xref: /openbmc/linux/arch/mips/kernel/traps.c (revision f8bcb061)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
25 #include <linux/mm.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memblock.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
41 
42 #include <asm/addrspace.h>
43 #include <asm/bootinfo.h>
44 #include <asm/branch.h>
45 #include <asm/break.h>
46 #include <asm/cop2.h>
47 #include <asm/cpu.h>
48 #include <asm/cpu-type.h>
49 #include <asm/dsp.h>
50 #include <asm/fpu.h>
51 #include <asm/fpu_emulator.h>
52 #include <asm/idle.h>
53 #include <asm/isa-rev.h>
54 #include <asm/mips-cps.h>
55 #include <asm/mips-r2-to-r6-emul.h>
56 #include <asm/mipsregs.h>
57 #include <asm/mipsmtregs.h>
58 #include <asm/module.h>
59 #include <asm/msa.h>
60 #include <asm/ptrace.h>
61 #include <asm/sections.h>
62 #include <asm/siginfo.h>
63 #include <asm/tlbdebug.h>
64 #include <asm/traps.h>
65 #include <linux/uaccess.h>
66 #include <asm/watch.h>
67 #include <asm/mmu_context.h>
68 #include <asm/types.h>
69 #include <asm/stacktrace.h>
70 #include <asm/tlbex.h>
71 #include <asm/uasm.h>
72 
73 #include <asm/mach-loongson64/cpucfg-emul.h>
74 
75 #include "access-helper.h"
76 
77 extern void check_wait(void);
78 extern asmlinkage void rollback_handle_int(void);
79 extern asmlinkage void handle_int(void);
80 extern asmlinkage void handle_adel(void);
81 extern asmlinkage void handle_ades(void);
82 extern asmlinkage void handle_ibe(void);
83 extern asmlinkage void handle_dbe(void);
84 extern asmlinkage void handle_sys(void);
85 extern asmlinkage void handle_bp(void);
86 extern asmlinkage void handle_ri(void);
87 extern asmlinkage void handle_ri_rdhwr_tlbp(void);
88 extern asmlinkage void handle_ri_rdhwr(void);
89 extern asmlinkage void handle_cpu(void);
90 extern asmlinkage void handle_ov(void);
91 extern asmlinkage void handle_tr(void);
92 extern asmlinkage void handle_msa_fpe(void);
93 extern asmlinkage void handle_fpe(void);
94 extern asmlinkage void handle_ftlb(void);
95 extern asmlinkage void handle_gsexc(void);
96 extern asmlinkage void handle_msa(void);
97 extern asmlinkage void handle_mdmx(void);
98 extern asmlinkage void handle_watch(void);
99 extern asmlinkage void handle_mt(void);
100 extern asmlinkage void handle_dsp(void);
101 extern asmlinkage void handle_mcheck(void);
102 extern asmlinkage void handle_reserved(void);
103 extern void tlb_do_page_fault_0(void);
104 
105 void (*board_be_init)(void);
106 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
107 void (*board_nmi_handler_setup)(void);
108 void (*board_ejtag_handler_setup)(void);
109 void (*board_bind_eic_interrupt)(int irq, int regset);
110 void (*board_ebase_setup)(void);
111 void(*board_cache_error_setup)(void);
112 
113 static void show_raw_backtrace(unsigned long reg29, const char *loglvl,
114 			       bool user)
115 {
116 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
117 	unsigned long addr;
118 
119 	printk("%sCall Trace:", loglvl);
120 #ifdef CONFIG_KALLSYMS
121 	printk("%s\n", loglvl);
122 #endif
123 	while (!kstack_end(sp)) {
124 		if (__get_addr(&addr, sp++, user)) {
125 			printk("%s (Bad stack address)", loglvl);
126 			break;
127 		}
128 		if (__kernel_text_address(addr))
129 			print_ip_sym(loglvl, addr);
130 	}
131 	printk("%s\n", loglvl);
132 }
133 
134 #ifdef CONFIG_KALLSYMS
135 int raw_show_trace;
136 static int __init set_raw_show_trace(char *str)
137 {
138 	raw_show_trace = 1;
139 	return 1;
140 }
141 __setup("raw_show_trace", set_raw_show_trace);
142 #endif
143 
144 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs,
145 			   const char *loglvl, bool user)
146 {
147 	unsigned long sp = regs->regs[29];
148 	unsigned long ra = regs->regs[31];
149 	unsigned long pc = regs->cp0_epc;
150 
151 	if (!task)
152 		task = current;
153 
154 	if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
155 		show_raw_backtrace(sp, loglvl, user);
156 		return;
157 	}
158 	printk("%sCall Trace:\n", loglvl);
159 	do {
160 		print_ip_sym(loglvl, pc);
161 		pc = unwind_stack(task, &sp, pc, &ra);
162 	} while (pc);
163 	pr_cont("\n");
164 }
165 
166 /*
167  * This routine abuses get_user()/put_user() to reference pointers
168  * with at least a bit of error checking ...
169  */
170 static void show_stacktrace(struct task_struct *task,
171 	const struct pt_regs *regs, const char *loglvl, bool user)
172 {
173 	const int field = 2 * sizeof(unsigned long);
174 	unsigned long stackdata;
175 	int i;
176 	unsigned long *sp = (unsigned long *)regs->regs[29];
177 
178 	printk("%sStack :", loglvl);
179 	i = 0;
180 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
181 		if (i && ((i % (64 / field)) == 0)) {
182 			pr_cont("\n");
183 			printk("%s       ", loglvl);
184 		}
185 		if (i > 39) {
186 			pr_cont(" ...");
187 			break;
188 		}
189 
190 		if (__get_addr(&stackdata, sp++, user)) {
191 			pr_cont(" (Bad stack address)");
192 			break;
193 		}
194 
195 		pr_cont(" %0*lx", field, stackdata);
196 		i++;
197 	}
198 	pr_cont("\n");
199 	show_backtrace(task, regs, loglvl, user);
200 }
201 
202 void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
203 {
204 	struct pt_regs regs;
205 
206 	regs.cp0_status = KSU_KERNEL;
207 	if (sp) {
208 		regs.regs[29] = (unsigned long)sp;
209 		regs.regs[31] = 0;
210 		regs.cp0_epc = 0;
211 	} else {
212 		if (task && task != current) {
213 			regs.regs[29] = task->thread.reg29;
214 			regs.regs[31] = 0;
215 			regs.cp0_epc = task->thread.reg31;
216 		} else {
217 			prepare_frametrace(&regs);
218 		}
219 	}
220 	show_stacktrace(task, &regs, loglvl, false);
221 }
222 
223 static void show_code(void *pc, bool user)
224 {
225 	long i;
226 	unsigned short *pc16 = NULL;
227 
228 	printk("Code:");
229 
230 	if ((unsigned long)pc & 1)
231 		pc16 = (u16 *)((unsigned long)pc & ~1);
232 
233 	for(i = -3 ; i < 6 ; i++) {
234 		if (pc16) {
235 			u16 insn16;
236 
237 			if (__get_inst16(&insn16, pc16 + i, user))
238 				goto bad_address;
239 
240 			pr_cont("%c%04x%c", (i?' ':'<'), insn16, (i?' ':'>'));
241 		} else {
242 			u32 insn32;
243 
244 			if (__get_inst32(&insn32, (u32 *)pc + i, user))
245 				goto bad_address;
246 
247 			pr_cont("%c%08x%c", (i?' ':'<'), insn32, (i?' ':'>'));
248 		}
249 	}
250 	pr_cont("\n");
251 	return;
252 
253 bad_address:
254 	pr_cont(" (Bad address in epc)\n\n");
255 }
256 
257 static void __show_regs(const struct pt_regs *regs)
258 {
259 	const int field = 2 * sizeof(unsigned long);
260 	unsigned int cause = regs->cp0_cause;
261 	unsigned int exccode;
262 	int i;
263 
264 	show_regs_print_info(KERN_DEFAULT);
265 
266 	/*
267 	 * Saved main processor registers
268 	 */
269 	for (i = 0; i < 32; ) {
270 		if ((i % 4) == 0)
271 			printk("$%2d   :", i);
272 		if (i == 0)
273 			pr_cont(" %0*lx", field, 0UL);
274 		else if (i == 26 || i == 27)
275 			pr_cont(" %*s", field, "");
276 		else
277 			pr_cont(" %0*lx", field, regs->regs[i]);
278 
279 		i++;
280 		if ((i % 4) == 0)
281 			pr_cont("\n");
282 	}
283 
284 #ifdef CONFIG_CPU_HAS_SMARTMIPS
285 	printk("Acx    : %0*lx\n", field, regs->acx);
286 #endif
287 	if (MIPS_ISA_REV < 6) {
288 		printk("Hi    : %0*lx\n", field, regs->hi);
289 		printk("Lo    : %0*lx\n", field, regs->lo);
290 	}
291 
292 	/*
293 	 * Saved cp0 registers
294 	 */
295 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
296 	       (void *) regs->cp0_epc);
297 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
298 	       (void *) regs->regs[31]);
299 
300 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
301 
302 	if (cpu_has_3kex) {
303 		if (regs->cp0_status & ST0_KUO)
304 			pr_cont("KUo ");
305 		if (regs->cp0_status & ST0_IEO)
306 			pr_cont("IEo ");
307 		if (regs->cp0_status & ST0_KUP)
308 			pr_cont("KUp ");
309 		if (regs->cp0_status & ST0_IEP)
310 			pr_cont("IEp ");
311 		if (regs->cp0_status & ST0_KUC)
312 			pr_cont("KUc ");
313 		if (regs->cp0_status & ST0_IEC)
314 			pr_cont("IEc ");
315 	} else if (cpu_has_4kex) {
316 		if (regs->cp0_status & ST0_KX)
317 			pr_cont("KX ");
318 		if (regs->cp0_status & ST0_SX)
319 			pr_cont("SX ");
320 		if (regs->cp0_status & ST0_UX)
321 			pr_cont("UX ");
322 		switch (regs->cp0_status & ST0_KSU) {
323 		case KSU_USER:
324 			pr_cont("USER ");
325 			break;
326 		case KSU_SUPERVISOR:
327 			pr_cont("SUPERVISOR ");
328 			break;
329 		case KSU_KERNEL:
330 			pr_cont("KERNEL ");
331 			break;
332 		default:
333 			pr_cont("BAD_MODE ");
334 			break;
335 		}
336 		if (regs->cp0_status & ST0_ERL)
337 			pr_cont("ERL ");
338 		if (regs->cp0_status & ST0_EXL)
339 			pr_cont("EXL ");
340 		if (regs->cp0_status & ST0_IE)
341 			pr_cont("IE ");
342 	}
343 	pr_cont("\n");
344 
345 	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
346 	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
347 
348 	if (1 <= exccode && exccode <= 5)
349 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
350 
351 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
352 	       cpu_name_string());
353 }
354 
355 /*
356  * FIXME: really the generic show_regs should take a const pointer argument.
