xref: /openbmc/linux/arch/mips/kernel/traps.c (revision f0702555)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/smp.h>
27 #include <linux/spinlock.h>
28 #include <linux/kallsyms.h>
29 #include <linux/bootmem.h>
30 #include <linux/interrupt.h>
31 #include <linux/ptrace.h>
32 #include <linux/kgdb.h>
33 #include <linux/kdebug.h>
34 #include <linux/kprobes.h>
35 #include <linux/notifier.h>
36 #include <linux/kdb.h>
37 #include <linux/irq.h>
38 #include <linux/perf_event.h>
39 
40 #include <asm/addrspace.h>
41 #include <asm/bootinfo.h>
42 #include <asm/branch.h>
43 #include <asm/break.h>
44 #include <asm/cop2.h>
45 #include <asm/cpu.h>
46 #include <asm/cpu-type.h>
47 #include <asm/dsp.h>
48 #include <asm/fpu.h>
49 #include <asm/fpu_emulator.h>
50 #include <asm/idle.h>
51 #include <asm/mips-r2-to-r6-emul.h>
52 #include <asm/mipsregs.h>
53 #include <asm/mipsmtregs.h>
54 #include <asm/module.h>
55 #include <asm/msa.h>
56 #include <asm/pgtable.h>
57 #include <asm/ptrace.h>
58 #include <asm/sections.h>
59 #include <asm/siginfo.h>
60 #include <asm/tlbdebug.h>
61 #include <asm/traps.h>
62 #include <asm/uaccess.h>
63 #include <asm/watch.h>
64 #include <asm/mmu_context.h>
65 #include <asm/types.h>
66 #include <asm/stacktrace.h>
67 #include <asm/uasm.h>
68 
69 extern void check_wait(void);
70 extern asmlinkage void rollback_handle_int(void);
71 extern asmlinkage void handle_int(void);
72 extern u32 handle_tlbl[];
73 extern u32 handle_tlbs[];
74 extern u32 handle_tlbm[];
75 extern asmlinkage void handle_adel(void);
76 extern asmlinkage void handle_ades(void);
77 extern asmlinkage void handle_ibe(void);
78 extern asmlinkage void handle_dbe(void);
79 extern asmlinkage void handle_sys(void);
80 extern asmlinkage void handle_bp(void);
81 extern asmlinkage void handle_ri(void);
82 extern asmlinkage void handle_ri_rdhwr_vivt(void);
83 extern asmlinkage void handle_ri_rdhwr(void);
84 extern asmlinkage void handle_cpu(void);
85 extern asmlinkage void handle_ov(void);
86 extern asmlinkage void handle_tr(void);
87 extern asmlinkage void handle_msa_fpe(void);
88 extern asmlinkage void handle_fpe(void);
89 extern asmlinkage void handle_ftlb(void);
90 extern asmlinkage void handle_msa(void);
91 extern asmlinkage void handle_mdmx(void);
92 extern asmlinkage void handle_watch(void);
93 extern asmlinkage void handle_mt(void);
94 extern asmlinkage void handle_dsp(void);
95 extern asmlinkage void handle_mcheck(void);
96 extern asmlinkage void handle_reserved(void);
97 extern void tlb_do_page_fault_0(void);
98 
99 void (*board_be_init)(void);
100 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
101 void (*board_nmi_handler_setup)(void);
102 void (*board_ejtag_handler_setup)(void);
103 void (*board_bind_eic_interrupt)(int irq, int regset);
104 void (*board_ebase_setup)(void);
105 void(*board_cache_error_setup)(void);
106 
107 static void show_raw_backtrace(unsigned long reg29)
108 {
109 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
110 	unsigned long addr;
111 
112 	printk("Call Trace:");
113 #ifdef CONFIG_KALLSYMS
114 	printk("\n");
115 #endif
116 	while (!kstack_end(sp)) {
117 		unsigned long __user *p =
118 			(unsigned long __user *)(unsigned long)sp++;
119 		if (__get_user(addr, p)) {
120 			printk(" (Bad stack address)");
121 			break;
122 		}
123 		if (__kernel_text_address(addr))
124 			print_ip_sym(addr);
125 	}
126 	printk("\n");
127 }
128 
129 #ifdef CONFIG_KALLSYMS
130 int raw_show_trace;
131 static int __init set_raw_show_trace(char *str)
132 {
133 	raw_show_trace = 1;
134 	return 1;
135 }
136 __setup("raw_show_trace", set_raw_show_trace);
137 #endif
138 
139 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
140 {
141 	unsigned long sp = regs->regs[29];
142 	unsigned long ra = regs->regs[31];
143 	unsigned long pc = regs->cp0_epc;
144 
145 	if (!task)
146 		task = current;
147 
148 	if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
149 		show_raw_backtrace(sp);
150 		return;
151 	}
152 	printk("Call Trace:\n");
153 	do {
154 		print_ip_sym(pc);
155 		pc = unwind_stack(task, &sp, pc, &ra);
156 	} while (pc);
157 	printk("\n");
158 }
159 
160 /*
161  * This routine abuses get_user()/put_user() to reference pointers
162  * with at least a bit of error checking ...
163  */
164 static void show_stacktrace(struct task_struct *task,
165 	const struct pt_regs *regs)
166 {
167 	const int field = 2 * sizeof(unsigned long);
168 	long stackdata;
169 	int i;
170 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
171 
172 	printk("Stack :");
173 	i = 0;
174 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
175 		if (i && ((i % (64 / field)) == 0))
176 			printk("\n	 ");
177 		if (i > 39) {
178 			printk(" ...");
179 			break;
180 		}
181 
182 		if (__get_user(stackdata, sp++)) {
183 			printk(" (Bad stack address)");
184 			break;
185 		}
186 
187 		printk(" %0*lx", field, stackdata);
188 		i++;
189 	}
190 	printk("\n");
191 	show_backtrace(task, regs);
192 }
193 
194 void show_stack(struct task_struct *task, unsigned long *sp)
195 {
196 	struct pt_regs regs;
197 	mm_segment_t old_fs = get_fs();
198 	if (sp) {
199 		regs.regs[29] = (unsigned long)sp;
200 		regs.regs[31] = 0;
201 		regs.cp0_epc = 0;
202 	} else {
203 		if (task && task != current) {
204 			regs.regs[29] = task->thread.reg29;
205 			regs.regs[31] = 0;
206 			regs.cp0_epc = task->thread.reg31;
207 #ifdef CONFIG_KGDB_KDB
208 		} else if (atomic_read(&kgdb_active) != -1 &&
209 			   kdb_current_regs) {
210 			memcpy(&regs, kdb_current_regs, sizeof(regs));
211 #endif /* CONFIG_KGDB_KDB */
212 		} else {
213 			prepare_frametrace(&regs);
214 		}
215 	}
216 	/*
217 	 * show_stack() deals exclusively with kernel mode, so be sure to access
218 	 * the stack in the kernel (not user) address space.
219 	 */
220 	set_fs(KERNEL_DS);
221 	show_stacktrace(task, &regs);
222 	set_fs(old_fs);
223 }
224 
225 static void show_code(unsigned int __user *pc)
226 {
227 	long i;
228 	unsigned short __user *pc16 = NULL;
229 
230 	printk("\nCode:");
231 
232 	if ((unsigned long)pc & 1)
233 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
234 	for(i = -3 ; i < 6 ; i++) {
235 		unsigned int insn;
236 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
237 			printk(" (Bad address in epc)\n");
238 			break;
239 		}
240 		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
241 	}
242 }
243 
244 static void __show_regs(const struct pt_regs *regs)
245 {
246 	const int field = 2 * sizeof(unsigned long);
247 	unsigned int cause = regs->cp0_cause;
248 	unsigned int exccode;
249 	int i;
250 
251 	show_regs_print_info(KERN_DEFAULT);
252 
253 	/*
254 	 * Saved main processor registers
255 	 */
256 	for (i = 0; i < 32; ) {
257 		if ((i % 4) == 0)
258 			printk("$%2d   :", i);
259 		if (i == 0)
260 			printk(" %0*lx", field, 0UL);
261 		else if (i == 26 || i == 27)
262 			printk(" %*s", field, "");
263 		else
264 			printk(" %0*lx", field, regs->regs[i]);
265 
266 		i++;
267 		if ((i % 4) == 0)
268 			printk("\n");
269 	}
270 
271 #ifdef CONFIG_CPU_HAS_SMARTMIPS
272 	printk("Acx    : %0*lx\n", field, regs->acx);
273 #endif
274 	printk("Hi    : %0*lx\n", field, regs->hi);
275 	printk("Lo    : %0*lx\n", field, regs->lo);
276 
277 	/*
278 	 * Saved cp0 registers
279 	 */
280 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
281 	       (void *) regs->cp0_epc);
282 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
283 	       (void *) regs->regs[31]);
284 
285 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
286 
287 	if (cpu_has_3kex) {
288 		if (regs->cp0_status & ST0_KUO)
289 			printk("KUo ");
290 		if (regs->cp0_status & ST0_IEO)
291 			printk("IEo ");
292 		if (regs->cp0_status & ST0_KUP)
293 			printk("KUp ");
294 		if (regs->cp0_status & ST0_IEP)
295 			printk("IEp ");
296 		if (regs->cp0_status & ST0_KUC)
297 			printk("KUc ");
298 		if (regs->cp0_status & ST0_IEC)
299 			printk("IEc ");
300 	} else if (cpu_has_4kex) {
301 		if (regs->cp0_status & ST0_KX)
302 			printk("KX ");
303 		if (regs->cp0_status & ST0_SX)
304 			printk("SX ");
305 		if (regs->cp0_status & ST0_UX)
306 			printk("UX ");
307 		switch (regs->cp0_status & ST0_KSU) {
308 		case KSU_USER:
309 			printk("USER ");
310 			break;
311 		case KSU_SUPERVISOR:
312 			printk("SUPERVISOR ");
313 			break;
314 		case KSU_KERNEL:
315 			printk("KERNEL ");
316 			break;
317 		default:
318 			printk("BAD_MODE ");
319 			break;
320 		}
321 		if (regs->cp0_status & ST0_ERL)
322 			printk("ERL ");
323 		if (regs->cp0_status & ST0_EXL)
324 			printk("EXL ");
325 		if (regs->cp0_status & ST0_IE)
326 			printk("IE ");
327 	}
328 	printk("\n");
329 
330 	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
331 	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
332 
333 	if (1 <= exccode && exccode <= 5)
334 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
335 
336 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
337 	       cpu_name_string());
338 }
339 
340 /*
341  * FIXME: really the generic show_regs should take a const pointer argument.
