	/* parent VPE */
141 	struct list_head tc;	/* The list of TC's with this VPE */
142 	struct list_head list;	/* The global list of tc's */
143 };
144 
145 struct {
146 	spinlock_t vpe_list_lock;
147 	struct list_head vpe_list;	/* Virtual processing elements */
148 	spinlock_t tc_list_lock;
149 	struct list_head tc_list;	/* Thread contexts */
150 } vpecontrol = {
151 	.vpe_list_lock	= __SPIN_LOCK_UNLOCKED(vpe_list_lock),
152 	.vpe_list	= LIST_HEAD_INIT(vpecontrol.vpe_list),
153 	.tc_list_lock	= __SPIN_LOCK_UNLOCKED(tc_list_lock),
154 	.tc_list	= LIST_HEAD_INIT(vpecontrol.tc_list)
155 };
156 
157 static void release_progmem(void *ptr);
158 
159 /* get the vpe associated with this minor */
160 static struct vpe *get_vpe(int minor)
161 {
162 	struct vpe *res, *v;
163 
164 	if (!cpu_has_mipsmt)
165 		return NULL;
166 
167 	res = NULL;
168 	spin_lock(&vpecontrol.vpe_list_lock);
169 	list_for_each_entry(v, &vpecontrol.vpe_list, list) {
170 		if (v->minor == minor) {
171 			res = v;
172 			break;
173 		}
174 	}
175 	spin_unlock(&vpecontrol.vpe_list_lock);
176 
177 	return res;
178 }
179 
180 /* get the vpe associated with this minor */
181 static struct tc *get_tc(int index)
182 {
183 	struct tc *res, *t;
184 
185 	res = NULL;
186 	spin_lock(&vpecontrol.tc_list_lock);
187 	list_for_each_entry(t, &vpecontrol.tc_list, list) {
188 		if (t->index == index) {
189 			res = t;
190 			break;
191 		}
192 	}
193 	spin_unlock(&vpecontrol.tc_list_lock);
194 
195 	return res;
196 }
197 
198 /* allocate a vpe and associate it with this minor (or index) */
199 static struct vpe *alloc_vpe(int minor)
200 {
201 	struct vpe *v;
202 
203 	if ((v = kzalloc(sizeof(struct vpe), GFP_KERNEL)) == NULL)
204 		return NULL;
205 
206 	INIT_LIST_HEAD(&v->tc);
207 	spin_lock(&vpecontrol.vpe_list_lock);
208 	list_add_tail(&v->list, &vpecontrol.vpe_list);
209 	spin_unlock(&vpecontrol.vpe_list_lock);
210 
211 	INIT_LIST_HEAD(&v->notify);
212 	v->minor = minor;
213 
214 	return v;
215 }
216 
217 /* allocate a tc. At startup only tc0 is running, all other can be halted. */
218 static struct tc *alloc_tc(int index)
219 {
220 	struct tc *tc;
221 
222 	if ((tc = kzalloc(sizeof(struct tc), GFP_KERNEL)) == NULL)
223 		goto out;
224 
225 	INIT_LIST_HEAD(&tc->tc);
226 	tc->index = index;
227 
228 	spin_lock(&vpecontrol.tc_list_lock);
229 	list_add_tail(&tc->list, &vpecontrol.tc_list);
230 	spin_unlock(&vpecontrol.tc_list_lock);
231 
232 out:
233 	return tc;
234 }
235 
236 /* clean up and free everything */
237 static void release_vpe(struct vpe *v)
238 {
239 	list_del(&v->list);
240 	if (v->load_addr)
241 		release_progmem(v);
242 	kfree(v);
243 }
244 
245 static void __maybe_unused dump_mtregs(void)
246 {
247 	unsigned long val;
248 
249 	val = read_c0_config3();
250 	printk("config3 0x%lx MT %ld\n", val,
251 	       (val & CONFIG3_MT) >> CONFIG3_MT_SHIFT);
252 
253 	val = read_c0_mvpcontrol();
254 	printk("MVPControl 0x%lx, STLB %ld VPC %ld EVP %ld\n", val,
255 	       (val & MVPCONTROL_STLB) >> MVPCONTROL_STLB_SHIFT,
256 	       (val & MVPCONTROL_VPC) >> MVPCONTROL_VPC_SHIFT,
257 	       (val & MVPCONTROL_EVP));
258 
259 	val = read_c0_mvpconf0();
260 	printk("mvpconf0 0x%lx, PVPE %ld PTC %ld M %ld\n", val,
261 	       (val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT,
262 	       val & MVPCONF0_PTC, (val & MVPCONF0_M) >> MVPCONF0_M_SHIFT);
263 }
264 
265 /* Find some VPE program space  */
266 static void *alloc_progmem(unsigned long len)
267 {
268 	void *addr;
269 
270 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
271 	/*
272 	 * This means you must tell Linux to use less memory than you
273 	 * physically have, for example by passing a mem= boot argument.
