xref: /openbmc/linux/arch/mips/kernel/traps.c (revision e8e0929d)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
13  */
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/init.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/sched.h>
20 #include <linux/smp.h>
21 #include <linux/spinlock.h>
22 #include <linux/kallsyms.h>
23 #include <linux/bootmem.h>
24 #include <linux/interrupt.h>
25 #include <linux/ptrace.h>
26 #include <linux/kgdb.h>
27 #include <linux/kdebug.h>
28 
29 #include <asm/bootinfo.h>
30 #include <asm/branch.h>
31 #include <asm/break.h>
32 #include <asm/cpu.h>
33 #include <asm/dsp.h>
34 #include <asm/fpu.h>
35 #include <asm/fpu_emulator.h>
36 #include <asm/mipsregs.h>
37 #include <asm/mipsmtregs.h>
38 #include <asm/module.h>
39 #include <asm/pgtable.h>
40 #include <asm/ptrace.h>
41 #include <asm/sections.h>
42 #include <asm/system.h>
43 #include <asm/tlbdebug.h>
44 #include <asm/traps.h>
45 #include <asm/uaccess.h>
46 #include <asm/watch.h>
47 #include <asm/mmu_context.h>
48 #include <asm/types.h>
49 #include <asm/stacktrace.h>
50 #include <asm/irq.h>
51 
52 extern void check_wait(void);
53 extern asmlinkage void r4k_wait(void);
54 extern asmlinkage void rollback_handle_int(void);
55 extern asmlinkage void handle_int(void);
56 extern asmlinkage void handle_tlbm(void);
57 extern asmlinkage void handle_tlbl(void);
58 extern asmlinkage void handle_tlbs(void);
59 extern asmlinkage void handle_adel(void);
60 extern asmlinkage void handle_ades(void);
61 extern asmlinkage void handle_ibe(void);
62 extern asmlinkage void handle_dbe(void);
63 extern asmlinkage void handle_sys(void);
64 extern asmlinkage void handle_bp(void);
65 extern asmlinkage void handle_ri(void);
66 extern asmlinkage void handle_ri_rdhwr_vivt(void);
67 extern asmlinkage void handle_ri_rdhwr(void);
68 extern asmlinkage void handle_cpu(void);
69 extern asmlinkage void handle_ov(void);
70 extern asmlinkage void handle_tr(void);
71 extern asmlinkage void handle_fpe(void);
72 extern asmlinkage void handle_mdmx(void);
73 extern asmlinkage void handle_watch(void);
74 extern asmlinkage void handle_mt(void);
75 extern asmlinkage void handle_dsp(void);
76 extern asmlinkage void handle_mcheck(void);
77 extern asmlinkage void handle_reserved(void);
78 
79 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
80 	struct mips_fpu_struct *ctx, int has_fpu);
81 
82 #ifdef CONFIG_CPU_CAVIUM_OCTEON
83 extern asmlinkage void octeon_cop2_restore(struct octeon_cop2_state *task);
84 #endif
85 
86 void (*board_be_init)(void);
87 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
88 void (*board_nmi_handler_setup)(void);
89 void (*board_ejtag_handler_setup)(void);
90 void (*board_bind_eic_interrupt)(int irq, int regset);
91 
92 
93 static void show_raw_backtrace(unsigned long reg29)
94 {
95 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
96 	unsigned long addr;
97 
98 	printk("Call Trace:");
99 #ifdef CONFIG_KALLSYMS
100 	printk("\n");
101 #endif
102 	while (!kstack_end(sp)) {
103 		unsigned long __user *p =
104 			(unsigned long __user *)(unsigned long)sp++;
105 		if (__get_user(addr, p)) {
106 			printk(" (Bad stack address)");
107 			break;
108 		}
109 		if (__kernel_text_address(addr))
110 			print_ip_sym(addr);
111 	}
112 	printk("\n");
113 }
114 
115 #ifdef CONFIG_KALLSYMS
116 int raw_show_trace;
117 static int __init set_raw_show_trace(char *str)
118 {
119 	raw_show_trace = 1;
120 	return 1;
121 }
122 __setup("raw_show_trace", set_raw_show_trace);
123 #endif
124 
125 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
126 {
127 	unsigned long sp = regs->regs[29];
128 	unsigned long ra = regs->regs[31];
129 	unsigned long pc = regs->cp0_epc;
130 
131 	if (raw_show_trace || !__kernel_text_address(pc)) {
132 		show_raw_backtrace(sp);
133 		return;
134 	}
135 	printk("Call Trace:\n");
136 	do {
137 		print_ip_sym(pc);
138 		pc = unwind_stack(task, &sp, pc, &ra);
139 	} while (pc);
140 	printk("\n");
141 }
142 
143 /*
144  * This routine abuses get_user()/put_user() to reference pointers
145  * with at least a bit of error checking ...