357  */
358 void show_regs(struct pt_regs *regs)
359 {
360 	__show_regs(regs);
361 	dump_stack();
362 }
363 
364 void show_registers(struct pt_regs *regs)
365 {
366 	const int field = 2 * sizeof(unsigned long);
367 
368 	__show_regs(regs);
369 	print_modules();
370 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
371 	       current->comm, current->pid, current_thread_info(), current,
372 	      field, current_thread_info()->tp_value);
373 	if (cpu_has_userlocal) {
374 		unsigned long tls;
375 
376 		tls = read_c0_userlocal();
377 		if (tls != current_thread_info()->tp_value)
378 			printk("*HwTLS: %0*lx\n", field, tls);
379 	}
380 
381 	show_stacktrace(current, regs, KERN_DEFAULT, user_mode(regs));
382 	show_code((void *)regs->cp0_epc, user_mode(regs));
383 	printk("\n");
384 }
385 
386 static DEFINE_RAW_SPINLOCK(die_lock);
387 
388 void __noreturn die(const char *str, struct pt_regs *regs)
389 {
390 	static int die_counter;
391 	int sig = SIGSEGV;
392 
393 	oops_enter();
394 
395 	if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
396 		       SIGSEGV) == NOTIFY_STOP)
397 		sig = 0;
398 
399 	console_verbose();
400 	raw_spin_lock_irq(&die_lock);
401 	bust_spinlocks(1);
402 
403 	printk("%s[#%d]:\n", str, ++die_counter);
404 	show_registers(regs);
405 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
406 	raw_spin_unlock_irq(&die_lock);
407 
408 	oops_exit();
409 
410 	if (in_interrupt())
411 		panic("Fatal exception in interrupt");
412 
413 	if (panic_on_oops)
414 		panic("Fatal exception");
415 
416 	if (regs && kexec_should_crash(current))
417 		crash_kexec(regs);
418 
419 	do_exit(sig);
420 }
421 
422 extern struct exception_table_entry __start___dbe_table[];
423 extern struct exception_table_entry __stop___dbe_table[];
424 
425 __asm__(
426 "	.section	__dbe_table, \"a\"\n"
427 "	.previous			\n");
428 
429 /* Given an address, look for it in the exception tables. */
430 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
431 {
432 	const struct exception_table_entry *e;
433 
434 	e = search_extable(__start___dbe_table,
435 			   __stop___dbe_table - __start___dbe_table, addr);
436 	if (!e)
437 		e = search_module_dbetables(addr);
438 	return e;
439 }
440 
441 asmlinkage void do_be(struct pt_regs *regs)
442 {
443 	const int field = 2 * sizeof(unsigned long);
444 	const struct exception_table_entry *fixup = NULL;
445 	int data = regs->cp0_cause & 4;
446 	int action = MIPS_BE_FATAL;
447 	enum ctx_state prev_state;
448 
449 	prev_state = exception_enter();
450 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
451 	if (data && !user_mode(regs))
452 		fixup = search_dbe_tables(exception_epc(regs));
453 
454 	if (fixup)
455 		action = MIPS_BE_FIXUP;
456 
457 	if (board_be_handler)
458 		action = board_be_handler(regs, fixup != NULL);
459 	else
460 		mips_cm_error_report();
461 
462 	switch (action) {
463 	case MIPS_BE_DISCARD:
464 		goto out;
465 	case MIPS_BE_FIXUP:
466 		if (fixup) {
467 			regs->cp0_epc = fixup->nextinsn;
468 			goto out;
469 		}
470 		break;
471 	default:
472 		break;
473 	}
474 
475 	/*
476 	 * Assume it would be too dangerous to continue ...
477 	 */
478 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
479 	       data ? "Data" : "Instruction",
480 	       field, regs->cp0_epc, field, regs->regs[31]);
481 	if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
482 		       SIGBUS) == NOTIFY_STOP)
483 		goto out;
484 
485 	die_if_kernel("Oops", regs);
486 	force_sig(SIGBUS);
487 
488 out:
489 	exception_exit(prev_state);
490 }
491 
492 /*
493  * ll/sc, rdhwr, sync emulation
494  */
495 
496 #define OPCODE 0xfc000000
497 #define BASE   0x03e00000
498 #define RT     0x001f0000
499 #define OFFSET 0x0000ffff
500 #define LL     0xc0000000
501 #define SC     0xe0000000
502 #define SPEC0  0x00000000
503 #define SPEC3  0x7c000000
504 #define RD     0x0000f800
505 #define FUNC   0x0000003f
506 #define SYNC   0x0000000f
507 #define RDHWR  0x0000003b
508 
509 /*  microMIPS definitions   */
510 #define MM_POOL32A_FUNC 0xfc00ffff
511 #define MM_RDHWR        0x00006b3c
512 #define MM_RS           0x001f0000
513 #define MM_RT           0x03e00000
514 
515 /*
516  * The ll_bit is cleared by r*_switch.S
517  */
518 
519 unsigned int ll_bit;
520 struct task_struct *ll_task;
521 
522 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
523 {
524 	unsigned long value, __user *vaddr;
525 	long offset;
526 
527 	/*
528 	 * analyse the ll instruction that just caused a ri exception
529 	 * and put the referenced address to addr.
530 	 */
531 
532 	/* sign extend offset */
533 	offset = opcode & OFFSET;
534 	offset <<= 16;
535 	offset >>= 16;
536 
537 	vaddr = (unsigned long __user *)
538 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
539 
540 	if ((unsigned long)vaddr & 3)
541 		return SIGBUS;
542 	if (get_user(value, vaddr))
543 		return SIGSEGV;
544 
545 	preempt_disable();
546 
547 	if (ll_task == NULL || ll_task == current) {
548 		ll_bit = 1;
549 	} else {
550 		ll_bit = 0;
551 	}
552 	ll_task = current;
553 
554 	preempt_enable();
555 
556 	regs->regs[(opcode & RT) >> 16] = value;
557 
558 	return 0;
559 }
560 
561 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
562 {
563 	unsigned long __user *vaddr;
564 	unsigned long reg;
565 	long offset;
566 
567 	/*
568 	 * analyse the sc instruction that just caused a ri exception
569 	 * and put the referenced address to addr.
570 	 */
571 
572 	/* sign extend offset */
573 	offset = opcode & OFFSET;
574 	offset <<= 16;
575 	offset >>= 16;
576 
577 	vaddr = (unsigned long __user *)
578 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
579 	reg = (opcode & RT) >> 16;
580 
581 	if ((unsigned long)vaddr & 3)
582 		return SIGBUS;
583 
584 	preempt_disable();
585 
586 	if (ll_bit == 0 || ll_task != current) {
587 		regs->regs[reg] = 0;
588 		preempt_enable();
589 		return 0;
590 	}
591 
592 	preempt_enable();
593 
594 	if (put_user(regs->regs[reg], vaddr))
595 		return SIGSEGV;
596 
597 	regs->regs[reg] = 1;
598 
599 	return 0;
600 }
601 
602 /*
603  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
604  * opcodes are supposed to result in coprocessor unusable exceptions if
605  * executed on ll/sc-less processors.  That's the theory.  In practice a
606  * few processors such as NEC's VR4100 throw reserved instruction exceptions
607  * instead, so we're doing the emulation thing in both exception handlers.
608  */
609 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
610 {
611 	if ((opcode & OPCODE) == LL) {
612 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
613 				1, regs, 0);
614 		return simulate_ll(regs, opcode);
615 	}
616 	if ((opcode & OPCODE) == SC) {
617 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
618 				1, regs, 0);
619 		return simulate_sc(regs, opcode);
620 	}
621 
622 	return -1;			/* Must be something else ... */
623 }
624 
625 /*
626  * Simulate trapping 'rdhwr' instructions to provide user accessible
627  * registers not implemented in hardware.
