xref: /openbmc/linux/arch/mips/kernel/vpe.c (revision 571e0bed)
1 /*
2  * Copyright (C) 2004, 2005 MIPS Technologies, Inc.  All rights reserved.
3  *
4  *  This program is free software; you can distribute it and/or modify it
5  *  under the terms of the GNU General Public License (Version 2) as
6  *  published by the Free Software Foundation.
7  *
8  *  This program is distributed in the hope it will be useful, but WITHOUT
9  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
11  *  for more details.
12  *
13  *  You should have received a copy of the GNU General Public License along
14  *  with this program; if not, write to the Free Software Foundation, Inc.,
15  *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
16  *
17  */
18 
19 /*
20  * VPE support module
21  *
22  * Provides support for loading a MIPS SP program on VPE1.
23  * The SP enviroment is rather simple, no tlb's.  It needs to be relocatable
24  * (or partially linked). You should initialise your stack in the startup
25  * code. This loader looks for the symbol __start and sets up
26  * execution to resume from there. The MIPS SDE kit contains suitable examples.
27  *
28  * To load and run, simply cat a SP 'program file' to /dev/vpe1.
29  * i.e cat spapp >/dev/vpe1.
30  *
31  * You'll need to have the following device files.
32  * mknod /dev/vpe0 c 63 0
33  * mknod /dev/vpe1 c 63 1
34  */
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/fs.h>
39 #include <linux/init.h>
40 #include <asm/uaccess.h>
41 #include <linux/slab.h>
42 #include <linux/list.h>
43 #include <linux/vmalloc.h>
44 #include <linux/elf.h>
45 #include <linux/seq_file.h>
46 #include <linux/syscalls.h>
47 #include <linux/moduleloader.h>
48 #include <linux/interrupt.h>
49 #include <linux/poll.h>
50 #include <linux/bootmem.h>
51 #include <asm/mipsregs.h>
52 #include <asm/mipsmtregs.h>
53 #include <asm/cacheflush.h>
54 #include <asm/atomic.h>
55 #include <asm/cpu.h>
56 #include <asm/processor.h>
57 #include <asm/system.h>
58 
59 typedef void *vpe_handle;
60 
61 #ifndef ARCH_SHF_SMALL
62 #define ARCH_SHF_SMALL 0
63 #endif
64 
65 /* If this is set, the section belongs in the init part of the module */
66 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
67 
68 static char module_name[] = "vpe";
69 static int major;
70 
71 /* grab the likely amount of memory we will need. */
72 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
73 #define P_SIZE (2 * 1024 * 1024)
74 #else
75 /* add an overhead to the max kmalloc size for non-striped symbols/etc */
76 #define P_SIZE (256 * 1024)
77 #endif
78 
79 #define MAX_VPES 16
80 
81 enum vpe_state {
82 	VPE_STATE_UNUSED = 0,
83 	VPE_STATE_INUSE,
84 	VPE_STATE_RUNNING
85 };
86 
87 enum tc_state {
88 	TC_STATE_UNUSED = 0,
89 	TC_STATE_INUSE,
90 	TC_STATE_RUNNING,
91 	TC_STATE_DYNAMIC
92 };
93 
94 struct vpe {
95 	enum vpe_state state;
96 
97 	/* (device) minor associated with this vpe */
98 	int minor;
99 
100 	/* elfloader stuff */
101 	void *load_addr;
102 	unsigned long len;
103 	char *pbuffer;
104 	unsigned long plen;
105 
106 	unsigned long __start;
107 
108 	/* tc's associated with this vpe */
109 	struct list_head tc;
110 
111 	/* The list of vpe's */
112 	struct list_head list;
113 
114 	/* shared symbol address */
115 	void *shared_ptr;
116 };
117 
118 struct tc {
119 	enum tc_state state;
120 	int index;
121 
122 	/* parent VPE */
123 	struct vpe *pvpe;
124 
125 	/* The list of TC's with this VPE */
126 	struct list_head tc;
127 
128 	/* The global list of tc's */
129 	struct list_head list;
130 };
131 
132 struct vpecontrol_ {
133 	/* Virtual processing elements */
134 	struct list_head vpe_list;
135 
136 	/* Thread contexts */
137 	struct list_head tc_list;
138 } vpecontrol;
139 
140 static void release_progmem(void *ptr);
141 static void dump_vpe(struct vpe * v);
142 extern void save_gp_address(unsigned int secbase, unsigned int rel);
143 
144 /* get the vpe associated with this minor */
145 struct vpe *get_vpe(int minor)
146 {
147 	struct vpe *v;
148 
149 	list_for_each_entry(v, &vpecontrol.vpe_list, list) {
150 		if (v->minor == minor)
151 			return v;
152 	}
153 
154 	printk(KERN_DEBUG "VPE: get_vpe minor %d not found\n", minor);
155 	return NULL;
156 }
157 
158 /* get the vpe associated with this minor */
159 struct tc *get_tc(int index)
160 {
161 	struct tc *t;
162 
163 	list_for_each_entry(t, &vpecontrol.tc_list, list) {
164 		if (t->index == index)
165 			return t;
166 	}
167 
168 	printk(KERN_DEBUG "VPE: get_tc index %d not found\n", index);
169 
170 	return NULL;
171 }
172 
173 struct tc *get_tc_unused(void)
174 {
175 	struct tc *t;
176 
177 	list_for_each_entry(t, &vpecontrol.tc_list, list) {
178 		if (t->state == TC_STATE_UNUSED)
179 			return t;
180 	}
181 
182 	printk(KERN_DEBUG "VPE: All TC's are in use\n");
183 
184 	return NULL;
185 }
186 
187 /* allocate a vpe and associate it with this minor (or index) */
188 struct vpe *alloc_vpe(int minor)
189 {
190 	struct vpe *v;
191 
192 	if ((v = kzalloc(sizeof(struct vpe), GFP_KERNEL)) == NULL) {
193 		printk(KERN_WARNING "VPE: alloc_vpe no mem\n");
194 		return NULL;
195 	}
196 