342  */
343 void show_regs(struct pt_regs *regs)
344 {
345 	__show_regs((struct pt_regs *)regs);
346 }
347 
348 void show_registers(struct pt_regs *regs)
349 {
350 	const int field = 2 * sizeof(unsigned long);
351 	mm_segment_t old_fs = get_fs();
352 
353 	__show_regs(regs);
354 	print_modules();
355 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
356 	       current->comm, current->pid, current_thread_info(), current,
357 	      field, current_thread_info()->tp_value);
358 	if (cpu_has_userlocal) {
359 		unsigned long tls;
360 
361 		tls = read_c0_userlocal();
362 		if (tls != current_thread_info()->tp_value)
363 			printk("*HwTLS: %0*lx\n", field, tls);
364 	}
365 
366 	if (!user_mode(regs))
367 		/* Necessary for getting the correct stack content */
368 		set_fs(KERNEL_DS);
369 	show_stacktrace(current, regs);
370 	show_code((unsigned int __user *) regs->cp0_epc);
371 	printk("\n");
372 	set_fs(old_fs);
373 }
374 
375 static DEFINE_RAW_SPINLOCK(die_lock);
376 
377 void __noreturn die(const char *str, struct pt_regs *regs)
378 {
379 	static int die_counter;
380 	int sig = SIGSEGV;
381 
382 	oops_enter();
383 
384 	if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
385 		       SIGSEGV) == NOTIFY_STOP)
386 		sig = 0;
387 
388 	console_verbose();
389 	raw_spin_lock_irq(&die_lock);
390 	bust_spinlocks(1);
391 
392 	printk("%s[#%d]:\n", str, ++die_counter);
393 	show_registers(regs);
394 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
395 	raw_spin_unlock_irq(&die_lock);
396 
397 	oops_exit();
398 
399 	if (in_interrupt())
400 		panic("Fatal exception in interrupt");
401 
402 	if (panic_on_oops)
403 		panic("Fatal exception");
404 
405 	if (regs && kexec_should_crash(current))
406 		crash_kexec(regs);
407 
408 	do_exit(sig);
409 }
410 
411 extern struct exception_table_entry __start___dbe_table[];
412 extern struct exception_table_entry __stop___dbe_table[];
413 
414 __asm__(
415 "	.section	__dbe_table, \"a\"\n"
416 "	.previous			\n");
417 
418 /* Given an address, look for it in the exception tables. */
419 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
420 {
421 	const struct exception_table_entry *e;
422 
423 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
424 	if (!e)
425 		e = search_module_dbetables(addr);
426 	return e;
427 }
428 
429 asmlinkage void do_be(struct pt_regs *regs)
430 {
431 	const int field = 2 * sizeof(unsigned long);
432 	const struct exception_table_entry *fixup = NULL;
433 	int data = regs->cp0_cause & 4;
434 	int action = MIPS_BE_FATAL;
435 	enum ctx_state prev_state;
436 
437 	prev_state = exception_enter();
438 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
439 	if (data && !user_mode(regs))
440 		fixup = search_dbe_tables(exception_epc(regs));
441 
442 	if (fixup)
443 		action = MIPS_BE_FIXUP;
444 
445 	if (board_be_handler)
446 		action = board_be_handler(regs, fixup != NULL);
447 
448 	switch (action) {
449 	case MIPS_BE_DISCARD:
450 		goto out;
451 	case MIPS_BE_FIXUP:
452 		if (fixup) {
453 			regs->cp0_epc = fixup->nextinsn;
454 			goto out;
455 		}
456 		break;
457 	default:
458 		break;
459 	}
460 
461 	/*
462 	 * Assume it would be too dangerous to continue ...
463 	 */
464 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
465 	       data ? "Data" : "Instruction",
466 	       field, regs->cp0_epc, field, regs->regs[31]);
467 	if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
468 		       SIGBUS) == NOTIFY_STOP)
469 		goto out;
470 
471 	die_if_kernel("Oops", regs);
472 	force_sig(SIGBUS, current);
473 
474 out:
475 	exception_exit(prev_state);
476 }
477 
478 /*
479  * ll/sc, rdhwr, sync emulation
480  */
481 
482 #define OPCODE 0xfc000000
483 #define BASE   0x03e00000
484 #define RT     0x001f0000
485 #define OFFSET 0x0000ffff
486 #define LL     0xc0000000
487 #define SC     0xe0000000
488 #define SPEC0  0x00000000
489 #define SPEC3  0x7c000000
490 #define RD     0x0000f800
491 #define FUNC   0x0000003f
492 #define SYNC   0x0000000f
493 #define RDHWR  0x0000003b
494 
495 /*  microMIPS definitions   */
496 #define MM_POOL32A_FUNC 0xfc00ffff
497 #define MM_RDHWR        0x00006b3c
498 #define MM_RS           0x001f0000
499 #define MM_RT           0x03e00000
500 
501 /*
502  * The ll_bit is cleared by r*_switch.S
503  */
504 
505 unsigned int ll_bit;
506 struct task_struct *ll_task;
507 
508 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
509 {
510 	unsigned long value, __user *vaddr;
511 	long offset;
512 
513 	/*
514 	 * analyse the ll instruction that just caused a ri exception
515 	 * and put the referenced address to addr.
516 	 */
517 
518 	/* sign extend offset */
519 	offset = opcode & OFFSET;
520 	offset <<= 16;
521 	offset >>= 16;
522 
523 	vaddr = (unsigned long __user *)
524 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
525 
526 	if ((unsigned long)vaddr & 3)
527 		return SIGBUS;
528 	if (get_user(value, vaddr))
529 		return SIGSEGV;
530 
531 	preempt_disable();
532 
533 	if (ll_task == NULL || ll_task == current) {
534 		ll_bit = 1;
535 	} else {
536 		ll_bit = 0;
537 	}
538 	ll_task = current;
539 
540 	preempt_enable();
541 
542 	regs->regs[(opcode & RT) >> 16] = value;
543 
544 	return 0;
545 }
546 
547 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
548 {
549 	unsigned long __user *vaddr;
550 	unsigned long reg;
551 	long offset;
552 
553 	/*
554 	 * analyse the sc instruction that just caused a ri exception
555 	 * and put the referenced address to addr.
556 	 */
557 
558 	/* sign extend offset */
559 	offset = opcode & OFFSET;
560 	offset <<= 16;
561 	offset >>= 16;
562 
563 	vaddr = (unsigned long __user *)
564 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
565 	reg = (opcode & RT) >> 16;
566 
567 	if ((unsigned long)vaddr & 3)
568 		return SIGBUS;
569 
570 	preempt_disable();
571 
572 	if (ll_bit == 0 || ll_task != current) {
573 		regs->regs[reg] = 0;
574 		preempt_enable();
575 		return 0;
576 	}
577 
578 	preempt_enable();
579 
580 	if (put_user(regs->regs[reg], vaddr))
581 		return SIGSEGV;
582 
583 	regs->regs[reg] = 1;
584 
585 	return 0;
586 }
587 
588 /*
589  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
590  * opcodes are supposed to result in coprocessor unusable exceptions if
591  * executed on ll/sc-less processors.  That's the theory.  In practice a
592  * few processors such as NEC's VR4100 throw reserved instruction exceptions
593  * instead, so we're doing the emulation thing in both exception handlers.
594  */
595 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
596 {
597 	if ((opcode & OPCODE) == LL) {
598 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
599 				1, regs, 0);
600 		return simulate_ll(regs, opcode);
601 	}
602 	if ((opcode & OPCODE) == SC) {
603 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
604 				1, regs, 0);
605 		return simulate_sc(regs, opcode);
606 	}
607 
608 	return -1;			/* Must be something else ... */
609 }
610 
611 /*
612  * Simulate trapping 'rdhwr' instructions to provide user accessible
613  * registers not implemented in hardware.