628  */
629 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
630 {
631 	struct thread_info *ti = task_thread_info(current);
632 
633 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
634 			1, regs, 0);
635 	switch (rd) {
636 	case MIPS_HWR_CPUNUM:		/* CPU number */
637 		regs->regs[rt] = smp_processor_id();
638 		return 0;
639 	case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
640 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
641 				     current_cpu_data.icache.linesz);
642 		return 0;
643 	case MIPS_HWR_CC:		/* Read count register */
644 		regs->regs[rt] = read_c0_count();
645 		return 0;
646 	case MIPS_HWR_CCRES:		/* Count register resolution */
647 		switch (current_cpu_type()) {
648 		case CPU_20KC:
649 		case CPU_25KF:
650 			regs->regs[rt] = 1;
651 			break;
652 		default:
653 			regs->regs[rt] = 2;
654 		}
655 		return 0;
656 	case MIPS_HWR_ULR:		/* Read UserLocal register */
657 		regs->regs[rt] = ti->tp_value;
658 		return 0;
659 	default:
660 		return -1;
661 	}
662 }
663 
664 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
665 {
666 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
667 		int rd = (opcode & RD) >> 11;
668 		int rt = (opcode & RT) >> 16;
669 
670 		simulate_rdhwr(regs, rd, rt);
671 		return 0;
672 	}
673 
674 	/* Not ours.  */
675 	return -1;
676 }
677 
678 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
679 {
680 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
681 		int rd = (opcode & MM_RS) >> 16;
682 		int rt = (opcode & MM_RT) >> 21;
683 		simulate_rdhwr(regs, rd, rt);
684 		return 0;
685 	}
686 
687 	/* Not ours.  */
688 	return -1;
689 }
690 
691 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
692 {
693 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
694 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
695 				1, regs, 0);
696 		return 0;
697 	}
698 
699 	return -1;			/* Must be something else ... */
700 }
701 
702 /*
703  * Loongson-3 CSR instructions emulation
704  */
705 
706 #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
707 
708 #define LWC2             0xc8000000
709 #define RS               BASE
710 #define CSR_OPCODE2      0x00000118
711 #define CSR_OPCODE2_MASK 0x000007ff
712 #define CSR_FUNC_MASK    RT
713 #define CSR_FUNC_CPUCFG  0x8
714 
715 static int simulate_loongson3_cpucfg(struct pt_regs *regs,
716 				     unsigned int opcode)
717 {
718 	int op = opcode & OPCODE;
719 	int op2 = opcode & CSR_OPCODE2_MASK;
720 	int csr_func = (opcode & CSR_FUNC_MASK) >> 16;
721 
722 	if (op == LWC2 && op2 == CSR_OPCODE2 && csr_func == CSR_FUNC_CPUCFG) {
723 		int rd = (opcode & RD) >> 11;
724 		int rs = (opcode & RS) >> 21;
725 		__u64 sel = regs->regs[rs];
726 
727 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
728 
729 		/* Do not emulate on unsupported core models. */
730 		preempt_disable();
731 		if (!loongson3_cpucfg_emulation_enabled(&current_cpu_data)) {
732 			preempt_enable();
733 			return -1;
734 		}
735 		regs->regs[rd] = loongson3_cpucfg_read_synthesized(
736 			&current_cpu_data, sel);
737 		preempt_enable();
738 		return 0;
739 	}
740 
741 	/* Not ours.  */
742 	return -1;
743 }
744 #endif /* CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION */
745 
746 asmlinkage void do_ov(struct pt_regs *regs)
747 {
748 	enum ctx_state prev_state;
749 
750 	prev_state = exception_enter();
751 	die_if_kernel("Integer overflow", regs);
752 
753 	force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
754 	exception_exit(prev_state);
755 }
756 
757 #ifdef CONFIG_MIPS_FP_SUPPORT
758 
759 /*
760  * Send SIGFPE according to FCSR Cause bits, which must have already
761  * been masked against Enable bits.  This is impotant as Inexact can
762  * happen together with Overflow or Underflow, and `ptrace' can set
763  * any bits.
764  */
765 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
766 		     struct task_struct *tsk)
767 {
768 	int si_code = FPE_FLTUNK;
769 
770 	if (fcr31 & FPU_CSR_INV_X)
771 		si_code = FPE_FLTINV;
772 	else if (fcr31 & FPU_CSR_DIV_X)
773 		si_code = FPE_FLTDIV;
774 	else if (fcr31 & FPU_CSR_OVF_X)
775 		si_code = FPE_FLTOVF;
776 	else if (fcr31 & FPU_CSR_UDF_X)
777 		si_code = FPE_FLTUND;
778 	else if (fcr31 & FPU_CSR_INE_X)
779 		si_code = FPE_FLTRES;
780 
781 	force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
782 }
783 
784 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
785 {
786 	int si_code;
787 	struct vm_area_struct *vma;
788 
789 	switch (sig) {
790 	case 0:
791 		return 0;
792 
793 	case SIGFPE:
794 		force_fcr31_sig(fcr31, fault_addr, current);
795 		return 1;
796 
797 	case SIGBUS:
798 		force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
799 		return 1;
800 
801 	case SIGSEGV:
802 		mmap_read_lock(current->mm);
803 		vma = find_vma(current->mm, (unsigned long)fault_addr);
804 		if (vma && (vma->vm_start <= (unsigned long)fault_addr))
805 			si_code = SEGV_ACCERR;
806 		else
807 			si_code = SEGV_MAPERR;
808 		mmap_read_unlock(current->mm);
809 		force_sig_fault(SIGSEGV, si_code, fault_addr);
810 		return 1;
811 
812 	default:
813 		force_sig(sig);
814 		return 1;
815 	}
816 }
817 
818 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
819 		       unsigned long old_epc, unsigned long old_ra)
820 {
821 	union mips_instruction inst = { .word = opcode };
822 	void __user *fault_addr;
823 	unsigned long fcr31;
824 	int sig;
825 
826 	/* If it's obviously not an FP instruction, skip it */
827 	switch (inst.i_format.opcode) {
828 	case cop1_op:
829 	case cop1x_op:
830 	case lwc1_op:
831 	case ldc1_op:
832 	case swc1_op:
833 	case sdc1_op:
834 		break;
835 
836 	default:
837 		return -1;
838 	}
839 
840 	/*
841 	 * do_ri skipped over the instruction via compute_return_epc, undo
842 	 * that for the FPU emulator.
843 	 */
844 	regs->cp0_epc = old_epc;
845 	regs->regs[31] = old_ra;
846 
847 	/* Run the emulator */
848 	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
849 				       &fault_addr);
850 
851 	/*
852 	 * We can't allow the emulated instruction to leave any
853 	 * enabled Cause bits set in $fcr31.
854 	 */
855 	fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
856 	current->thread.fpu.fcr31 &= ~fcr31;
857 
858 	/* Restore the hardware register state */
859 	own_fpu(1);
860 
861 	/* Send a signal if required.  */
862 	process_fpemu_return(sig, fault_addr, fcr31);
863 
864 	return 0;
865 }
866 
867 /*
868  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
869  */
870 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
871 {
872 	enum ctx_state prev_state;
873 	void __user *fault_addr;
874 	int sig;
875 
876 	prev_state = exception_enter();
877 	if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
878 		       SIGFPE) == NOTIFY_STOP)
879 		goto out;
880 
881 	/* Clear FCSR.Cause before enabling interrupts */
882 	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
883 	local_irq_enable();
884 
885 	die_if_kernel("FP exception in kernel code", regs);
886 
887 	if (fcr31 & FPU_CSR_UNI_X) {
888 		/*
889 		 * Unimplemented operation exception.  If we've got the full
890 		 * software emulator on-board, let's use it...
891 		 *
892 		 * Force FPU to dump state into task/thread context.  We're
893 		 * moving a lot of data here for what is probably a single
894 		 * instruction, but the alternative is to pre-decode the FP
895 		 * register operands before invoking the emulator, which seems
896 		 * a bit extreme for what should be an infrequent event.
897 		 */
898 
899 		/* Run the emulator */
900 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
901 					       &fault_addr);
902 
903 		/*
904 		 * We can't allow the emulated instruction to leave any
905 		 * enabled Cause bits set in $fcr31.
906 		 */
907 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
908 		current->thread.fpu.fcr31 &= ~fcr31;
909 
910 		/* Restore the hardware register state */
911 		own_fpu(1);	/* Using the FPU again.	 */
912 	} else {
913 		sig = SIGFPE;
914 		fault_addr = (void __user *) regs->cp0_epc;
915 	}
916 
917 	/* Send a signal if required.  */
918 	process_fpemu_return(sig, fault_addr, fcr31);
919 
920 out:
921 	exception_exit(prev_state);
922 }
923 
924 /*
925  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
926  * emulated more than some threshold number of instructions, force migration to
927  * a "CPU" that has FP support.
928  */
929 static void mt_ase_fp_affinity(void)
930 {
931 #ifdef CONFIG_MIPS_MT_FPAFF
932 	if (mt_fpemul_threshold > 0 &&
933 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
934 		/*
935 		 * If there's no FPU present, or if the application has already
936 		 * restricted the allowed set to exclude any CPUs with FPUs,
937 		 * we'll skip the procedure.
938 		 */
939 		if (cpumask_intersects(&current->cpus_mask, &mt_fpu_cpumask)) {
940 			cpumask_t tmask;
941 
942 			current->thread.user_cpus_allowed
943 				= current->cpus_mask;
944 			cpumask_and(&tmask, &current->cpus_mask,
945 				    &mt_fpu_cpumask);
946 			set_cpus_allowed_ptr(current, &tmask);
947 			set_thread_flag(TIF_FPUBOUND);
948 		}
949 	}
950 #endif /* CONFIG_MIPS_MT_FPAFF */
951 }
952 
953 #else /* !CONFIG_MIPS_FP_SUPPORT */
954 
955 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
956 		       unsigned long old_epc, unsigned long old_ra)
957 {
958 	return -1;
959 }
960 
961 #endif /* !CONFIG_MIPS_FP_SUPPORT */
962 
963 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
964 	const char *str)
965 {
966 	char b[40];
967 
968 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
969 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
970 			 SIGTRAP) == NOTIFY_STOP)
971 		return;
972 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
973 
974 	if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
975 		       SIGTRAP) == NOTIFY_STOP)
976 		return;
977 
978 	/*
979 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
980 	 * insns, even for trap and break codes that indicate arithmetic
981 	 * failures.  Weird ...
982 	 * But should we continue the brokenness???  --macro
983 	 */
984 	switch (code) {
985 	case BRK_OVERFLOW:
986 	case BRK_DIVZERO:
987 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
988 		die_if_kernel(b, regs);
989 		force_sig_fault(SIGFPE,
990 				code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
991 				(void __user *) regs->cp0_epc);
992 		break;
993 	case BRK_BUG:
994 		die_if_kernel("Kernel bug detected", regs);
995 		force_sig(SIGTRAP);
996 		break;
997 	case BRK_MEMU:
998 		/*
999 		 * This breakpoint code is used by the FPU emulator to retake
1000 		 * control of the CPU after executing the instruction from the
1001 		 * delay slot of an emulated branch.
1002 		 *
1003 		 * Terminate if exception was recognized as a delay slot return
1004 		 * otherwise handle as normal.
