xref: /openbmc/linux/arch/mips/kernel/vpe.c (revision 171f1bc7)
1 /*
2  * Copyright (C) 2004, 2005 MIPS Technologies, Inc.  All rights reserved.
3  *
4  *  This program is free software; you can distribute it and/or modify it
5  *  under the terms of the GNU General Public License (Version 2) as
6  *  published by the Free Software Foundation.
7  *
8  *  This program is distributed in the hope it will be useful, but WITHOUT
9  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
11  *  for more details.
12  *
13  *  You should have received a copy of the GNU General Public License along
14  *  with this program; if not, write to the Free Software Foundation, Inc.,
15  *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
16  */
17 
18 /*
19  * VPE support module
20  *
21  * Provides support for loading a MIPS SP program on VPE1.
22  * The SP environment is rather simple, no tlb's.  It needs to be relocatable
23  * (or partially linked). You should initialise your stack in the startup
24  * code. This loader looks for the symbol __start and sets up
25  * execution to resume from there. The MIPS SDE kit contains suitable examples.
26  *
27  * To load and run, simply cat a SP 'program file' to /dev/vpe1.
28  * i.e cat spapp >/dev/vpe1.
29  */
30 #include <linux/kernel.h>
31 #include <linux/device.h>
32 #include <linux/fs.h>
33 #include <linux/init.h>
34 #include <asm/uaccess.h>
35 #include <linux/slab.h>
36 #include <linux/list.h>
37 #include <linux/vmalloc.h>
38 #include <linux/elf.h>
39 #include <linux/seq_file.h>
40 #include <linux/syscalls.h>
41 #include <linux/moduleloader.h>
42 #include <linux/interrupt.h>
43 #include <linux/poll.h>
44 #include <linux/bootmem.h>
45 #include <asm/mipsregs.h>
46 #include <asm/mipsmtregs.h>
47 #include <asm/cacheflush.h>
48 #include <linux/atomic.h>
49 #include <asm/cpu.h>
50 #include <asm/mips_mt.h>
51 #include <asm/processor.h>
52 #include <asm/system.h>
53 #include <asm/vpe.h>
54 #include <asm/kspd.h>
55 
56 typedef void *vpe_handle;
57 
58 #ifndef ARCH_SHF_SMALL
59 #define ARCH_SHF_SMALL 0
60 #endif
61 
62 /* If this is set, the section belongs in the init part of the module */
63 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
64 
65 /*
66  * The number of TCs and VPEs physically available on the core
67  */
68 static int hw_tcs, hw_vpes;
69 static char module_name[] = "vpe";
70 static int major;
71 static const int minor = 1;	/* fixed for now  */
72 
73 #ifdef CONFIG_MIPS_APSP_KSPD
74 static struct kspd_notifications kspd_events;
75 static int kspd_events_reqd;
76 #endif
77 
78 /* grab the likely amount of memory we will need. */
79 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
80 #define P_SIZE (2 * 1024 * 1024)
81 #else
82 /* add an overhead to the max kmalloc size for non-striped symbols/etc */
83 #define P_SIZE (256 * 1024)
84 #endif
85 
86 extern unsigned long physical_memsize;
87 
88 #define MAX_VPES 16
89 #define VPE_PATH_MAX 256
90 
91 enum vpe_state {
92 	VPE_STATE_UNUSED = 0,
93 	VPE_STATE_INUSE,
94 	VPE_STATE_RUNNING
95 };
96 
97 enum tc_state {
98 	TC_STATE_UNUSED = 0,
99 	TC_STATE_INUSE,
100 	TC_STATE_RUNNING,
101 	TC_STATE_DYNAMIC
102 };
103 
104 struct vpe {
105 	enum vpe_state state;
106 
107 	/* (device) minor associated with this vpe */
108 	int minor;
109 
110 	/* elfloader stuff */
111 	void *load_addr;
112 	unsigned long len;
113 	char *pbuffer;
114 	unsigned long plen;
115 	unsigned int uid, gid;
116 	char cwd[VPE_PATH_MAX];
117 
118 	unsigned long __start;
119 
120 	/* tc's associated with this vpe */
121 	struct list_head tc;
122 
123 	/* The list of vpe's */
124 	struct list_head list;
125 
126 	/* shared symbol address */
127 	void *shared_ptr;
128 
129 	/* the list of who wants to know when something major happens */
130 	struct list_head notify;
131 
132 	unsigned int ntcs;
133 };
134 
135 struct tc {
136 	enum tc_state state;
137 	int index;
138 
139 	struct vpe *pvpe;	/* parent VPE */
140 	struct list_head tc;	/* The list of TC's with this VPE */
141 	struct list_head list;	/* The global list of tc's */
142 };
143 
144 struct {
145 	spinlock_t vpe_list_lock;
146 	struct list_head vpe_list;	/* Virtual processing elements */
147 	spinlock_t tc_list_lock;
148 	struct list_head tc_list;	/* Thread contexts */
149 } vpecontrol = {
150 	.vpe_list_lock	= __SPIN_LOCK_UNLOCKED(vpe_list_lock),
151 	.vpe_list	= LIST_HEAD_INIT(vpecontrol.vpe_list),
152 	.tc_list_lock	= __SPIN_LOCK_UNLOCKED(tc_list_lock),
153 	.tc_list	= LIST_HEAD_INIT(vpecontrol.tc_list)
154 };
155 
156 static void release_progmem(void *ptr);
157 
158 /* get the vpe associated with this minor */
159 static struct vpe *get_vpe(int minor)
160 {
161 	struct vpe *res, *v;
162 
163 	if (!cpu_has_mipsmt)
164 		return NULL;
165 
166 	res = NULL;
167 	spin_lock(&vpecontrol.vpe_list_lock);
168 	list_for_each_entry(v, &vpecontrol.vpe_list, list) {
169 		if (v->minor == minor) {
170 			res = v;
171 			break;
172 		}
173 	}
174 	spin_unlock(&vpecontrol.vpe_list_lock);
175 
176 	return res;
177 }
178 
179 /* get the vpe associated with this minor */
180 static struct tc *get_tc(int index)
181 {
182 	struct tc *res, *t;
183 
184 	res = NULL;
185 	spin_lock(&vpecontrol.tc_list_lock);
186 	list_for_each_entry(t, &vpecontrol.tc_list, list) {
187 		if (t->index == index) {
188 			res = t;
189 			break;
190 		}
191 	}
192 	spin_unlock(&vpecontrol.tc_list_lock);
193 
194 	return res;
195 }
196 
197 /* allocate a vpe and associate it with this minor (or index) */
198 static struct vpe *alloc_vpe(int minor)
199 {
200 	struct vpe *v;
201 
202 	if ((v = kzalloc(sizeof(struct vpe), GFP_KERNEL)) == NULL)
203 		return NULL;
204 
205 	INIT_LIST_HEAD(&v->tc);
206 	spin_lock(&vpecontrol.vpe_list_lock);
207 	list_add_tail(&v->list, &vpecontrol.vpe_list);
208 	spin_unlock(&vpecontrol.vpe_list_lock);
209 
210 	INIT_LIST_HEAD(&v->notify);
211 	v->minor = minor;
212 
213 	return v;
214 }
215 
216 /* allocate a tc. At startup only tc0 is running, all other can be halted. */