614  */
615 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
616 {
617 	struct thread_info *ti = task_thread_info(current);
618 
619 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
620 			1, regs, 0);
621 	switch (rd) {
622 	case 0:		/* CPU number */
623 		regs->regs[rt] = smp_processor_id();
624 		return 0;
625 	case 1:		/* SYNCI length */
626 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
627 				     current_cpu_data.icache.linesz);
628 		return 0;
629 	case 2:		/* Read count register */
630 		regs->regs[rt] = read_c0_count();
631 		return 0;
632 	case 3:		/* Count register resolution */
633 		switch (current_cpu_type()) {
634 		case CPU_20KC:
635 		case CPU_25KF:
636 			regs->regs[rt] = 1;
637 			break;
638 		default:
639 			regs->regs[rt] = 2;
640 		}
641 		return 0;
642 	case 29:
643 		regs->regs[rt] = ti->tp_value;
644 		return 0;
645 	default:
646 		return -1;
647 	}
648 }
649 
650 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
651 {
652 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
653 		int rd = (opcode & RD) >> 11;
654 		int rt = (opcode & RT) >> 16;
655 
656 		simulate_rdhwr(regs, rd, rt);
657 		return 0;
658 	}
659 
660 	/* Not ours.  */
661 	return -1;
662 }
663 
664 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
665 {
666 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
667 		int rd = (opcode & MM_RS) >> 16;
668 		int rt = (opcode & MM_RT) >> 21;
669 		simulate_rdhwr(regs, rd, rt);
670 		return 0;
671 	}
672 
673 	/* Not ours.  */
674 	return -1;
675 }
676 
677 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
678 {
679 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
680 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
681 				1, regs, 0);
682 		return 0;
683 	}
684 
685 	return -1;			/* Must be something else ... */
686 }
687 
688 asmlinkage void do_ov(struct pt_regs *regs)
689 {
690 	enum ctx_state prev_state;
691 	siginfo_t info = {
692 		.si_signo = SIGFPE,
693 		.si_code = FPE_INTOVF,
694 		.si_addr = (void __user *)regs->cp0_epc,
695 	};
696 
697 	prev_state = exception_enter();
698 	die_if_kernel("Integer overflow", regs);
699 
700 	force_sig_info(SIGFPE, &info, current);
701 	exception_exit(prev_state);
702 }
703 
704 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
705 {
706 	struct siginfo si = { 0 };
707 
708 	switch (sig) {
709 	case 0:
710 		return 0;
711 
712 	case SIGFPE:
713 		si.si_addr = fault_addr;
714 		si.si_signo = sig;
715 		/*
716 		 * Inexact can happen together with Overflow or Underflow.
717 		 * Respect the mask to deliver the correct exception.
718 		 */
719 		fcr31 &= (fcr31 & FPU_CSR_ALL_E) <<
720 			 (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E));
721 		if (fcr31 & FPU_CSR_INV_X)
722 			si.si_code = FPE_FLTINV;
723 		else if (fcr31 & FPU_CSR_DIV_X)
724 			si.si_code = FPE_FLTDIV;
725 		else if (fcr31 & FPU_CSR_OVF_X)
726 			si.si_code = FPE_FLTOVF;
727 		else if (fcr31 & FPU_CSR_UDF_X)
728 			si.si_code = FPE_FLTUND;
729 		else if (fcr31 & FPU_CSR_INE_X)
730 			si.si_code = FPE_FLTRES;
731 		else
732 			si.si_code = __SI_FAULT;
733 		force_sig_info(sig, &si, current);
734 		return 1;
735 
736 	case SIGBUS:
737 		si.si_addr = fault_addr;
738 		si.si_signo = sig;
739 		si.si_code = BUS_ADRERR;
740 		force_sig_info(sig, &si, current);
741 		return 1;
742 
743 	case SIGSEGV:
744 		si.si_addr = fault_addr;
745 		si.si_signo = sig;
746 		down_read(&current->mm->mmap_sem);
747 		if (find_vma(current->mm, (unsigned long)fault_addr))
748 			si.si_code = SEGV_ACCERR;
749 		else
750 			si.si_code = SEGV_MAPERR;
751 		up_read(&current->mm->mmap_sem);
752 		force_sig_info(sig, &si, current);
753 		return 1;
754 
755 	default:
756 		force_sig(sig, current);
757 		return 1;
758 	}
759 }
760 
761 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
762 		       unsigned long old_epc, unsigned long old_ra)
763 {
764 	union mips_instruction inst = { .word = opcode };
765 	void __user *fault_addr;
766 	unsigned long fcr31;
767 	int sig;
768 
769 	/* If it's obviously not an FP instruction, skip it */
770 	switch (inst.i_format.opcode) {
771 	case cop1_op:
772 	case cop1x_op:
773 	case lwc1_op:
774 	case ldc1_op:
775 	case swc1_op:
776 	case sdc1_op:
777 		break;
778 
779 	default:
780 		return -1;
781 	}
782 
783 	/*
784 	 * do_ri skipped over the instruction via compute_return_epc, undo
785 	 * that for the FPU emulator.
786 	 */
787 	regs->cp0_epc = old_epc;
788 	regs->regs[31] = old_ra;
789 
790 	/* Save the FP context to struct thread_struct */
791 	lose_fpu(1);
792 
793 	/* Run the emulator */
794 	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
795 				       &fault_addr);
796 	fcr31 = current->thread.fpu.fcr31;
797 
798 	/*
799 	 * We can't allow the emulated instruction to leave any of
800 	 * the cause bits set in $fcr31.
801 	 */
802 	current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
803 
804 	/* Restore the hardware register state */
805 	own_fpu(1);
806 
807 	/* Send a signal if required.  */
808 	process_fpemu_return(sig, fault_addr, fcr31);
809 
810 	return 0;
811 }
812 
813 /*
814  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
815  */
816 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
817 {
818 	enum ctx_state prev_state;
819 	void __user *fault_addr;
820 	int sig;
821 
822 	prev_state = exception_enter();
823 	if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
824 		       SIGFPE) == NOTIFY_STOP)
825 		goto out;
826 
827 	/* Clear FCSR.Cause before enabling interrupts */
828 	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X);
829 	local_irq_enable();
830 
831 	die_if_kernel("FP exception in kernel code", regs);
832 
833 	if (fcr31 & FPU_CSR_UNI_X) {
834 		/*
835 		 * Unimplemented operation exception.  If we've got the full
836 		 * software emulator on-board, let's use it...
837 		 *
838 		 * Force FPU to dump state into task/thread context.  We're
839 		 * moving a lot of data here for what is probably a single
840 		 * instruction, but the alternative is to pre-decode the FP
841 		 * register operands before invoking the emulator, which seems
842 		 * a bit extreme for what should be an infrequent event.
843 		 */
844 		/* Ensure 'resume' not overwrite saved fp context again. */
845 		lose_fpu(1);
846 
847 		/* Run the emulator */
848 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
849 					       &fault_addr);
850 		fcr31 = current->thread.fpu.fcr31;
851 
852 		/*
853 		 * We can't allow the emulated instruction to leave any of
854 		 * the cause bits set in $fcr31.
855 		 */
856 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
857 
858 		/* Restore the hardware register state */
859 		own_fpu(1);	/* Using the FPU again.	 */
860 	} else {
861 		sig = SIGFPE;
862 		fault_addr = (void __user *) regs->cp0_epc;
863 	}
864 
865 	/* Send a signal if required.  */
866 	process_fpemu_return(sig, fault_addr, fcr31);
867 
868 out:
869 	exception_exit(prev_state);
870 }
871 
872 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
873 	const char *str)
874 {
875 	siginfo_t info = { 0 };
876 	char b[40];
877 
878 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
879 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
880 			 SIGTRAP) == NOTIFY_STOP)
881 		return;
882 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
883 
884 	if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
885 		       SIGTRAP) == NOTIFY_STOP)
886 		return;
887 
888 	/*
889 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
890 	 * insns, even for trap and break codes that indicate arithmetic
891 	 * failures.  Weird ...
892 	 * But should we continue the brokenness???  --macro
893 	 */
894 	switch (code) {
895 	case BRK_OVERFLOW:
896 	case BRK_DIVZERO:
897 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
898 		die_if_kernel(b, regs);
899 		if (code == BRK_DIVZERO)
900 			info.si_code = FPE_INTDIV;
901 		else
902 			info.si_code = FPE_INTOVF;
903 		info.si_signo = SIGFPE;
904 		info.si_addr = (void __user *) regs->cp0_epc;
905 		force_sig_info(SIGFPE, &info, current);
906 		break;
907 	case BRK_BUG:
908 		die_if_kernel("Kernel bug detected", regs);
909 		force_sig(SIGTRAP, current);
910 		break;
911 	case BRK_MEMU:
912 		/*
913 		 * This breakpoint code is used by the FPU emulator to retake
914 		 * control of the CPU after executing the instruction from the
915 		 * delay slot of an emulated branch.
916 		 *
917 		 * Terminate if exception was recognized as a delay slot return
918 		 * otherwise handle as normal.