274 	 */
275 	addr = pfn_to_kaddr(max_low_pfn);
276 	memset(addr, 0, len);
277 #else
278 	/* simple grab some mem for now */
279 	addr = kzalloc(len, GFP_KERNEL);
280 #endif
281 
282 	return addr;
283 }
284 
285 static void release_progmem(void *ptr)
286 {
287 #ifndef CONFIG_MIPS_VPE_LOADER_TOM
288 	kfree(ptr);
289 #endif
290 }
291 
292 /* Update size with this section: return offset. */
293 static long get_offset(unsigned long *size, Elf_Shdr * sechdr)
294 {
295 	long ret;
296 
297 	ret = ALIGN(*size, sechdr->sh_addralign ? : 1);
298 	*size = ret + sechdr->sh_size;
299 	return ret;
300 }
301 
302 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
303    might -- code, read-only data, read-write data, small data.  Tally
304    sizes, and place the offsets into sh_entsize fields: high bit means it
305    belongs in init. */
306 static void layout_sections(struct module *mod, const Elf_Ehdr * hdr,
307 			    Elf_Shdr * sechdrs, const char *secstrings)
308 {
309 	static unsigned long const masks[][2] = {
310 		/* NOTE: all executable code must be the first section
311 		 * in this array; otherwise modify the text_size
312 		 * finder in the two loops below */
313 		{SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL},
314 		{SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL},
315 		{SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL},
316 		{ARCH_SHF_SMALL | SHF_ALLOC, 0}
317 	};
318 	unsigned int m, i;
319 
320 	for (i = 0; i < hdr->e_shnum; i++)
321 		sechdrs[i].sh_entsize = ~0UL;
322 
323 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
324 		for (i = 0; i < hdr->e_shnum; ++i) {
325 			Elf_Shdr *s = &sechdrs[i];
326 
327 			//  || strncmp(secstrings + s->sh_name, ".init", 5) == 0)
328 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
329 			    || (s->sh_flags & masks[m][1])
330 			    || s->sh_entsize != ~0UL)
331 				continue;
332 			s->sh_entsize =
333 				get_offset((unsigned long *)&mod->core_size, s);
334 		}
335 
336 		if (m == 0)
337 			mod->core_text_size = mod->core_size;
338 
339 	}
340 }
341 
342 
343 /* from module-elf32.c, but subverted a little */
344 
345 struct mips_hi16 {
346 	struct mips_hi16 *next;
347 	Elf32_Addr *addr;
348 	Elf32_Addr value;
349 };
350 
351 static struct mips_hi16 *mips_hi16_list;
352 static unsigned int gp_offs, gp_addr;
353 
354 static int apply_r_mips_none(struct module *me, uint32_t *location,
355 			     Elf32_Addr v)
356 {
357 	return 0;
358 }
359 
360 static int apply_r_mips_gprel16(struct module *me, uint32_t *location,
361 				Elf32_Addr v)
362 {
363 	int rel;
364 
365 	if( !(*location & 0xffff) ) {
366 		rel = (int)v - gp_addr;
367 	}
368 	else {
369 		/* .sbss + gp(relative) + offset */
370 		/* kludge! */
371 		rel =  (int)(short)((int)v + gp_offs +
372 				    (int)(short)(*location & 0xffff) - gp_addr);
373 	}
374 
375 	if( (rel > 32768) || (rel < -32768) ) {
376 		printk(KERN_DEBUG "VPE loader: apply_r_mips_gprel16: "
377 		       "relative address 0x%x out of range of gp register\n",
378 		       rel);
379 		return -ENOEXEC;
380 	}
381 
382 	*location = (*location & 0xffff0000) | (rel & 0xffff);
383 
384 	return 0;
385 }
386 
387 static int apply_r_mips_pc16(struct module *me, uint32_t *location,
388 			     Elf32_Addr v)
389 {
390 	int rel;
391 	rel = (((unsigned int)v - (unsigned int)location));
392 	rel >>= 2;		// because the offset is in _instructions_ not bytes.
393 	rel -= 1;		// and one instruction less due to the branch delay slot.
394 
395 	if( (rel > 32768) || (rel < -32768) ) {
396 		printk(KERN_DEBUG "VPE loader: "
397  		       "apply_r_mips_pc16: relative address out of range 0x%x\n", rel);
398 		return -ENOEXEC;
399 	}
400 
401 	*location = (*location & 0xffff0000) | (rel & 0xffff);
402 
403 	return 0;
404 }
405 
406 static int apply_r_mips_32(struct module *me, uint32_t *location,
407 			   Elf32_Addr v)
408 {
409 	*location += v;
410 
411 	return 0;
412 }
413 
414 static int apply_r_mips_26(struct module *me, uint32_t *location,
415 			   Elf32_Addr v)
416 {
417 	if (v % 4) {
418 		printk(KERN_DEBUG "VPE loader: apply_r_mips_26 "
419 		       " unaligned relocation\n");
420 		return -ENOEXEC;
421 	}
422 
423 /*
424  * Not desperately convinced this is a good check of an overflow condition
425  * anyway. But it gets in the way of handling undefined weak symbols which
426  * we want to set to zero.
427  * if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) {
428  * printk(KERN_ERR
429  * "module %s: relocation overflow\n",
430  * me->name);
431  * return -ENOEXEC;
432  * }
433  */
434 
435 	*location = (*location & ~0x03ffffff) |
436 		((*location + (v >> 2)) & 0x03ffffff);
437 	return 0;
438 }
439 
440 static int apply_r_mips_hi16(struct module *me, uint32_t *location,
441 			     Elf32_Addr v)
442 {
443 	struct mips_hi16 *n;
444 
445 	/*
446 	 * We cannot relocate this one now because we don't know the value of
447 	 * the carry we need to add.  Save the information, and let LO16 do the
448 	 * actual relocation.
449 	 */
450 	n = kmalloc(sizeof *n, GFP_KERNEL);
451 	if (!n)
452 		return -ENOMEM;
453 
454 	n->addr = location;
455 	n->value = v;
456 	n->next = mips_hi16_list;
457 	mips_hi16_list = n;
458 
459 	return 0;
460 }
461 
462 static int apply_r_mips_lo16(struct module *me, uint32_t *location,
463 			     Elf32_Addr v)
464 {
465 	unsigned long insnlo = *location;
466 	Elf32_Addr val, vallo;
467 	struct mips_hi16 *l, *next;
468 
469 	/* Sign extend the addend we extract from the lo insn.  */
470 	vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000;
471 
472 	if (mips_hi16_list != NULL) {
473 
474 		l = mips_hi16_list;
475 		while (l != NULL) {
476 			unsigned long insn;
477 
478 			/*
479 			 * The value for the HI16 had best be the same.
480 			 */
481  			if (v != l->value) {
482 				printk(KERN_DEBUG "VPE loader: "
483 				       "apply_r_mips_lo16/hi16: \t"
484 				       "inconsistent value information\n");
485 				goto out_free;
486 			}
487 
488 			/*
489 			 * Do the HI16 relocation.  Note that we actually don't
490 			 * need to know anything about the LO16 itself, except
491 			 * where to find the low 16 bits of the addend needed
492 			 * by the LO16.
493 			 */
494 			insn = *l->addr;
495 			val = ((insn & 0xffff) << 16) + vallo;
496 			val += v;
497 
498 			/*
499 			 * Account for the sign extension that will happen in
500 			 * the low bits.
501 			 */
502 			val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff;
503 
504 			insn = (insn & ~0xffff) | val;
505 			*l->addr = insn;
506 
507 			next = l->next;
508 			kfree(l);
509 			l = next;
510 		}
511 
512 		mips_hi16_list = NULL;
513 	}
514 
515 	/*
516 	 * Ok, we're done with the HI16 relocs.  Now deal with the LO16.