197 	INIT_LIST_HEAD(&v->tc);
198 	list_add_tail(&v->list, &vpecontrol.vpe_list);
199 
200 	v->minor = minor;
201 	return v;
202 }
203 
204 /* allocate a tc. At startup only tc0 is running, all other can be halted. */
205 struct tc *alloc_tc(int index)
206 {
207 	struct tc *t;
208 
209 	if ((t = kzalloc(sizeof(struct tc), GFP_KERNEL)) == NULL) {
210 		printk(KERN_WARNING "VPE: alloc_tc no mem\n");
211 		return NULL;
212 	}
213 
214 	INIT_LIST_HEAD(&t->tc);
215 	list_add_tail(&t->list, &vpecontrol.tc_list);
216 
217 	t->index = index;
218 
219 	return t;
220 }
221 
222 /* clean up and free everything */
223 void release_vpe(struct vpe *v)
224 {
225 	list_del(&v->list);
226 	if (v->load_addr)
227 		release_progmem(v);
228 	kfree(v);
229 }
230 
231 void dump_mtregs(void)
232 {
233 	unsigned long val;
234 
235 	val = read_c0_config3();
236 	printk("config3 0x%lx MT %ld\n", val,
237 	       (val & CONFIG3_MT) >> CONFIG3_MT_SHIFT);
238 
239 	val = read_c0_mvpconf0();
240 	printk("mvpconf0 0x%lx, PVPE %ld PTC %ld M %ld\n", val,
241 	       (val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT,
242 	       val & MVPCONF0_PTC, (val & MVPCONF0_M) >> MVPCONF0_M_SHIFT);
243 
244 	val = read_c0_mvpcontrol();
245 	printk("MVPControl 0x%lx, STLB %ld VPC %ld EVP %ld\n", val,
246 	       (val & MVPCONTROL_STLB) >> MVPCONTROL_STLB_SHIFT,
247 	       (val & MVPCONTROL_VPC) >> MVPCONTROL_VPC_SHIFT,
248 	       (val & MVPCONTROL_EVP));
249 
250 	val = read_c0_vpeconf0();
251 	printk("VPEConf0 0x%lx MVP %ld\n", val,
252 	       (val & VPECONF0_MVP) >> VPECONF0_MVP_SHIFT);
253 }
254 
255 /* Find some VPE program space  */
256 static void *alloc_progmem(unsigned long len)
257 {
258 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
259 	/* this means you must tell linux to use less memory than you physically have */
260 	return pfn_to_kaddr(max_pfn);
261 #else
262 	// simple grab some mem for now
263 	return kmalloc(len, GFP_KERNEL);
264 #endif
265 }
266 
267 static void release_progmem(void *ptr)
268 {
269 #ifndef CONFIG_MIPS_VPE_LOADER_TOM
270 	kfree(ptr);
271 #endif
272 }
273 
274 /* Update size with this section: return offset. */
275 static long get_offset(unsigned long *size, Elf_Shdr * sechdr)
276 {
277 	long ret;
278 
279 	ret = ALIGN(*size, sechdr->sh_addralign ? : 1);
280 	*size = ret + sechdr->sh_size;
281 	return ret;
282 }
283 
284 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
285    might -- code, read-only data, read-write data, small data.  Tally
286    sizes, and place the offsets into sh_entsize fields: high bit means it
287    belongs in init. */
288 static void layout_sections(struct module *mod, const Elf_Ehdr * hdr,
289 			    Elf_Shdr * sechdrs, const char *secstrings)
290 {
291 	static unsigned long const masks[][2] = {
292 		/* NOTE: all executable code must be the first section
293 		 * in this array; otherwise modify the text_size
294 		 * finder in the two loops below */
295 		{SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL},
296 		{SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL},
297 		{SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL},
298 		{ARCH_SHF_SMALL | SHF_ALLOC, 0}
299 	};
300 	unsigned int m, i;
301 
302 	for (i = 0; i < hdr->e_shnum; i++)
303 		sechdrs[i].sh_entsize = ~0UL;
304 
305 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
306 		for (i = 0; i < hdr->e_shnum; ++i) {
307 			Elf_Shdr *s = &sechdrs[i];
308 
309 			//  || strncmp(secstrings + s->sh_name, ".init", 5) == 0)
310 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
311 			    || (s->sh_flags & masks[m][1])
312 			    || s->sh_entsize != ~0UL)
313 				continue;
314 			s->sh_entsize = get_offset(&mod->core_size, s);
315 		}
316 
317 		if (m == 0)
318 			mod->core_text_size = mod->core_size;
319 
320 	}
321 }
322 
323 
324 /* from module-elf32.c, but subverted a little */
325 
326 struct mips_hi16 {
327 	struct mips_hi16 *next;
328 	Elf32_Addr *addr;
329 	Elf32_Addr value;
330 };
331 
332 static struct mips_hi16 *mips_hi16_list;
333 static unsigned int gp_offs, gp_addr;
334 
335 static int apply_r_mips_none(struct module *me, uint32_t *location,
336 			     Elf32_Addr v)
337 {
338 	return 0;
339 }
340 
341 static int apply_r_mips_gprel16(struct module *me, uint32_t *location,
342 				Elf32_Addr v)
343 {
344 	int rel;
345 
346 	if( !(*location & 0xffff) ) {
347 		rel = (int)v - gp_addr;
348 	}
349 	else {
350 		/* .sbss + gp(relative) + offset */
351 		/* kludge! */
352 		rel =  (int)(short)((int)v + gp_offs +
353 				    (int)(short)(*location & 0xffff) - gp_addr);
354 	}
355 
356 	if( (rel > 32768) || (rel < -32768) ) {
357 		printk(KERN_ERR
358 		       "apply_r_mips_gprel16: relative address out of range 0x%x %d\n",
359 		       rel, rel);
360 		return -ENOEXEC;
361 	}
362 
363 	*location = (*location & 0xffff0000) | (rel & 0xffff);
364 
365 	return 0;
366 }
367 
368 static int apply_r_mips_pc16(struct module *me, uint32_t *location,
369 			     Elf32_Addr v)
370 {
371 	int rel;
372 	rel = (((unsigned int)v - (unsigned int)location));
373 	rel >>= 2;		// because the offset is in _instructions_ not bytes.