217 static struct tc *alloc_tc(int index)
218 {
219 	struct tc *tc;
220 
221 	if ((tc = kzalloc(sizeof(struct tc), GFP_KERNEL)) == NULL)
222 		goto out;
223 
224 	INIT_LIST_HEAD(&tc->tc);
225 	tc->index = index;
226 
227 	spin_lock(&vpecontrol.tc_list_lock);
228 	list_add_tail(&tc->list, &vpecontrol.tc_list);
229 	spin_unlock(&vpecontrol.tc_list_lock);
230 
231 out:
232 	return tc;
233 }
234 
235 /* clean up and free everything */
236 static void release_vpe(struct vpe *v)
237 {
238 	list_del(&v->list);
239 	if (v->load_addr)
240 		release_progmem(v);
241 	kfree(v);
242 }
243 
244 static void __maybe_unused dump_mtregs(void)
245 {
246 	unsigned long val;
247 
248 	val = read_c0_config3();
249 	printk("config3 0x%lx MT %ld\n", val,
250 	       (val & CONFIG3_MT) >> CONFIG3_MT_SHIFT);
251 
252 	val = read_c0_mvpcontrol();
253 	printk("MVPControl 0x%lx, STLB %ld VPC %ld EVP %ld\n", val,
254 	       (val & MVPCONTROL_STLB) >> MVPCONTROL_STLB_SHIFT,
255 	       (val & MVPCONTROL_VPC) >> MVPCONTROL_VPC_SHIFT,
256 	       (val & MVPCONTROL_EVP));
257 
258 	val = read_c0_mvpconf0();
259 	printk("mvpconf0 0x%lx, PVPE %ld PTC %ld M %ld\n", val,
260 	       (val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT,
261 	       val & MVPCONF0_PTC, (val & MVPCONF0_M) >> MVPCONF0_M_SHIFT);
262 }
263 
264 /* Find some VPE program space  */
265 static void *alloc_progmem(unsigned long len)
266 {
267 	void *addr;
268 
269 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
270 	/*
271 	 * This means you must tell Linux to use less memory than you
272 	 * physically have, for example by passing a mem= boot argument.
273 	 */
274 	addr = pfn_to_kaddr(max_low_pfn);
275 	memset(addr, 0, len);
276 #else
277 	/* simple grab some mem for now */
278 	addr = kzalloc(len, GFP_KERNEL);
279 #endif
280 
281 	return addr;
282 }
283 
284 static void release_progmem(void *ptr)
285 {
286 #ifndef CONFIG_MIPS_VPE_LOADER_TOM
287 	kfree(ptr);
288 #endif
289 }
290 
291 /* Update size with this section: return offset. */
292 static long get_offset(unsigned long *size, Elf_Shdr * sechdr)
293 {
294 	long ret;
295 
296 	ret = ALIGN(*size, sechdr->sh_addralign ? : 1);
297 	*size = ret + sechdr->sh_size;
298 	return ret;
299 }
300 
301 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
302    might -- code, read-only data, read-write data, small data.  Tally
303    sizes, and place the offsets into sh_entsize fields: high bit means it
304    belongs in init. */
305 static void layout_sections(struct module *mod, const Elf_Ehdr * hdr,
306 			    Elf_Shdr * sechdrs, const char *secstrings)
307 {
308 	static unsigned long const masks[][2] = {
309 		/* NOTE: all executable code must be the first section
310 		 * in this array; otherwise modify the text_size
311 		 * finder in the two loops below */
312 		{SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL},
313 		{SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL},
314 		{SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL},
315 		{ARCH_SHF_SMALL | SHF_ALLOC, 0}
316 	};
317 	unsigned int m, i;
318 
319 	for (i = 0; i < hdr->e_shnum; i++)
320 		sechdrs[i].sh_entsize = ~0UL;
321 
322 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
323 		for (i = 0; i < hdr->e_shnum; ++i) {
324 			Elf_Shdr *s = &sechdrs[i];
325 
326 			//  || strncmp(secstrings + s->sh_name, ".init", 5) == 0)
327 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
328 			    || (s->sh_flags & masks[m][1])
329 			    || s->sh_entsize != ~0UL)
330 				continue;
331 			s->sh_entsize =
332 				get_offset((unsigned long *)&mod->core_size, s);
333 		}
334 
335 		if (m == 0)
336 			mod->core_text_size = mod->core_size;
337 
338 	}
339 }
340 
341 
342 /* from module-elf32.c, but subverted a little */
343 
344 struct mips_hi16 {
345 	struct mips_hi16 *next;
346 	Elf32_Addr *addr;
347 	Elf32_Addr value;
348 };
349 
350 static struct mips_hi16 *mips_hi16_list;
351 static unsigned int gp_offs, gp_addr;
352 
353 static int apply_r_mips_none(struct module *me, uint32_t *location,
354 			     Elf32_Addr v)
355 {
356 	return 0;
357 }
358 
359 static int apply_r_mips_gprel16(struct module *me, uint32_t *location,
360 				Elf32_Addr v)
361 {
362 	int rel;
363 
364 	if( !(*location & 0xffff) ) {
365 		rel = (int)v - gp_addr;
366 	}
367 	else {
368 		/* .sbss + gp(relative) + offset */
369 		/* kludge! */
370 		rel =  (int)(short)((int)v + gp_offs +
371 				    (int)(short)(*location & 0xffff) - gp_addr);
372 	}
373 
374 	if( (rel > 32768) || (rel < -32768) ) {
375 		printk(KERN_DEBUG "VPE loader: apply_r_mips_gprel16: "
376 		       "relative address 0x%x out of range of gp register\n",
377 		       rel);
378 		return -ENOEXEC;
379 	}
380 
381 	*location = (*location & 0xffff0000) | (rel & 0xffff);
382 
383 	return 0;
384 }
385 
386 static int apply_r_mips_pc16(struct module *me, uint32_t *location,
387 			     Elf32_Addr v)
388 {
389 	int rel;
390 	rel = (((unsigned int)v - (unsigned int)location));
391 	rel >>= 2;		// because the offset is in _instructions_ not bytes.
392 	rel -= 1;		// and one instruction less due to the branch delay slot.
393 
394 	if( (rel > 32768) || (rel < -32768) ) {
395 		printk(KERN_DEBUG "VPE loader: "
396  		       "apply_r_mips_pc16: relative address out of range 0x%x\n", rel);
397 		return -ENOEXEC;
398 	}
399 
400 	*location = (*location & 0xffff0000) | (rel & 0xffff);
401 
402 	return 0;
403 }
404 
405 static int apply_r_mips_32(struct module *me, uint32_t *location,
406 			   Elf32_Addr v)
407 {
408 	*location += v;
409 
410 	return 0;
411 }
412 
413 static int apply_r_mips_26(struct module *me, uint32_t *location,
414 			   Elf32_Addr v)
415 {
416 	if (v % 4) {
417 		printk(KERN_DEBUG "VPE loader: apply_r_mips_26 "
418 		       " unaligned relocation\n");
419 		return -ENOEXEC;
420 	}
421 
422 /*
423  * Not desperately convinced this is a good check of an overflow condition
424  * anyway. But it gets in the way of handling undefined weak symbols which
425  * we want to set to zero.