919 		 */
920 		if (do_dsemulret(regs))
921 			return;
922 
923 		die_if_kernel("Math emu break/trap", regs);
924 		force_sig(SIGTRAP, current);
925 		break;
926 	default:
927 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
928 		die_if_kernel(b, regs);
929 		if (si_code) {
930 			info.si_signo = SIGTRAP;
931 			info.si_code = si_code;
932 			force_sig_info(SIGTRAP, &info, current);
933 		} else {
934 			force_sig(SIGTRAP, current);
935 		}
936 	}
937 }
938 
939 asmlinkage void do_bp(struct pt_regs *regs)
940 {
941 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
942 	unsigned int opcode, bcode;
943 	enum ctx_state prev_state;
944 	mm_segment_t seg;
945 
946 	seg = get_fs();
947 	if (!user_mode(regs))
948 		set_fs(KERNEL_DS);
949 
950 	prev_state = exception_enter();
951 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
952 	if (get_isa16_mode(regs->cp0_epc)) {
953 		u16 instr[2];
954 
955 		if (__get_user(instr[0], (u16 __user *)epc))
956 			goto out_sigsegv;
957 
958 		if (!cpu_has_mmips) {
959 			/* MIPS16e mode */
960 			bcode = (instr[0] >> 5) & 0x3f;
961 		} else if (mm_insn_16bit(instr[0])) {
962 			/* 16-bit microMIPS BREAK */
963 			bcode = instr[0] & 0xf;
964 		} else {
965 			/* 32-bit microMIPS BREAK */
966 			if (__get_user(instr[1], (u16 __user *)(epc + 2)))
967 				goto out_sigsegv;
968 			opcode = (instr[0] << 16) | instr[1];
969 			bcode = (opcode >> 6) & ((1 << 20) - 1);
970 		}
971 	} else {
972 		if (__get_user(opcode, (unsigned int __user *)epc))
973 			goto out_sigsegv;
974 		bcode = (opcode >> 6) & ((1 << 20) - 1);
975 	}
976 
977 	/*
978 	 * There is the ancient bug in the MIPS assemblers that the break
979 	 * code starts left to bit 16 instead to bit 6 in the opcode.
980 	 * Gas is bug-compatible, but not always, grrr...
981 	 * We handle both cases with a simple heuristics.  --macro
982 	 */
983 	if (bcode >= (1 << 10))
984 		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
985 
986 	/*
987 	 * notify the kprobe handlers, if instruction is likely to
988 	 * pertain to them.
989 	 */
990 	switch (bcode) {
991 	case BRK_UPROBE:
992 		if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
993 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
994 			goto out;
995 		else
996 			break;
997 	case BRK_UPROBE_XOL:
998 		if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
999 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1000 			goto out;
1001 		else
1002 			break;
1003 	case BRK_KPROBE_BP:
1004 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
1005 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1006 			goto out;
1007 		else
1008 			break;
1009 	case BRK_KPROBE_SSTEPBP:
1010 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1011 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1012 			goto out;
1013 		else
1014 			break;
1015 	default:
1016 		break;
1017 	}
1018 
1019 	do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1020 
1021 out:
1022 	set_fs(seg);
1023 	exception_exit(prev_state);
1024 	return;
1025 
1026 out_sigsegv:
1027 	force_sig(SIGSEGV, current);
1028 	goto out;
1029 }
1030 
1031 asmlinkage void do_tr(struct pt_regs *regs)
1032 {
1033 	u32 opcode, tcode = 0;
1034 	enum ctx_state prev_state;
1035 	u16 instr[2];
1036 	mm_segment_t seg;
1037 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1038 
1039 	seg = get_fs();
1040 	if (!user_mode(regs))
1041 		set_fs(get_ds());
1042 
1043 	prev_state = exception_enter();
1044 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1045 	if (get_isa16_mode(regs->cp0_epc)) {
1046 		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1047 		    __get_user(instr[1], (u16 __user *)(epc + 2)))
1048 			goto out_sigsegv;
1049 		opcode = (instr[0] << 16) | instr[1];
1050 		/* Immediate versions don't provide a code.  */
1051 		if (!(opcode & OPCODE))
1052 			tcode = (opcode >> 12) & ((1 << 4) - 1);
1053 	} else {
1054 		if (__get_user(opcode, (u32 __user *)epc))
1055 			goto out_sigsegv;
1056 		/* Immediate versions don't provide a code.  */
1057 		if (!(opcode & OPCODE))
1058 			tcode = (opcode >> 6) & ((1 << 10) - 1);
1059 	}
1060 
1061 	do_trap_or_bp(regs, tcode, 0, "Trap");
1062 
1063 out:
1064 	set_fs(seg);
1065 	exception_exit(prev_state);
1066 	return;
1067 
1068 out_sigsegv:
1069 	force_sig(SIGSEGV, current);
1070 	goto out;
1071 }
1072 
1073 asmlinkage void do_ri(struct pt_regs *regs)
1074 {
1075 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1076 	unsigned long old_epc = regs->cp0_epc;
1077 	unsigned long old31 = regs->regs[31];
1078 	enum ctx_state prev_state;
1079 	unsigned int opcode = 0;
1080 	int status = -1;
1081 
1082 	/*
1083 	 * Avoid any kernel code. Just emulate the R2 instruction
1084 	 * as quickly as possible.
1085 	 */
1086 	if (mipsr2_emulation && cpu_has_mips_r6 &&
1087 	    likely(user_mode(regs)) &&
1088 	    likely(get_user(opcode, epc) >= 0)) {
1089 		unsigned long fcr31 = 0;
1090 
1091 		status = mipsr2_decoder(regs, opcode, &fcr31);
1092 		switch (status) {
1093 		case 0:
1094 		case SIGEMT:
1095 			task_thread_info(current)->r2_emul_return = 1;
1096 			return;
1097 		case SIGILL:
1098 			goto no_r2_instr;
1099 		default:
1100 			process_fpemu_return(status,
1101 					     &current->thread.cp0_baduaddr,
1102 					     fcr31);
1103 			task_thread_info(current)->r2_emul_return = 1;
1104 			return;
1105 		}
1106 	}
1107 
1108 no_r2_instr:
1109 
1110 	prev_state = exception_enter();
1111 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1112 
1113 	if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1114 		       SIGILL) == NOTIFY_STOP)
1115 		goto out;
1116 
1117 	die_if_kernel("Reserved instruction in kernel code", regs);
1118 
1119 	if (unlikely(compute_return_epc(regs) < 0))
1120 		goto out;
1121 
1122 	if (!get_isa16_mode(regs->cp0_epc)) {
1123 		if (unlikely(get_user(opcode, epc) < 0))
1124 			status = SIGSEGV;
1125 
1126 		if (!cpu_has_llsc && status < 0)
1127 			status = simulate_llsc(regs, opcode);
1128 
1129 		if (status < 0)
1130 			status = simulate_rdhwr_normal(regs, opcode);
1131 
1132 		if (status < 0)
1133 			status = simulate_sync(regs, opcode);
1134 
1135 		if (status < 0)
1136 			status = simulate_fp(regs, opcode, old_epc, old31);
1137 	} else if (cpu_has_mmips) {
1138 		unsigned short mmop[2] = { 0 };
1139 
1140 		if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1141 			status = SIGSEGV;
1142 		if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1143 			status = SIGSEGV;
1144 		opcode = mmop[0];
1145 		opcode = (opcode << 16) | mmop[1];
1146 
1147 		if (status < 0)
1148 			status = simulate_rdhwr_mm(regs, opcode);
1149 	}
1150 
1151 	if (status < 0)
1152 		status = SIGILL;
1153 
1154 	if (unlikely(status > 0)) {
1155 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1156 		regs->regs[31] = old31;
1157 		force_sig(status, current);
1158 	}
1159 
1160 out:
1161 	exception_exit(prev_state);
1162 }
1163 
1164 /*
1165  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1166  * emulated more than some threshold number of instructions, force migration to
1167  * a "CPU" that has FP support.
1168  */
1169 static void mt_ase_fp_affinity(void)
1170 {
1171 #ifdef CONFIG_MIPS_MT_FPAFF
1172 	if (mt_fpemul_threshold > 0 &&
1173 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1174 		/*
1175 		 * If there's no FPU present, or if the application has already
1176 		 * restricted the allowed set to exclude any CPUs with FPUs,
1177 		 * we'll skip the procedure.
1178 		 */
1179 		if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1180 			cpumask_t tmask;
1181 
1182 			current->thread.user_cpus_allowed
1183 				= current->cpus_allowed;
1184 			cpumask_and(&tmask, &current->cpus_allowed,
1185 				    &mt_fpu_cpumask);
1186 			set_cpus_allowed_ptr(current, &tmask);
1187 			set_thread_flag(TIF_FPUBOUND);
1188 		}
1189 	}
1190 #endif /* CONFIG_MIPS_MT_FPAFF */
1191 }
1192 
1193 /*
1194  * No lock; only written during early bootup by CPU 0.
1195  */
1196 static RAW_NOTIFIER_HEAD(cu2_chain);
1197 
1198 int __ref register_cu2_notifier(struct notifier_block *nb)
1199 {
1200 	return raw_notifier_chain_register(&cu2_chain, nb);
1201 }
1202 
1203 int cu2_notifier_call_chain(unsigned long val, void *v)
1204 {
1205 	return raw_notifier_call_chain(&cu2_chain, val, v);
1206 }
1207 
1208 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1209 	void *data)
1210 {
1211 	struct pt_regs *regs = data;
1212 
1213 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1214 			      "instruction", regs);
1215 	force_sig(SIGILL, current);
1216 
1217 	return NOTIFY_OK;
1218 }
1219 
1220 static int wait_on_fp_mode_switch(atomic_t *p)
1221 {
1222 	/*
1223 	 * The FP mode for this task is currently being switched. That may
1224 	 * involve modifications to the format of this tasks FP context which
1225 	 * make it unsafe to proceed with execution for the moment. Instead,
1226 	 * schedule some other task.
1227 	 */
1228 	schedule();
1229 	return 0;
1230 }
1231 
1232 static int enable_restore_fp_context(int msa)
1233 {
1234 	int err, was_fpu_owner, prior_msa;
1235 
1236 	/*
1237 	 * If an FP mode switch is currently underway, wait for it to
1238 	 * complete before proceeding.