374 	rel -= 1;		// and one instruction less due to the branch delay slot.
375 
376 	if( (rel > 32768) || (rel < -32768) ) {
377 		printk(KERN_ERR
378 		       "apply_r_mips_pc16: relative address out of range 0x%x\n", rel);
379 		return -ENOEXEC;
380 	}
381 
382 	*location = (*location & 0xffff0000) | (rel & 0xffff);
383 
384 	return 0;
385 }
386 
387 static int apply_r_mips_32(struct module *me, uint32_t *location,
388 			   Elf32_Addr v)
389 {
390 	*location += v;
391 
392 	return 0;
393 }
394 
395 static int apply_r_mips_26(struct module *me, uint32_t *location,
396 			   Elf32_Addr v)
397 {
398 	if (v % 4) {
399 		printk(KERN_ERR "module %s: dangerous relocation mod4\n", me->name);
400 		return -ENOEXEC;
401 	}
402 
403 /*
404  * Not desperately convinced this is a good check of an overflow condition
405  * anyway. But it gets in the way of handling undefined weak symbols which
406  * we want to set to zero.
407  * if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) {
408  * printk(KERN_ERR
409  * "module %s: relocation overflow\n",
410  * me->name);
411  * return -ENOEXEC;
412  * }
413  */
414 
415 	*location = (*location & ~0x03ffffff) |
416 		((*location + (v >> 2)) & 0x03ffffff);
417 	return 0;
418 }
419 
420 static int apply_r_mips_hi16(struct module *me, uint32_t *location,
421 			     Elf32_Addr v)
422 {
423 	struct mips_hi16 *n;
424 
425 	/*
426 	 * We cannot relocate this one now because we don't know the value of
427 	 * the carry we need to add.  Save the information, and let LO16 do the
428 	 * actual relocation.
429 	 */
430 	n = kmalloc(sizeof *n, GFP_KERNEL);
431 	if (!n)
432 		return -ENOMEM;
433 
434 	n->addr = location;
435 	n->value = v;
436 	n->next = mips_hi16_list;
437 	mips_hi16_list = n;
438 
439 	return 0;
440 }
441 
442 static int apply_r_mips_lo16(struct module *me, uint32_t *location,
443 			     Elf32_Addr v)
444 {
445 	unsigned long insnlo = *location;
446 	Elf32_Addr val, vallo;
447 
448 	/* Sign extend the addend we extract from the lo insn.  */
449 	vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000;
450 
451 	if (mips_hi16_list != NULL) {
452 		struct mips_hi16 *l;
453 
454 		l = mips_hi16_list;
455 		while (l != NULL) {
456 			struct mips_hi16 *next;
457 			unsigned long insn;
458 
459 			/*
460 			 * The value for the HI16 had best be the same.
461 			 */
462 			if (v != l->value) {
463 				printk("%d != %d\n", v, l->value);
464 				goto out_danger;
465 			}
466 
467 
468 			/*
469 			 * Do the HI16 relocation.  Note that we actually don't
470 			 * need to know anything about the LO16 itself, except
471 			 * where to find the low 16 bits of the addend needed
472 			 * by the LO16.
473 			 */
474 			insn = *l->addr;
475 			val = ((insn & 0xffff) << 16) + vallo;
476 			val += v;
477 
478 			/*
479 			 * Account for the sign extension that will happen in
480 			 * the low bits.
481 			 */
482 			val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff;
483 
484 			insn = (insn & ~0xffff) | val;
485 			*l->addr = insn;
486 
487 			next = l->next;
488 			kfree(l);
489 			l = next;
490 		}
491 
492 		mips_hi16_list = NULL;
493 	}
494 
495 	/*
496 	 * Ok, we're done with the HI16 relocs.  Now deal with the LO16.