426  * if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) {
427  * printk(KERN_ERR
428  * "module %s: relocation overflow\n",
429  * me->name);
430  * return -ENOEXEC;
431  * }
432  */
433 
434 	*location = (*location & ~0x03ffffff) |
435 		((*location + (v >> 2)) & 0x03ffffff);
436 	return 0;
437 }
438 
439 static int apply_r_mips_hi16(struct module *me, uint32_t *location,
440 			     Elf32_Addr v)
441 {
442 	struct mips_hi16 *n;
443 
444 	/*
445 	 * We cannot relocate this one now because we don't know the value of
446 	 * the carry we need to add.  Save the information, and let LO16 do the
447 	 * actual relocation.
448 	 */
449 	n = kmalloc(sizeof *n, GFP_KERNEL);
450 	if (!n)
451 		return -ENOMEM;
452 
453 	n->addr = location;
454 	n->value = v;
455 	n->next = mips_hi16_list;
456 	mips_hi16_list = n;
457 
458 	return 0;
459 }
460 
461 static int apply_r_mips_lo16(struct module *me, uint32_t *location,
462 			     Elf32_Addr v)
463 {
464 	unsigned long insnlo = *location;
465 	Elf32_Addr val, vallo;
466 	struct mips_hi16 *l, *next;
467 
468 	/* Sign extend the addend we extract from the lo insn.  */
469 	vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000;
470 
471 	if (mips_hi16_list != NULL) {
472 
473 		l = mips_hi16_list;
474 		while (l != NULL) {
475 			unsigned long insn;
476 
477 			/*
478 			 * The value for the HI16 had best be the same.
479 			 */
480  			if (v != l->value) {
481 				printk(KERN_DEBUG "VPE loader: "
482 				       "apply_r_mips_lo16/hi16: \t"
483 				       "inconsistent value information\n");
484 				goto out_free;
485 			}
486 
487 			/*
488 			 * Do the HI16 relocation.  Note that we actually don't
489 			 * need to know anything about the LO16 itself, except
490 			 * where to find the low 16 bits of the addend needed
491 			 * by the LO16.
492 			 */
493 			insn = *l->addr;
494 			val = ((insn & 0xffff) << 16) + vallo;
495 			val += v;
496 
497 			/*
498 			 * Account for the sign extension that will happen in
499 			 * the low bits.
500 			 */
501 			val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff;
502 
503 			insn = (insn & ~0xffff) | val;
504 			*l->addr = insn;
505 
506 			next = l->next;
507 			kfree(l);
508 			l = next;
509 		}
510 
511 		mips_hi16_list = NULL;
512 	}
513 
514 	/*
515 	 * Ok, we're done with the HI16 relocs.  Now deal with the LO16.
516 	 */
517 	val = v + vallo;
518 	insnlo = (insnlo & ~0xffff) | (val & 0xffff);
519 	*location = insnlo;
520 
521 	return 0;
522 
523 out_free:
524 	while (l != NULL) {
525 		next = l->next;
526 		kfree(l);
527 		l = next;
528 	}
529 	mips_hi16_list = NULL;
530 
531 	return -ENOEXEC;
532 }
533 
534 static int (*reloc_handlers[]) (struct module *me, uint32_t *location,
535 				Elf32_Addr v) = {
536 	[R_MIPS_NONE]	= apply_r_mips_none,
537 	[R_MIPS_32]	= apply_r_mips_32,
538 	[R_MIPS_26]	= apply_r_mips_26,
539 	[R_MIPS_HI16]	= apply_r_mips_hi16,
540 	[R_MIPS_LO16]	= apply_r_mips_lo16,
541 	[R_MIPS_GPREL16] = apply_r_mips_gprel16,
542 	[R_MIPS_PC16] = apply_r_mips_pc16
543 };
544 
545 static char *rstrs[] = {
546 	[R_MIPS_NONE]	= "MIPS_NONE",
547 	[R_MIPS_32]	= "MIPS_32",
548 	[R_MIPS_26]	= "MIPS_26",
549 	[R_MIPS_HI16]	= "MIPS_HI16",
550 	[R_MIPS_LO16]	= "MIPS_LO16",
551 	[R_MIPS_GPREL16] = "MIPS_GPREL16",
552 	[R_MIPS_PC16] = "MIPS_PC16"
553 };
554 
555 static int apply_relocations(Elf32_Shdr *sechdrs,
556 		      const char *strtab,
557 		      unsigned int symindex,
558 		      unsigned int relsec,
559 		      struct module *me)
560 {
561 	Elf32_Rel *rel = (void *) sechdrs[relsec].sh_addr;
562 	Elf32_Sym *sym;
563 	uint32_t *location;
564 	unsigned int i;
565 	Elf32_Addr v;
566 	int res;
567 
568 	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
569 		Elf32_Word r_info = rel[i].r_info;
570 
571 		/* This is where to make the change */
572 		location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
573 			+ rel[i].r_offset;
574 		/* This is the symbol it is referring to */
575 		sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
576 			+ ELF32_R_SYM(r_info);
577 
578 		if (!sym->st_value) {
579 			printk(KERN_DEBUG "%s: undefined weak symbol %s\n",
580 			       me->name, strtab + sym->st_name);
581 			/* just print the warning, dont barf */
582 		}
583 
584 		v = sym->st_value;
585 
586 		res = reloc_handlers[ELF32_R_TYPE(r_info)](me, location, v);
587 		if( res ) {
588 			char *r = rstrs[ELF32_R_TYPE(r_info)];
589 		    	printk(KERN_WARNING "VPE loader: .text+0x%x "
590 			       "relocation type %s for symbol \"%s\" failed\n",
591 			       rel[i].r_offset, r ? r : "UNKNOWN",
592 			       strtab + sym->st_name);
593 			return res;
594 		}
595 	}
596 
597 	return 0;
598 }
599 
600 static inline void save_gp_address(unsigned int secbase, unsigned int rel)
601 {
602 	gp_addr = secbase + rel;
603 	gp_offs = gp_addr - (secbase & 0xffff0000);
604 }
605 /* end module-elf32.c */
606 
607 
608 
609 /* Change all symbols so that sh_value encodes the pointer directly. */
610 static void simplify_symbols(Elf_Shdr * sechdrs,
611 			    unsigned int symindex,
612 			    const char *strtab,
613 			    const char *secstrings,
614 			    unsigned int nsecs, struct module *mod)
615 {
616 	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
617 	unsigned long secbase, bssbase = 0;
618 	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
619 	int size;
620 
621 	/* find the .bss section for COMMON symbols */
622 	for (i = 0; i < nsecs; i++) {
623 		if (strncmp(secstrings + sechdrs[i].sh_name, ".bss", 4) == 0) {
624 			bssbase = sechdrs[i].sh_addr;
625 			break;
626 		}
627 	}
628 
629 	for (i = 1; i < n; i++) {
630 		switch (sym[i].st_shndx) {
631 		case SHN_COMMON:
632 			/* Allocate space for the symbol in the .bss section.