146  */
147 static void show_stacktrace(struct task_struct *task,
148 	const struct pt_regs *regs)
149 {
150 	const int field = 2 * sizeof(unsigned long);
151 	long stackdata;
152 	int i;
153 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
154 
155 	printk("Stack :");
156 	i = 0;
157 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
158 		if (i && ((i % (64 / field)) == 0))
159 			printk("\n       ");
160 		if (i > 39) {
161 			printk(" ...");
162 			break;
163 		}
164 
165 		if (__get_user(stackdata, sp++)) {
166 			printk(" (Bad stack address)");
167 			break;
168 		}
169 
170 		printk(" %0*lx", field, stackdata);
171 		i++;
172 	}
173 	printk("\n");
174 	show_backtrace(task, regs);
175 }
176 
177 void show_stack(struct task_struct *task, unsigned long *sp)
178 {
179 	struct pt_regs regs;
180 	if (sp) {
181 		regs.regs[29] = (unsigned long)sp;
182 		regs.regs[31] = 0;
183 		regs.cp0_epc = 0;
184 	} else {
185 		if (task && task != current) {
186 			regs.regs[29] = task->thread.reg29;
187 			regs.regs[31] = 0;
188 			regs.cp0_epc = task->thread.reg31;
189 		} else {
190 			prepare_frametrace(&regs);
191 		}
192 	}
193 	show_stacktrace(task, &regs);
194 }
195 
196 /*
197  * The architecture-independent dump_stack generator
198  */
199 void dump_stack(void)
200 {
201 	struct pt_regs regs;
202 
203 	prepare_frametrace(&regs);
204 	show_backtrace(current, &regs);
205 }
206 
207 EXPORT_SYMBOL(dump_stack);
208 
209 static void show_code(unsigned int __user *pc)
210 {
211 	long i;
212 	unsigned short __user *pc16 = NULL;
213 
214 	printk("\nCode:");
215 
216 	if ((unsigned long)pc & 1)
217 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
218 	for(i = -3 ; i < 6 ; i++) {
219 		unsigned int insn;
220 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
221 			printk(" (Bad address in epc)\n");
222 			break;
223 		}
224 		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
225 	}
226 }
227 
228 static void __show_regs(const struct pt_regs *regs)
229 {
230 	const int field = 2 * sizeof(unsigned long);
231 	unsigned int cause = regs->cp0_cause;
232 	int i;
233 
234 	printk("Cpu %d\n", smp_processor_id());
235 
236 	/*
237 	 * Saved main processor registers
238 	 */
239 	for (i = 0; i < 32; ) {
240 		if ((i % 4) == 0)
241 			printk("$%2d   :", i);
242 		if (i == 0)
243 			printk(" %0*lx", field, 0UL);
244 		else if (i == 26 || i == 27)
245 			printk(" %*s", field, "");
246 		else
247 			printk(" %0*lx", field, regs->regs[i]);
248 
249 		i++;
250 		if ((i % 4) == 0)
251 			printk("\n");
252 	}
253 
254 #ifdef CONFIG_CPU_HAS_SMARTMIPS
255 	printk("Acx    : %0*lx\n", field, regs->acx);
256 #endif
257 	printk("Hi    : %0*lx\n", field, regs->hi);
258 	printk("Lo    : %0*lx\n", field, regs->lo);
259 
260 	/*
261 	 * Saved cp0 registers
262 	 */
263 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
264 	       (void *) regs->cp0_epc);
265 	printk("    %s\n", print_tainted());
266 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
267 	       (void *) regs->regs[31]);
268 
269 	printk("Status: %08x    ", (uint32_t) regs->cp0_status);
270 
271 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
272 		if (regs->cp0_status & ST0_KUO)
273 			printk("KUo ");
274 		if (regs->cp0_status & ST0_IEO)
275 			printk("IEo ");
276 		if (regs->cp0_status & ST0_KUP)
277 			printk("KUp ");
278 		if (regs->cp0_status & ST0_IEP)
279 			printk("IEp ");
280 		if (regs->cp0_status & ST0_KUC)
281 			printk("KUc ");
282 		if (regs->cp0_status & ST0_IEC)
283 			printk("IEc ");
284 	} else {
285 		if (regs->cp0_status & ST0_KX)
286 			printk("KX ");
287 		if (regs->cp0_status & ST0_SX)
288 			printk("SX ");
289 		if (regs->cp0_status & ST0_UX)
290 			printk("UX ");
291 		switch (regs->cp0_status & ST0_KSU) {
292 		case KSU_USER:
293 			printk("USER ");
294 			break;
295 		case KSU_SUPERVISOR:
296 			printk("SUPERVISOR ");
297 			break;
298 		case KSU_KERNEL:
299 			printk("KERNEL ");
300 			break;
301 		default:
302 			printk("BAD_MODE ");
303 			break;
304 		}
305 		if (regs->cp0_status & ST0_ERL)
306 			printk("ERL ");
307 		if (regs->cp0_status & ST0_EXL)
308 			printk("EXL ");
309 		if (regs->cp0_status & ST0_IE)
310 			printk("IE ");
311 	}
312 	printk("\n");
313 
314 	printk("Cause : %08x\n", cause);
315 
316 	cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
317 	if (1 <= cause && cause <= 5)
318 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
319 
320 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
321 	       cpu_name_string());
322 }
323 
324 /*
325  * FIXME: really the generic show_regs should take a const pointer argument.