497 	 */
498 	val = v + vallo;
499 	insnlo = (insnlo & ~0xffff) | (val & 0xffff);
500 	*location = insnlo;
501 
502 	return 0;
503 
504 out_danger:
505 	printk(KERN_ERR "module %s: dangerous " "relocation\n", me->name);
506 
507 	return -ENOEXEC;
508 }
509 
510 static int (*reloc_handlers[]) (struct module *me, uint32_t *location,
511 				Elf32_Addr v) = {
512 	[R_MIPS_NONE]	= apply_r_mips_none,
513 	[R_MIPS_32]	= apply_r_mips_32,
514 	[R_MIPS_26]	= apply_r_mips_26,
515 	[R_MIPS_HI16]	= apply_r_mips_hi16,
516 	[R_MIPS_LO16]	= apply_r_mips_lo16,
517 	[R_MIPS_GPREL16] = apply_r_mips_gprel16,
518 	[R_MIPS_PC16] = apply_r_mips_pc16
519 };
520 
521 
522 int apply_relocations(Elf32_Shdr *sechdrs,
523 		      const char *strtab,
524 		      unsigned int symindex,
525 		      unsigned int relsec,
526 		      struct module *me)
527 {
528 	Elf32_Rel *rel = (void *) sechdrs[relsec].sh_addr;
529 	Elf32_Sym *sym;
530 	uint32_t *location;
531 	unsigned int i;
532 	Elf32_Addr v;
533 	int res;
534 
535 	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
536 		Elf32_Word r_info = rel[i].r_info;
537 
538 		/* This is where to make the change */
539 		location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
540 			+ rel[i].r_offset;
541 		/* This is the symbol it is referring to */
542 		sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
543 			+ ELF32_R_SYM(r_info);
544 
545 		if (!sym->st_value) {
546 			printk(KERN_DEBUG "%s: undefined weak symbol %s\n",
547 			       me->name, strtab + sym->st_name);
548 			/* just print the warning, dont barf */
549 		}
550 
551 		v = sym->st_value;
552 
553 		res = reloc_handlers[ELF32_R_TYPE(r_info)](me, location, v);
554 		if( res ) {
555 			printk(KERN_DEBUG
556 			       "relocation error 0x%x sym refer <%s> value 0x%x "
557 			       "type 0x%x r_info 0x%x\n",
558 			       (unsigned int)location, strtab + sym->st_name, v,
559 			       r_info, ELF32_R_TYPE(r_info));
560 		}
561 
562 		if (res)
563 			return res;
564 	}
565 
566 	return 0;
567 }
568 
569 void save_gp_address(unsigned int secbase, unsigned int rel)
570 {
571 	gp_addr = secbase + rel;
572 	gp_offs = gp_addr - (secbase & 0xffff0000);
573 }
574 /* end module-elf32.c */
575 
576 
577 
578 /* Change all symbols so that sh_value encodes the pointer directly. */
579 static int simplify_symbols(Elf_Shdr * sechdrs,
580 			    unsigned int symindex,
581 			    const char *strtab,
582 			    const char *secstrings,
583 			    unsigned int nsecs, struct module *mod)
584 {
585 	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
586 	unsigned long secbase, bssbase = 0;
587 	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
588 	int ret = 0, size;
589 
590 	/* find the .bss section for COMMON symbols */
591 	for (i = 0; i < nsecs; i++) {
592 		if (strncmp(secstrings + sechdrs[i].sh_name, ".bss", 4) == 0)
593 			bssbase = sechdrs[i].sh_addr;
594 	}
595 
596 	for (i = 1; i < n; i++) {
597 		switch (sym[i].st_shndx) {
598 		case SHN_COMMON:
599 			/* Allocate space for the symbol in the .bss section. st_value is currently size.
600 			   We want it to have the address of the symbol. */
601 
602 			size = sym[i].st_value;
603 			sym[i].st_value = bssbase;
604 
605 			bssbase += size;
606 			break;
607 
608 		case SHN_ABS:
609 			/* Don't need to do anything */
610 			break;
611 
612 		case SHN_UNDEF:
613 			/* ret = -ENOENT; */
614 			break;
615 
616 		case SHN_MIPS_SCOMMON:
617 
618 			printk(KERN_DEBUG
619 			       "simplify_symbols: ignoring SHN_MIPS_SCOMMON symbol <%s> st_shndx %d\n",
620 			       strtab + sym[i].st_name, sym[i].st_shndx);
621 
622 			// .sbss section
623 			break;
624 
625 		default:
626 			secbase = sechdrs[sym[i].st_shndx].sh_addr;
627 
628 			if (strncmp(strtab + sym[i].st_name, "_gp", 3) == 0) {
629 				save_gp_address(secbase, sym[i].st_value);
630 			}
631 
632 			sym[i].st_value += secbase;
633 			break;
634 		}
635 
636 	}
637 
638 	return ret;
639 }
640 
641 #ifdef DEBUG_ELFLOADER
642 static void dump_elfsymbols(Elf_Shdr * sechdrs, unsigned int symindex,
643 			    const char *strtab, struct module *mod)
644 {
645 	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
646 	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
647 
648 	printk(KERN_DEBUG "dump_elfsymbols: n %d\n", n);
649 	for (i = 1; i < n; i++) {