633 			   st_value is currently size.
634 			   We want it to have the address of the symbol. */
635 
636 			size = sym[i].st_value;
637 			sym[i].st_value = bssbase;
638 
639 			bssbase += size;
640 			break;
641 
642 		case SHN_ABS:
643 			/* Don't need to do anything */
644 			break;
645 
646 		case SHN_UNDEF:
647 			/* ret = -ENOENT; */
648 			break;
649 
650 		case SHN_MIPS_SCOMMON:
651 			printk(KERN_DEBUG "simplify_symbols: ignoring SHN_MIPS_SCOMMON "
652 			       "symbol <%s> st_shndx %d\n", strtab + sym[i].st_name,
653 			       sym[i].st_shndx);
654 			// .sbss section
655 			break;
656 
657 		default:
658 			secbase = sechdrs[sym[i].st_shndx].sh_addr;
659 
660 			if (strncmp(strtab + sym[i].st_name, "_gp", 3) == 0) {
661 				save_gp_address(secbase, sym[i].st_value);
662 			}
663 
664 			sym[i].st_value += secbase;
665 			break;
666 		}
667 	}
668 }
669 
670 #ifdef DEBUG_ELFLOADER
671 static void dump_elfsymbols(Elf_Shdr * sechdrs, unsigned int symindex,
672 			    const char *strtab, struct module *mod)
673 {
674 	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
675 	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
676 
677 	printk(KERN_DEBUG "dump_elfsymbols: n %d\n", n);
678 	for (i = 1; i < n; i++) {
679 		printk(KERN_DEBUG " i %d name <%s> 0x%x\n", i,
680 		       strtab + sym[i].st_name, sym[i].st_value);
681 	}
682 }
683 #endif
684 
685 /* We are prepared so configure and start the VPE... */
686 static int vpe_run(struct vpe * v)
687 {
688 	unsigned long flags, val, dmt_flag;
689 	struct vpe_notifications *n;
690 	unsigned int vpeflags;
691 	struct tc *t;
692 
693 	/* check we are the Master VPE */
694 	local_irq_save(flags);
695 	val = read_c0_vpeconf0();
696 	if (!(val & VPECONF0_MVP)) {
697 		printk(KERN_WARNING
698 		       "VPE loader: only Master VPE's are allowed to configure MT\n");
699 		local_irq_restore(flags);
700 
701 		return -1;
702 	}
703 
704 	dmt_flag = dmt();
705 	vpeflags = dvpe();
706 
707 	if (!list_empty(&v->tc)) {
708 		if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
709 			evpe(vpeflags);
710 			emt(dmt_flag);
711 			local_irq_restore(flags);
712 
713 			printk(KERN_WARNING
714 			       "VPE loader: TC %d is already in use.\n",
715                                t->index);
716 			return -ENOEXEC;
717 		}
718 	} else {
719 		evpe(vpeflags);
720 		emt(dmt_flag);
721 		local_irq_restore(flags);
722 
723 		printk(KERN_WARNING
724 		       "VPE loader: No TC's associated with VPE %d\n",
725 		       v->minor);
726 
727 		return -ENOEXEC;
728 	}
729 
730 	/* Put MVPE's into 'configuration state' */
731 	set_c0_mvpcontrol(MVPCONTROL_VPC);
732 
733 	settc(t->index);
734 
735 	/* should check it is halted, and not activated */
736 	if ((read_tc_c0_tcstatus() & TCSTATUS_A) || !(read_tc_c0_tchalt() & TCHALT_H)) {
737 		evpe(vpeflags);
738 		emt(dmt_flag);
739 		local_irq_restore(flags);
740 
741 		printk(KERN_WARNING "VPE loader: TC %d is already active!\n",
742 		       t->index);
743 
744 		return -ENOEXEC;
745 	}
746 
747 	/* Write the address we want it to start running from in the TCPC register. */
748 	write_tc_c0_tcrestart((unsigned long)v->__start);
749 	write_tc_c0_tccontext((unsigned long)0);
750 
751 	/*
752 	 * Mark the TC as activated, not interrupt exempt and not dynamically
753 	 * allocatable
754 	 */
755 	val = read_tc_c0_tcstatus();
756 	val = (val & ~(TCSTATUS_DA | TCSTATUS_IXMT)) | TCSTATUS_A;
757 	write_tc_c0_tcstatus(val);
758 
759 	write_tc_c0_tchalt(read_tc_c0_tchalt() & ~TCHALT_H);
760 
761 	/*
762 	 * The sde-kit passes 'memsize' to __start in $a3, so set something
763 	 * here...  Or set $a3 to zero and define DFLT_STACK_SIZE and
764 	 * DFLT_HEAP_SIZE when you compile your program
765 	 */
766 	mttgpr(6, v->ntcs);
767 	mttgpr(7, physical_memsize);
768 
769 	/* set up VPE1 */
770 	/*
771 	 * bind the TC to VPE 1 as late as possible so we only have the final
772 	 * VPE registers to set up, and so an EJTAG probe can trigger on it
773 	 */
774 	write_tc_c0_tcbind((read_tc_c0_tcbind() & ~TCBIND_CURVPE) | 1);
775 
776 	write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~(VPECONF0_VPA));
777 
778 	back_to_back_c0_hazard();
779 
780 	/* Set up the XTC bit in vpeconf0 to point at our tc */
781 	write_vpe_c0_vpeconf0( (read_vpe_c0_vpeconf0() & ~(VPECONF0_XTC))
782 	                      | (t->index << VPECONF0_XTC_SHIFT));
783 
784 	back_to_back_c0_hazard();
785 
786 	/* enable this VPE */
787 	write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
788 
789 	/* clear out any left overs from a previous program */
790 	write_vpe_c0_status(0);
791 	write_vpe_c0_cause(0);
792 
793 	/* take system out of configuration state */
794 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
795 
796 	/*
797 	 * SMTC/SMVP kernels manage VPE enable independently,
798 	 * but uniprocessor kernels need to turn it on, even
799 	 * if that wasn't the pre-dvpe() state.