326  */
327 void show_regs(struct pt_regs *regs)
328 {
329 	__show_regs((struct pt_regs *)regs);
330 }
331 
332 void show_registers(const struct pt_regs *regs)
333 {
334 	const int field = 2 * sizeof(unsigned long);
335 
336 	__show_regs(regs);
337 	print_modules();
338 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
339 	       current->comm, current->pid, current_thread_info(), current,
340 	      field, current_thread_info()->tp_value);
341 	if (cpu_has_userlocal) {
342 		unsigned long tls;
343 
344 		tls = read_c0_userlocal();
345 		if (tls != current_thread_info()->tp_value)
346 			printk("*HwTLS: %0*lx\n", field, tls);
347 	}
348 
349 	show_stacktrace(current, regs);
350 	show_code((unsigned int __user *) regs->cp0_epc);
351 	printk("\n");
352 }
353 
354 static DEFINE_SPINLOCK(die_lock);
355 
356 void __noreturn die(const char * str, const struct pt_regs * regs)
357 {
358 	static int die_counter;
359 #ifdef CONFIG_MIPS_MT_SMTC
360 	unsigned long dvpret = dvpe();
361 #endif /* CONFIG_MIPS_MT_SMTC */
362 
363 	console_verbose();
364 	spin_lock_irq(&die_lock);
365 	bust_spinlocks(1);
366 #ifdef CONFIG_MIPS_MT_SMTC
367 	mips_mt_regdump(dvpret);
368 #endif /* CONFIG_MIPS_MT_SMTC */
369 	printk("%s[#%d]:\n", str, ++die_counter);
370 	show_registers(regs);
371 	add_taint(TAINT_DIE);
372 	spin_unlock_irq(&die_lock);
373 
374 	if (in_interrupt())
375 		panic("Fatal exception in interrupt");
376 
377 	if (panic_on_oops) {
378 		printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
379 		ssleep(5);
380 		panic("Fatal exception");
381 	}
382 
383 	do_exit(SIGSEGV);
384 }
385 
386 extern struct exception_table_entry __start___dbe_table[];
387 extern struct exception_table_entry __stop___dbe_table[];
388 
389 __asm__(
390 "	.section	__dbe_table, \"a\"\n"
391 "	.previous			\n");
392 
393 /* Given an address, look for it in the exception tables. */
394 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
395 {
396 	const struct exception_table_entry *e;
397 
398 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
399 	if (!e)
400 		e = search_module_dbetables(addr);
401 	return e;
402 }
403 
404 asmlinkage void do_be(struct pt_regs *regs)
405 {
406 	const int field = 2 * sizeof(unsigned long);
407 	const struct exception_table_entry *fixup = NULL;
408 	int data = regs->cp0_cause & 4;
409 	int action = MIPS_BE_FATAL;
410 
411 	/* XXX For now.  Fixme, this searches the wrong table ...  */
412 	if (data && !user_mode(regs))
413 		fixup = search_dbe_tables(exception_epc(regs));
414 
415 	if (fixup)
416 		action = MIPS_BE_FIXUP;
417 
418 	if (board_be_handler)
419 		action = board_be_handler(regs, fixup != NULL);
420 
421 	switch (action) {
422 	case MIPS_BE_DISCARD:
423 		return;
424 	case MIPS_BE_FIXUP:
425 		if (fixup) {
426 			regs->cp0_epc = fixup->nextinsn;
427 			return;
428 		}
429 		break;
430 	default:
431 		break;
432 	}
433 
434 	/*
435 	 * Assume it would be too dangerous to continue ...
436 	 */
437 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
438 	       data ? "Data" : "Instruction",
439 	       field, regs->cp0_epc, field, regs->regs[31]);
440 	if (notify_die(DIE_OOPS, "bus error", regs, SIGBUS, 0, 0)
441 	    == NOTIFY_STOP)
442 		return;
443 
444 	die_if_kernel("Oops", regs);
445 	force_sig(SIGBUS, current);
446 }
447 
448 /*
449  * ll/sc, rdhwr, sync emulation
450  */
451 
452 #define OPCODE 0xfc000000
453 #define BASE   0x03e00000
454 #define RT     0x001f0000
455 #define OFFSET 0x0000ffff
456 #define LL     0xc0000000
457 #define SC     0xe0000000
458 #define SPEC0  0x00000000
459 #define SPEC3  0x7c000000
460 #define RD     0x0000f800
461 #define FUNC   0x0000003f
462 #define SYNC   0x0000000f
463 #define RDHWR  0x0000003b
464 
465 /*
466  * The ll_bit is cleared by r*_switch.S
467  */
468 
469 unsigned int ll_bit;
470 struct task_struct *ll_task;
471 
472 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
473 {
474 	unsigned long value, __user *vaddr;
475 	long offset;
476 
477 	/*
478 	 * analyse the ll instruction that just caused a ri exception
479 	 * and put the referenced address to addr.
480 	 */
481 
482 	/* sign extend offset */
483 	offset = opcode & OFFSET;
484 	offset <<= 16;
485 	offset >>= 16;
486 
487 	vaddr = (unsigned long __user *)
488 	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
489 
490 	if ((unsigned long)vaddr & 3)
491 		return SIGBUS;
492 	if (get_user(value, vaddr))
493 		return SIGSEGV;
494 
495 	preempt_disable();
496 
497 	if (ll_task == NULL || ll_task == current) {
498 		ll_bit = 1;
499 	} else {
500 		ll_bit = 0;
501 	}
502 	ll_task = current;
503 
504 	preempt_enable();
505 
506 	regs->regs[(opcode & RT) >> 16] = value;
507 
508 	return 0;
509 }
510 
511 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
512 {
513 	unsigned long __user *vaddr;
514 	unsigned long reg;
515 	long offset;
516 
517 	/*
518 	 * analyse the sc instruction that just caused a ri exception
519 	 * and put the referenced address to addr.
520 	 */
521 
522 	/* sign extend offset */
523 	offset = opcode & OFFSET;
524 	offset <<= 16;
525 	offset >>= 16;
526 
527 	vaddr = (unsigned long __user *)
528 	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
529 	reg = (opcode & RT) >> 16;
530 
531 	if ((unsigned long)vaddr & 3)
532 		return SIGBUS;
533 
534 	preempt_disable();
535 
536 	if (ll_bit == 0 || ll_task != current) {
537 		regs->regs[reg] = 0;
538 		preempt_enable();
539 		return 0;
540 	}
541 
542 	preempt_enable();
543 
544 	if (put_user(regs->regs[reg], vaddr))
545 		return SIGSEGV;
546 
547 	regs->regs[reg] = 1;
548 
549 	return 0;
550 }
551 
552 /*
553  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
554  * opcodes are supposed to result in coprocessor unusable exceptions if
555  * executed on ll/sc-less processors.  That's the theory.  In practice a
556  * few processors such as NEC's VR4100 throw reserved instruction exceptions
557  * instead, so we're doing the emulation thing in both exception handlers.