1005 		 */
1006 		if (do_dsemulret(regs))
1007 			return;
1008 
1009 		die_if_kernel("Math emu break/trap", regs);
1010 		force_sig(SIGTRAP);
1011 		break;
1012 	default:
1013 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
1014 		die_if_kernel(b, regs);
1015 		if (si_code) {
1016 			force_sig_fault(SIGTRAP, si_code, NULL);
1017 		} else {
1018 			force_sig(SIGTRAP);
1019 		}
1020 	}
1021 }
1022 
1023 asmlinkage void do_bp(struct pt_regs *regs)
1024 {
1025 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1026 	unsigned int opcode, bcode;
1027 	enum ctx_state prev_state;
1028 	bool user = user_mode(regs);
1029 
1030 	prev_state = exception_enter();
1031 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1032 	if (get_isa16_mode(regs->cp0_epc)) {
1033 		u16 instr[2];
1034 
1035 		if (__get_inst16(&instr[0], (u16 *)epc, user))
1036 			goto out_sigsegv;
1037 
1038 		if (!cpu_has_mmips) {
1039 			/* MIPS16e mode */
1040 			bcode = (instr[0] >> 5) & 0x3f;
1041 		} else if (mm_insn_16bit(instr[0])) {
1042 			/* 16-bit microMIPS BREAK */
1043 			bcode = instr[0] & 0xf;
1044 		} else {
1045 			/* 32-bit microMIPS BREAK */
1046 			if (__get_inst16(&instr[1], (u16 *)(epc + 2), user))
1047 				goto out_sigsegv;
1048 			opcode = (instr[0] << 16) | instr[1];
1049 			bcode = (opcode >> 6) & ((1 << 20) - 1);
1050 		}
1051 	} else {
1052 		if (__get_inst32(&opcode, (u32 *)epc, user))
1053 			goto out_sigsegv;
1054 		bcode = (opcode >> 6) & ((1 << 20) - 1);
1055 	}
1056 
1057 	/*
1058 	 * There is the ancient bug in the MIPS assemblers that the break
1059 	 * code starts left to bit 16 instead to bit 6 in the opcode.
1060 	 * Gas is bug-compatible, but not always, grrr...
1061 	 * We handle both cases with a simple heuristics.  --macro
1062 	 */
1063 	if (bcode >= (1 << 10))
1064 		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1065 
1066 	/*
1067 	 * notify the kprobe handlers, if instruction is likely to
1068 	 * pertain to them.
1069 	 */
1070 	switch (bcode) {
1071 	case BRK_UPROBE:
1072 		if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1073 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1074 			goto out;
1075 		else
1076 			break;
1077 	case BRK_UPROBE_XOL:
1078 		if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1079 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1080 			goto out;
1081 		else
1082 			break;
1083 	case BRK_KPROBE_BP:
1084 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
1085 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1086 			goto out;
1087 		else
1088 			break;
1089 	case BRK_KPROBE_SSTEPBP:
1090 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1091 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1092 			goto out;
1093 		else
1094 			break;
1095 	default:
1096 		break;
1097 	}
1098 
1099 	do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1100 
1101 out:
1102 	exception_exit(prev_state);
1103 	return;
1104 
1105 out_sigsegv:
1106 	force_sig(SIGSEGV);
1107 	goto out;
1108 }
1109 
1110 asmlinkage void do_tr(struct pt_regs *regs)
1111 {
1112 	u32 opcode, tcode = 0;
1113 	enum ctx_state prev_state;
1114 	u16 instr[2];
1115 	bool user = user_mode(regs);
1116 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1117 
1118 	prev_state = exception_enter();
1119 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1120 	if (get_isa16_mode(regs->cp0_epc)) {
1121 		if (__get_inst16(&instr[0], (u16 *)(epc + 0), user) ||
1122 		    __get_inst16(&instr[1], (u16 *)(epc + 2), user))
1123 			goto out_sigsegv;
1124 		opcode = (instr[0] << 16) | instr[1];
1125 		/* Immediate versions don't provide a code.  */
1126 		if (!(opcode & OPCODE))
1127 			tcode = (opcode >> 12) & ((1 << 4) - 1);
1128 	} else {
1129 		if (__get_inst32(&opcode, (u32 *)epc, user))
1130 			goto out_sigsegv;
1131 		/* Immediate versions don't provide a code.  */
1132 		if (!(opcode & OPCODE))
1133 			tcode = (opcode >> 6) & ((1 << 10) - 1);
1134 	}
1135 
1136 	do_trap_or_bp(regs, tcode, 0, "Trap");
1137 
1138 out:
1139 	exception_exit(prev_state);
1140 	return;
1141 
1142 out_sigsegv:
1143 	force_sig(SIGSEGV);
1144 	goto out;
1145 }
1146 
1147 asmlinkage void do_ri(struct pt_regs *regs)
1148 {
1149 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1150 	unsigned long old_epc = regs->cp0_epc;
1151 	unsigned long old31 = regs->regs[31];
1152 	enum ctx_state prev_state;
1153 	unsigned int opcode = 0;
1154 	int status = -1;
1155 
1156 	/*
1157 	 * Avoid any kernel code. Just emulate the R2 instruction
1158 	 * as quickly as possible.
1159 	 */
1160 	if (mipsr2_emulation && cpu_has_mips_r6 &&
1161 	    likely(user_mode(regs)) &&
1162 	    likely(get_user(opcode, epc) >= 0)) {
1163 		unsigned long fcr31 = 0;
1164 
1165 		status = mipsr2_decoder(regs, opcode, &fcr31);
1166 		switch (status) {
1167 		case 0:
1168 		case SIGEMT:
1169 			return;
1170 		case SIGILL:
1171 			goto no_r2_instr;
1172 		default:
1173 			process_fpemu_return(status,
1174 					     &current->thread.cp0_baduaddr,
1175 					     fcr31);
1176 			return;
1177 		}
1178 	}
1179 
1180 no_r2_instr:
1181 
1182 	prev_state = exception_enter();
1183 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1184 
1185 	if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1186 		       SIGILL) == NOTIFY_STOP)
1187 		goto out;
1188 
1189 	die_if_kernel("Reserved instruction in kernel code", regs);
1190 
1191 	if (unlikely(compute_return_epc(regs) < 0))
1192 		goto out;
1193 
1194 	if (!get_isa16_mode(regs->cp0_epc)) {
1195 		if (unlikely(get_user(opcode, epc) < 0))
1196 			status = SIGSEGV;
1197 
1198 		if (!cpu_has_llsc && status < 0)
1199 			status = simulate_llsc(regs, opcode);
1200 
1201 		if (status < 0)
1202 			status = simulate_rdhwr_normal(regs, opcode);
1203 
1204 		if (status < 0)
1205 			status = simulate_sync(regs, opcode);
1206 
1207 		if (status < 0)
1208 			status = simulate_fp(regs, opcode, old_epc, old31);
1209 
1210 #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
1211 		if (status < 0)
1212 			status = simulate_loongson3_cpucfg(regs, opcode);
1213 #endif
1214 	} else if (cpu_has_mmips) {
1215 		unsigned short mmop[2] = { 0 };
1216 
1217 		if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1218 			status = SIGSEGV;
1219 		if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1220 			status = SIGSEGV;
1221 		opcode = mmop[0];
1222 		opcode = (opcode << 16) | mmop[1];
1223 
1224 		if (status < 0)
1225 			status = simulate_rdhwr_mm(regs, opcode);
1226 	}
1227 
1228 	if (status < 0)
1229 		status = SIGILL;
1230 
1231 	if (unlikely(status > 0)) {
1232 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1233 		regs->regs[31] = old31;
1234 		force_sig(status);
1235 	}
1236 
1237 out:
1238 	exception_exit(prev_state);
1239 }
1240 
1241 /*
1242  * No lock; only written during early bootup by CPU 0.
1243  */
1244 static RAW_NOTIFIER_HEAD(cu2_chain);
1245 
1246 int __ref register_cu2_notifier(struct notifier_block *nb)
1247 {
1248 	return raw_notifier_chain_register(&cu2_chain, nb);
1249 }
1250 
1251 int cu2_notifier_call_chain(unsigned long val, void *v)
1252 {
1253 	return raw_notifier_call_chain(&cu2_chain, val, v);
1254 }
1255 
1256 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1257 	void *data)
1258 {
1259 	struct pt_regs *regs = data;
1260 
1261 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1262 			      "instruction", regs);
1263 	force_sig(SIGILL);
1264 
1265 	return NOTIFY_OK;
1266 }
1267 
1268 #ifdef CONFIG_MIPS_FP_SUPPORT
1269 
1270 static int enable_restore_fp_context(int msa)
1271 {
1272 	int err, was_fpu_owner, prior_msa;
1273 	bool first_fp;
1274 
1275 	/* Initialize context if it hasn't been used already */
1276 	first_fp = init_fp_ctx(current);
1277 
1278 	if (first_fp) {
1279 		preempt_disable();
1280 		err = own_fpu_inatomic(1);
1281 		if (msa && !err) {
1282 			enable_msa();
1283 			/*
1284 			 * with MSA enabled, userspace can see MSACSR
1285 			 * and MSA regs, but the values in them are from
1286 			 * other task before current task, restore them
1287 			 * from saved fp/msa context
1288 			 */
1289 			write_msa_csr(current->thread.fpu.msacsr);
1290 			/*
1291 			 * own_fpu_inatomic(1) just restore low 64bit,
1292 			 * fix the high 64bit
1293 			 */
1294 			init_msa_upper();
1295 			set_thread_flag(TIF_USEDMSA);
1296 			set_thread_flag(TIF_MSA_CTX_LIVE);
1297 		}
1298 		preempt_enable();
1299 		return err;
1300 	}
1301 
1302 	/*
1303 	 * This task has formerly used the FP context.
1304 	 *
1305 	 * If this thread has no live MSA vector context then we can simply
1306 	 * restore the scalar FP context. If it has live MSA vector context
1307 	 * (that is, it has or may have used MSA since last performing a
1308 	 * function call) then we'll need to restore the vector context. This
1309 	 * applies even if we're currently only executing a scalar FP
1310 	 * instruction. This is because if we were to later execute an MSA
1311 	 * instruction then we'd either have to:
1312 	 *
1313 	 *  - Restore the vector context & clobber any registers modified by
1314 	 *    scalar FP instructions between now & then.
1315 	 *
1316 	 * or
1317 	 *
1318 	 *  - Not restore the vector context & lose the most significant bits
1319 	 *    of all vector registers.
1320 	 *
1321 	 * Neither of those options is acceptable. We cannot restore the least
1322 	 * significant bits of the registers now & only restore the most
1323 	 * significant bits later because the most significant bits of any
1324 	 * vector registers whose aliased FP register is modified now will have
1325 	 * been zeroed. We'd have no way to know that when restoring the vector
1326 	 * context & thus may load an outdated value for the most significant
1327 	 * bits of a vector register.