800 	 */
801 #ifdef CONFIG_SMP
802 	evpe(vpeflags);
803 #else
804 	evpe(EVPE_ENABLE);
805 #endif
806 	emt(dmt_flag);
807 	local_irq_restore(flags);
808 
809 	list_for_each_entry(n, &v->notify, list)
810 		n->start(minor);
811 
812 	return 0;
813 }
814 
815 static int find_vpe_symbols(struct vpe * v, Elf_Shdr * sechdrs,
816 				      unsigned int symindex, const char *strtab,
817 				      struct module *mod)
818 {
819 	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
820 	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
821 
822 	for (i = 1; i < n; i++) {
823 		if (strcmp(strtab + sym[i].st_name, "__start") == 0) {
824 			v->__start = sym[i].st_value;
825 		}
826 
827 		if (strcmp(strtab + sym[i].st_name, "vpe_shared") == 0) {
828 			v->shared_ptr = (void *)sym[i].st_value;
829 		}
830 	}
831 
832 	if ( (v->__start == 0) || (v->shared_ptr == NULL))
833 		return -1;
834 
835 	return 0;
836 }
837 
838 /*
839  * Allocates a VPE with some program code space(the load address), copies the
840  * contents of the program (p)buffer performing relocatations/etc, free's it
841  * when finished.
842  */
843 static int vpe_elfload(struct vpe * v)
844 {
845 	Elf_Ehdr *hdr;
846 	Elf_Shdr *sechdrs;
847 	long err = 0;
848 	char *secstrings, *strtab = NULL;
849 	unsigned int len, i, symindex = 0, strindex = 0, relocate = 0;
850 	struct module mod;	// so we can re-use the relocations code
851 
852 	memset(&mod, 0, sizeof(struct module));
853 	strcpy(mod.name, "VPE loader");
854 
855 	hdr = (Elf_Ehdr *) v->pbuffer;
856 	len = v->plen;
857 
858 	/* Sanity checks against insmoding binaries or wrong arch,
859 	   weird elf version */
860 	if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0
861 	    || (hdr->e_type != ET_REL && hdr->e_type != ET_EXEC)
862 	    || !elf_check_arch(hdr)
863 	    || hdr->e_shentsize != sizeof(*sechdrs)) {
864 		printk(KERN_WARNING
865 		       "VPE loader: program wrong arch or weird elf version\n");
866 
867 		return -ENOEXEC;
868 	}
869 
870 	if (hdr->e_type == ET_REL)
871 		relocate = 1;
872 
873 	if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) {
874 		printk(KERN_ERR "VPE loader: program length %u truncated\n",
875 		       len);
876 
877 		return -ENOEXEC;
878 	}
879 
880 	/* Convenience variables */
881 	sechdrs = (void *)hdr + hdr->e_shoff;
882 	secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
883 	sechdrs[0].sh_addr = 0;
884 
885 	/* And these should exist, but gcc whinges if we don't init them */
886 	symindex = strindex = 0;
887 
888 	if (relocate) {
889 		for (i = 1; i < hdr->e_shnum; i++) {
890 			if (sechdrs[i].sh_type != SHT_NOBITS
891 			    && len < sechdrs[i].sh_offset + sechdrs[i].sh_size) {
892 				printk(KERN_ERR "VPE program length %u truncated\n",
893 				       len);
894 				return -ENOEXEC;
895 			}
896 
897 			/* Mark all sections sh_addr with their address in the
898 			   temporary image. */
899 			sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
900 
901 			/* Internal symbols and strings. */
902 			if (sechdrs[i].sh_type == SHT_SYMTAB) {
903 				symindex = i;
904 				strindex = sechdrs[i].sh_link;
905 				strtab = (char *)hdr + sechdrs[strindex].sh_offset;
906 			}
907 		}
908 		layout_sections(&mod, hdr, sechdrs, secstrings);
909 	}
910 
911 	v->load_addr = alloc_progmem(mod.core_size);
912 	if (!v->load_addr)
913 		return -ENOMEM;
914 
915 	pr_info("VPE loader: loading to %p\n", v->load_addr);
916 
917 	if (relocate) {
918 		for (i = 0; i < hdr->e_shnum; i++) {
919 			void *dest;
920 
921 			if (!(sechdrs[i].sh_flags & SHF_ALLOC))
922 				continue;
923 
924 			dest = v->load_addr + sechdrs[i].sh_entsize;
925 
926 			if (sechdrs[i].sh_type != SHT_NOBITS)
927 				memcpy(dest, (void *)sechdrs[i].sh_addr,
928 				       sechdrs[i].sh_size);
929 			/* Update sh_addr to point to copy in image. */
930 			sechdrs[i].sh_addr = (unsigned long)dest;
931 
932 			printk(KERN_DEBUG " section sh_name %s sh_addr 0x%x\n",
933 			       secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr);
934 		}
935 
936  		/* Fix up syms, so that st_value is a pointer to location. */
937  		simplify_symbols(sechdrs, symindex, strtab, secstrings,
938  				 hdr->e_shnum, &mod);
939 
940  		/* Now do relocations. */
941  		for (i = 1; i < hdr->e_shnum; i++) {
942  			const char *strtab = (char *)sechdrs[strindex].sh_addr;
943  			unsigned int info = sechdrs[i].sh_info;
944 
945  			/* Not a valid relocation section? */
946  			if (info >= hdr->e_shnum)
947  				continue;
948 
949  			/* Don't bother with non-allocated sections */
950  			if (!(sechdrs[info].sh_flags & SHF_ALLOC))
951  				continue;
952 
953  			if (sechdrs[i].sh_type == SHT_REL)
954  				err = apply_relocations(sechdrs, strtab, symindex, i,
955  							&mod);
956  			else if (sechdrs[i].sh_type == SHT_RELA)
957  				err = apply_relocate_add(sechdrs, strtab, symindex, i,
958  							 &mod);
959  			if (err < 0)
960  				return err;
961 
962   		}
963   	} else {
964 		struct elf_phdr *phdr = (struct elf_phdr *) ((char *)hdr + hdr->e_phoff);
965 
966 		for (i = 0; i < hdr->e_phnum; i++) {
967 			if (phdr->p_type == PT_LOAD) {
968 				memcpy((void *)phdr->p_paddr,
969 				       (char *)hdr + phdr->p_offset,
970 				       phdr->p_filesz);
971 				memset((void *)phdr->p_paddr + phdr->p_filesz,
972 				       0, phdr->p_memsz - phdr->p_filesz);
973 		    }
974 		    phdr++;
975 		}
976 
977 		for (i = 0; i < hdr->e_shnum; i++) {
978  			/* Internal symbols and strings. */