558  */
559 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
560 {
561 	if ((opcode & OPCODE) == LL)
562 		return simulate_ll(regs, opcode);
563 	if ((opcode & OPCODE) == SC)
564 		return simulate_sc(regs, opcode);
565 
566 	return -1;			/* Must be something else ... */
567 }
568 
569 /*
570  * Simulate trapping 'rdhwr' instructions to provide user accessible
571  * registers not implemented in hardware.
572  */
573 static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode)
574 {
575 	struct thread_info *ti = task_thread_info(current);
576 
577 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
578 		int rd = (opcode & RD) >> 11;
579 		int rt = (opcode & RT) >> 16;
580 		switch (rd) {
581 		case 0:		/* CPU number */
582 			regs->regs[rt] = smp_processor_id();
583 			return 0;
584 		case 1:		/* SYNCI length */
585 			regs->regs[rt] = min(current_cpu_data.dcache.linesz,
586 					     current_cpu_data.icache.linesz);
587 			return 0;
588 		case 2:		/* Read count register */
589 			regs->regs[rt] = read_c0_count();
590 			return 0;
591 		case 3:		/* Count register resolution */
592 			switch (current_cpu_data.cputype) {
593 			case CPU_20KC:
594 			case CPU_25KF:
595 				regs->regs[rt] = 1;
596 				break;
597 			default:
598 				regs->regs[rt] = 2;
599 			}
600 			return 0;
601 		case 29:
602 			regs->regs[rt] = ti->tp_value;
603 			return 0;
604 		default:
605 			return -1;
606 		}
607 	}
608 
609 	/* Not ours.  */
610 	return -1;
611 }
612 
613 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
614 {
615 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC)
616 		return 0;
617 
618 	return -1;			/* Must be something else ... */
619 }
620 
621 asmlinkage void do_ov(struct pt_regs *regs)
622 {
623 	siginfo_t info;
624 
625 	die_if_kernel("Integer overflow", regs);
626 
627 	info.si_code = FPE_INTOVF;
628 	info.si_signo = SIGFPE;
629 	info.si_errno = 0;
630 	info.si_addr = (void __user *) regs->cp0_epc;
631 	force_sig_info(SIGFPE, &info, current);
632 }
633 
634 /*
635  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
636  */
637 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
638 {
639 	siginfo_t info;
640 
641 	if (notify_die(DIE_FP, "FP exception", regs, SIGFPE, 0, 0)
642 	    == NOTIFY_STOP)
643 		return;
644 	die_if_kernel("FP exception in kernel code", regs);
645 
646 	if (fcr31 & FPU_CSR_UNI_X) {
647 		int sig;
648 
649 		/*
650 		 * Unimplemented operation exception.  If we've got the full
651 		 * software emulator on-board, let's use it...
652 		 *
653 		 * Force FPU to dump state into task/thread context.  We're
654 		 * moving a lot of data here for what is probably a single
655 		 * instruction, but the alternative is to pre-decode the FP
656 		 * register operands before invoking the emulator, which seems
657 		 * a bit extreme for what should be an infrequent event.
658 		 */
659 		/* Ensure 'resume' not overwrite saved fp context again. */
660 		lose_fpu(1);
661 
662 		/* Run the emulator */
663 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1);
664 
665 		/*
666 		 * We can't allow the emulated instruction to leave any of
667 		 * the cause bit set in $fcr31.
668 		 */
669 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
670 
671 		/* Restore the hardware register state */
672 		own_fpu(1);	/* Using the FPU again.  */
673 
674 		/* If something went wrong, signal */
675 		if (sig)
676 			force_sig(sig, current);
677 
678 		return;
679 	} else if (fcr31 & FPU_CSR_INV_X)
680 		info.si_code = FPE_FLTINV;
681 	else if (fcr31 & FPU_CSR_DIV_X)
682 		info.si_code = FPE_FLTDIV;
683 	else if (fcr31 & FPU_CSR_OVF_X)
684 		info.si_code = FPE_FLTOVF;
685 	else if (fcr31 & FPU_CSR_UDF_X)
686 		info.si_code = FPE_FLTUND;
687 	else if (fcr31 & FPU_CSR_INE_X)
688 		info.si_code = FPE_FLTRES;
689 	else
690 		info.si_code = __SI_FAULT;
691 	info.si_signo = SIGFPE;
692 	info.si_errno = 0;
693 	info.si_addr = (void __user *) regs->cp0_epc;
694 	force_sig_info(SIGFPE, &info, current);
695 }
696 
697 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
698 	const char *str)
699 {
700 	siginfo_t info;
701 	char b[40];
702 
703 	if (notify_die(DIE_TRAP, str, regs, code, 0, 0) == NOTIFY_STOP)
704 		return;
705 
706 	/*
707 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
708 	 * insns, even for trap and break codes that indicate arithmetic
709 	 * failures.  Weird ...
710 	 * But should we continue the brokenness???  --macro
711 	 */
712 	switch (code) {
713 	case BRK_OVERFLOW:
714 	case BRK_DIVZERO:
715 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
716 		die_if_kernel(b, regs);
717 		if (code == BRK_DIVZERO)
718 			info.si_code = FPE_INTDIV;
719 		else
720 			info.si_code = FPE_INTOVF;
721 		info.si_signo = SIGFPE;
722 		info.si_errno = 0;
723 		info.si_addr = (void __user *) regs->cp0_epc;
724 		force_sig_info(SIGFPE, &info, current);
725 		break;
726 	case BRK_BUG:
727 		die_if_kernel("Kernel bug detected", regs);
728 		force_sig(SIGTRAP, current);
729 		break;
730 	case BRK_MEMU:
731 		/*
732 		 * Address errors may be deliberately induced by the FPU
733 		 * emulator to retake control of the CPU after executing the
734 		 * instruction in the delay slot of an emulated branch.
735 		 *
736 		 * Terminate if exception was recognized as a delay slot return
737 		 * otherwise handle as normal.