650 		printk(KERN_DEBUG " i %d name <%s> 0x%x\n", i,
651 		       strtab + sym[i].st_name, sym[i].st_value);
652 	}
653 }
654 #endif
655 
656 static void dump_tc(struct tc *t)
657 {
658 	printk(KERN_WARNING "VPE: TC index %d TCStatus 0x%lx halt 0x%lx\n",
659 	       t->index, read_tc_c0_tcstatus(), read_tc_c0_tchalt());
660 	printk(KERN_WARNING "VPE: tcrestart 0x%lx\n", read_tc_c0_tcrestart());
661 }
662 
663 static void dump_tclist(void)
664 {
665 	struct tc *t;
666 
667 	list_for_each_entry(t, &vpecontrol.tc_list, list) {
668 		dump_tc(t);
669 	}
670 }
671 
672 /* We are prepared so configure and start the VPE... */
673 int vpe_run(struct vpe * v)
674 {
675 	unsigned long val;
676 	struct tc *t;
677 
678 	/* check we are the Master VPE */
679 	val = read_c0_vpeconf0();
680 	if (!(val & VPECONF0_MVP)) {
681 		printk(KERN_WARNING
682 		       "VPE: only Master VPE's are allowed to configure MT\n");
683 		return -1;
684 	}
685 
686 	/* disable MT (using dvpe) */
687 	dvpe();
688 
689 	/* Put MVPE's into 'configuration state' */
690 	set_c0_mvpcontrol(MVPCONTROL_VPC);
691 
692 	if (!list_empty(&v->tc)) {
693 		if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
694 			printk(KERN_WARNING "VPE: TC %d is already in use.\n",
695 			       t->index);
696 			return -ENOEXEC;
697 		}
698 	} else {
699 		printk(KERN_WARNING "VPE: No TC's associated with VPE %d\n",
700 		       v->minor);
701 		return -ENOEXEC;
702 	}
703 
704 	settc(t->index);
705 
706 	val = read_vpe_c0_vpeconf0();
707 
708 	/* should check it is halted, and not activated */
709 	if ((read_tc_c0_tcstatus() & TCSTATUS_A) || !(read_tc_c0_tchalt() & TCHALT_H)) {
710 		printk(KERN_WARNING "VPE: TC %d is already doing something!\n",
711 		       t->index);
712 
713 		dump_tclist();
714 		return -ENOEXEC;
715 	}
716 
717 	/* Write the address we want it to start running from in the TCPC register. */
718 	write_tc_c0_tcrestart((unsigned long)v->__start);
719 
720 	/* write the sivc_info address to tccontext */
721 	write_tc_c0_tccontext((unsigned long)0);
722 
723 	/* Set up the XTC bit in vpeconf0 to point at our tc */
724 	write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | (t->index << VPECONF0_XTC_SHIFT));
725 
726 	/* mark the TC as activated, not interrupt exempt and not dynamically allocatable */
727 	val = read_tc_c0_tcstatus();
728 	val = (val & ~(TCSTATUS_DA | TCSTATUS_IXMT)) | TCSTATUS_A;
729 	write_tc_c0_tcstatus(val);
730 
731 	write_tc_c0_tchalt(read_tc_c0_tchalt() & ~TCHALT_H);
732 
733 	/* set up VPE1 */
734 	write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() & ~VPECONTROL_TE);	// no multiple TC's
735 	write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);	// enable this VPE
736 
737 	/*
738 	 * The sde-kit passes 'memsize' to __start in $a3, so set something
739 	 * here...
740 	 * Or set $a3 (register 7) to zero and define DFLT_STACK_SIZE and
741 	 * DFLT_HEAP_SIZE when you compile your program
742 	 */
743 
744 	mttgpr(7, 0);
745 
746 	/* set config to be the same as vpe0, particularly kseg0 coherency alg */
747 	write_vpe_c0_config(read_c0_config());
748 
749 	/* clear out any left overs from a previous program */
750 	write_vpe_c0_cause(0);
751 
752 	/* take system out of configuration state */
753 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
754 
755 	/* clear interrupts enabled IE, ERL, EXL, and KSU from c0 status */
756 	write_vpe_c0_status(read_vpe_c0_status() & ~(ST0_ERL | ST0_KSU | ST0_IE | ST0_EXL));
757 
758 	/* set it running */
759 	evpe(EVPE_ENABLE);
760 
761 	return 0;
762 }
763 
764 static unsigned long find_vpe_symbols(struct vpe * v, Elf_Shdr * sechdrs,
765 				      unsigned int symindex, const char *strtab,
766 				      struct module *mod)
767 {
768 	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
769 	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
770 
771 	for (i = 1; i < n; i++) {
772 		if (strcmp(strtab + sym[i].st_name, "__start") == 0) {
773 			v->__start = sym[i].st_value;
774 		}
775 
776 		if (strcmp(strtab + sym[i].st_name, "vpe_shared") == 0) {
777 			v->shared_ptr = (void *)sym[i].st_value;
778 		}
779 	}
780 
781 	return 0;
782 }
783 
784 /*
785  * Allocates a VPE with some program code space(the load address), copies
786  * the contents of the program (p)buffer performing relocatations/etc,
787  * free's it when finished.