979  			if (sechdrs[i].sh_type == SHT_SYMTAB) {
980  				symindex = i;
981  				strindex = sechdrs[i].sh_link;
982  				strtab = (char *)hdr + sechdrs[strindex].sh_offset;
983 
984  				/* mark the symtab's address for when we try to find the
985  				   magic symbols */
986  				sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
987  			}
988 		}
989 	}
990 
991 	/* make sure it's physically written out */
992 	flush_icache_range((unsigned long)v->load_addr,
993 			   (unsigned long)v->load_addr + v->len);
994 
995 	if ((find_vpe_symbols(v, sechdrs, symindex, strtab, &mod)) < 0) {
996 		if (v->__start == 0) {
997 			printk(KERN_WARNING "VPE loader: program does not contain "
998 			       "a __start symbol\n");
999 			return -ENOEXEC;
1000 		}
1001 
1002 		if (v->shared_ptr == NULL)
1003 			printk(KERN_WARNING "VPE loader: "
1004 			       "program does not contain vpe_shared symbol.\n"
1005 			       " Unable to use AMVP (AP/SP) facilities.\n");
1006 	}
1007 
1008 	printk(" elf loaded\n");
1009 	return 0;
1010 }
1011 
1012 static void cleanup_tc(struct tc *tc)
1013 {
1014 	unsigned long flags;
1015 	unsigned int mtflags, vpflags;
1016 	int tmp;
1017 
1018 	local_irq_save(flags);
1019 	mtflags = dmt();
1020 	vpflags = dvpe();
1021 	/* Put MVPE's into 'configuration state' */
1022 	set_c0_mvpcontrol(MVPCONTROL_VPC);
1023 
1024 	settc(tc->index);
1025 	tmp = read_tc_c0_tcstatus();
1026 
1027 	/* mark not allocated and not dynamically allocatable */
1028 	tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1029 	tmp |= TCSTATUS_IXMT;	/* interrupt exempt */
1030 	write_tc_c0_tcstatus(tmp);
1031 
1032 	write_tc_c0_tchalt(TCHALT_H);
1033 	mips_ihb();
1034 
1035 	/* bind it to anything other than VPE1 */
1036 //	write_tc_c0_tcbind(read_tc_c0_tcbind() & ~TCBIND_CURVPE); // | TCBIND_CURVPE
1037 
1038 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
1039 	evpe(vpflags);
1040 	emt(mtflags);
1041 	local_irq_restore(flags);
1042 }
1043 
1044 static int getcwd(char *buff, int size)
1045 {
1046 	mm_segment_t old_fs;
1047 	int ret;
1048 
1049 	old_fs = get_fs();
1050 	set_fs(KERNEL_DS);
1051 
1052 	ret = sys_getcwd(buff, size);
1053 
1054 	set_fs(old_fs);
1055 
1056 	return ret;
1057 }
1058 
1059 /* checks VPE is unused and gets ready to load program  */
1060 static int vpe_open(struct inode *inode, struct file *filp)
1061 {
1062 	enum vpe_state state;
1063 	struct vpe_notifications *not;
1064 	struct vpe *v;
1065 	int ret;
1066 
1067 	if (minor != iminor(inode)) {
1068 		/* assume only 1 device at the moment. */
1069 		pr_warning("VPE loader: only vpe1 is supported\n");
1070 
1071 		return -ENODEV;
1072 	}
1073 
1074 	if ((v = get_vpe(tclimit)) == NULL) {
1075 		pr_warning("VPE loader: unable to get vpe\n");
1076 
1077 		return -ENODEV;
1078 	}
1079 
1080 	state = xchg(&v->state, VPE_STATE_INUSE);
1081 	if (state != VPE_STATE_UNUSED) {
1082 		printk(KERN_DEBUG "VPE loader: tc in use dumping regs\n");
1083 
1084 		list_for_each_entry(not, &v->notify, list) {
1085 			not->stop(tclimit);
1086 		}
1087 
1088 		release_progmem(v->load_addr);
1089 		cleanup_tc(get_tc(tclimit));
1090 	}
1091 
1092 	/* this of-course trashes what was there before... */
1093 	v->pbuffer = vmalloc(P_SIZE);
1094 	if (!v->pbuffer) {
1095 		pr_warning("VPE loader: unable to allocate memory\n");
1096 		return -ENOMEM;
1097 	}
1098 	v->plen = P_SIZE;
1099 	v->load_addr = NULL;
1100 	v->len = 0;
1101 
1102 	v->uid = filp->f_cred->fsuid;
1103 	v->gid = filp->f_cred->fsgid;
1104 
1105 #ifdef CONFIG_MIPS_APSP_KSPD
1106 	/* get kspd to tell us when a syscall_exit happens */
1107 	if (!kspd_events_reqd) {
1108 		kspd_notify(&kspd_events);
1109 		kspd_events_reqd++;
1110 	}
1111 #endif
1112 
1113 	v->cwd[0] = 0;
1114 	ret = getcwd(v->cwd, VPE_PATH_MAX);
1115 	if (ret < 0)
1116 		printk(KERN_WARNING "VPE loader: open, getcwd returned %d\n", ret);
1117 
1118 	v->shared_ptr = NULL;
1119 	v->__start = 0;
1120 
1121 	return 0;
1122 }
1123 
1124 static int vpe_release(struct inode *inode, struct file *filp)
1125 {
1126 	struct vpe *v;
1127 	Elf_Ehdr *hdr;
1128 	int ret = 0;
1129 
1130 	v = get_vpe(tclimit);
1131 	if (v == NULL)
1132 		return -ENODEV;
1133 
1134 	hdr = (Elf_Ehdr *) v->pbuffer;
1135 	if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) == 0) {
1136 		if (vpe_elfload(v) >= 0) {
1137 			vpe_run(v);
1138 		} else {
1139  			printk(KERN_WARNING "VPE loader: ELF load failed.\n");
1140 			ret = -ENOEXEC;
1141 		}
1142 	} else {
1143  		printk(KERN_WARNING "VPE loader: only elf files are supported\n");
1144 		ret = -ENOEXEC;
1145 	}
1146 
1147 	/* It's good to be able to run the SP and if it chokes have a look at
1148 	   the /dev/rt?. But if we reset the pointer to the shared struct we
1149 	   lose what has happened. So perhaps if garbage is sent to the vpe
1150 	   device, use it as a trigger for the reset. Hopefully a nice
1151 	   executable will be along shortly. */
1152 	if (ret < 0)
1153 		v->shared_ptr = NULL;
1154 
1155 	vfree(v->pbuffer);
1156 	v->plen = 0;
1157 
1158 	return ret;
1159 }
1160 
1161 static ssize_t vpe_write(struct file *file, const char __user * buffer,
1162 			 size_t count, loff_t * ppos)
1163 {
1164 	size_t ret = count;
1165 	struct vpe *v;
1166 
1167 	if (iminor(file->f_path.dentry->d_inode) != minor)
1168 		return -ENODEV;
1169 
1170 	v = get_vpe(tclimit);
1171 	if (v == NULL)
1172 		return -ENODEV;
1173 
1174 	if ((count + v->len) > v->plen) {
1175 		printk(KERN_WARNING