1239 	 */
1240 	wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1241 			 wait_on_fp_mode_switch, TASK_KILLABLE);
1242 
1243 	if (!used_math()) {
1244 		/* First time FP context user. */
1245 		preempt_disable();
1246 		err = init_fpu();
1247 		if (msa && !err) {
1248 			enable_msa();
1249 			init_msa_upper();
1250 			set_thread_flag(TIF_USEDMSA);
1251 			set_thread_flag(TIF_MSA_CTX_LIVE);
1252 		}
1253 		preempt_enable();
1254 		if (!err)
1255 			set_used_math();
1256 		return err;
1257 	}
1258 
1259 	/*
1260 	 * This task has formerly used the FP context.
1261 	 *
1262 	 * If this thread has no live MSA vector context then we can simply
1263 	 * restore the scalar FP context. If it has live MSA vector context
1264 	 * (that is, it has or may have used MSA since last performing a
1265 	 * function call) then we'll need to restore the vector context. This
1266 	 * applies even if we're currently only executing a scalar FP
1267 	 * instruction. This is because if we were to later execute an MSA
1268 	 * instruction then we'd either have to:
1269 	 *
1270 	 *  - Restore the vector context & clobber any registers modified by
1271 	 *    scalar FP instructions between now & then.
1272 	 *
1273 	 * or
1274 	 *
1275 	 *  - Not restore the vector context & lose the most significant bits
1276 	 *    of all vector registers.
1277 	 *
1278 	 * Neither of those options is acceptable. We cannot restore the least
1279 	 * significant bits of the registers now & only restore the most
1280 	 * significant bits later because the most significant bits of any
1281 	 * vector registers whose aliased FP register is modified now will have
1282 	 * been zeroed. We'd have no way to know that when restoring the vector
1283 	 * context & thus may load an outdated value for the most significant
1284 	 * bits of a vector register.
1285 	 */
1286 	if (!msa && !thread_msa_context_live())
1287 		return own_fpu(1);
1288 
1289 	/*
1290 	 * This task is using or has previously used MSA. Thus we require
1291 	 * that Status.FR == 1.
1292 	 */
1293 	preempt_disable();
1294 	was_fpu_owner = is_fpu_owner();
1295 	err = own_fpu_inatomic(0);
1296 	if (err)
1297 		goto out;
1298 
1299 	enable_msa();
1300 	write_msa_csr(current->thread.fpu.msacsr);
1301 	set_thread_flag(TIF_USEDMSA);
1302 
1303 	/*
1304 	 * If this is the first time that the task is using MSA and it has
1305 	 * previously used scalar FP in this time slice then we already nave
1306 	 * FP context which we shouldn't clobber. We do however need to clear
1307 	 * the upper 64b of each vector register so that this task has no
1308 	 * opportunity to see data left behind by another.
1309 	 */
1310 	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1311 	if (!prior_msa && was_fpu_owner) {
1312 		init_msa_upper();
1313 
1314 		goto out;
1315 	}
1316 
1317 	if (!prior_msa) {
1318 		/*
1319 		 * Restore the least significant 64b of each vector register
1320 		 * from the existing scalar FP context.
1321 		 */
1322 		_restore_fp(current);
1323 
1324 		/*
1325 		 * The task has not formerly used MSA, so clear the upper 64b
1326 		 * of each vector register such that it cannot see data left
1327 		 * behind by another task.
1328 		 */
1329 		init_msa_upper();
1330 	} else {
1331 		/* We need to restore the vector context. */
1332 		restore_msa(current);
1333 
1334 		/* Restore the scalar FP control & status register */
1335 		if (!was_fpu_owner)
1336 			write_32bit_cp1_register(CP1_STATUS,
1337 						 current->thread.fpu.fcr31);
1338 	}
1339 
1340 out:
1341 	preempt_enable();
1342 
1343 	return 0;
1344 }
1345 
1346 asmlinkage void do_cpu(struct pt_regs *regs)
1347 {
1348 	enum ctx_state prev_state;
1349 	unsigned int __user *epc;
1350 	unsigned long old_epc, old31;
1351 	void __user *fault_addr;
1352 	unsigned int opcode;
1353 	unsigned long fcr31;
1354 	unsigned int cpid;
1355 	int status, err;
1356 	int sig;
1357 
1358 	prev_state = exception_enter();
1359 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1360 
1361 	if (cpid != 2)
1362 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1363 
1364 	switch (cpid) {
1365 	case 0:
1366 		epc = (unsigned int __user *)exception_epc(regs);
1367 		old_epc = regs->cp0_epc;
1368 		old31 = regs->regs[31];
1369 		opcode = 0;
1370 		status = -1;
1371 
1372 		if (unlikely(compute_return_epc(regs) < 0))
1373 			break;
1374 
1375 		if (!get_isa16_mode(regs->cp0_epc)) {
1376 			if (unlikely(get_user(opcode, epc) < 0))
1377 				status = SIGSEGV;
1378 
1379 			if (!cpu_has_llsc && status < 0)
1380 				status = simulate_llsc(regs, opcode);
1381 		}
1382 
1383 		if (status < 0)
1384 			status = SIGILL;
1385 
1386 		if (unlikely(status > 0)) {
1387 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1388 			regs->regs[31] = old31;
1389 			force_sig(status, current);
1390 		}
1391 
1392 		break;
1393 
1394 	case 3:
1395 		/*
1396 		 * The COP3 opcode space and consequently the CP0.Status.CU3
1397 		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1398 		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1399 		 * up the space has been reused for COP1X instructions, that
1400 		 * are enabled by the CP0.Status.CU1 bit and consequently
1401 		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1402 		 * exceptions.  Some FPU-less processors that implement one
1403 		 * of these ISAs however use this code erroneously for COP1X
1404 		 * instructions.  Therefore we redirect this trap to the FP
1405 		 * emulator too.
1406 		 */
1407 		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1408 			force_sig(SIGILL, current);
1409 			break;
1410 		}
1411 		/* Fall through.  */
1412 
1413 	case 1:
1414 		err = enable_restore_fp_context(0);
1415 
1416 		if (raw_cpu_has_fpu && !err)
1417 			break;
1418 
1419 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1420 					       &fault_addr);
1421 		fcr31 = current->thread.fpu.fcr31;
1422 
1423 		/*
1424 		 * We can't allow the emulated instruction to leave
1425 		 * any of the cause bits set in $fcr31.
1426 		 */
1427 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
1428 
1429 		/* Send a signal if required.  */
1430 		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1431 			mt_ase_fp_affinity();
1432 
1433 		break;
1434 
1435 	case 2:
1436 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1437 		break;
1438 	}
1439 
1440 	exception_exit(prev_state);
1441 }
1442 
1443 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1444 {
1445 	enum ctx_state prev_state;
1446 
1447 	prev_state = exception_enter();
1448 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1449 	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1450 		       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1451 		goto out;
1452 
1453 	/* Clear MSACSR.Cause before enabling interrupts */
1454 	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1455 	local_irq_enable();
1456 
1457 	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1458 	force_sig(SIGFPE, current);
1459 out:
1460 	exception_exit(prev_state);
1461 }
1462 
1463 asmlinkage void do_msa(struct pt_regs *regs)
1464 {
1465 	enum ctx_state prev_state;
1466 	int err;
1467 
1468 	prev_state = exception_enter();
1469 
1470 	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1471 		force_sig(SIGILL, current);
1472 		goto out;
1473 	}
1474 
1475 	die_if_kernel("do_msa invoked from kernel context!", regs);
1476 
1477 	err = enable_restore_fp_context(1);
1478 	if (err)
1479 		force_sig(SIGILL, current);
1480 out:
1481 	exception_exit(prev_state);
1482 }
1483 
1484 asmlinkage void do_mdmx(struct pt_regs *regs)
1485 {
1486 	enum ctx_state prev_state;
1487 
1488 	prev_state = exception_enter();
1489 	force_sig(SIGILL, current);
1490 	exception_exit(prev_state);
1491 }
1492 
1493 /*
1494  * Called with interrupts disabled.
1495  */
1496 asmlinkage void do_watch(struct pt_regs *regs)
1497 {
1498 	siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT };
1499 	enum ctx_state prev_state;
1500 
1501 	prev_state = exception_enter();
1502 	/*
1503 	 * Clear WP (bit 22) bit of cause register so we don't loop
1504 	 * forever.
1505 	 */
1506 	clear_c0_cause(CAUSEF_WP);
1507 
1508 	/*
1509 	 * If the current thread has the watch registers loaded, save
1510 	 * their values and send SIGTRAP.  Otherwise another thread
1511 	 * left the registers set, clear them and continue.