788 */
789 int vpe_elfload(struct vpe * v)
790 {
791 	Elf_Ehdr *hdr;
792 	Elf_Shdr *sechdrs;
793 	long err = 0;
794 	char *secstrings, *strtab = NULL;
795 	unsigned int len, i, symindex = 0, strindex = 0;
796 
797 	struct module mod;	// so we can re-use the relocations code
798 
799 	memset(&mod, 0, sizeof(struct module));
800 	strcpy(mod.name, "VPE dummy prog module");
801 
802 	hdr = (Elf_Ehdr *) v->pbuffer;
803 	len = v->plen;
804 
805 	/* Sanity checks against insmoding binaries or wrong arch,
806 	   weird elf version */
807 	if (memcmp(hdr->e_ident, ELFMAG, 4) != 0
808 	    || hdr->e_type != ET_REL || !elf_check_arch(hdr)
809 	    || hdr->e_shentsize != sizeof(*sechdrs)) {
810 		printk(KERN_WARNING
811 		       "VPE program, wrong arch or weird elf version\n");
812 
813 		return -ENOEXEC;
814 	}
815 
816 	if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) {
817 		printk(KERN_ERR "VPE program length %u truncated\n", len);
818 		return -ENOEXEC;
819 	}
820 
821 	/* Convenience variables */
822 	sechdrs = (void *)hdr + hdr->e_shoff;
823 	secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
824 	sechdrs[0].sh_addr = 0;
825 
826 	/* And these should exist, but gcc whinges if we don't init them */
827 	symindex = strindex = 0;
828 
829 	for (i = 1; i < hdr->e_shnum; i++) {
830 
831 		if (sechdrs[i].sh_type != SHT_NOBITS
832 		    && len < sechdrs[i].sh_offset + sechdrs[i].sh_size) {
833 			printk(KERN_ERR "VPE program length %u truncated\n",
834 			       len);
835 			return -ENOEXEC;
836 		}
837 
838 		/* Mark all sections sh_addr with their address in the
839 		   temporary image. */
840 		sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
841 
842 		/* Internal symbols and strings. */
843 		if (sechdrs[i].sh_type == SHT_SYMTAB) {
844 			symindex = i;
845 			strindex = sechdrs[i].sh_link;
846 			strtab = (char *)hdr + sechdrs[strindex].sh_offset;
847 		}
848 	}
849 
850 	layout_sections(&mod, hdr, sechdrs, secstrings);
851 
852 	v->load_addr = alloc_progmem(mod.core_size);
853 	memset(v->load_addr, 0, mod.core_size);
854 
855 	printk("VPE elf_loader: loading to %p\n", v->load_addr);
856 
857 	for (i = 0; i < hdr->e_shnum; i++) {
858 		void *dest;
859 
860 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
861 			continue;
862 
863 		dest = v->load_addr + sechdrs[i].sh_entsize;
864 
865 		if (sechdrs[i].sh_type != SHT_NOBITS)
866 			memcpy(dest, (void *)sechdrs[i].sh_addr,
867 			       sechdrs[i].sh_size);
868 		/* Update sh_addr to point to copy in image. */
869 		sechdrs[i].sh_addr = (unsigned long)dest;
870 	}
871 
872 	/* Fix up syms, so that st_value is a pointer to location. */
873 	err =
874 		simplify_symbols(sechdrs, symindex, strtab, secstrings,
875 				 hdr->e_shnum, &mod);
876 	if (err < 0) {
877 		printk(KERN_WARNING "VPE: unable to simplify symbols\n");
878 		goto cleanup;
879 	}
880 
881 	/* Now do relocations. */
882 	for (i = 1; i < hdr->e_shnum; i++) {
883 		const char *strtab = (char *)sechdrs[strindex].sh_addr;
884 		unsigned int info = sechdrs[i].sh_info;
885 
886 		/* Not a valid relocation section? */
887 		if (info >= hdr->e_shnum)
888 			continue;
889 
890 		/* Don't bother with non-allocated sections */
891 		if (!(sechdrs[info].sh_flags & SHF_ALLOC))
892 			continue;
893 
894 		if (sechdrs[i].sh_type == SHT_REL)
895 			err =
896 				apply_relocations(sechdrs, strtab, symindex, i, &mod);
897 		else if (sechdrs[i].sh_type == SHT_RELA)
898 			err = apply_relocate_add(sechdrs, strtab, symindex, i,
899 						 &mod);
900 		if (err < 0) {
901 			printk(KERN_WARNING
902 			       "vpe_elfload: error in relocations err %ld\n",
903 			       err);
904 			goto cleanup;
905 		}
906 	}
907 
908 	/* make sure it's physically written out */
909 	flush_icache_range((unsigned long)v->load_addr,
910 			   (unsigned long)v->load_addr + v->len);
911 
912 	if ((find_vpe_symbols(v, sechdrs, symindex, strtab, &mod)) < 0) {
913 
914 		printk(KERN_WARNING
915 		       "VPE: program doesn't contain __start or vpe_shared symbols\n");
916 		err = -ENOEXEC;
917 	}
918 
919 	printk(" elf loaded\n");
920 
921 cleanup:
922 	return err;
923 }
924 
925 static void dump_vpe(struct vpe * v)
926 {
927 	struct tc *t;
928 
929 	printk(KERN_DEBUG "VPEControl 0x%lx\n", read_vpe_c0_vpecontrol());
930 	printk(KERN_DEBUG "VPEConf0 0x%lx\n", read_vpe_c0_vpeconf0());
931 
932 	list_for_each_entry(t, &vpecontrol.tc_list, list) {
933 		dump_tc(t);
934 	}
935 }
936 
937 /* checks for VPE is unused and gets ready to load program	 */
938 static int vpe_open(struct inode *inode, struct file *filp)
939 {
940 	int minor;
941 	struct vpe *v;
942 
943 	/* assume only 1 device at the mo. */
944 	if ((minor = MINOR(inode->i_rdev)) != 1) {
945 		printk(KERN_WARNING "VPE: only vpe1 is supported\n");
946 		return -ENODEV;
947 	}
948 
949 	if ((v = get_vpe(minor)) == NULL) {
950 		printk(KERN_WARNING "VPE: unable to get vpe\n");
951 		return -ENODEV;
952 	}
953 
954 	if (v->state != VPE_STATE_UNUSED) {
955 		unsigned long tmp;
956 		struct tc *t;
957 
958 		printk(KERN_WARNING "VPE: device %d already in use\n", minor);
959 
960 		dvpe();
961 		dump_vpe(v);
962 
963 		printk(KERN_WARNING "VPE: re-initialising %d\n", minor);
964 
965 		release_progmem(v->load_addr);
966 
967 		t = get_tc(minor);
968 		settc(minor);
969 		tmp = read_tc_c0_tcstatus();
970 
971 		/* mark not allocated and not dynamically allocatable */
972 		tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
973 		tmp |= TCSTATUS_IXMT;	/* interrupt exempt */
974 		write_tc_c0_tcstatus(tmp);
975 
976 		write_tc_c0_tchalt(TCHALT_H);
977 
978 	}
979 
980 	// allocate it so when we get write ops we know it's expected.