517 	 */
518 	val = v + vallo;
519 	insnlo = (insnlo & ~0xffff) | (val & 0xffff);
520 	*location = insnlo;
521 
522 	return 0;
523 
524 out_free:
525 	while (l != NULL) {
526 		next = l->next;
527 		kfree(l);
528 		l = next;
529 	}
530 	mips_hi16_list = NULL;
531 
532 	return -ENOEXEC;
533 }
534 
535 static int (*reloc_handlers[]) (struct module *me, uint32_t *location,
536 				Elf32_Addr v) = {
537 	[R_MIPS_NONE]	= apply_r_mips_none,
538 	[R_MIPS_32]	= apply_r_mips_32,
539 	[R_MIPS_26]	= apply_r_mips_26,
540 	[R_MIPS_HI16]	= apply_r_mips_hi16,
541 	[R_MIPS_LO16]	= apply_r_mips_lo16,
542 	[R_MIPS_GPREL16] = apply_r_mips_gprel16,
543 	[R_MIPS_PC16] = apply_r_mips_pc16
544 };
545 
546 static char *rstrs[] = {
547 	[R_MIPS_NONE]	= "MIPS_NONE",
548 	[R_MIPS_32]	= "MIPS_32",
549 	[R_MIPS_26]	= "MIPS_26",
550 	[R_MIPS_HI16]	= "MIPS_HI16",
551 	[R_MIPS_LO16]	= "MIPS_LO16",
552 	[R_MIPS_GPREL16] = "MIPS_GPREL16",
553 	[R_MIPS_PC16] = "MIPS_PC16"
554 };
555 
556 static int apply_relocations(Elf32_Shdr *sechdrs,
557 		      const char *strtab,
558 		      unsigned int symindex,
559 		      unsigned int relsec,
560 		      struct module *me)
561 {
562 	Elf32_Rel *rel = (void *) sechdrs[relsec].sh_addr;
563 	Elf32_Sym *sym;
564 	uint32_t *location;
565 	unsigned int i;
566 	Elf32_Addr v;
567 	int res;
568 
569 	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
570 		Elf32_Word r_info = rel[i].r_info;
571 
572 		/* This is where to make the change */
573 		location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
574 			+ rel[i].r_offset;
575 		/* This is the symbol it is referring to */
576 		sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
577 			+ ELF32_R_SYM(r_info);
578 
579 		if (!sym->st_value) {
580 			printk(KERN_DEBUG "%s: undefined weak symbol %s\n",
581 			       me->name, strtab + sym->st_name);
582 			/* just print the warning, dont barf */
583 		}
584 
585 		v = sym->st_value;
586 
587 		res = reloc_handlers[ELF32_R_TYPE(r_info)](me, location, v);
588 		if( res ) {
589 			char *r = rstrs[ELF32_R_TYPE(r_info)];
590 		    	printk(KERN_WARNING "VPE loader: .text+0x%x "
591 			       "relocation type %s for symbol \"%s\" failed\n",
592 			       rel[i].r_offset, r ? r : "UNKNOWN",
593 			       strtab + sym->st_name);
594 			return res;
595 		}
596 	}
597 
598 	return 0;
599 }
600 
601 static inline void save_gp_address(unsigned int secbase, unsigned int rel)
602 {
603 	gp_addr = secbase + rel;
604 	gp_offs = gp_addr - (secbase & 0xffff0000);
605 }
606 /* end module-elf32.c */
607 
608 
609 
610 /* Change all symbols so that sh_value encodes the pointer directly. */
611 static void simplify_symbols(Elf_Shdr * sechdrs,
612 			    unsigned int symindex,
613 			    const char *strtab,
614 			    const char *secstrings,
615 			    unsigned int nsecs, struct module *mod)
616 {
617 	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
618 	unsigned long secbase, bssbase = 0;
619 	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
620 	int size;
621 
622 	/* find the .bss section for COMMON symbols */
623 	for (i = 0; i < nsecs; i++) {
624 		if (strncmp(secstrings + sechdrs[i].sh_name, ".bss", 4) == 0) {
625 			bssbase = sechdrs[i].sh_addr;
626 			break;
627 		}
628 	}
629 
630 	for (i = 1; i < n; i++) {
631 		switch (sym[i].st_shndx) {
632 		case SHN_COMMON:
633 			/* Allocate space for the symbol in the .bss section.
634 			   st_value is currently size.
635 			   We want it to have the address of the symbol. */
636 
637 			size = sym[i].st_value;
638 			sym[i].st_value = bssbase;
639 
640 			bssbase += size;
641 			break;
642 
643 		case SHN_ABS:
644 			/* Don't need to do anything */
645 			break;
646 
647 		case SHN_UNDEF:
648 			/* ret = -ENOENT; */
649 			break;
650 
651 		case SHN_MIPS_SCOMMON:
652 			printk(KERN_DEBUG "simplify_symbols: ignoring SHN_MIPS_SCOMMON "
653 			       "symbol <%s> st_shndx %d\n", strtab + sym[i].st_name,
654 			       sym[i].st_shndx);
655 			// .sbss section
656 			break;
657 
658 		default:
659 			secbase = sechdrs[sym[i].st_shndx].sh_addr;
660 
661 			if (strncmp(strtab + sym[i].st_name, "_gp", 3) == 0) {
662 				save_gp_address(secbase, sym[i].st_value);
663 			}
664 
665 			sym[i].st_value += secbase;
666 			break;
667 		}
668 	}
669 }
670 
671 #ifdef DEBUG_ELFLOADER
672 static void dump_elfsymbols(Elf_Shdr * sechdrs, unsigned int symindex,
673 			    const char *strtab, struct module *mod)
674 {
675 	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
676 	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
677 
678 	printk(KERN_DEBUG "dump_elfsymbols: n %d\n", n);
679 	for (i = 1; i < n; i++) {
680 		printk(KERN_DEBUG " i %d name <%s> 0x%x\n", i,