1176 		       "VPE loader: elf size too big. Perhaps strip uneeded symbols\n");
1177 		return -ENOMEM;
1178 	}
1179 
1180 	count -= copy_from_user(v->pbuffer + v->len, buffer, count);
1181 	if (!count)
1182 		return -EFAULT;
1183 
1184 	v->len += count;
1185 	return ret;
1186 }
1187 
1188 static const struct file_operations vpe_fops = {
1189 	.owner = THIS_MODULE,
1190 	.open = vpe_open,
1191 	.release = vpe_release,
1192 	.write = vpe_write,
1193 	.llseek = noop_llseek,
1194 };
1195 
1196 /* module wrapper entry points */
1197 /* give me a vpe */
1198 vpe_handle vpe_alloc(void)
1199 {
1200 	int i;
1201 	struct vpe *v;
1202 
1203 	/* find a vpe */
1204 	for (i = 1; i < MAX_VPES; i++) {
1205 		if ((v = get_vpe(i)) != NULL) {
1206 			v->state = VPE_STATE_INUSE;
1207 			return v;
1208 		}
1209 	}
1210 	return NULL;
1211 }
1212 
1213 EXPORT_SYMBOL(vpe_alloc);
1214 
1215 /* start running from here */
1216 int vpe_start(vpe_handle vpe, unsigned long start)
1217 {
1218 	struct vpe *v = vpe;
1219 
1220 	v->__start = start;
1221 	return vpe_run(v);
1222 }
1223 
1224 EXPORT_SYMBOL(vpe_start);
1225 
1226 /* halt it for now */
1227 int vpe_stop(vpe_handle vpe)
1228 {
1229 	struct vpe *v = vpe;
1230 	struct tc *t;
1231 	unsigned int evpe_flags;
1232 
1233 	evpe_flags = dvpe();
1234 
1235 	if ((t = list_entry(v->tc.next, struct tc, tc)) != NULL) {
1236 
1237 		settc(t->index);
1238 		write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1239 	}
1240 
1241 	evpe(evpe_flags);
1242 
1243 	return 0;
1244 }
1245 
1246 EXPORT_SYMBOL(vpe_stop);
1247 
1248 /* I've done with it thank you */
1249 int vpe_free(vpe_handle vpe)
1250 {
1251 	struct vpe *v = vpe;
1252 	struct tc *t;
1253 	unsigned int evpe_flags;
1254 
1255 	if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
1256 		return -ENOEXEC;
1257 	}
1258 
1259 	evpe_flags = dvpe();
1260 
1261 	/* Put MVPE's into 'configuration state' */
1262 	set_c0_mvpcontrol(MVPCONTROL_VPC);
1263 
1264 	settc(t->index);
1265 	write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1266 
1267 	/* halt the TC */
1268 	write_tc_c0_tchalt(TCHALT_H);
1269 	mips_ihb();
1270 
1271 	/* mark the TC unallocated */
1272 	write_tc_c0_tcstatus(read_tc_c0_tcstatus() & ~TCSTATUS_A);
1273 
1274 	v->state = VPE_STATE_UNUSED;
1275 
1276 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
1277 	evpe(evpe_flags);
1278 
1279 	return 0;
1280 }
1281 
1282 EXPORT_SYMBOL(vpe_free);
1283 
1284 void *vpe_get_shared(int index)
1285 {
1286 	struct vpe *v;
1287 
1288 	if ((v = get_vpe(index)) == NULL)
1289 		return NULL;
1290 
1291 	return v->shared_ptr;
1292 }
1293 
1294 EXPORT_SYMBOL(vpe_get_shared);
1295 
1296 int vpe_getuid(int index)
1297 {
1298 	struct vpe *v;
1299 
1300 	if ((v = get_vpe(index)) == NULL)
1301 		return -1;
1302 
1303 	return v->uid;
1304 }
1305 
1306 EXPORT_SYMBOL(vpe_getuid);
1307 
1308 int vpe_getgid(int index)
1309 {
1310 	struct vpe *v;
1311 
1312 	if ((v = get_vpe(index)) == NULL)
1313 		return -1;
1314 
1315 	return v->gid;
1316 }
1317 
1318 EXPORT_SYMBOL(vpe_getgid);
1319 
1320 int vpe_notify(int index, struct vpe_notifications *notify)
1321 {
1322 	struct vpe *v;
1323 
1324 	if ((v = get_vpe(index)) == NULL)
1325 		return -1;
1326 
1327 	list_add(&notify->list, &v->notify);
1328 	return 0;
1329 }
1330 
1331 EXPORT_SYMBOL(vpe_notify);
1332 
1333 char *vpe_getcwd(int index)
1334 {
1335 	struct vpe *v;
1336 
1337 	if ((v = get_vpe(index)) == NULL)
1338 		return NULL;
1339 
1340 	return v->cwd;
1341 }
1342 
1343 EXPORT_SYMBOL(vpe_getcwd);
1344 
1345 #ifdef CONFIG_MIPS_APSP_KSPD
1346 static void kspd_sp_exit( int sp_id)
1347 {
1348 	cleanup_tc(get_tc(sp_id));
1349 }
1350 #endif
1351 
1352 static ssize_t store_kill(struct device *dev, struct device_attribute *attr,
1353 			  const char *buf, size_t len)
1354 {
1355 	struct vpe *vpe = get_vpe(tclimit);
1356 	struct vpe_notifications *not;
1357 
1358 	list_for_each_entry(not, &vpe->notify, list) {
1359 		not->stop(tclimit);
1360 	}
1361 
1362 	release_progmem(vpe->load_addr);
1363 	cleanup_tc(get_tc(tclimit));
1364 	vpe_stop(vpe);
1365 	vpe_free(vpe);
1366 
1367 	return len;
1368 }
1369 
1370 static ssize_t show_ntcs(struct device *cd, struct device_attribute *attr,
1371 			 char *buf)
1372 {
1373 	struct vpe *vpe = get_vpe(tclimit);
1374 
1375 	return sprintf(buf, "%d\n", vpe->ntcs);
1376 }
1377 
1378 static ssize_t store_ntcs(struct device *dev, struct device_attribute *attr,
1379 			  const char *buf, size_t len)
1380 {
1381 	struct vpe *vpe = get_vpe(tclimit);
1382 	unsigned long new;
1383 	char *endp;
1384 
1385 	new = simple_strtoul(buf, &endp, 0);
1386 	if (endp == buf)
1387 		goto out_einval;
1388 
1389 	if (new == 0 || new > (hw_tcs - tclimit))
1390 		goto out_einval;
1391 
1392 	vpe->ntcs = new;
1393 
1394 	return len;
1395 
1396 out_einval:
1397 	return -EINVAL;
1398 }
1399 
1400 static struct device_attribute vpe_class_attributes[] = {
1401 	__ATTR(kill, S_IWUSR, NULL, store_kill),
1402 	__ATTR(ntcs, S_IRUGO | S_IWUSR, show_ntcs, store_ntcs),
1403 	{}
1404 };
1405 
1406 static void vpe_device_release(struct device *cd)
1407 {
1408 	kfree(cd);
1409 }
1410 
1411 struct class vpe_class = {
1412 	.name = "vpe",
1413 	.owner = THIS_MODULE,
1414 	.dev_release = vpe_device_release,
1415 	.dev_attrs = vpe_class_attributes,
1416 };
1417 
1418 struct device vpe_device;
1419 
1420 static int __init vpe_module_init(void)
1421 {
1422 	unsigned int mtflags, vpflags;
1423 	unsigned long flags, val;