1328 	 */
1329 	if (!msa && !thread_msa_context_live())
1330 		return own_fpu(1);
1331 
1332 	/*
1333 	 * This task is using or has previously used MSA. Thus we require
1334 	 * that Status.FR == 1.
1335 	 */
1336 	preempt_disable();
1337 	was_fpu_owner = is_fpu_owner();
1338 	err = own_fpu_inatomic(0);
1339 	if (err)
1340 		goto out;
1341 
1342 	enable_msa();
1343 	write_msa_csr(current->thread.fpu.msacsr);
1344 	set_thread_flag(TIF_USEDMSA);
1345 
1346 	/*
1347 	 * If this is the first time that the task is using MSA and it has
1348 	 * previously used scalar FP in this time slice then we already nave
1349 	 * FP context which we shouldn't clobber. We do however need to clear
1350 	 * the upper 64b of each vector register so that this task has no
1351 	 * opportunity to see data left behind by another.
1352 	 */
1353 	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1354 	if (!prior_msa && was_fpu_owner) {
1355 		init_msa_upper();
1356 
1357 		goto out;
1358 	}
1359 
1360 	if (!prior_msa) {
1361 		/*
1362 		 * Restore the least significant 64b of each vector register
1363 		 * from the existing scalar FP context.
1364 		 */
1365 		_restore_fp(current);
1366 
1367 		/*
1368 		 * The task has not formerly used MSA, so clear the upper 64b
1369 		 * of each vector register such that it cannot see data left
1370 		 * behind by another task.
1371 		 */
1372 		init_msa_upper();
1373 	} else {
1374 		/* We need to restore the vector context. */
1375 		restore_msa(current);
1376 
1377 		/* Restore the scalar FP control & status register */
1378 		if (!was_fpu_owner)
1379 			write_32bit_cp1_register(CP1_STATUS,
1380 						 current->thread.fpu.fcr31);
1381 	}
1382 
1383 out:
1384 	preempt_enable();
1385 
1386 	return 0;
1387 }
1388 
1389 #else /* !CONFIG_MIPS_FP_SUPPORT */
1390 
1391 static int enable_restore_fp_context(int msa)
1392 {
1393 	return SIGILL;
1394 }
1395 
1396 #endif /* CONFIG_MIPS_FP_SUPPORT */
1397 
1398 asmlinkage void do_cpu(struct pt_regs *regs)
1399 {
1400 	enum ctx_state prev_state;
1401 	unsigned int __user *epc;
1402 	unsigned long old_epc, old31;
1403 	unsigned int opcode;
1404 	unsigned int cpid;
1405 	int status;
1406 
1407 	prev_state = exception_enter();
1408 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1409 
1410 	if (cpid != 2)
1411 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1412 
1413 	switch (cpid) {
1414 	case 0:
1415 		epc = (unsigned int __user *)exception_epc(regs);
1416 		old_epc = regs->cp0_epc;
1417 		old31 = regs->regs[31];
1418 		opcode = 0;
1419 		status = -1;
1420 
1421 		if (unlikely(compute_return_epc(regs) < 0))
1422 			break;
1423 
1424 		if (!get_isa16_mode(regs->cp0_epc)) {
1425 			if (unlikely(get_user(opcode, epc) < 0))
1426 				status = SIGSEGV;
1427 
1428 			if (!cpu_has_llsc && status < 0)
1429 				status = simulate_llsc(regs, opcode);
1430 		}
1431 
1432 		if (status < 0)
1433 			status = SIGILL;
1434 
1435 		if (unlikely(status > 0)) {
1436 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1437 			regs->regs[31] = old31;
1438 			force_sig(status);
1439 		}
1440 
1441 		break;
1442 
1443 #ifdef CONFIG_MIPS_FP_SUPPORT
1444 	case 3:
1445 		/*
1446 		 * The COP3 opcode space and consequently the CP0.Status.CU3
1447 		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1448 		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1449 		 * up the space has been reused for COP1X instructions, that
1450 		 * are enabled by the CP0.Status.CU1 bit and consequently
1451 		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1452 		 * exceptions.  Some FPU-less processors that implement one
1453 		 * of these ISAs however use this code erroneously for COP1X
1454 		 * instructions.  Therefore we redirect this trap to the FP
1455 		 * emulator too.
1456 		 */
1457 		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1458 			force_sig(SIGILL);
1459 			break;
1460 		}
1461 		fallthrough;
1462 	case 1: {
1463 		void __user *fault_addr;
1464 		unsigned long fcr31;
1465 		int err, sig;
1466 
1467 		err = enable_restore_fp_context(0);
1468 
1469 		if (raw_cpu_has_fpu && !err)
1470 			break;
1471 
1472 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1473 					       &fault_addr);
1474 
1475 		/*
1476 		 * We can't allow the emulated instruction to leave
1477 		 * any enabled Cause bits set in $fcr31.
1478 		 */
1479 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1480 		current->thread.fpu.fcr31 &= ~fcr31;
1481 
1482 		/* Send a signal if required.  */
1483 		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1484 			mt_ase_fp_affinity();
1485 
1486 		break;
1487 	}
1488 #else /* CONFIG_MIPS_FP_SUPPORT */
1489 	case 1:
1490 	case 3:
1491 		force_sig(SIGILL);
1492 		break;
1493 #endif /* CONFIG_MIPS_FP_SUPPORT */
1494 
1495 	case 2:
1496 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1497 		break;
1498 	}
1499 
1500 	exception_exit(prev_state);
1501 }
1502 
1503 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1504 {
1505 	enum ctx_state prev_state;
1506 
1507 	prev_state = exception_enter();
1508 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1509 	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1510 		       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1511 		goto out;
1512 
1513 	/* Clear MSACSR.Cause before enabling interrupts */
1514 	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1515 	local_irq_enable();
1516 
1517 	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1518 	force_sig(SIGFPE);
1519 out:
1520 	exception_exit(prev_state);
1521 }
1522 
1523 asmlinkage void do_msa(struct pt_regs *regs)
1524 {
1525 	enum ctx_state prev_state;
1526 	int err;
1527 
1528 	prev_state = exception_enter();
1529 
1530 	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1531 		force_sig(SIGILL);
1532 		goto out;
1533 	}
1534 
1535 	die_if_kernel("do_msa invoked from kernel context!", regs);
1536 
1537 	err = enable_restore_fp_context(1);
1538 	if (err)
1539 		force_sig(SIGILL);
1540 out:
1541 	exception_exit(prev_state);
1542 }
1543 
1544 asmlinkage void do_mdmx(struct pt_regs *regs)
1545 {
1546 	enum ctx_state prev_state;
1547 
1548 	prev_state = exception_enter();
1549 	force_sig(SIGILL);
1550 	exception_exit(prev_state);
1551 }
1552 
1553 /*
1554  * Called with interrupts disabled.
1555  */
1556 asmlinkage void do_watch(struct pt_regs *regs)
1557 {
1558 	enum ctx_state prev_state;
1559 
1560 	prev_state = exception_enter();
1561 	/*
1562 	 * Clear WP (bit 22) bit of cause register so we don't loop
1563 	 * forever.
1564 	 */
1565 	clear_c0_cause(CAUSEF_WP);
1566 
1567 	/*
1568 	 * If the current thread has the watch registers loaded, save
1569 	 * their values and send SIGTRAP.  Otherwise another thread
1570 	 * left the registers set, clear them and continue.
1571 	 */
1572 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1573 		mips_read_watch_registers();
1574 		local_irq_enable();
1575 		force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
1576 	} else {
1577 		mips_clear_watch_registers();
1578 		local_irq_enable();
1579 	}
1580 	exception_exit(prev_state);
1581 }
1582 
1583 asmlinkage void do_mcheck(struct pt_regs *regs)
1584 {
1585 	int multi_match = regs->cp0_status & ST0_TS;
1586 	enum ctx_state prev_state;
1587 
1588 	prev_state = exception_enter();
1589 	show_regs(regs);
1590 
1591 	if (multi_match) {
1592 		dump_tlb_regs();
1593 		pr_info("\n");
1594 		dump_tlb_all();
1595 	}
1596 
1597 	show_code((void *)regs->cp0_epc, user_mode(regs));
1598 
1599 	/*
1600 	 * Some chips may have other causes of machine check (e.g. SB1
1601 	 * graduation timer)
1602 	 */
1603 	panic("Caught Machine Check exception - %scaused by multiple "
1604 	      "matching entries in the TLB.",
1605 	      (multi_match) ? "" : "not ");
1606 }
1607 
1608 asmlinkage void do_mt(struct pt_regs *regs)
1609 {
1610 	int subcode;
1611 
1612 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1613 			>> VPECONTROL_EXCPT_SHIFT;
1614 	switch (subcode) {
1615 	case 0:
1616 		printk(KERN_DEBUG "Thread Underflow\n");
1617 		break;
1618 	case 1:
1619 		printk(KERN_DEBUG "Thread Overflow\n");
1620 		break;
1621 	case 2:
1622 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1623 		break;
1624 	case 3:
1625 		printk(KERN_DEBUG "Gating Storage Exception\n");
1626 		break;
1627 	case 4:
1628 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1629 		break;
1630 	case 5:
1631 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1632 		break;
1633 	default:
1634 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1635 			subcode);
1636 		break;
1637 	}
1638 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1639 
1640 	force_sig(SIGILL);
1641 }
1642 
1643 
1644 asmlinkage void do_dsp(struct pt_regs *regs)
1645 {
1646 	if (cpu_has_dsp)
1647 		panic("Unexpected DSP exception");
1648 
1649 	force_sig(SIGILL);
1650 }
1651 
1652 asmlinkage void do_reserved(struct pt_regs *regs)
1653 {
1654 	/*
1655 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1656 	 * caused by a new unknown cpu type or after another deadly
1657 	 * hard/software error.