681 		       strtab + sym[i].st_name, sym[i].st_value);
682 	}
683 }
684 #endif
685 
686 /* We are prepared so configure and start the VPE... */
687 static int vpe_run(struct vpe * v)
688 {
689 	unsigned long flags, val, dmt_flag;
690 	struct vpe_notifications *n;
691 	unsigned int vpeflags;
692 	struct tc *t;
693 
694 	/* check we are the Master VPE */
695 	local_irq_save(flags);
696 	val = read_c0_vpeconf0();
697 	if (!(val & VPECONF0_MVP)) {
698 		printk(KERN_WARNING
699 		       "VPE loader: only Master VPE's are allowed to configure MT\n");
700 		local_irq_restore(flags);
701 
702 		return -1;
703 	}
704 
705 	dmt_flag = dmt();
706 	vpeflags = dvpe();
707 
708 	if (!list_empty(&v->tc)) {
709 		if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
710 			evpe(vpeflags);
711 			emt(dmt_flag);
712 			local_irq_restore(flags);
713 
714 			printk(KERN_WARNING
715 			       "VPE loader: TC %d is already in use.\n",
716                                t->index);
717 			return -ENOEXEC;
718 		}
719 	} else {
720 		evpe(vpeflags);
721 		emt(dmt_flag);
722 		local_irq_restore(flags);
723 
724 		printk(KERN_WARNING
725 		       "VPE loader: No TC's associated with VPE %d\n",
726 		       v->minor);
727 
728 		return -ENOEXEC;
729 	}
730 
731 	/* Put MVPE's into 'configuration state' */
732 	set_c0_mvpcontrol(MVPCONTROL_VPC);
733 
734 	settc(t->index);
735 
736 	/* should check it is halted, and not activated */
737 	if ((read_tc_c0_tcstatus() & TCSTATUS_A) || !(read_tc_c0_tchalt() & TCHALT_H)) {
738 		evpe(vpeflags);
739 		emt(dmt_flag);
740 		local_irq_restore(flags);
741 
742 		printk(KERN_WARNING "VPE loader: TC %d is already active!\n",
743 		       t->index);
744 
745 		return -ENOEXEC;
746 	}
747 
748 	/* Write the address we want it to start running from in the TCPC register. */
749 	write_tc_c0_tcrestart((unsigned long)v->__start);
750 	write_tc_c0_tccontext((unsigned long)0);
751 
752 	/*
753 	 * Mark the TC as activated, not interrupt exempt and not dynamically
754 	 * allocatable
755 	 */
756 	val = read_tc_c0_tcstatus();
757 	val = (val & ~(TCSTATUS_DA | TCSTATUS_IXMT)) | TCSTATUS_A;
758 	write_tc_c0_tcstatus(val);
759 
760 	write_tc_c0_tchalt(read_tc_c0_tchalt() & ~TCHALT_H);
761 
762 	/*
763 	 * The sde-kit passes 'memsize' to __start in $a3, so set something
764 	 * here...  Or set $a3 to zero and define DFLT_STACK_SIZE and
765 	 * DFLT_HEAP_SIZE when you compile your program
766 	 */
767 	mttgpr(6, v->ntcs);
768 	mttgpr(7, physical_memsize);
769 
770 	/* set up VPE1 */
771 	/*
772 	 * bind the TC to VPE 1 as late as possible so we only have the final
773 	 * VPE registers to set up, and so an EJTAG probe can trigger on it
774 	 */
775 	write_tc_c0_tcbind((read_tc_c0_tcbind() & ~TCBIND_CURVPE) | 1);
776 
777 	write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~(VPECONF0_VPA));
778 
779 	back_to_back_c0_hazard();
780 
781 	/* Set up the XTC bit in vpeconf0 to point at our tc */
782 	write_vpe_c0_vpeconf0( (read_vpe_c0_vpeconf0() & ~(VPECONF0_XTC))
783 	                      | (t->index << VPECONF0_XTC_SHIFT));
784 
785 	back_to_back_c0_hazard();
786 
787 	/* enable this VPE */
788 	write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
789 
790 	/* clear out any left overs from a previous program */
791 	write_vpe_c0_status(0);
792 	write_vpe_c0_cause(0);
793 
794 	/* take system out of configuration state */
795 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
796 
797 	/*
798 	 * SMTC/SMVP kernels manage VPE enable independently,
799 	 * but uniprocessor kernels need to turn it on, even
800 	 * if that wasn't the pre-dvpe() state.
801 	 */
802 #ifdef CONFIG_SMP
803 	evpe(vpeflags);
804 #else
805 	evpe(EVPE_ENABLE);
806 #endif
807 	emt(dmt_flag);
808 	local_irq_restore(flags);
809 
810 	list_for_each_entry(n, &v->notify, list)
811 		n->start(minor);
812 
813 	return 0;
814 }
815 
816 static int find_vpe_symbols(struct vpe * v, Elf_Shdr * sechdrs,
817 				      unsigned int symindex, const char *strtab,
818 				      struct module *mod)
819 {
820 	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
821 	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
822 
823 	for (i = 1; i < n; i++) {
824 		if (strcmp(strtab + sym[i].st_name, "__start") == 0) {
825 			v->__start = sym[i].st_value;
826 		}
827 
828 		if (strcmp(strtab + sym[i].st_name, "vpe_shared") == 0) {
829 			v->shared_ptr = (void *)sym[i].st_value;
830 		}
831 	}
832 
833 	if ( (v->__start == 0) || (v->shared_ptr == NULL))
834 		return -1;
835 
836 	return 0;
837 }
838 
839 /*
840  * Allocates a VPE with some program code space(the load address), copies the
841  * contents of the program (p)buffer performing relocatations/etc, free's it
842  * when finished.