738 		 */
739 		if (do_dsemulret(regs))
740 			return;
741 
742 		die_if_kernel("Math emu break/trap", regs);
743 		force_sig(SIGTRAP, current);
744 		break;
745 	default:
746 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
747 		die_if_kernel(b, regs);
748 		force_sig(SIGTRAP, current);
749 	}
750 }
751 
752 asmlinkage void do_bp(struct pt_regs *regs)
753 {
754 	unsigned int opcode, bcode;
755 
756 	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
757 		goto out_sigsegv;
758 
759 	/*
760 	 * There is the ancient bug in the MIPS assemblers that the break
761 	 * code starts left to bit 16 instead to bit 6 in the opcode.
762 	 * Gas is bug-compatible, but not always, grrr...
763 	 * We handle both cases with a simple heuristics.  --macro
764 	 */
765 	bcode = ((opcode >> 6) & ((1 << 20) - 1));
766 	if (bcode >= (1 << 10))
767 		bcode >>= 10;
768 
769 	do_trap_or_bp(regs, bcode, "Break");
770 	return;
771 
772 out_sigsegv:
773 	force_sig(SIGSEGV, current);
774 }
775 
776 asmlinkage void do_tr(struct pt_regs *regs)
777 {
778 	unsigned int opcode, tcode = 0;
779 
780 	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
781 		goto out_sigsegv;
782 
783 	/* Immediate versions don't provide a code.  */
784 	if (!(opcode & OPCODE))
785 		tcode = ((opcode >> 6) & ((1 << 10) - 1));
786 
787 	do_trap_or_bp(regs, tcode, "Trap");
788 	return;
789 
790 out_sigsegv:
791 	force_sig(SIGSEGV, current);
792 }
793 
794 asmlinkage void do_ri(struct pt_regs *regs)
795 {
796 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
797 	unsigned long old_epc = regs->cp0_epc;
798 	unsigned int opcode = 0;
799 	int status = -1;
800 
801 	if (notify_die(DIE_RI, "RI Fault", regs, SIGSEGV, 0, 0)
802 	    == NOTIFY_STOP)
803 		return;
804 
805 	die_if_kernel("Reserved instruction in kernel code", regs);
806 
807 	if (unlikely(compute_return_epc(regs) < 0))
808 		return;
809 
810 	if (unlikely(get_user(opcode, epc) < 0))
811 		status = SIGSEGV;
812 
813 	if (!cpu_has_llsc && status < 0)
814 		status = simulate_llsc(regs, opcode);
815 
816 	if (status < 0)
817 		status = simulate_rdhwr(regs, opcode);
818 
819 	if (status < 0)
820 		status = simulate_sync(regs, opcode);
821 
822 	if (status < 0)
823 		status = SIGILL;
824 
825 	if (unlikely(status > 0)) {
826 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
827 		force_sig(status, current);
828 	}
829 }
830 
831 /*
832  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
833  * emulated more than some threshold number of instructions, force migration to
834  * a "CPU" that has FP support.
835  */
836 static void mt_ase_fp_affinity(void)
837 {
838 #ifdef CONFIG_MIPS_MT_FPAFF
839 	if (mt_fpemul_threshold > 0 &&
840 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
841 		/*
842 		 * If there's no FPU present, or if the application has already
843 		 * restricted the allowed set to exclude any CPUs with FPUs,
844 		 * we'll skip the procedure.
845 		 */
846 		if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
847 			cpumask_t tmask;
848 
849 			current->thread.user_cpus_allowed
850 				= current->cpus_allowed;
851 			cpus_and(tmask, current->cpus_allowed,
852 				mt_fpu_cpumask);
853 			set_cpus_allowed(current, tmask);
854 			set_thread_flag(TIF_FPUBOUND);
855 		}
856 	}
857 #endif /* CONFIG_MIPS_MT_FPAFF */
858 }
859 
860 asmlinkage void do_cpu(struct pt_regs *regs)
861 {
862 	unsigned int __user *epc;
863 	unsigned long old_epc;
864 	unsigned int opcode;
865 	unsigned int cpid;
866 	int status;
867 	unsigned long __maybe_unused flags;
868 
869 	die_if_kernel("do_cpu invoked from kernel context!", regs);
870 
871 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
872 
873 	switch (cpid) {
874 	case 0:
875 		epc = (unsigned int __user *)exception_epc(regs);
876 		old_epc = regs->cp0_epc;
877 		opcode = 0;
878 		status = -1;
879 
880 		if (unlikely(compute_return_epc(regs) < 0))
881 			return;
882 
883 		if (unlikely(get_user(opcode, epc) < 0))
884 			status = SIGSEGV;
885 
886 		if (!cpu_has_llsc && status < 0)
887 			status = simulate_llsc(regs, opcode);
888 
889 		if (status < 0)
890 			status = simulate_rdhwr(regs, opcode);
891 
892 		if (status < 0)
893 			status = SIGILL;
894 
895 		if (unlikely(status > 0)) {
896 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
897 			force_sig(status, current);
898 		}
899 
900 		return;
901 
902 	case 1:
903 		if (used_math())	/* Using the FPU again.  */
904 			own_fpu(1);
905 		else {			/* First time FPU user.  */
906 			init_fpu();
907 			set_used_math();
908 		}
909 
910 		if (!raw_cpu_has_fpu) {
911 			int sig;
912 			sig = fpu_emulator_cop1Handler(regs,
913 						&current->thread.fpu, 0);
914 			if (sig)
915 				force_sig(sig, current);
916 			else
917 				mt_ase_fp_affinity();
918 		}
919 
920 		return;
921 
922 	case 2:
923 #ifdef CONFIG_CPU_CAVIUM_OCTEON
924 		prefetch(&current->thread.cp2);
925 		local_irq_save(flags);
926 		KSTK_STATUS(current) |= ST0_CU2;
927 		status = read_c0_status();
928 		write_c0_status(status | ST0_CU2);
929 		octeon_cop2_restore(&(current->thread.cp2));
930 		write_c0_status(status & ~ST0_CU2);
931 		local_irq_restore(flags);
932 		return;
933 #endif
934 	case 3:
935 		break;
936 	}
937 
938 	force_sig(SIGILL, current);
939 }
940 
941 asmlinkage void do_mdmx(struct pt_regs *regs)
942 {
943 	force_sig(SIGILL, current);
944 }
945 
946 /*
947  * Called with interrupts disabled.