1424 	struct vpe *v = NULL;
1425 	struct tc *t;
1426 	int tc, err;
1427 
1428 	if (!cpu_has_mipsmt) {
1429 		printk("VPE loader: not a MIPS MT capable processor\n");
1430 		return -ENODEV;
1431 	}
1432 
1433 	if (vpelimit == 0) {
1434 		printk(KERN_WARNING "No VPEs reserved for AP/SP, not "
1435 		       "initializing VPE loader.\nPass maxvpes=<n> argument as "
1436 		       "kernel argument\n");
1437 
1438 		return -ENODEV;
1439 	}
1440 
1441 	if (tclimit == 0) {
1442 		printk(KERN_WARNING "No TCs reserved for AP/SP, not "
1443 		       "initializing VPE loader.\nPass maxtcs=<n> argument as "
1444 		       "kernel argument\n");
1445 
1446 		return -ENODEV;
1447 	}
1448 
1449 	major = register_chrdev(0, module_name, &vpe_fops);
1450 	if (major < 0) {
1451 		printk("VPE loader: unable to register character device\n");
1452 		return major;
1453 	}
1454 
1455 	err = class_register(&vpe_class);
1456 	if (err) {
1457 		printk(KERN_ERR "vpe_class registration failed\n");
1458 		goto out_chrdev;
1459 	}
1460 
1461 	device_initialize(&vpe_device);
1462 	vpe_device.class	= &vpe_class,
1463 	vpe_device.parent	= NULL,
1464 	dev_set_name(&vpe_device, "vpe1");
1465 	vpe_device.devt = MKDEV(major, minor);
1466 	err = device_add(&vpe_device);
1467 	if (err) {
1468 		printk(KERN_ERR "Adding vpe_device failed\n");
1469 		goto out_class;
1470 	}
1471 
1472 	local_irq_save(flags);
1473 	mtflags = dmt();
1474 	vpflags = dvpe();
1475 
1476 	/* Put MVPE's into 'configuration state' */
1477 	set_c0_mvpcontrol(MVPCONTROL_VPC);
1478 
1479 	/* dump_mtregs(); */
1480 
1481 	val = read_c0_mvpconf0();
1482 	hw_tcs = (val & MVPCONF0_PTC) + 1;
1483 	hw_vpes = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
1484 
1485 	for (tc = tclimit; tc < hw_tcs; tc++) {
1486 		/*
1487 		 * Must re-enable multithreading temporarily or in case we
1488 		 * reschedule send IPIs or similar we might hang.
1489 		 */
1490 		clear_c0_mvpcontrol(MVPCONTROL_VPC);
1491 		evpe(vpflags);
1492 		emt(mtflags);
1493 		local_irq_restore(flags);
1494 		t = alloc_tc(tc);
1495 		if (!t) {
1496 			err = -ENOMEM;
1497 			goto out;
1498 		}
1499 
1500 		local_irq_save(flags);
1501 		mtflags = dmt();
1502 		vpflags = dvpe();
1503 		set_c0_mvpcontrol(MVPCONTROL_VPC);
1504 
1505 		/* VPE's */
1506 		if (tc < hw_tcs) {
1507 			settc(tc);
1508 
1509 			if ((v = alloc_vpe(tc)) == NULL) {
1510 				printk(KERN_WARNING "VPE: unable to allocate VPE\n");
1511 
1512 				goto out_reenable;
1513 			}
1514 
1515 			v->ntcs = hw_tcs - tclimit;
1516 
1517 			/* add the tc to the list of this vpe's tc's. */
1518 			list_add(&t->tc, &v->tc);
1519 
1520 			/* deactivate all but vpe0 */
1521 			if (tc >= tclimit) {
1522 				unsigned long tmp = read_vpe_c0_vpeconf0();
1523 
1524 				tmp &= ~VPECONF0_VPA;
1525 
1526 				/* master VPE */
1527 				tmp |= VPECONF0_MVP;
1528 				write_vpe_c0_vpeconf0(tmp);
1529 			}
1530 
1531 			/* disable multi-threading with TC's */
1532 			write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() & ~VPECONTROL_TE);
1533 
1534 			if (tc >= vpelimit) {
1535 				/*
1536 				 * Set config to be the same as vpe0,
1537 				 * particularly kseg0 coherency alg
1538 				 */
1539 				write_vpe_c0_config(read_c0_config());
1540 			}
1541 		}
1542 
1543 		/* TC's */
1544 		t->pvpe = v;	/* set the parent vpe */
1545 
1546 		if (tc >= tclimit) {
1547 			unsigned long tmp;
1548 
1549 			settc(tc);
1550 
1551 			/* Any TC that is bound to VPE0 gets left as is - in case
1552 			   we are running SMTC on VPE0. A TC that is bound to any
1553 			   other VPE gets bound to VPE0, ideally I'd like to make
1554 			   it homeless but it doesn't appear to let me bind a TC
1555 			   to a non-existent VPE. Which is perfectly reasonable.
1556 
1557 			   The (un)bound state is visible to an EJTAG probe so may
1558 			   notify GDB...
1559 			*/
1560 
1561 			if (((tmp = read_tc_c0_tcbind()) & TCBIND_CURVPE)) {
1562 				/* tc is bound >vpe0 */
1563 				write_tc_c0_tcbind(tmp & ~TCBIND_CURVPE);
1564 
1565 				t->pvpe = get_vpe(0);	/* set the parent vpe */
1566 			}
1567 
1568 			/* halt the TC */
1569 			write_tc_c0_tchalt(TCHALT_H);
1570 			mips_ihb();
1571 
1572 			tmp = read_tc_c0_tcstatus();
1573 
1574 			/* mark not activated and not dynamically allocatable */
1575 			tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1576 			tmp |= TCSTATUS_IXMT;	/* interrupt exempt */
1577 			write_tc_c0_tcstatus(tmp);
1578 		}
1579 	}
1580 
1581 out_reenable:
1582 	/* release config state */
1583 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
1584 
1585 	evpe(vpflags);
1586 	emt(mtflags);
1587 	local_irq_restore(flags);
1588 
1589 #ifdef CONFIG_MIPS_APSP_KSPD
1590 	kspd_events.kspd_sp_exit = kspd_sp_exit;
1591 #endif
1592 	return 0;
1593 
1594 out_class:
1595 	class_unregister(&vpe_class);
1596 out_chrdev:
1597 	unregister_chrdev(major, module_name);
1598 
1599 out:
1600 	return err;
1601 }
1602 
1603 static void __exit vpe_module_exit(void)
1604 {
1605 	struct vpe *v, *n;
1606 
1607 	device_del(&vpe_device);
1608 	unregister_chrdev(major, module_name);
1609 
1610 	/* No locking needed here */
1611 	list_for_each_entry_safe(v, n, &vpecontrol.vpe_list, list) {
1612 		if (v->state != VPE_STATE_UNUSED)
1613 			release_vpe(v);
1614 	}
1615 }
1616 
1617 module_init(vpe_module_init);
1618 module_exit(vpe_module_exit);
1619 MODULE_DESCRIPTION("MIPS VPE Loader");
1620 MODULE_AUTHOR("Elizabeth Oldham, MIPS Technologies, Inc.");
1621 MODULE_LICENSE("GPL");
1622