843  */
844 static int vpe_elfload(struct vpe * v)
845 {
846 	Elf_Ehdr *hdr;
847 	Elf_Shdr *sechdrs;
848 	long err = 0;
849 	char *secstrings, *strtab = NULL;
850 	unsigned int len, i, symindex = 0, strindex = 0, relocate = 0;
851 	struct module mod;	// so we can re-use the relocations code
852 
853 	memset(&mod, 0, sizeof(struct module));
854 	strcpy(mod.name, "VPE loader");
855 
856 	hdr = (Elf_Ehdr *) v->pbuffer;
857 	len = v->plen;
858 
859 	/* Sanity checks against insmoding binaries or wrong arch,
860 	   weird elf version */
861 	if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0
862 	    || (hdr->e_type != ET_REL && hdr->e_type != ET_EXEC)
863 	    || !elf_check_arch(hdr)
864 	    || hdr->e_shentsize != sizeof(*sechdrs)) {
865 		printk(KERN_WARNING
866 		       "VPE loader: program wrong arch or weird elf version\n");
867 
868 		return -ENOEXEC;
869 	}
870 
871 	if (hdr->e_type == ET_REL)
872 		relocate = 1;
873 
874 	if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) {
875 		printk(KERN_ERR "VPE loader: program length %u truncated\n",
876 		       len);
877 
878 		return -ENOEXEC;
879 	}
880 
881 	/* Convenience variables */
882 	sechdrs = (void *)hdr + hdr->e_shoff;
883 	secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
884 	sechdrs[0].sh_addr = 0;
885 
886 	/* And these should exist, but gcc whinges if we don't init them */
887 	symindex = strindex = 0;
888 
889 	if (relocate) {
890 		for (i = 1; i < hdr->e_shnum; i++) {
891 			if (sechdrs[i].sh_type != SHT_NOBITS
892 			    && len < sechdrs[i].sh_offset + sechdrs[i].sh_size) {
893 				printk(KERN_ERR "VPE program length %u truncated\n",
894 				       len);
895 				return -ENOEXEC;
896 			}
897 
898 			/* Mark all sections sh_addr with their address in the
899 			   temporary image. */
900 			sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
901 
902 			/* Internal symbols and strings. */
903 			if (sechdrs[i].sh_type == SHT_SYMTAB) {
904 				symindex = i;
905 				strindex = sechdrs[i].sh_link;
906 				strtab = (char *)hdr + sechdrs[strindex].sh_offset;
907 			}
908 		}
909 		layout_sections(&mod, hdr, sechdrs, secstrings);
910 	}
911 
912 	v->load_addr = alloc_progmem(mod.core_size);
913 	if (!v->load_addr)
914 		return -ENOMEM;
915 
916 	pr_info("VPE loader: loading to %p\n", v->load_addr);
917 
918 	if (relocate) {
919 		for (i = 0; i < hdr->e_shnum; i++) {
920 			void *dest;
921 
922 			if (!(sechdrs[i].sh_flags & SHF_ALLOC))
923 				continue;
924 
925 			dest = v->load_addr + sechdrs[i].sh_entsize;
926 
927 			if (sechdrs[i].sh_type != SHT_NOBITS)
928 				memcpy(dest, (void *)sechdrs[i].sh_addr,
929 				       sechdrs[i].sh_size);
930 			/* Update sh_addr to point to copy in image. */
931 			sechdrs[i].sh_addr = (unsigned long)dest;
932 
933 			printk(KERN_DEBUG " section sh_name %s sh_addr 0x%x\n",
934 			       secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr);
935 		}
936 
937  		/* Fix up syms, so that st_value is a pointer to location. */
938  		simplify_symbols(sechdrs, symindex, strtab, secstrings,
939  				 hdr->e_shnum, &mod);
940 
941  		/* Now do relocations. */
942  		for (i = 1; i < hdr->e_shnum; i++) {
943  			const char *strtab = (char *)sechdrs[strindex].sh_addr;
944  			unsigned int info = sechdrs[i].sh_info;
945 
946  			/* Not a valid relocation section? */
947  			if (info >= hdr->e_shnum)
948  				continue;
949 
950  			/* Don't bother with non-allocated sections */
951  			if (!(sechdrs[info].sh_flags & SHF_ALLOC))
952  				continue;
953 
954  			if (sechdrs[i].sh_type == SHT_REL)
955  				err = apply_relocations(sechdrs, strtab, symindex, i,
956  							&mod);
957  			else if (sechdrs[i].sh_type == SHT_RELA)
958  				err = apply_relocate_add(sechdrs, strtab, symindex, i,
959  							 &mod);
960  			if (err < 0)
961  				return err;
962 
963   		}
964   	} else {
965 		struct elf_phdr *phdr = (struct elf_phdr *) ((char *)hdr + hdr->e_phoff);
966 
967 		for (i = 0; i < hdr->e_phnum; i++) {
968 			if (phdr->p_type == PT_LOAD) {
969 				memcpy((void *)phdr->p_paddr,
970 				       (char *)hdr + phdr->p_offset,
971 				       phdr->p_filesz);
972 				memset((void *)phdr->p_paddr + phdr->p_filesz,
973 				       0, phdr->p_memsz - phdr->p_filesz);
974 		    }
975 		    phdr++;
976 		}
977 
978 		for (i = 0; i < hdr->e_shnum; i++) {
979  			/* Internal symbols and strings. */
980  			if (sechdrs[i].sh_type == SHT_SYMTAB) {
981  				symindex = i;
982  				strindex = sechdrs[i].sh_link;
983  				strtab = (char *)hdr + sechdrs[strindex].sh_offset;
984 
985  				/* mark the symtab's address for when we try to find the
986  				   magic symbols */
987  				sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
988  			}
989 		}
990 	}
991 
992 	/* make sure it's physically written out */
993 	flush_icache_range((unsigned long)v->load_addr,
994 			   (unsigned long)v->load_addr + v->len);
995 
996 	if ((find_vpe_symbols(v, sechdrs, symindex, strtab, &mod)) < 0) {
997 		if (v->__start == 0) {
998 			printk(KERN_WARNING "VPE loader: program does not contain "
999 			       "a __start symbol\n");
1000 			return -ENOEXEC;
1001 		}
1002 
1003 		if (v->shared_ptr == NULL)
1004 			printk(KERN_WARNING "VPE loader: "
1005 			       "program does not contain vpe_shared symbol.\n"
1006 			       " Unable to use AMVP (AP/SP) facilities.\n");
1007 	}
1008 
1009 	printk(" elf loaded\n");
1010 	return 0;
1011 }
1012 
1013 static void cleanup_tc(struct tc *tc)
1014 {
1015 	unsigned long flags;
1016 	unsigned int mtflags, vpflags;
1017 	int tmp;
1018 
1019 	local_irq_save(flags);
1020 	mtflags = dmt();
1021 	vpflags = dvpe();
1022 	/* Put MVPE's into 'configuration state' */
1023 	set_c0_mvpcontrol(MVPCONTROL_VPC);
1024 
1025 	settc(tc->index);