948  */
949 asmlinkage void do_watch(struct pt_regs *regs)
950 {
951 	u32 cause;
952 
953 	/*
954 	 * Clear WP (bit 22) bit of cause register so we don't loop
955 	 * forever.
956 	 */
957 	cause = read_c0_cause();
958 	cause &= ~(1 << 22);
959 	write_c0_cause(cause);
960 
961 	/*
962 	 * If the current thread has the watch registers loaded, save
963 	 * their values and send SIGTRAP.  Otherwise another thread
964 	 * left the registers set, clear them and continue.
965 	 */
966 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
967 		mips_read_watch_registers();
968 		local_irq_enable();
969 		force_sig(SIGTRAP, current);
970 	} else {
971 		mips_clear_watch_registers();
972 		local_irq_enable();
973 	}
974 }
975 
976 asmlinkage void do_mcheck(struct pt_regs *regs)
977 {
978 	const int field = 2 * sizeof(unsigned long);
979 	int multi_match = regs->cp0_status & ST0_TS;
980 
981 	show_regs(regs);
982 
983 	if (multi_match) {
984 		printk("Index   : %0x\n", read_c0_index());
985 		printk("Pagemask: %0x\n", read_c0_pagemask());
986 		printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
987 		printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
988 		printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
989 		printk("\n");
990 		dump_tlb_all();
991 	}
992 
993 	show_code((unsigned int __user *) regs->cp0_epc);
994 
995 	/*
996 	 * Some chips may have other causes of machine check (e.g. SB1
997 	 * graduation timer)
998 	 */
999 	panic("Caught Machine Check exception - %scaused by multiple "
1000 	      "matching entries in the TLB.",
1001 	      (multi_match) ? "" : "not ");
1002 }
1003 
1004 asmlinkage void do_mt(struct pt_regs *regs)
1005 {
1006 	int subcode;
1007 
1008 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1009 			>> VPECONTROL_EXCPT_SHIFT;
1010 	switch (subcode) {
1011 	case 0:
1012 		printk(KERN_DEBUG "Thread Underflow\n");
1013 		break;
1014 	case 1:
1015 		printk(KERN_DEBUG "Thread Overflow\n");
1016 		break;
1017 	case 2:
1018 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1019 		break;
1020 	case 3:
1021 		printk(KERN_DEBUG "Gating Storage Exception\n");
1022 		break;
1023 	case 4:
1024 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1025 		break;
1026 	case 5:
1027 		printk(KERN_DEBUG "Gating Storage Schedulier Exception\n");
1028 		break;
1029 	default:
1030 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1031 			subcode);
1032 		break;
1033 	}
1034 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1035 
1036 	force_sig(SIGILL, current);
1037 }
1038 
1039 
1040 asmlinkage void do_dsp(struct pt_regs *regs)
1041 {
1042 	if (cpu_has_dsp)
1043 		panic("Unexpected DSP exception\n");
1044 
1045 	force_sig(SIGILL, current);
1046 }
1047 
1048 asmlinkage void do_reserved(struct pt_regs *regs)
1049 {
1050 	/*
1051 	 * Game over - no way to handle this if it ever occurs.  Most probably
1052 	 * caused by a new unknown cpu type or after another deadly
1053 	 * hard/software error.
1054 	 */
1055 	show_regs(regs);
1056 	panic("Caught reserved exception %ld - should not happen.",
1057 	      (regs->cp0_cause & 0x7f) >> 2);
1058 }
1059 
1060 static int __initdata l1parity = 1;
1061 static int __init nol1parity(char *s)
1062 {
1063 	l1parity = 0;
1064 	return 1;
1065 }
1066 __setup("nol1par", nol1parity);
1067 static int __initdata l2parity = 1;
1068 static int __init nol2parity(char *s)
1069 {
1070 	l2parity = 0;
1071 	return 1;
1072 }
1073 __setup("nol2par", nol2parity);
1074 
1075 /*
1076  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1077  * it different ways.