1512 	 */
1513 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1514 		mips_read_watch_registers();
1515 		local_irq_enable();
1516 		force_sig_info(SIGTRAP, &info, current);
1517 	} else {
1518 		mips_clear_watch_registers();
1519 		local_irq_enable();
1520 	}
1521 	exception_exit(prev_state);
1522 }
1523 
1524 asmlinkage void do_mcheck(struct pt_regs *regs)
1525 {
1526 	int multi_match = regs->cp0_status & ST0_TS;
1527 	enum ctx_state prev_state;
1528 	mm_segment_t old_fs = get_fs();
1529 
1530 	prev_state = exception_enter();
1531 	show_regs(regs);
1532 
1533 	if (multi_match) {
1534 		dump_tlb_regs();
1535 		pr_info("\n");
1536 		dump_tlb_all();
1537 	}
1538 
1539 	if (!user_mode(regs))
1540 		set_fs(KERNEL_DS);
1541 
1542 	show_code((unsigned int __user *) regs->cp0_epc);
1543 
1544 	set_fs(old_fs);
1545 
1546 	/*
1547 	 * Some chips may have other causes of machine check (e.g. SB1
1548 	 * graduation timer)
1549 	 */
1550 	panic("Caught Machine Check exception - %scaused by multiple "
1551 	      "matching entries in the TLB.",
1552 	      (multi_match) ? "" : "not ");
1553 }
1554 
1555 asmlinkage void do_mt(struct pt_regs *regs)
1556 {
1557 	int subcode;
1558 
1559 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1560 			>> VPECONTROL_EXCPT_SHIFT;
1561 	switch (subcode) {
1562 	case 0:
1563 		printk(KERN_DEBUG "Thread Underflow\n");
1564 		break;
1565 	case 1:
1566 		printk(KERN_DEBUG "Thread Overflow\n");
1567 		break;
1568 	case 2:
1569 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1570 		break;
1571 	case 3:
1572 		printk(KERN_DEBUG "Gating Storage Exception\n");
1573 		break;
1574 	case 4:
1575 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1576 		break;
1577 	case 5:
1578 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1579 		break;
1580 	default:
1581 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1582 			subcode);
1583 		break;
1584 	}
1585 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1586 
1587 	force_sig(SIGILL, current);
1588 }
1589 
1590 
1591 asmlinkage void do_dsp(struct pt_regs *regs)
1592 {
1593 	if (cpu_has_dsp)
1594 		panic("Unexpected DSP exception");
1595 
1596 	force_sig(SIGILL, current);
1597 }
1598 
1599 asmlinkage void do_reserved(struct pt_regs *regs)
1600 {
1601 	/*
1602 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1603 	 * caused by a new unknown cpu type or after another deadly
1604 	 * hard/software error.
1605 	 */
1606 	show_regs(regs);
1607 	panic("Caught reserved exception %ld - should not happen.",
1608 	      (regs->cp0_cause & 0x7f) >> 2);
1609 }
1610 
1611 static int __initdata l1parity = 1;
1612 static int __init nol1parity(char *s)
1613 {
1614 	l1parity = 0;
1615 	return 1;
1616 }
1617 __setup("nol1par", nol1parity);
1618 static int __initdata l2parity = 1;
1619 static int __init nol2parity(char *s)
1620 {
1621 	l2parity = 0;
1622 	return 1;
1623 }
1624 __setup("nol2par", nol2parity);
1625 
1626 /*
1627  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1628  * it different ways.
1629  */
1630 static inline void parity_protection_init(void)
1631 {
1632 	switch (current_cpu_type()) {
1633 	case CPU_24K:
1634 	case CPU_34K:
1635 	case CPU_74K:
1636 	case CPU_1004K:
1637 	case CPU_1074K:
1638 	case CPU_INTERAPTIV:
1639 	case CPU_PROAPTIV:
1640 	case CPU_P5600:
1641 	case CPU_QEMU_GENERIC:
1642 	case CPU_I6400:
1643 	case CPU_P6600:
1644 		{
1645 #define ERRCTL_PE	0x80000000
1646 #define ERRCTL_L2P	0x00800000
1647 			unsigned long errctl;
1648 			unsigned int l1parity_present, l2parity_present;
1649 
1650 			errctl = read_c0_ecc();
1651 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1652 
1653 			/* probe L1 parity support */
1654 			write_c0_ecc(errctl | ERRCTL_PE);
1655 			back_to_back_c0_hazard();
1656 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1657 
1658 			/* probe L2 parity support */
1659 			write_c0_ecc(errctl|ERRCTL_L2P);
1660 			back_to_back_c0_hazard();
1661 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1662 
1663 			if (l1parity_present && l2parity_present) {
1664 				if (l1parity)
1665 					errctl |= ERRCTL_PE;
1666 				if (l1parity ^ l2parity)
1667 					errctl |= ERRCTL_L2P;
1668 			} else if (l1parity_present) {
1669 				if (l1parity)
1670 					errctl |= ERRCTL_PE;
1671 			} else if (l2parity_present) {
1672 				if (l2parity)
1673 					errctl |= ERRCTL_L2P;
1674 			} else {
1675 				/* No parity available */
1676 			}
1677 
1678 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1679 
1680 			write_c0_ecc(errctl);
1681 			back_to_back_c0_hazard();
1682 			errctl = read_c0_ecc();
1683 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1684 
1685 			if (l1parity_present)
1686 				printk(KERN_INFO "Cache parity protection %sabled\n",
1687 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1688 
1689 			if (l2parity_present) {
1690 				if (l1parity_present && l1parity)
1691 					errctl ^= ERRCTL_L2P;
1692 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1693 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1694 			}
1695 		}
1696 		break;
1697 
1698 	case CPU_5KC:
1699 	case CPU_5KE:
1700 	case CPU_LOONGSON1:
1701 		write_c0_ecc(0x80000000);
1702 		back_to_back_c0_hazard();
1703 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1704 		printk(KERN_INFO "Cache parity protection %sabled\n",
1705 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1706 		break;
1707 	case CPU_20KC:
1708 	case CPU_25KF:
1709 		/* Clear the DE bit (bit 16) in the c0_status register. */
1710 		printk(KERN_INFO "Enable cache parity protection for "
1711 		       "MIPS 20KC/25KF CPUs.\n");
1712 		clear_c0_status(ST0_DE);
1713 		break;
1714 	default:
1715 		break;
1716 	}
1717 }
1718 
1719 asmlinkage void cache_parity_error(void)
1720 {
1721 	const int field = 2 * sizeof(unsigned long);
1722 	unsigned int reg_val;
1723 
1724 	/* For the moment, report the problem and hang. */
1725 	printk("Cache error exception:\n");
1726 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1727 	reg_val = read_c0_cacheerr();
1728 	printk("c0_cacheerr == %08x\n", reg_val);
1729 
1730 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1731 	       reg_val & (1<<30) ? "secondary" : "primary",
1732 	       reg_val & (1<<31) ? "data" : "insn");
1733 	if ((cpu_has_mips_r2_r6) &&
1734 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1735 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1736 			reg_val & (1<<29) ? "ED " : "",
1737 			reg_val & (1<<28) ? "ET " : "",
1738 			reg_val & (1<<27) ? "ES " : "",
1739 			reg_val & (1<<26) ? "EE " : "",
1740 			reg_val & (1<<25) ? "EB " : "",
1741 			reg_val & (1<<24) ? "EI " : "",
1742 			reg_val & (1<<23) ? "E1 " : "",
1743 			reg_val & (1<<22) ? "E0 " : "");
1744 	} else {
1745 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1746 			reg_val & (1<<29) ? "ED " : "",
1747 			reg_val & (1<<28) ? "ET " : "",
1748 			reg_val & (1<<26) ? "EE " : "",
1749 			reg_val & (1<<25) ? "EB " : "",
1750 			reg_val & (1<<24) ? "EI " : "",
1751 			reg_val & (1<<23) ? "E1 " : "",
1752 			reg_val & (1<<22) ? "E0 " : "");
1753 	}
1754 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1755 
1756 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1757 	if (reg_val & (1<<22))
1758 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1759 
1760 	if (reg_val & (1<<23))
1761 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1762 #endif
1763 
1764 	panic("Can't handle the cache error!");
1765 }
1766 
1767 asmlinkage void do_ftlb(void)
1768 {
1769 	const int field = 2 * sizeof(unsigned long);
1770 	unsigned int reg_val;
1771 
1772 	/* For the moment, report the problem and hang. */
1773 	if ((cpu_has_mips_r2_r6) &&
1774 	    (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1775 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1776 		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1777 		       read_c0_ecc());
1778 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1779 		reg_val = read_c0_cacheerr();
1780 		pr_err("c0_cacheerr == %08x\n", reg_val);
1781 
1782 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1783 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1784 		} else {
1785 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1786 			       reg_val & (1<<30) ? "secondary" : "primary",
1787 			       reg_val & (1<<31) ? "data" : "insn");
1788 		}
1789 	} else {
1790 		pr_err("FTLB error exception\n");
1791 	}
1792 	/* Just print the cacheerr bits for now */
1793 	cache_parity_error();
1794 }
1795 
1796 /*
1797  * SDBBP EJTAG debug exception handler.
1798  * We skip the instruction and return to the next instruction.
1799  */
1800 void ejtag_exception_handler(struct pt_regs *regs)
1801 {
1802 	const int field = 2 * sizeof(unsigned long);
1803 	unsigned long depc, old_epc, old_ra;
1804 	unsigned int debug;
1805 
1806 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1807 	depc = read_c0_depc();
1808 	debug = read_c0_debug();
1809 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1810 	if (debug & 0x80000000) {
1811 		/*
1812 		 * In branch delay slot.
1813 		 * We cheat a little bit here and use EPC to calculate the
1814 		 * debug return address (DEPC). EPC is restored after the
1815 		 * calculation.
1816 		 */
1817 		old_epc = regs->cp0_epc;
1818 		old_ra = regs->regs[31];
1819 		regs->cp0_epc = depc;
1820 		compute_return_epc(regs);
1821 		depc = regs->cp0_epc;
1822 		regs->cp0_epc = old_epc;
1823 		regs->regs[31] = old_ra;
1824 	} else
1825 		depc += 4;
1826 	write_c0_depc(depc);
1827 
1828 #if 0
1829 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1830 	write_c0_debug(debug | 0x100);
1831 #endif
1832 }
1833 
1834 /*
1835  * NMI exception handler.