1026 	tmp = read_tc_c0_tcstatus();
1027 
1028 	/* mark not allocated and not dynamically allocatable */
1029 	tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1030 	tmp |= TCSTATUS_IXMT;	/* interrupt exempt */
1031 	write_tc_c0_tcstatus(tmp);
1032 
1033 	write_tc_c0_tchalt(TCHALT_H);
1034 	mips_ihb();
1035 
1036 	/* bind it to anything other than VPE1 */
1037 //	write_tc_c0_tcbind(read_tc_c0_tcbind() & ~TCBIND_CURVPE); // | TCBIND_CURVPE
1038 
1039 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
1040 	evpe(vpflags);
1041 	emt(mtflags);
1042 	local_irq_restore(flags);
1043 }
1044 
1045 static int getcwd(char *buff, int size)
1046 {
1047 	mm_segment_t old_fs;
1048 	int ret;
1049 
1050 	old_fs = get_fs();
1051 	set_fs(KERNEL_DS);
1052 
1053 	ret = sys_getcwd(buff, size);
1054 
1055 	set_fs(old_fs);
1056 
1057 	return ret;
1058 }
1059 
1060 /* checks VPE is unused and gets ready to load program  */
1061 static int vpe_open(struct inode *inode, struct file *filp)
1062 {
1063 	enum vpe_state state;
1064 	struct vpe_notifications *not;
1065 	struct vpe *v;
1066 	int ret;
1067 
1068 	if (minor != iminor(inode)) {
1069 		/* assume only 1 device at the moment. */
1070 		pr_warning("VPE loader: only vpe1 is supported\n");
1071 
1072 		return -ENODEV;
1073 	}
1074 
1075 	if ((v = get_vpe(tclimit)) == NULL) {
1076 		pr_warning("VPE loader: unable to get vpe\n");
1077 
1078 		return -ENODEV;
1079 	}
1080 
1081 	state = xchg(&v->state, VPE_STATE_INUSE);
1082 	if (state != VPE_STATE_UNUSED) {
1083 		printk(KERN_DEBUG "VPE loader: tc in use dumping regs\n");
1084 
1085 		list_for_each_entry(not, &v->notify, list) {
1086 			not->stop(tclimit);
1087 		}
1088 
1089 		release_progmem(v->load_addr);
1090 		cleanup_tc(get_tc(tclimit));
1091 	}
1092 
1093 	/* this of-course trashes what was there before... */
1094 	v->pbuffer = vmalloc(P_SIZE);
1095 	if (!v->pbuffer) {
1096 		pr_warning("VPE loader: unable to allocate memory\n");
1097 		return -ENOMEM;
1098 	}
1099 	v->plen = P_SIZE;
1100 	v->load_addr = NULL;
1101 	v->len = 0;
1102 
1103 	v->uid = filp->f_cred->fsuid;
1104 	v->gid = filp->f_cred->fsgid;
1105 
1106 #ifdef CONFIG_MIPS_APSP_KSPD
1107 	/* get kspd to tell us when a syscall_exit happens */
1108 	if (!kspd_events_reqd) {
1109 		kspd_notify(&kspd_events);
1110 		kspd_events_reqd++;
1111 	}
1112 #endif
1113 
1114 	v->cwd[0] = 0;
1115 	ret = getcwd(v->cwd, VPE_PATH_MAX);
1116 	if (ret < 0)
1117 		printk(KERN_WARNING "VPE loader: open, getcwd returned %d\n", ret);
1118 
1119 	v->shared_ptr = NULL;
1120 	v->__start = 0;
1121 
1122 	return 0;
1123 }
1124 
1125 static int vpe_release(struct inode *inode, struct file *filp)
1126 {
1127 	struct vpe *v;
1128 	Elf_Ehdr *hdr;
1129 	int ret = 0;
1130 
1131 	v = get_vpe(tclimit);
1132 	if (v == NULL)
1133 		return -ENODEV;
1134 
1135 	hdr = (Elf_Ehdr *) v->pbuffer;
1136 	if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) == 0) {
1137 		if (vpe_elfload(v) >= 0) {
1138 			vpe_run(v);
1139 		} else {
1140  			printk(KERN_WARNING "VPE loader: ELF load failed.\n");
1141 			ret = -ENOEXEC;
1142 		}
1143 	} else {
1144  		printk(KERN_WARNING "VPE loader: only elf files are supported\n");
1145 		ret = -ENOEXEC;
1146 	}
1147 
1148 	/* It's good to be able to run the SP and if it chokes have a look at
1149 	   the /dev/rt?. But if we reset the pointer to the shared struct we
1150 	   lose what has happened. So perhaps if garbage is sent to the vpe
1151 	   device, use it as a trigger for the reset. Hopefully a nice
1152 	   executable will be along shortly. */
1153 	if (ret < 0)
1154 		v->shared_ptr = NULL;
1155 
1156 	vfree(v->pbuffer);
1157 	v->plen = 0;
1158 
1159 	return ret;
1160 }
1161 
1162 static ssize_t vpe_write(struct file *file, const char __user * buffer,
1163 			 size_t count, loff_t * ppos)
1164 {
1165 	size_t ret = count;
1166 	struct vpe *v;
1167 
1168 	if (iminor(file->f_path.dentry->d_inode) != minor)
1169 		return -ENODEV;
1170 
1171 	v = get_vpe(tclimit);
1172 	if (v == NULL)
1173 		return -ENODEV;
1174 
1175 	if ((count + v->len) > v->plen) {
1176 		printk(KERN_WARNING
1177 		       "VPE loader: elf size too big. Perhaps strip uneeded symbols\n");
1178 		return -ENOMEM;
1179 	}
1180 
1181 	count -= copy_from_user(v->pbuffer + v->len, buffer, count);
1182 	if (!count)
1183 		return -EFAULT;
1184 
1185 	v->len += count;
1186 	return ret;
1187 }
1188 
1189 static const struct file_operations vpe_fops = {
1190 	.owner = THIS_MODULE,
1191 	.open = vpe_open,
1192 	.release = vpe_release,
1193 	.write = vpe_write,
1194 	.llseek = noop_llseek,
1195 };
1196 
1197 /* module wrapper entry points */
1198 /* give me a vpe */
1199 vpe_handle vpe_alloc(void)
1200 {
1201 	int i;
1202 	struct vpe *v;
1203 
1204 	/* find a vpe */
1205 	for (i = 1; i < MAX_VPES; i++) {
1206 		if ((v = get_vpe(i)) != NULL) {
1207 			v->state = VPE_STATE_INUSE;
1208 			return v;
1209 		}
1210 	}
1211 	return NULL;
1212 }
1213 
1214 EXPORT_SYMBOL(vpe_alloc);
1215 
1216 /* start running from here */
1217 int vpe_start(vpe_handle vpe, unsigned long start)
1218 {
1219 	struct vpe *v = vpe;
1220 
1221 	v->__start = start;
1222 	return vpe_run(v);
1223 }
1224 
1225 EXPORT_SYMBOL(vpe_start);
1226 
1227 /* halt it for now */
1228 int vpe_stop(vpe_handle vpe)
1229 {
1230 	struct vpe *v = vpe;
1231 	struct tc *t;
1232 	unsigned int evpe_flags;
1233 
1234 	evpe_flags = dvpe();
1235 
1236 	if ((t = list_entry(v->tc.next, struct tc, tc)) != NULL) {
1237 
1238 		settc(t->index);
1239 		write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1240 	}
1241 
1242 	evpe(evpe_flags);
1243 
1244 	return 0;
1245 }
1246 
1247 EXPORT_SYMBOL(vpe_stop);
1248 
1249 /* I've done with it thank you */
1250 int vpe_free(vpe_handle vpe)