1078  */
1079 static inline void parity_protection_init(void)
1080 {
1081 	switch (current_cpu_type()) {
1082 	case CPU_24K:
1083 	case CPU_34K:
1084 	case CPU_74K:
1085 	case CPU_1004K:
1086 		{
1087 #define ERRCTL_PE	0x80000000
1088 #define ERRCTL_L2P	0x00800000
1089 			unsigned long errctl;
1090 			unsigned int l1parity_present, l2parity_present;
1091 
1092 			errctl = read_c0_ecc();
1093 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1094 
1095 			/* probe L1 parity support */
1096 			write_c0_ecc(errctl | ERRCTL_PE);
1097 			back_to_back_c0_hazard();
1098 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1099 
1100 			/* probe L2 parity support */
1101 			write_c0_ecc(errctl|ERRCTL_L2P);
1102 			back_to_back_c0_hazard();
1103 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1104 
1105 			if (l1parity_present && l2parity_present) {
1106 				if (l1parity)
1107 					errctl |= ERRCTL_PE;
1108 				if (l1parity ^ l2parity)
1109 					errctl |= ERRCTL_L2P;
1110 			} else if (l1parity_present) {
1111 				if (l1parity)
1112 					errctl |= ERRCTL_PE;
1113 			} else if (l2parity_present) {
1114 				if (l2parity)
1115 					errctl |= ERRCTL_L2P;
1116 			} else {
1117 				/* No parity available */
1118 			}
1119 
1120 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1121 
1122 			write_c0_ecc(errctl);
1123 			back_to_back_c0_hazard();
1124 			errctl = read_c0_ecc();
1125 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1126 
1127 			if (l1parity_present)
1128 				printk(KERN_INFO "Cache parity protection %sabled\n",
1129 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1130 
1131 			if (l2parity_present) {
1132 				if (l1parity_present && l1parity)
1133 					errctl ^= ERRCTL_L2P;
1134 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1135 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1136 			}
1137 		}
1138 		break;
1139 
1140 	case CPU_5KC:
1141 		write_c0_ecc(0x80000000);
1142 		back_to_back_c0_hazard();
1143 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1144 		printk(KERN_INFO "Cache parity protection %sabled\n",
1145 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1146 		break;
1147 	case CPU_20KC:
1148 	case CPU_25KF:
1149 		/* Clear the DE bit (bit 16) in the c0_status register. */
1150 		printk(KERN_INFO "Enable cache parity protection for "
1151 		       "MIPS 20KC/25KF CPUs.\n");
1152 		clear_c0_status(ST0_DE);
1153 		break;
1154 	default:
1155 		break;
1156 	}
1157 }
1158 
1159 asmlinkage void cache_parity_error(void)
1160 {
1161 	const int field = 2 * sizeof(unsigned long);
1162 	unsigned int reg_val;
1163 
1164 	/* For the moment, report the problem and hang. */
1165 	printk("Cache error exception:\n");
1166 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1167 	reg_val = read_c0_cacheerr();
1168 	printk("c0_cacheerr == %08x\n", reg_val);
1169 
1170 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1171 	       reg_val & (1<<30) ? "secondary" : "primary",
1172 	       reg_val & (1<<31) ? "data" : "insn");
1173 	printk("Error bits: %s%s%s%s%s%s%s\n",
1174 	       reg_val & (1<<29) ? "ED " : "",
1175 	       reg_val & (1<<28) ? "ET " : "",
1176 	       reg_val & (1<<26) ? "EE " : "",
1177 	       reg_val & (1<<25) ? "EB " : "",
1178 	       reg_val & (1<<24) ? "EI " : "",
1179 	       reg_val & (1<<23) ? "E1 " : "",
1180 	       reg_val & (1<<22) ? "E0 " : "");
1181 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1182 
1183 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1184 	if (reg_val & (1<<22))
1185 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1186 
1187 	if (reg_val & (1<<23))
1188 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1189 #endif
1190 
1191 	panic("Can't handle the cache error!");
1192 }
1193 
1194 /*
1195  * SDBBP EJTAG debug exception handler.
1196  * We skip the instruction and return to the next instruction.
1197  */
1198 void ejtag_exception_handler(struct pt_regs *regs)
1199 {
1200 	const int field = 2 * sizeof(unsigned long);
1201 	unsigned long depc, old_epc;
1202 	unsigned int debug;
1203 
1204 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1205 	depc = read_c0_depc();
1206 	debug = read_c0_debug();
1207 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1208 	if (debug & 0x80000000) {
1209 		/*
1210 		 * In branch delay slot.
1211 		 * We cheat a little bit here and use EPC to calculate the
1212 		 * debug return address (DEPC). EPC is restored after the
1213 		 * calculation.
1214 		 */
1215 		old_epc = regs->cp0_epc;
1216 		regs->cp0_epc = depc;
1217 		__compute_return_epc(regs);
1218 		depc = regs->cp0_epc;
1219 		regs->cp0_epc = old_epc;
1220 	} else
1221 		depc += 4;
1222 	write_c0_depc(depc);
1223 
1224 #if 0
1225 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1226 	write_c0_debug(debug | 0x100);
1227 #endif
1228 }
1229 
1230 /*
1231  * NMI exception handler.
1232  */
1233 NORET_TYPE void ATTRIB_NORET nmi_exception_handler(struct pt_regs *regs)
1234 {
1235 	bust_spinlocks(1);
1236 	printk("NMI taken!!!!\n");
1237 	die("NMI", regs);
1238 }
1239 
1240 #define VECTORSPACING 0x100	/* for EI/VI mode */
1241 
1242 unsigned long ebase;
1243 unsigned long exception_handlers[32];
1244 unsigned long vi_handlers[64];
1245 
1246 /*
1247  * As a side effect of the way this is implemented we're limited
1248  * to interrupt handlers in the address range from
1249  * KSEG0 <= x < KSEG0 + 256mb on the Nevada.  Oh well ...
1250  */
1251 void *set_except_vector(int n, void *addr)
1252 {
1253 	unsigned long handler = (unsigned long) addr;
1254 	unsigned long old_handler = exception_handlers[n];
1255 
1256 	exception_handlers[n] = handler;
1257 	if (n == 0 && cpu_has_divec) {
1258 		*(u32 *)(ebase + 0x200) = 0x08000000 |
1259 					  (0x03ffffff & (handler >> 2));
1260 		local_flush_icache_range(ebase + 0x200, ebase + 0x204);
1261 	}
1262 	return (void *)old_handler;
1263 }
1264 
1265 static asmlinkage void do_default_vi(void)
1266 {
1267 	show_regs(get_irq_regs());
1268 	panic("Caught unexpected vectored interrupt.");
1269 }
1270 
1271 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1272 {
1273 	unsigned long handler;
1274 	unsigned long old_handler = vi_handlers[n];
1275 	int srssets = current_cpu_data.srsets;
1276 	u32 *w;
1277 	unsigned char *b;
1278 
1279 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1280 
1281 	if (addr == NULL) {
1282 		handler = (unsigned long) do_default_vi;
1283 		srs = 0;
1284 	} else
1285 		handler = (unsigned long) addr;
1286 	vi_handlers[n] = (unsigned long) addr;
1287 
1288 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1289 
1290 	if (srs >= srssets)
1291 		panic("Shadow register set %d not supported", srs);
1292 
1293 	if (cpu_has_veic) {
1294 		if (board_bind_eic_interrupt)
1295 			board_bind_eic_interrupt(n, srs);
1296 	} else if (cpu_has_vint) {
1297 		/* SRSMap is only defined if shadow sets are implemented */
1298 		if (srssets > 1)
1299 			change_c0_srsmap(0xf << n*4, srs << n*4);
1300 	}
1301 
1302 	if (srs == 0) {
1303 		/*
1304 		 * If no shadow set is selected then use the default handler
1305 		 * that does normal register saving and a standard interrupt exit
1306 		 */
1307 
1308 		extern char except_vec_vi, except_vec_vi_lui;
1309 		extern char except_vec_vi_ori, except_vec_vi_end;
1310 		extern char rollback_except_vec_vi;
1311 		char *vec_start = (cpu_wait == r4k_wait) ?