1836  * No lock; only written during early bootup by CPU 0.
1837  */
1838 static RAW_NOTIFIER_HEAD(nmi_chain);
1839 
1840 int register_nmi_notifier(struct notifier_block *nb)
1841 {
1842 	return raw_notifier_chain_register(&nmi_chain, nb);
1843 }
1844 
1845 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1846 {
1847 	char str[100];
1848 
1849 	nmi_enter();
1850 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1851 	bust_spinlocks(1);
1852 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1853 		 smp_processor_id(), regs->cp0_epc);
1854 	regs->cp0_epc = read_c0_errorepc();
1855 	die(str, regs);
1856 	nmi_exit();
1857 }
1858 
1859 #define VECTORSPACING 0x100	/* for EI/VI mode */
1860 
1861 unsigned long ebase;
1862 unsigned long exception_handlers[32];
1863 unsigned long vi_handlers[64];
1864 
1865 void __init *set_except_vector(int n, void *addr)
1866 {
1867 	unsigned long handler = (unsigned long) addr;
1868 	unsigned long old_handler;
1869 
1870 #ifdef CONFIG_CPU_MICROMIPS
1871 	/*
1872 	 * Only the TLB handlers are cache aligned with an even
1873 	 * address. All other handlers are on an odd address and
1874 	 * require no modification. Otherwise, MIPS32 mode will
1875 	 * be entered when handling any TLB exceptions. That
1876 	 * would be bad...since we must stay in microMIPS mode.
1877 	 */
1878 	if (!(handler & 0x1))
1879 		handler |= 1;
1880 #endif
1881 	old_handler = xchg(&exception_handlers[n], handler);
1882 
1883 	if (n == 0 && cpu_has_divec) {
1884 #ifdef CONFIG_CPU_MICROMIPS
1885 		unsigned long jump_mask = ~((1 << 27) - 1);
1886 #else
1887 		unsigned long jump_mask = ~((1 << 28) - 1);
1888 #endif
1889 		u32 *buf = (u32 *)(ebase + 0x200);
1890 		unsigned int k0 = 26;
1891 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1892 			uasm_i_j(&buf, handler & ~jump_mask);
1893 			uasm_i_nop(&buf);
1894 		} else {
1895 			UASM_i_LA(&buf, k0, handler);
1896 			uasm_i_jr(&buf, k0);
1897 			uasm_i_nop(&buf);
1898 		}
1899 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1900 	}
1901 	return (void *)old_handler;
1902 }
1903 
1904 static void do_default_vi(void)
1905 {
1906 	show_regs(get_irq_regs());
1907 	panic("Caught unexpected vectored interrupt.");
1908 }
1909 
1910 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1911 {
1912 	unsigned long handler;
1913 	unsigned long old_handler = vi_handlers[n];
1914 	int srssets = current_cpu_data.srsets;
1915 	u16 *h;
1916 	unsigned char *b;
1917 
1918 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1919 
1920 	if (addr == NULL) {
1921 		handler = (unsigned long) do_default_vi;
1922 		srs = 0;
1923 	} else
1924 		handler = (unsigned long) addr;
1925 	vi_handlers[n] = handler;
1926 
1927 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1928 
1929 	if (srs >= srssets)
1930 		panic("Shadow register set %d not supported", srs);
1931 
1932 	if (cpu_has_veic) {
1933 		if (board_bind_eic_interrupt)
1934 			board_bind_eic_interrupt(n, srs);
1935 	} else if (cpu_has_vint) {
1936 		/* SRSMap is only defined if shadow sets are implemented */
1937 		if (srssets > 1)
1938 			change_c0_srsmap(0xf << n*4, srs << n*4);
1939 	}
1940 
1941 	if (srs == 0) {
1942 		/*
1943 		 * If no shadow set is selected then use the default handler
1944 		 * that does normal register saving and standard interrupt exit
1945 		 */
1946 		extern char except_vec_vi, except_vec_vi_lui;
1947 		extern char except_vec_vi_ori, except_vec_vi_end;
1948 		extern char rollback_except_vec_vi;
1949 		char *vec_start = using_rollback_handler() ?
1950 			&rollback_except_vec_vi : &except_vec_vi;
1951 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1952 		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1953 		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1954 #else
1955 		const int lui_offset = &except_vec_vi_lui - vec_start;
1956 		const int ori_offset = &except_vec_vi_ori - vec_start;
1957 #endif
1958 		const int handler_len = &except_vec_vi_end - vec_start;
1959 
1960 		if (handler_len > VECTORSPACING) {
1961 			/*
1962 			 * Sigh... panicing won't help as the console
1963 			 * is probably not configured :(
1964 			 */
1965 			panic("VECTORSPACING too small");
1966 		}
1967 
1968 		set_handler(((unsigned long)b - ebase), vec_start,
1969 #ifdef CONFIG_CPU_MICROMIPS
1970 				(handler_len - 1));
1971 #else
1972 				handler_len);
1973 #endif
1974 		h = (u16 *)(b + lui_offset);
1975 		*h = (handler >> 16) & 0xffff;
1976 		h = (u16 *)(b + ori_offset);
1977 		*h = (handler & 0xffff);
1978 		local_flush_icache_range((unsigned long)b,
1979 					 (unsigned long)(b+handler_len));
1980 	}
1981 	else {
1982 		/*
1983 		 * In other cases jump directly to the interrupt handler. It
1984 		 * is the handler's responsibility to save registers if required
1985 		 * (eg hi/lo) and return from the exception using "eret".
1986 		 */
1987 		u32 insn;
1988 
1989 		h = (u16 *)b;
1990 		/* j handler */
1991 #ifdef CONFIG_CPU_MICROMIPS
1992 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
1993 #else
1994 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
1995 #endif
1996 		h[0] = (insn >> 16) & 0xffff;
1997 		h[1] = insn & 0xffff;
1998 		h[2] = 0;
1999 		h[3] = 0;
2000 		local_flush_icache_range((unsigned long)b,
2001 					 (unsigned long)(b+8));
2002 	}
2003 
2004 	return (void *)old_handler;
2005 }
2006 
2007 void *set_vi_handler(int n, vi_handler_t addr)
2008 {
2009 	return set_vi_srs_handler(n, addr, 0);
2010 }
2011 
2012 extern void tlb_init(void);
2013 
2014 /*
2015  * Timer interrupt
2016  */
2017 int cp0_compare_irq;
2018 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2019 int cp0_compare_irq_shift;
2020 
2021 /*
2022  * Performance counter IRQ or -1 if shared with timer
2023  */
2024 int cp0_perfcount_irq;
2025 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2026 
2027 /*
2028  * Fast debug channel IRQ or -1 if not present
2029  */
2030 int cp0_fdc_irq;
2031 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2032 
2033 static int noulri;
2034 
2035 static int __init ulri_disable(char *s)
2036 {
2037 	pr_info("Disabling ulri\n");
2038 	noulri = 1;
2039 
2040 	return 1;
2041 }
2042 __setup("noulri", ulri_disable);
2043 
2044 /* configure STATUS register */
2045 static void configure_status(void)
2046 {
2047 	/*
2048 	 * Disable coprocessors and select 32-bit or 64-bit addressing
2049 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2050 	 * flag that some firmware may have left set and the TS bit (for
2051 	 * IP27).  Set XX for ISA IV code to work.
2052 	 */
2053 	unsigned int status_set = ST0_CU0;
2054 #ifdef CONFIG_64BIT
2055 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2056 #endif
2057 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2058 		status_set |= ST0_XX;
2059 	if (cpu_has_dsp)
2060 		status_set |= ST0_MX;
2061 
2062 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2063 			 status_set);
2064 }
2065 
2066 /* configure HWRENA register */
2067 static void configure_hwrena(void)
2068 {
2069 	unsigned int hwrena = cpu_hwrena_impl_bits;
2070 
2071 	if (cpu_has_mips_r2_r6)
2072 		hwrena |= 0x0000000f;
2073 
2074 	if (!noulri && cpu_has_userlocal)
2075 		hwrena |= (1 << 29);
2076 
2077 	if (hwrena)
2078 		write_c0_hwrena(hwrena);
2079 }
2080 
2081 static void configure_exception_vector(void)
2082 {
2083 	if (cpu_has_veic || cpu_has_vint) {
2084 		unsigned long sr = set_c0_status(ST0_BEV);
2085 		write_c0_ebase(ebase);
2086 		write_c0_status(sr);
2087 		/* Setting vector spacing enables EI/VI mode  */
2088 		change_c0_intctl(0x3e0, VECTORSPACING);
2089 	}
2090 	if (cpu_has_divec) {
2091 		if (cpu_has_mipsmt) {
2092 			unsigned int vpflags = dvpe();
2093 			set_c0_cause(CAUSEF_IV);
2094 			evpe(vpflags);
2095 		} else
2096 			set_c0_cause(CAUSEF_IV);
2097 	}
2098 }
2099 
2100 void per_cpu_trap_init(bool is_boot_cpu)
2101 {
2102 	unsigned int cpu = smp_processor_id();
2103 
2104 	configure_status();
2105 	configure_hwrena();
2106 
2107 	configure_exception_vector();
2108 
2109 	/*
2110 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2111 	 *
2112 	 *  o read IntCtl.IPTI to determine the timer interrupt
2113 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2114 	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2115 	 */
2116 	if (cpu_has_mips_r2_r6) {
2117 		/*
2118 		 * We shouldn't trust a secondary core has a sane EBASE register
2119 		 * so use the one calculated by the boot CPU.