1251 {
1252 	struct vpe *v = vpe;
1253 	struct tc *t;
1254 	unsigned int evpe_flags;
1255 
1256 	if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
1257 		return -ENOEXEC;
1258 	}
1259 
1260 	evpe_flags = dvpe();
1261 
1262 	/* Put MVPE's into 'configuration state' */
1263 	set_c0_mvpcontrol(MVPCONTROL_VPC);
1264 
1265 	settc(t->index);
1266 	write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1267 
1268 	/* halt the TC */
1269 	write_tc_c0_tchalt(TCHALT_H);
1270 	mips_ihb();
1271 
1272 	/* mark the TC unallocated */
1273 	write_tc_c0_tcstatus(read_tc_c0_tcstatus() & ~TCSTATUS_A);
1274 
1275 	v->state = VPE_STATE_UNUSED;
1276 
1277 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
1278 	evpe(evpe_flags);
1279 
1280 	return 0;
1281 }
1282 
1283 EXPORT_SYMBOL(vpe_free);
1284 
1285 void *vpe_get_shared(int index)
1286 {
1287 	struct vpe *v;
1288 
1289 	if ((v = get_vpe(index)) == NULL)
1290 		return NULL;
1291 
1292 	return v->shared_ptr;
1293 }
1294 
1295 EXPORT_SYMBOL(vpe_get_shared);
1296 
1297 int vpe_getuid(int index)
1298 {
1299 	struct vpe *v;
1300 
1301 	if ((v = get_vpe(index)) == NULL)
1302 		return -1;
1303 
1304 	return v->uid;
1305 }
1306 
1307 EXPORT_SYMBOL(vpe_getuid);
1308 
1309 int vpe_getgid(int index)
1310 {
1311 	struct vpe *v;
1312 
1313 	if ((v = get_vpe(index)) == NULL)
1314 		return -1;
1315 
1316 	return v->gid;
1317 }
1318 
1319 EXPORT_SYMBOL(vpe_getgid);
1320 
1321 int vpe_notify(int index, struct vpe_notifications *notify)
1322 {
1323 	struct vpe *v;
1324 
1325 	if ((v = get_vpe(index)) == NULL)
1326 		return -1;
1327 
1328 	list_add(&notify->list, &v->notify);
1329 	return 0;
1330 }
1331 
1332 EXPORT_SYMBOL(vpe_notify);
1333 
1334 char *vpe_getcwd(int index)
1335 {
1336 	struct vpe *v;
1337 
1338 	if ((v = get_vpe(index)) == NULL)
1339 		return NULL;
1340 
1341 	return v->cwd;
1342 }
1343 
1344 EXPORT_SYMBOL(vpe_getcwd);
1345 
1346 #ifdef CONFIG_MIPS_APSP_KSPD
1347 static void kspd_sp_exit( int sp_id)
1348 {
1349 	cleanup_tc(get_tc(sp_id));
1350 }
1351 #endif
1352 
1353 static ssize_t store_kill(struct device *dev, struct device_attribute *attr,
1354 			  const char *buf, size_t len)
1355 {
1356 	struct vpe *vpe = get_vpe(tclimit);
1357 	struct vpe_notifications *not;
1358 
1359 	list_for_each_entry(not, &vpe->notify, list) {
1360 		not->stop(tclimit);
1361 	}
1362 
1363 	release_progmem(vpe->load_addr);
1364 	cleanup_tc(get_tc(tclimit));
1365 	vpe_stop(vpe);
1366 	vpe_free(vpe);
1367 
1368 	return len;
1369 }
1370 
1371 static ssize_t show_ntcs(struct device *cd, struct device_attribute *attr,
1372 			 char *buf)
1373 {
1374 	struct vpe *vpe = get_vpe(tclimit);
1375 
1376 	return sprintf(buf, "%d\n", vpe->ntcs);
1377 }
1378 
1379 static ssize_t store_ntcs(struct device *dev, struct device_attribute *attr,
1380 			  const char *buf, size_t len)
1381 {
1382 	struct vpe *vpe = get_vpe(tclimit);
1383 	unsigned long new;
1384 	char *endp;
1385 
1386 	new = simple_strtoul(buf, &endp, 0);
1387 	if (endp == buf)
1388 		goto out_einval;
1389 
1390 	if (new == 0 || new > (hw_tcs - tclimit))
1391 		goto out_einval;
1392 
1393 	vpe->ntcs = new;
1394 
1395 	return len;
1396 
1397 out_einval:
1398 	return -EINVAL;
1399 }
1400 
1401 static struct device_attribute vpe_class_attributes[] = {
1402 	__ATTR(kill, S_IWUSR, NULL, store_kill),
1403 	__ATTR(ntcs, S_IRUGO | S_IWUSR, show_ntcs, store_ntcs),
1404 	{}
1405 };
1406 
1407 static void vpe_device_release(struct device *cd)
1408 {
1409 	kfree(cd);
1410 }
1411 
1412 struct class vpe_class = {
1413 	.name = "vpe",
1414 	.owner = THIS_MODULE,
1415 	.dev_release = vpe_device_release,
1416 	.dev_attrs = vpe_class_attributes,
1417 };
1418 
1419 struct device vpe_device;
1420 
1421 static int __init vpe_module_init(void)
1422 {
1423 	unsigned int mtflags, vpflags;
1424 	unsigned long flags, val;
1425 	struct vpe *v = NULL;
1426 	struct tc *t;
1427 	int tc, err;
1428 
1429 	if (!cpu_has_mipsmt) {
1430 		printk("VPE loader: not a MIPS MT capable processor\n");
1431 		return -ENODEV;
1432 	}
1433 
1434 	if (vpelimit == 0) {
1435 		printk(KERN_WARNING "No VPEs reserved for AP/SP, not "
1436 		       "initializing VPE loader.\nPass maxvpes=<n> argument as "
1437 		       "kernel argument\n");
1438 
1439 		return -ENODEV;
1440 	}
1441 
1442 	if (tclimit == 0) {
1443 		printk(KERN_WARNING "No TCs reserved for AP/SP, not "
1444 		       "initializing VPE loader.\nPass maxtcs=<n> argument as "
1445 		       "kernel argument\n");
1446 
1447 		return -ENODEV;
1448 	}
1449 
1450 	major = register_chrdev(0, module_name, &vpe_fops);
1451 	if (major < 0) {
1452 		printk("VPE loader: unable to register character device\n");
1453 		return major;
1454 	}
1455 
1456 	err = class_register(&vpe_class);
1457 	if (err) {
1458 		printk(KERN_ERR "vpe_class registration failed\n");
1459 		goto out_chrdev;
1460 	}
1461 
1462 	device_initialize(&vpe_device);
1463 	vpe_device.class	= &vpe_class,
1464 	vpe_device.parent	= NULL,
1465 	dev_set_name(&vpe_device, "vpe1");
1466 	vpe_device.devt = MKDEV(major, minor);
1467 	err = device_add(&vpe_device);
1468 	if (err) {
1469 		printk(KERN_ERR "Adding vpe_device failed\n");
1470 		goto out_class;
1471 	}
1472 
1473 	local_irq_save(flags);
1474 	mtflags = dmt();
1475 	vpflags = dvpe();
1476 
1477 	/* Put MVPE's into 'configuration state' */
1478 	set_c0_mvpcontrol(MVPCONTROL_VPC);
1479 
1480 	/* dump_mtregs(); */
1481 
1482 	val = read_c0_mvpconf0();
1483 	hw_tcs = (val & MVPCONF0_PTC) + 1;
1484 	hw_vpes = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
1485 
1486 	for (tc = tclimit; tc < hw_tcs; tc++) {
1487 		/*
1488 		 * Must re-enable multithreading temporarily or in case we
1489 		 * reschedule send IPIs or similar we might hang.