1658 	 */
1659 	show_regs(regs);
1660 	panic("Caught reserved exception %ld - should not happen.",
1661 	      (regs->cp0_cause & 0x7f) >> 2);
1662 }
1663 
1664 static int __initdata l1parity = 1;
1665 static int __init nol1parity(char *s)
1666 {
1667 	l1parity = 0;
1668 	return 1;
1669 }
1670 __setup("nol1par", nol1parity);
1671 static int __initdata l2parity = 1;
1672 static int __init nol2parity(char *s)
1673 {
1674 	l2parity = 0;
1675 	return 1;
1676 }
1677 __setup("nol2par", nol2parity);
1678 
1679 /*
1680  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1681  * it different ways.
1682  */
1683 static inline __init void parity_protection_init(void)
1684 {
1685 #define ERRCTL_PE	0x80000000
1686 #define ERRCTL_L2P	0x00800000
1687 
1688 	if (mips_cm_revision() >= CM_REV_CM3) {
1689 		ulong gcr_ectl, cp0_ectl;
1690 
1691 		/*
1692 		 * With CM3 systems we need to ensure that the L1 & L2
1693 		 * parity enables are set to the same value, since this
1694 		 * is presumed by the hardware engineers.
1695 		 *
1696 		 * If the user disabled either of L1 or L2 ECC checking,
1697 		 * disable both.
1698 		 */
1699 		l1parity &= l2parity;
1700 		l2parity &= l1parity;
1701 
1702 		/* Probe L1 ECC support */
1703 		cp0_ectl = read_c0_ecc();
1704 		write_c0_ecc(cp0_ectl | ERRCTL_PE);
1705 		back_to_back_c0_hazard();
1706 		cp0_ectl = read_c0_ecc();
1707 
1708 		/* Probe L2 ECC support */
1709 		gcr_ectl = read_gcr_err_control();
1710 
1711 		if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1712 		    !(cp0_ectl & ERRCTL_PE)) {
1713 			/*
1714 			 * One of L1 or L2 ECC checking isn't supported,
1715 			 * so we cannot enable either.
1716 			 */
1717 			l1parity = l2parity = 0;
1718 		}
1719 
1720 		/* Configure L1 ECC checking */
1721 		if (l1parity)
1722 			cp0_ectl |= ERRCTL_PE;
1723 		else
1724 			cp0_ectl &= ~ERRCTL_PE;
1725 		write_c0_ecc(cp0_ectl);
1726 		back_to_back_c0_hazard();
1727 		WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1728 
1729 		/* Configure L2 ECC checking */
1730 		if (l2parity)
1731 			gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1732 		else
1733 			gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1734 		write_gcr_err_control(gcr_ectl);
1735 		gcr_ectl = read_gcr_err_control();
1736 		gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1737 		WARN_ON(!!gcr_ectl != l2parity);
1738 
1739 		pr_info("Cache parity protection %sabled\n",
1740 			l1parity ? "en" : "dis");
1741 		return;
1742 	}
1743 
1744 	switch (current_cpu_type()) {
1745 	case CPU_24K:
1746 	case CPU_34K:
1747 	case CPU_74K:
1748 	case CPU_1004K:
1749 	case CPU_1074K:
1750 	case CPU_INTERAPTIV:
1751 	case CPU_PROAPTIV:
1752 	case CPU_P5600:
1753 	case CPU_QEMU_GENERIC:
1754 	case CPU_P6600:
1755 		{
1756 			unsigned long errctl;
1757 			unsigned int l1parity_present, l2parity_present;
1758 
1759 			errctl = read_c0_ecc();
1760 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1761 
1762 			/* probe L1 parity support */
1763 			write_c0_ecc(errctl | ERRCTL_PE);
1764 			back_to_back_c0_hazard();
1765 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1766 
1767 			/* probe L2 parity support */
1768 			write_c0_ecc(errctl|ERRCTL_L2P);
1769 			back_to_back_c0_hazard();
1770 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1771 
1772 			if (l1parity_present && l2parity_present) {
1773 				if (l1parity)
1774 					errctl |= ERRCTL_PE;
1775 				if (l1parity ^ l2parity)
1776 					errctl |= ERRCTL_L2P;
1777 			} else if (l1parity_present) {
1778 				if (l1parity)
1779 					errctl |= ERRCTL_PE;
1780 			} else if (l2parity_present) {
1781 				if (l2parity)
1782 					errctl |= ERRCTL_L2P;
1783 			} else {
1784 				/* No parity available */
1785 			}
1786 
1787 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1788 
1789 			write_c0_ecc(errctl);
1790 			back_to_back_c0_hazard();
1791 			errctl = read_c0_ecc();
1792 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1793 
1794 			if (l1parity_present)
1795 				printk(KERN_INFO "Cache parity protection %sabled\n",
1796 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1797 
1798 			if (l2parity_present) {
1799 				if (l1parity_present && l1parity)
1800 					errctl ^= ERRCTL_L2P;
1801 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1802 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1803 			}
1804 		}
1805 		break;
1806 
1807 	case CPU_5KC:
1808 	case CPU_5KE:
1809 	case CPU_LOONGSON32:
1810 		write_c0_ecc(0x80000000);
1811 		back_to_back_c0_hazard();
1812 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1813 		printk(KERN_INFO "Cache parity protection %sabled\n",
1814 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1815 		break;
1816 	case CPU_20KC:
1817 	case CPU_25KF:
1818 		/* Clear the DE bit (bit 16) in the c0_status register. */
1819 		printk(KERN_INFO "Enable cache parity protection for "
1820 		       "MIPS 20KC/25KF CPUs.\n");
1821 		clear_c0_status(ST0_DE);
1822 		break;
1823 	default:
1824 		break;
1825 	}
1826 }
1827 
1828 asmlinkage void cache_parity_error(void)
1829 {
1830 	const int field = 2 * sizeof(unsigned long);
1831 	unsigned int reg_val;
1832 
1833 	/* For the moment, report the problem and hang. */
1834 	printk("Cache error exception:\n");
1835 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1836 	reg_val = read_c0_cacheerr();
1837 	printk("c0_cacheerr == %08x\n", reg_val);
1838 
1839 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1840 	       reg_val & (1<<30) ? "secondary" : "primary",
1841 	       reg_val & (1<<31) ? "data" : "insn");
1842 	if ((cpu_has_mips_r2_r6) &&
1843 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1844 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1845 			reg_val & (1<<29) ? "ED " : "",
1846 			reg_val & (1<<28) ? "ET " : "",
1847 			reg_val & (1<<27) ? "ES " : "",
1848 			reg_val & (1<<26) ? "EE " : "",
1849 			reg_val & (1<<25) ? "EB " : "",
1850 			reg_val & (1<<24) ? "EI " : "",
1851 			reg_val & (1<<23) ? "E1 " : "",
1852 			reg_val & (1<<22) ? "E0 " : "");
1853 	} else {
1854 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1855 			reg_val & (1<<29) ? "ED " : "",
1856 			reg_val & (1<<28) ? "ET " : "",
1857 			reg_val & (1<<26) ? "EE " : "",
1858 			reg_val & (1<<25) ? "EB " : "",
1859 			reg_val & (1<<24) ? "EI " : "",
1860 			reg_val & (1<<23) ? "E1 " : "",
1861 			reg_val & (1<<22) ? "E0 " : "");
1862 	}
1863 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1864 
1865 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1866 	if (reg_val & (1<<22))
1867 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1868 
1869 	if (reg_val & (1<<23))
1870 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1871 #endif
1872 
1873 	panic("Can't handle the cache error!");
1874 }
1875 
1876 asmlinkage void do_ftlb(void)
1877 {
1878 	const int field = 2 * sizeof(unsigned long);
1879 	unsigned int reg_val;
1880 
1881 	/* For the moment, report the problem and hang. */
1882 	if ((cpu_has_mips_r2_r6) &&
1883 	    (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1884 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1885 		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1886 		       read_c0_ecc());
1887 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1888 		reg_val = read_c0_cacheerr();
1889 		pr_err("c0_cacheerr == %08x\n", reg_val);
1890 
1891 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1892 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1893 		} else {
1894 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1895 			       reg_val & (1<<30) ? "secondary" : "primary",
1896 			       reg_val & (1<<31) ? "data" : "insn");
1897 		}
1898 	} else {
1899 		pr_err("FTLB error exception\n");
1900 	}
1901 	/* Just print the cacheerr bits for now */
1902 	cache_parity_error();
1903 }
1904 
1905 asmlinkage void do_gsexc(struct pt_regs *regs, u32 diag1)
1906 {
1907 	u32 exccode = (diag1 & LOONGSON_DIAG1_EXCCODE) >>
1908 			LOONGSON_DIAG1_EXCCODE_SHIFT;
1909 	enum ctx_state prev_state;
1910 
1911 	prev_state = exception_enter();
1912 
1913 	switch (exccode) {
1914 	case 0x08:
1915 		/* Undocumented exception, will trigger on certain
1916 		 * also-undocumented instructions accessible from userspace.
1917 		 * Processor state is not otherwise corrupted, but currently
1918 		 * we don't know how to proceed. Maybe there is some
1919 		 * undocumented control flag to enable the instructions?
1920 		 */
1921 		force_sig(SIGILL);
1922 		break;
1923 
1924 	default:
1925 		/* None of the other exceptions, documented or not, have
1926 		 * further details given; none are encountered in the wild
1927 		 * either. Panic in case some of them turn out to be fatal.
1928 		 */
1929 		show_regs(regs);
1930 		panic("Unhandled Loongson exception - GSCause = %08x", diag1);
1931 	}
1932 
1933 	exception_exit(prev_state);
1934 }
1935 
1936 /*
1937  * SDBBP EJTAG debug exception handler.
1938  * We skip the instruction and return to the next instruction.
1939  */
1940 void ejtag_exception_handler(struct pt_regs *regs)
1941 {
1942 	const int field = 2 * sizeof(unsigned long);
1943 	unsigned long depc, old_epc, old_ra;
1944 	unsigned int debug;
1945 
1946 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1947 	depc = read_c0_depc();
1948 	debug = read_c0_debug();
1949 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1950 	if (debug & 0x80000000) {
1951 		/*
1952 		 * In branch delay slot.
1953 		 * We cheat a little bit here and use EPC to calculate the
1954 		 * debug return address (DEPC). EPC is restored after the
1955 		 * calculation.