2120 		 */
2121 		if (!is_boot_cpu)
2122 			write_c0_ebase(ebase);
2123 
2124 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2125 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2126 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2127 		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2128 		if (!cp0_fdc_irq)
2129 			cp0_fdc_irq = -1;
2130 
2131 	} else {
2132 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2133 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2134 		cp0_perfcount_irq = -1;
2135 		cp0_fdc_irq = -1;
2136 	}
2137 
2138 	if (!cpu_data[cpu].asid_cache)
2139 		cpu_data[cpu].asid_cache = asid_first_version(cpu);
2140 
2141 	atomic_inc(&init_mm.mm_count);
2142 	current->active_mm = &init_mm;
2143 	BUG_ON(current->mm);
2144 	enter_lazy_tlb(&init_mm, current);
2145 
2146 	/* Boot CPU's cache setup in setup_arch(). */
2147 	if (!is_boot_cpu)
2148 		cpu_cache_init();
2149 	tlb_init();
2150 	TLBMISS_HANDLER_SETUP();
2151 }
2152 
2153 /* Install CPU exception handler */
2154 void set_handler(unsigned long offset, void *addr, unsigned long size)
2155 {
2156 #ifdef CONFIG_CPU_MICROMIPS
2157 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2158 #else
2159 	memcpy((void *)(ebase + offset), addr, size);
2160 #endif
2161 	local_flush_icache_range(ebase + offset, ebase + offset + size);
2162 }
2163 
2164 static char panic_null_cerr[] =
2165 	"Trying to set NULL cache error exception handler";
2166 
2167 /*
2168  * Install uncached CPU exception handler.
2169  * This is suitable only for the cache error exception which is the only
2170  * exception handler that is being run uncached.
2171  */
2172 void set_uncached_handler(unsigned long offset, void *addr,
2173 	unsigned long size)
2174 {
2175 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2176 
2177 	if (!addr)
2178 		panic(panic_null_cerr);
2179 
2180 	memcpy((void *)(uncached_ebase + offset), addr, size);
2181 }
2182 
2183 static int __initdata rdhwr_noopt;
2184 static int __init set_rdhwr_noopt(char *str)
2185 {
2186 	rdhwr_noopt = 1;
2187 	return 1;
2188 }
2189 
2190 __setup("rdhwr_noopt", set_rdhwr_noopt);
2191 
2192 void __init trap_init(void)
2193 {
2194 	extern char except_vec3_generic;
2195 	extern char except_vec4;
2196 	extern char except_vec3_r4000;
2197 	unsigned long i;
2198 
2199 	check_wait();
2200 
2201 	if (cpu_has_veic || cpu_has_vint) {
2202 		unsigned long size = 0x200 + VECTORSPACING*64;
2203 		ebase = (unsigned long)
2204 			__alloc_bootmem(size, 1 << fls(size), 0);
2205 	} else {
2206 		ebase = CAC_BASE;
2207 
2208 		if (cpu_has_mips_r2_r6)
2209 			ebase += (read_c0_ebase() & 0x3ffff000);
2210 	}
2211 
2212 	if (cpu_has_mmips) {
2213 		unsigned int config3 = read_c0_config3();
2214 
2215 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2216 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2217 		else
2218 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2219 	}
2220 
2221 	if (board_ebase_setup)
2222 		board_ebase_setup();
2223 	per_cpu_trap_init(true);
2224 
2225 	/*
2226 	 * Copy the generic exception handlers to their final destination.
2227 	 * This will be overridden later as suitable for a particular
2228 	 * configuration.
2229 	 */
2230 	set_handler(0x180, &except_vec3_generic, 0x80);
2231 
2232 	/*
2233 	 * Setup default vectors
2234 	 */
2235 	for (i = 0; i <= 31; i++)
2236 		set_except_vector(i, handle_reserved);
2237 
2238 	/*
2239 	 * Copy the EJTAG debug exception vector handler code to it's final
2240 	 * destination.
2241 	 */
2242 	if (cpu_has_ejtag && board_ejtag_handler_setup)
2243 		board_ejtag_handler_setup();
2244 
2245 	/*
2246 	 * Only some CPUs have the watch exceptions.
2247 	 */
2248 	if (cpu_has_watch)
2249 		set_except_vector(EXCCODE_WATCH, handle_watch);
2250 
2251 	/*
2252 	 * Initialise interrupt handlers
2253 	 */
2254 	if (cpu_has_veic || cpu_has_vint) {
2255 		int nvec = cpu_has_veic ? 64 : 8;
2256 		for (i = 0; i < nvec; i++)
2257 			set_vi_handler(i, NULL);
2258 	}
2259 	else if (cpu_has_divec)
2260 		set_handler(0x200, &except_vec4, 0x8);
2261 
2262 	/*
2263 	 * Some CPUs can enable/disable for cache parity detection, but does
2264 	 * it different ways.
2265 	 */
2266 	parity_protection_init();
2267 
2268 	/*
2269 	 * The Data Bus Errors / Instruction Bus Errors are signaled
2270 	 * by external hardware.  Therefore these two exceptions
2271 	 * may have board specific handlers.
2272 	 */
2273 	if (board_be_init)
2274 		board_be_init();
2275 
2276 	set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2277 					rollback_handle_int : handle_int);
2278 	set_except_vector(EXCCODE_MOD, handle_tlbm);
2279 	set_except_vector(EXCCODE_TLBL, handle_tlbl);
2280 	set_except_vector(EXCCODE_TLBS, handle_tlbs);
2281 
2282 	set_except_vector(EXCCODE_ADEL, handle_adel);
2283 	set_except_vector(EXCCODE_ADES, handle_ades);
2284 
2285 	set_except_vector(EXCCODE_IBE, handle_ibe);
2286 	set_except_vector(EXCCODE_DBE, handle_dbe);
2287 
2288 	set_except_vector(EXCCODE_SYS, handle_sys);
2289 	set_except_vector(EXCCODE_BP, handle_bp);
2290 	set_except_vector(EXCCODE_RI, rdhwr_noopt ? handle_ri :
2291 			  (cpu_has_vtag_icache ?
2292 			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2293 	set_except_vector(EXCCODE_CPU, handle_cpu);
2294 	set_except_vector(EXCCODE_OV, handle_ov);
2295 	set_except_vector(EXCCODE_TR, handle_tr);
2296 	set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2297 
2298 	if (current_cpu_type() == CPU_R6000 ||
2299 	    current_cpu_type() == CPU_R6000A) {
2300 		/*
2301 		 * The R6000 is the only R-series CPU that features a machine
2302 		 * check exception (similar to the R4000 cache error) and
2303 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
2304 		 * written yet.	 Well, anyway there is no R6000 machine on the
2305 		 * current list of targets for Linux/MIPS.
2306 		 * (Duh, crap, there is someone with a triple R6k machine)
2307 		 */
2308 		//set_except_vector(14, handle_mc);
2309 		//set_except_vector(15, handle_ndc);
2310 	}
2311 
2312 
2313 	if (board_nmi_handler_setup)
2314 		board_nmi_handler_setup();
2315 
2316 	if (cpu_has_fpu && !cpu_has_nofpuex)
2317 		set_except_vector(EXCCODE_FPE, handle_fpe);
2318 
2319 	set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2320 
2321 	if (cpu_has_rixiex) {
2322 		set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2323 		set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2324 	}
2325 
2326 	set_except_vector(EXCCODE_MSADIS, handle_msa);
2327 	set_except_vector(EXCCODE_MDMX, handle_mdmx);
2328 
2329 	if (cpu_has_mcheck)
2330 		set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2331 
2332 	if (cpu_has_mipsmt)
2333 		set_except_vector(EXCCODE_THREAD, handle_mt);
2334 
2335 	set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2336 
2337 	if (board_cache_error_setup)
2338 		board_cache_error_setup();
2339 
2340 	if (cpu_has_vce)
2341 		/* Special exception: R4[04]00 uses also the divec space. */
2342 		set_handler(0x180, &except_vec3_r4000, 0x100);
2343 	else if (cpu_has_4kex)
2344 		set_handler(0x180, &except_vec3_generic, 0x80);
2345 	else
2346 		set_handler(0x080, &except_vec3_generic, 0x80);
2347 
2348 	local_flush_icache_range(ebase, ebase + 0x400);
2349 
2350 	sort_extable(__start___dbe_table, __stop___dbe_table);
2351 
2352 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2353 }
2354 
2355 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2356 			    void *v)
2357 {
2358 	switch (cmd) {
2359 	case CPU_PM_ENTER_FAILED:
2360 	case CPU_PM_EXIT:
2361 		configure_status();
2362 		configure_hwrena();
2363 		configure_exception_vector();
2364 
2365 		/* Restore register with CPU number for TLB handlers */
2366 		TLBMISS_HANDLER_RESTORE();
2367 
2368 		break;
2369 	}
2370 
2371 	return NOTIFY_OK;
2372 }
2373 
2374 static struct notifier_block trap_pm_notifier_block = {
2375 	.notifier_call = trap_pm_notifier,
2376 };
2377 
2378 static int __init trap_pm_init(void)
2379 {
2380 	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2381 }
2382 arch_initcall(trap_pm_init);
2383