981 	v->state = VPE_STATE_INUSE;
982 
983 	/* this of-course trashes what was there before... */
984 	v->pbuffer = vmalloc(P_SIZE);
985 	v->plen = P_SIZE;
986 	v->load_addr = NULL;
987 	v->len = 0;
988 
989 	return 0;
990 }
991 
992 static int vpe_release(struct inode *inode, struct file *filp)
993 {
994 	int minor, ret = 0;
995 	struct vpe *v;
996 	Elf_Ehdr *hdr;
997 
998 	minor = MINOR(inode->i_rdev);
999 	if ((v = get_vpe(minor)) == NULL)
1000 		return -ENODEV;
1001 
1002 	// simple case of fire and forget, so tell the VPE to run...
1003 
1004 	hdr = (Elf_Ehdr *) v->pbuffer;
1005 	if (memcmp(hdr->e_ident, ELFMAG, 4) == 0) {
1006 		if (vpe_elfload(v) >= 0)
1007 			vpe_run(v);
1008 		else {
1009 			printk(KERN_WARNING "VPE: ELF load failed.\n");
1010 			ret = -ENOEXEC;
1011 		}
1012 	} else {
1013 		printk(KERN_WARNING "VPE: only elf files are supported\n");
1014 		ret = -ENOEXEC;
1015 	}
1016 
1017 	// cleanup any temp buffers
1018 	if (v->pbuffer)
1019 		vfree(v->pbuffer);
1020 	v->plen = 0;
1021 	return ret;
1022 }
1023 
1024 static ssize_t vpe_write(struct file *file, const char __user * buffer,
1025 			 size_t count, loff_t * ppos)
1026 {
1027 	int minor;
1028 	size_t ret = count;
1029 	struct vpe *v;
1030 
1031 	minor = MINOR(file->f_dentry->d_inode->i_rdev);
1032 	if ((v = get_vpe(minor)) == NULL)
1033 		return -ENODEV;
1034 
1035 	if (v->pbuffer == NULL) {
1036 		printk(KERN_ERR "vpe_write: no pbuffer\n");
1037 		return -ENOMEM;
1038 	}
1039 
1040 	if ((count + v->len) > v->plen) {
1041 		printk(KERN_WARNING
1042 		       "VPE Loader: elf size too big. Perhaps strip uneeded symbols\n");
1043 		return -ENOMEM;
1044 	}
1045 
1046 	count -= copy_from_user(v->pbuffer + v->len, buffer, count);
1047 	if (!count) {
1048 		printk("vpe_write: copy_to_user failed\n");
1049 		return -EFAULT;
1050 	}
1051 
1052 	v->len += count;
1053 	return ret;
1054 }
1055 
1056 static struct file_operations vpe_fops = {
1057 	.owner = THIS_MODULE,
1058 	.open = vpe_open,
1059 	.release = vpe_release,
1060 	.write = vpe_write
1061 };
1062 
1063 /* module wrapper entry points */
1064 /* give me a vpe */
1065 vpe_handle vpe_alloc(void)
1066 {
1067 	int i;
1068 	struct vpe *v;
1069 
1070 	/* find a vpe */
1071 	for (i = 1; i < MAX_VPES; i++) {
1072 		if ((v = get_vpe(i)) != NULL) {
1073 			v->state = VPE_STATE_INUSE;
1074 			return v;
1075 		}
1076 	}
1077 	return NULL;
1078 }
1079 
1080 EXPORT_SYMBOL(vpe_alloc);
1081 
1082 /* start running from here */
1083 int vpe_start(vpe_handle vpe, unsigned long start)
1084 {
1085 	struct vpe *v = vpe;
1086 
1087 	v->__start = start;
1088 	return vpe_run(v);
1089 }
1090 
1091 EXPORT_SYMBOL(vpe_start);
1092 
1093 /* halt it for now */
1094 int vpe_stop(vpe_handle vpe)
1095 {
1096 	struct vpe *v = vpe;
1097 	struct tc *t;
1098 	unsigned int evpe_flags;
1099 
1100 	evpe_flags = dvpe();
1101 
1102 	if ((t = list_entry(v->tc.next, struct tc, tc)) != NULL) {
1103 
1104 		settc(t->index);
1105 		write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1106 	}
1107 
1108 	evpe(evpe_flags);
1109 
1110 	return 0;
1111 }
1112 
1113 EXPORT_SYMBOL(vpe_stop);
1114 
1115 /* I've done with it thank you */
1116 int vpe_free(vpe_handle vpe)
1117 {
1118 	struct vpe *v = vpe;
1119 	struct tc *t;
1120 	unsigned int evpe_flags;
1121 
1122 	if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
1123 		return -ENOEXEC;
1124 	}
1125 
1126 	evpe_flags = dvpe();
1127 
1128 	/* Put MVPE's into 'configuration state' */
1129 	set_c0_mvpcontrol(MVPCONTROL_VPC);
1130 
1131 	settc(t->index);
1132 	write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1133 
1134 	/* mark the TC unallocated and halt'ed */
1135 	write_tc_c0_tcstatus(read_tc_c0_tcstatus() & ~TCSTATUS_A);
1136 	write_tc_c0_tchalt(TCHALT_H);
1137 
1138 	v->state = VPE_STATE_UNUSED;
1139 
1140 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