1956 		 */
1957 		old_epc = regs->cp0_epc;
1958 		old_ra = regs->regs[31];
1959 		regs->cp0_epc = depc;
1960 		compute_return_epc(regs);
1961 		depc = regs->cp0_epc;
1962 		regs->cp0_epc = old_epc;
1963 		regs->regs[31] = old_ra;
1964 	} else
1965 		depc += 4;
1966 	write_c0_depc(depc);
1967 
1968 #if 0
1969 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1970 	write_c0_debug(debug | 0x100);
1971 #endif
1972 }
1973 
1974 /*
1975  * NMI exception handler.
1976  * No lock; only written during early bootup by CPU 0.
1977  */
1978 static RAW_NOTIFIER_HEAD(nmi_chain);
1979 
1980 int register_nmi_notifier(struct notifier_block *nb)
1981 {
1982 	return raw_notifier_chain_register(&nmi_chain, nb);
1983 }
1984 
1985 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1986 {
1987 	char str[100];
1988 
1989 	nmi_enter();
1990 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1991 	bust_spinlocks(1);
1992 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1993 		 smp_processor_id(), regs->cp0_epc);
1994 	regs->cp0_epc = read_c0_errorepc();
1995 	die(str, regs);
1996 	nmi_exit();
1997 }
1998 
1999 unsigned long ebase;
2000 EXPORT_SYMBOL_GPL(ebase);
2001 unsigned long exception_handlers[32];
2002 unsigned long vi_handlers[64];
2003 
2004 void reserve_exception_space(phys_addr_t addr, unsigned long size)
2005 {
2006 	memblock_reserve(addr, size);
2007 }
2008 
2009 void __init *set_except_vector(int n, void *addr)
2010 {
2011 	unsigned long handler = (unsigned long) addr;
2012 	unsigned long old_handler;
2013 
2014 #ifdef CONFIG_CPU_MICROMIPS
2015 	/*
2016 	 * Only the TLB handlers are cache aligned with an even
2017 	 * address. All other handlers are on an odd address and
2018 	 * require no modification. Otherwise, MIPS32 mode will
2019 	 * be entered when handling any TLB exceptions. That
2020 	 * would be bad...since we must stay in microMIPS mode.
2021 	 */
2022 	if (!(handler & 0x1))
2023 		handler |= 1;
2024 #endif
2025 	old_handler = xchg(&exception_handlers[n], handler);
2026 
2027 	if (n == 0 && cpu_has_divec) {
2028 #ifdef CONFIG_CPU_MICROMIPS
2029 		unsigned long jump_mask = ~((1 << 27) - 1);
2030 #else
2031 		unsigned long jump_mask = ~((1 << 28) - 1);
2032 #endif
2033 		u32 *buf = (u32 *)(ebase + 0x200);
2034 		unsigned int k0 = 26;
2035 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
2036 			uasm_i_j(&buf, handler & ~jump_mask);
2037 			uasm_i_nop(&buf);
2038 		} else {
2039 			UASM_i_LA(&buf, k0, handler);
2040 			uasm_i_jr(&buf, k0);
2041 			uasm_i_nop(&buf);
2042 		}
2043 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
2044 	}
2045 	return (void *)old_handler;
2046 }
2047 
2048 static void do_default_vi(void)
2049 {
2050 	show_regs(get_irq_regs());
2051 	panic("Caught unexpected vectored interrupt.");
2052 }
2053 
2054 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
2055 {
2056 	unsigned long handler;
2057 	unsigned long old_handler = vi_handlers[n];
2058 	int srssets = current_cpu_data.srsets;
2059 	u16 *h;
2060 	unsigned char *b;
2061 
2062 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
2063 
2064 	if (addr == NULL) {
2065 		handler = (unsigned long) do_default_vi;
2066 		srs = 0;
2067 	} else
2068 		handler = (unsigned long) addr;
2069 	vi_handlers[n] = handler;
2070 
2071 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2072 
2073 	if (srs >= srssets)
2074 		panic("Shadow register set %d not supported", srs);
2075 
2076 	if (cpu_has_veic) {
2077 		if (board_bind_eic_interrupt)
2078 			board_bind_eic_interrupt(n, srs);
2079 	} else if (cpu_has_vint) {
2080 		/* SRSMap is only defined if shadow sets are implemented */
2081 		if (srssets > 1)
2082 			change_c0_srsmap(0xf << n*4, srs << n*4);
2083 	}
2084 
2085 	if (srs == 0) {
2086 		/*
2087 		 * If no shadow set is selected then use the default handler
2088 		 * that does normal register saving and standard interrupt exit
2089 		 */
2090 		extern char except_vec_vi, except_vec_vi_lui;
2091 		extern char except_vec_vi_ori, except_vec_vi_end;
2092 		extern char rollback_except_vec_vi;
2093 		char *vec_start = using_rollback_handler() ?
2094 			&rollback_except_vec_vi : &except_vec_vi;
2095 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2096 		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2097 		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2098 #else
2099 		const int lui_offset = &except_vec_vi_lui - vec_start;
2100 		const int ori_offset = &except_vec_vi_ori - vec_start;
2101 #endif
2102 		const int handler_len = &except_vec_vi_end - vec_start;
2103 
2104 		if (handler_len > VECTORSPACING) {
2105 			/*
2106 			 * Sigh... panicing won't help as the console
2107 			 * is probably not configured :(
2108 			 */
2109 			panic("VECTORSPACING too small");
2110 		}
2111 
2112 		set_handler(((unsigned long)b - ebase), vec_start,
2113 #ifdef CONFIG_CPU_MICROMIPS
2114 				(handler_len - 1));
2115 #else
2116 				handler_len);
2117 #endif
2118 		h = (u16 *)(b + lui_offset);
2119 		*h = (handler >> 16) & 0xffff;
2120 		h = (u16 *)(b + ori_offset);
2121 		*h = (handler & 0xffff);
2122 		local_flush_icache_range((unsigned long)b,
2123 					 (unsigned long)(b+handler_len));
2124 	}
2125 	else {
2126 		/*
2127 		 * In other cases jump directly to the interrupt handler. It
2128 		 * is the handler's responsibility to save registers if required
2129 		 * (eg hi/lo) and return from the exception using "eret".
2130 		 */
2131 		u32 insn;
2132 
2133 		h = (u16 *)b;
2134 		/* j handler */
2135 #ifdef CONFIG_CPU_MICROMIPS
2136 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2137 #else
2138 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2139 #endif
2140 		h[0] = (insn >> 16) & 0xffff;
2141 		h[1] = insn & 0xffff;
2142 		h[2] = 0;
2143 		h[3] = 0;
2144 		local_flush_icache_range((unsigned long)b,
2145 					 (unsigned long)(b+8));
2146 	}
2147 
2148 	return (void *)old_handler;
2149 }
2150 
2151 void *set_vi_handler(int n, vi_handler_t addr)
2152 {
2153 	return set_vi_srs_handler(n, addr, 0);
2154 }
2155 
2156 extern void tlb_init(void);
2157 
2158 /*
2159  * Timer interrupt
2160  */
2161 int cp0_compare_irq;
2162 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2163 int cp0_compare_irq_shift;
2164 
2165 /*
2166  * Performance counter IRQ or -1 if shared with timer
2167  */
2168 int cp0_perfcount_irq;
2169 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2170 
2171 /*
2172  * Fast debug channel IRQ or -1 if not present
2173  */
2174 int cp0_fdc_irq;
2175 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2176 
2177 static int noulri;
2178 
2179 static int __init ulri_disable(char *s)
2180 {
2181 	pr_info("Disabling ulri\n");
2182 	noulri = 1;
2183 
2184 	return 1;
2185 }
2186 __setup("noulri", ulri_disable);
2187 
2188 /* configure STATUS register */
2189 static void configure_status(void)
2190 {
2191 	/*
2192 	 * Disable coprocessors and select 32-bit or 64-bit addressing
2193 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2194 	 * flag that some firmware may have left set and the TS bit (for
2195 	 * IP27).  Set XX for ISA IV code to work.
2196 	 */
2197 	unsigned int status_set = ST0_KERNEL_CUMASK;
2198 #ifdef CONFIG_64BIT
2199 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2200 #endif
2201 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2202 		status_set |= ST0_XX;
2203 	if (cpu_has_dsp)
2204 		status_set |= ST0_MX;
2205 
2206 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2207 			 status_set);
2208 	back_to_back_c0_hazard();
2209 }
2210 
2211 unsigned int hwrena;
2212 EXPORT_SYMBOL_GPL(hwrena);
2213 
2214 /* configure HWRENA register */
2215 static void configure_hwrena(void)
2216 {
2217 	hwrena = cpu_hwrena_impl_bits;
2218 
2219 	if (cpu_has_mips_r2_r6)
2220 		hwrena |= MIPS_HWRENA_CPUNUM |
2221 			  MIPS_HWRENA_SYNCISTEP |
2222 			  MIPS_HWRENA_CC |
2223 			  MIPS_HWRENA_CCRES;
2224 
2225 	if (!noulri && cpu_has_userlocal)
2226 		hwrena |= MIPS_HWRENA_ULR;
2227 
2228 	if (hwrena)
2229 		write_c0_hwrena(hwrena);
2230 }
2231 
2232 static void configure_exception_vector(void)
2233 {
2234 	if (cpu_has_mips_r2_r6) {
2235 		unsigned long sr = set_c0_status(ST0_BEV);
2236 		/* If available, use WG to set top bits of EBASE */
2237 		if (cpu_has_ebase_wg) {
2238 #ifdef CONFIG_64BIT
2239 			write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2240 #else
2241 			write_c0_ebase(ebase | MIPS_EBASE_WG);
2242 #endif
2243 		}
2244 		write_c0_ebase(ebase);
2245 		write_c0_status(sr);
2246 	}
2247 	if (cpu_has_veic || cpu_has_vint) {
2248 		/* Setting vector spacing enables EI/VI mode  */
2249 		change_c0_intctl(0x3e0, VECTORSPACING);
2250 	}
2251 	if (cpu_has_divec) {
2252 		if (cpu_has_mipsmt) {
2253 			unsigned int vpflags = dvpe();
2254 			set_c0_cause(CAUSEF_IV);
2255 			evpe(vpflags);
2256 		} else
2257 			set_c0_cause(CAUSEF_IV);
2258 	}
2259 }
2260 
2261 void per_cpu_trap_init(bool is_boot_cpu)
2262 {
2263 	unsigned int cpu = smp_processor_id();
2264 
2265 	configure_status();
2266 	configure_hwrena();
2267 
2268 	configure_exception_vector();
2269 
2270 	/*
2271 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2272 	 *
2273 	 *  o read IntCtl.IPTI to determine the timer interrupt
2274 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2275 	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2276 	 */
2277 	if (cpu_has_mips_r2_r6) {
2278 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2279 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2280 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2281 		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2282 		if (!cp0_fdc_irq)
2283 			cp0_fdc_irq = -1;
2284 
2285 	} else {
2286 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2287 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2288 		cp0_perfcount_irq = -1;
2289 		cp0_fdc_irq = -1;
2290 	}
2291 
2292 	if (cpu_has_mmid)
2293 		cpu_data[cpu].asid_cache = 0;
2294 	else if (!cpu_data[cpu].asid_cache)
2295 		cpu_data[cpu].asid_cache = asid_first_version(cpu);
2296 
2297 	mmgrab(&init_mm);
2298 	current->active_mm = &init_mm;
2299 	BUG_ON(current->mm);
2300 	enter_lazy_tlb(&init_mm, current);
2301 
2302 	/* Boot CPU's cache setup in setup_arch(). */
2303 	if (!is_boot_cpu)
2304 		cpu_cache_init();
2305 	tlb_init();
2306 	TLBMISS_HANDLER_SETUP();
2307 }
2308 
2309 /* Install CPU exception handler */
2310 void set_handler(unsigned long offset, void *addr, unsigned long size)
2311 {
2312 #ifdef CONFIG_CPU_MICROMIPS
2313 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2314 #else
2315 	memcpy((void *)(ebase + offset), addr, size);
2316 #endif
2317 	local_flush_icache_range(ebase + offset, ebase + offset + size);
2318 }
2319 
2320 static const char panic_null_cerr[] =
2321 	"Trying to set NULL cache error exception handler\n";
2322 
2323 /*
2324  * Install uncached CPU exception handler.