1490 		 */
1491 		clear_c0_mvpcontrol(MVPCONTROL_VPC);
1492 		evpe(vpflags);
1493 		emt(mtflags);
1494 		local_irq_restore(flags);
1495 		t = alloc_tc(tc);
1496 		if (!t) {
1497 			err = -ENOMEM;
1498 			goto out;
1499 		}
1500 
1501 		local_irq_save(flags);
1502 		mtflags = dmt();
1503 		vpflags = dvpe();
1504 		set_c0_mvpcontrol(MVPCONTROL_VPC);
1505 
1506 		/* VPE's */
1507 		if (tc < hw_tcs) {
1508 			settc(tc);
1509 
1510 			if ((v = alloc_vpe(tc)) == NULL) {
1511 				printk(KERN_WARNING "VPE: unable to allocate VPE\n");
1512 
1513 				goto out_reenable;
1514 			}
1515 
1516 			v->ntcs = hw_tcs - tclimit;
1517 
1518 			/* add the tc to the list of this vpe's tc's. */
1519 			list_add(&t->tc, &v->tc);
1520 
1521 			/* deactivate all but vpe0 */
1522 			if (tc >= tclimit) {
1523 				unsigned long tmp = read_vpe_c0_vpeconf0();
1524 
1525 				tmp &= ~VPECONF0_VPA;
1526 
1527 				/* master VPE */
1528 				tmp |= VPECONF0_MVP;
1529 				write_vpe_c0_vpeconf0(tmp);
1530 			}
1531 
1532 			/* disable multi-threading with TC's */
1533 			write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() & ~VPECONTROL_TE);
1534 
1535 			if (tc >= vpelimit) {
1536 				/*
1537 				 * Set config to be the same as vpe0,
1538 				 * particularly kseg0 coherency alg
1539 				 */
1540 				write_vpe_c0_config(read_c0_config());
1541 			}
1542 		}
1543 
1544 		/* TC's */
1545 		t->pvpe = v;	/* set the parent vpe */
1546 
1547 		if (tc >= tclimit) {
1548 			unsigned long tmp;
1549 
1550 			settc(tc);
1551 
1552 			/* Any TC that is bound to VPE0 gets left as is - in case
1553 			   we are running SMTC on VPE0. A TC that is bound to any
1554 			   other VPE gets bound to VPE0, ideally I'd like to make
1555 			   it homeless but it doesn't appear to let me bind a TC
1556 			   to a non-existent VPE. Which is perfectly reasonable.
1557 
1558 			   The (un)bound state is visible to an EJTAG probe so may
1559 			   notify GDB...
1560 			*/
1561 
1562 			if (((tmp = read_tc_c0_tcbind()) & TCBIND_CURVPE)) {
1563 				/* tc is bound >vpe0 */
1564 				write_tc_c0_tcbind(tmp & ~TCBIND_CURVPE);
1565 
1566 				t->pvpe = get_vpe(0);	/* set the parent vpe */
1567 			}
1568 
1569 			/* halt the TC */
1570 			write_tc_c0_tchalt(TCHALT_H);
1571 			mips_ihb();
1572 
1573 			tmp = read_tc_c0_tcstatus();
1574 
1575 			/* mark not activated and not dynamically allocatable */
1576 			tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1577 			tmp |= TCSTATUS_IXMT;	/* interrupt exempt */
1578 			write_tc_c0_tcstatus(tmp);
1579 		}
1580 	}
1581 
1582 out_reenable:
1583 	/* release config state */
1584 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
1585 
1586 	evpe(vpflags);
1587 	emt(mtflags);
1588 	local_irq_restore(flags);
1589 
1590 #ifdef CONFIG_MIPS_APSP_KSPD
1591 	kspd_events.kspd_sp_exit = kspd_sp_exit;
1592 #endif
1593 	return 0;
1594 
1595 out_class:
1596 	class_unregister(&vpe_class);
1597 out_chrdev:
1598 	unregister_chrdev(major, module_name);
1599 
1600 out:
1601 	return err;
1602 }
1603 
1604 static void __exit vpe_module_exit(void)
1605 {
1606 	struct vpe *v, *n;
1607 
1608 	device_del(&vpe_device);
1609 	unregister_chrdev(major, module_name);
1610 
1611 	/* No locking needed here */
1612 	list_for_each_entry_safe(v, n, &vpecontrol.vpe_list, list) {
1613 		if (v->state != VPE_STATE_UNUSED)
1614 			release_vpe(v);
1615 	}
1616 }
1617 
1618 module_init(vpe_module_init);
1619 module_exit(vpe_module_exit);
1620 MODULE_DESCRIPTION("MIPS VPE Loader");
1621 MODULE_AUTHOR("Elizabeth Oldham, MIPS Technologies, Inc.");
1622 MODULE_LICENSE("GPL");
1623