1141 	evpe(evpe_flags);
1142 
1143 	return 0;
1144 }
1145 
1146 EXPORT_SYMBOL(vpe_free);
1147 
1148 void *vpe_get_shared(int index)
1149 {
1150 	struct vpe *v;
1151 
1152 	if ((v = get_vpe(index)) == NULL) {
1153 		printk(KERN_WARNING "vpe: invalid vpe index %d\n", index);
1154 		return NULL;
1155 	}
1156 
1157 	return v->shared_ptr;
1158 }
1159 
1160 EXPORT_SYMBOL(vpe_get_shared);
1161 
1162 static int __init vpe_module_init(void)
1163 {
1164 	struct vpe *v = NULL;
1165 	struct tc *t;
1166 	unsigned long val;
1167 	int i;
1168 
1169 	if (!cpu_has_mipsmt) {
1170 		printk("VPE loader: not a MIPS MT capable processor\n");
1171 		return -ENODEV;
1172 	}
1173 
1174 	major = register_chrdev(0, module_name, &vpe_fops);
1175 	if (major < 0) {
1176 		printk("VPE loader: unable to register character device\n");
1177 		return major;
1178 	}
1179 
1180 	dmt();
1181 	dvpe();
1182 
1183 	/* Put MVPE's into 'configuration state' */
1184 	set_c0_mvpcontrol(MVPCONTROL_VPC);
1185 
1186 	/* dump_mtregs(); */
1187 
1188 	INIT_LIST_HEAD(&vpecontrol.vpe_list);
1189 	INIT_LIST_HEAD(&vpecontrol.tc_list);
1190 
1191 	val = read_c0_mvpconf0();
1192 	for (i = 0; i < ((val & MVPCONF0_PTC) + 1); i++) {
1193 		t = alloc_tc(i);
1194 
1195 		/* VPE's */
1196 		if (i < ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1) {
1197 			settc(i);
1198 
1199 			if ((v = alloc_vpe(i)) == NULL) {
1200 				printk(KERN_WARNING "VPE: unable to allocate VPE\n");
1201 				return -ENODEV;
1202 			}
1203 
1204 			list_add(&t->tc, &v->tc);	/* add the tc to the list of this vpe's tc's. */
1205 
1206 			/* deactivate all but vpe0 */
1207 			if (i != 0) {
1208 				unsigned long tmp = read_vpe_c0_vpeconf0();
1209 
1210 				tmp &= ~VPECONF0_VPA;
1211 
1212 				/* master VPE */
1213 				tmp |= VPECONF0_MVP;
1214 				write_vpe_c0_vpeconf0(tmp);
1215 			}
1216 
1217 			/* disable multi-threading with TC's */
1218 			write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() & ~VPECONTROL_TE);
1219 
1220 			if (i != 0) {
1221 				write_vpe_c0_status((read_c0_status() &
1222 						     ~(ST0_IM | ST0_IE | ST0_KSU))
1223 						    | ST0_CU0);
1224 
1225 				/* set config to be the same as vpe0, particularly kseg0 coherency alg */
1226 				write_vpe_c0_config(read_c0_config());
1227 			}
1228 
1229 		}
1230 
1231 		/* TC's */
1232 		t->pvpe = v;	/* set the parent vpe */
1233 
1234 		if (i != 0) {
1235 			unsigned long tmp;
1236 
1237 			/* tc 0 will of course be running.... */
1238 			if (i == 0)
1239 				t->state = TC_STATE_RUNNING;
1240 
1241 			settc(i);
1242 
1243 			/* bind a TC to each VPE, May as well put all excess TC's
1244 			   on the last VPE */
1245 			if (i >= (((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1))
1246 				write_tc_c0_tcbind(read_tc_c0_tcbind() |
1247 						   ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT));
1248 			else
1249 				write_tc_c0_tcbind(read_tc_c0_tcbind() | i);
1250 
1251 			tmp = read_tc_c0_tcstatus();
1252 
1253 			/* mark not allocated and not dynamically allocatable */
1254 			tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1255 			tmp |= TCSTATUS_IXMT;	/* interrupt exempt */
1256 			write_tc_c0_tcstatus(tmp);
1257 
1258 			write_tc_c0_tchalt(TCHALT_H);
1259 		}
1260 	}
1261 
1262 	/* release config state */
1263 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
1264 
1265 	return 0;
1266 }
1267 
1268 static void __exit vpe_module_exit(void)
1269 {
1270 	struct vpe *v, *n;
1271 
1272 	list_for_each_entry_safe(v, n, &vpecontrol.vpe_list, list) {
1273 		if (v->state != VPE_STATE_UNUSED) {
1274 			release_vpe(v);
1275 		}
1276 	}
1277 
1278 	unregister_chrdev(major, module_name);
1279 }
1280 
1281 module_init(vpe_module_init);
1282 module_exit(vpe_module_exit);
1283 MODULE_DESCRIPTION("MIPS VPE Loader");
1284 MODULE_AUTHOR("Elizabeth Clarke, MIPS Technologies, Inc");
1285 MODULE_LICENSE("GPL");
1286