2325  * This is suitable only for the cache error exception which is the only
2326  * exception handler that is being run uncached.
2327  */
2328 void set_uncached_handler(unsigned long offset, void *addr,
2329 	unsigned long size)
2330 {
2331 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2332 
2333 	if (!addr)
2334 		panic(panic_null_cerr);
2335 
2336 	memcpy((void *)(uncached_ebase + offset), addr, size);
2337 }
2338 
2339 static int __initdata rdhwr_noopt;
2340 static int __init set_rdhwr_noopt(char *str)
2341 {
2342 	rdhwr_noopt = 1;
2343 	return 1;
2344 }
2345 
2346 __setup("rdhwr_noopt", set_rdhwr_noopt);
2347 
2348 void __init trap_init(void)
2349 {
2350 	extern char except_vec3_generic;
2351 	extern char except_vec4;
2352 	extern char except_vec3_r4000;
2353 	unsigned long i, vec_size;
2354 	phys_addr_t ebase_pa;
2355 
2356 	check_wait();
2357 
2358 	if (!cpu_has_mips_r2_r6) {
2359 		ebase = CAC_BASE;
2360 		vec_size = 0x400;
2361 	} else {
2362 		if (cpu_has_veic || cpu_has_vint)
2363 			vec_size = 0x200 + VECTORSPACING*64;
2364 		else
2365 			vec_size = PAGE_SIZE;
2366 
2367 		ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
2368 		if (!ebase_pa)
2369 			panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2370 			      __func__, vec_size, 1 << fls(vec_size));
2371 
2372 		/*
2373 		 * Try to ensure ebase resides in KSeg0 if possible.
2374 		 *
2375 		 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2376 		 * hitting a poorly defined exception base for Cache Errors.
2377 		 * The allocation is likely to be in the low 512MB of physical,
2378 		 * in which case we should be able to convert to KSeg0.
2379 		 *
2380 		 * EVA is special though as it allows segments to be rearranged
2381 		 * and to become uncached during cache error handling.
2382 		 */
2383 		if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2384 			ebase = CKSEG0ADDR(ebase_pa);
2385 		else
2386 			ebase = (unsigned long)phys_to_virt(ebase_pa);
2387 	}
2388 
2389 	if (cpu_has_mmips) {
2390 		unsigned int config3 = read_c0_config3();
2391 
2392 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2393 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2394 		else
2395 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2396 	}
2397 
2398 	if (board_ebase_setup)
2399 		board_ebase_setup();
2400 	per_cpu_trap_init(true);
2401 	memblock_set_bottom_up(false);
2402 
2403 	/*
2404 	 * Copy the generic exception handlers to their final destination.
2405 	 * This will be overridden later as suitable for a particular
2406 	 * configuration.
2407 	 */
2408 	set_handler(0x180, &except_vec3_generic, 0x80);
2409 
2410 	/*
2411 	 * Setup default vectors
2412 	 */
2413 	for (i = 0; i <= 31; i++)
2414 		set_except_vector(i, handle_reserved);
2415 
2416 	/*
2417 	 * Copy the EJTAG debug exception vector handler code to it's final
2418 	 * destination.
2419 	 */
2420 	if (cpu_has_ejtag && board_ejtag_handler_setup)
2421 		board_ejtag_handler_setup();
2422 
2423 	/*
2424 	 * Only some CPUs have the watch exceptions.
2425 	 */
2426 	if (cpu_has_watch)
2427 		set_except_vector(EXCCODE_WATCH, handle_watch);
2428 
2429 	/*
2430 	 * Initialise interrupt handlers
2431 	 */
2432 	if (cpu_has_veic || cpu_has_vint) {
2433 		int nvec = cpu_has_veic ? 64 : 8;
2434 		for (i = 0; i < nvec; i++)
2435 			set_vi_handler(i, NULL);
2436 	}
2437 	else if (cpu_has_divec)
2438 		set_handler(0x200, &except_vec4, 0x8);
2439 
2440 	/*
2441 	 * Some CPUs can enable/disable for cache parity detection, but does
2442 	 * it different ways.
2443 	 */
2444 	parity_protection_init();
2445 
2446 	/*
2447 	 * The Data Bus Errors / Instruction Bus Errors are signaled
2448 	 * by external hardware.  Therefore these two exceptions
2449 	 * may have board specific handlers.
2450 	 */
2451 	if (board_be_init)
2452 		board_be_init();
2453 
2454 	set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2455 					rollback_handle_int : handle_int);
2456 	set_except_vector(EXCCODE_MOD, handle_tlbm);
2457 	set_except_vector(EXCCODE_TLBL, handle_tlbl);
2458 	set_except_vector(EXCCODE_TLBS, handle_tlbs);
2459 
2460 	set_except_vector(EXCCODE_ADEL, handle_adel);
2461 	set_except_vector(EXCCODE_ADES, handle_ades);
2462 
2463 	set_except_vector(EXCCODE_IBE, handle_ibe);
2464 	set_except_vector(EXCCODE_DBE, handle_dbe);
2465 
2466 	set_except_vector(EXCCODE_SYS, handle_sys);
2467 	set_except_vector(EXCCODE_BP, handle_bp);
2468 
2469 	if (rdhwr_noopt)
2470 		set_except_vector(EXCCODE_RI, handle_ri);
2471 	else {
2472 		if (cpu_has_vtag_icache)
2473 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2474 		else if (current_cpu_type() == CPU_LOONGSON64)
2475 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2476 		else
2477 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2478 	}
2479 
2480 	set_except_vector(EXCCODE_CPU, handle_cpu);
2481 	set_except_vector(EXCCODE_OV, handle_ov);
2482 	set_except_vector(EXCCODE_TR, handle_tr);
2483 	set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2484 
2485 	if (board_nmi_handler_setup)
2486 		board_nmi_handler_setup();
2487 
2488 	if (cpu_has_fpu && !cpu_has_nofpuex)
2489 		set_except_vector(EXCCODE_FPE, handle_fpe);
2490 
2491 	if (cpu_has_ftlbparex)
2492 		set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2493 
2494 	if (cpu_has_gsexcex)
2495 		set_except_vector(LOONGSON_EXCCODE_GSEXC, handle_gsexc);
2496 
2497 	if (cpu_has_rixiex) {
2498 		set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2499 		set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2500 	}
2501 
2502 	set_except_vector(EXCCODE_MSADIS, handle_msa);
2503 	set_except_vector(EXCCODE_MDMX, handle_mdmx);
2504 
2505 	if (cpu_has_mcheck)
2506 		set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2507 
2508 	if (cpu_has_mipsmt)
2509 		set_except_vector(EXCCODE_THREAD, handle_mt);
2510 
2511 	set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2512 
2513 	if (board_cache_error_setup)
2514 		board_cache_error_setup();
2515 
2516 	if (cpu_has_vce)
2517 		/* Special exception: R4[04]00 uses also the divec space. */
2518 		set_handler(0x180, &except_vec3_r4000, 0x100);
2519 	else if (cpu_has_4kex)
2520 		set_handler(0x180, &except_vec3_generic, 0x80);
2521 	else
2522 		set_handler(0x080, &except_vec3_generic, 0x80);
2523 
2524 	local_flush_icache_range(ebase, ebase + vec_size);
2525 
2526 	sort_extable(__start___dbe_table, __stop___dbe_table);
2527 
2528 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2529 }
2530 
2531 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2532 			    void *v)
2533 {
2534 	switch (cmd) {
2535 	case CPU_PM_ENTER_FAILED:
2536 	case CPU_PM_EXIT:
2537 		configure_status();
2538 		configure_hwrena();
2539 		configure_exception_vector();
2540 
2541 		/* Restore register with CPU number for TLB handlers */
2542 		TLBMISS_HANDLER_RESTORE();
2543 
2544 		break;
2545 	}
2546 
2547 	return NOTIFY_OK;
2548 }
2549 
2550 static struct notifier_block trap_pm_notifier_block = {
2551 	.notifier_call = trap_pm_notifier,
2552 };
2553 
2554 static int __init trap_pm_init(void)
2555 {
2556 	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2557 }
2558 arch_initcall(trap_pm_init);
2559