1312 			&rollback_except_vec_vi : &except_vec_vi;
1313 #ifdef CONFIG_MIPS_MT_SMTC
1314 		/*
1315 		 * We need to provide the SMTC vectored interrupt handler
1316 		 * not only with the address of the handler, but with the
1317 		 * Status.IM bit to be masked before going there.
1318 		 */
1319 		extern char except_vec_vi_mori;
1320 		const int mori_offset = &except_vec_vi_mori - vec_start;
1321 #endif /* CONFIG_MIPS_MT_SMTC */
1322 		const int handler_len = &except_vec_vi_end - vec_start;
1323 		const int lui_offset = &except_vec_vi_lui - vec_start;
1324 		const int ori_offset = &except_vec_vi_ori - vec_start;
1325 
1326 		if (handler_len > VECTORSPACING) {
1327 			/*
1328 			 * Sigh... panicing won't help as the console
1329 			 * is probably not configured :(
1330 			 */
1331 			panic("VECTORSPACING too small");
1332 		}
1333 
1334 		memcpy(b, vec_start, handler_len);
1335 #ifdef CONFIG_MIPS_MT_SMTC
1336 		BUG_ON(n > 7);	/* Vector index %d exceeds SMTC maximum. */
1337 
1338 		w = (u32 *)(b + mori_offset);
1339 		*w = (*w & 0xffff0000) | (0x100 << n);
1340 #endif /* CONFIG_MIPS_MT_SMTC */
1341 		w = (u32 *)(b + lui_offset);
1342 		*w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1343 		w = (u32 *)(b + ori_offset);
1344 		*w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1345 		local_flush_icache_range((unsigned long)b,
1346 					 (unsigned long)(b+handler_len));
1347 	}
1348 	else {
1349 		/*
1350 		 * In other cases jump directly to the interrupt handler
1351 		 *
1352 		 * It is the handlers responsibility to save registers if required
1353 		 * (eg hi/lo) and return from the exception using "eret"
1354 		 */
1355 		w = (u32 *)b;
1356 		*w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1357 		*w = 0;
1358 		local_flush_icache_range((unsigned long)b,
1359 					 (unsigned long)(b+8));
1360 	}
1361 
1362 	return (void *)old_handler;
1363 }
1364 
1365 void *set_vi_handler(int n, vi_handler_t addr)
1366 {
1367 	return set_vi_srs_handler(n, addr, 0);
1368 }
1369 
1370 /*
1371  * This is used by native signal handling
1372  */
1373 asmlinkage int (*save_fp_context)(struct sigcontext __user *sc);
1374 asmlinkage int (*restore_fp_context)(struct sigcontext __user *sc);
1375 
1376 extern asmlinkage int _save_fp_context(struct sigcontext __user *sc);
1377 extern asmlinkage int _restore_fp_context(struct sigcontext __user *sc);
1378 
1379 extern asmlinkage int fpu_emulator_save_context(struct sigcontext __user *sc);
1380 extern asmlinkage int fpu_emulator_restore_context(struct sigcontext __user *sc);
1381 
1382 #ifdef CONFIG_SMP
1383 static int smp_save_fp_context(struct sigcontext __user *sc)
1384 {
1385 	return raw_cpu_has_fpu
1386 	       ? _save_fp_context(sc)
1387 	       : fpu_emulator_save_context(sc);
1388 }
1389 
1390 static int smp_restore_fp_context(struct sigcontext __user *sc)
1391 {
1392 	return raw_cpu_has_fpu
1393 	       ? _restore_fp_context(sc)
1394 	       : fpu_emulator_restore_context(sc);
1395 }
1396 #endif
1397 
1398 static inline void signal_init(void)
1399 {
1400 #ifdef CONFIG_SMP
1401 	/* For now just do the cpu_has_fpu check when the functions are invoked */
1402 	save_fp_context = smp_save_fp_context;
1403 	restore_fp_context = smp_restore_fp_context;
1404 #else
1405 	if (cpu_has_fpu) {
1406 		save_fp_context = _save_fp_context;
1407 		restore_fp_context = _restore_fp_context;
1408 	} else {
1409 		save_fp_context = fpu_emulator_save_context;
1410 		restore_fp_context = fpu_emulator_restore_context;
1411 	}
1412 #endif
1413 }
1414 
1415 #ifdef CONFIG_MIPS32_COMPAT
1416 
1417 /*
1418  * This is used by 32-bit signal stuff on the 64-bit kernel
1419  */
1420 asmlinkage int (*save_fp_context32)(struct sigcontext32 __user *sc);
1421 asmlinkage int (*restore_fp_context32)(struct sigcontext32 __user *sc);
1422 
1423 extern asmlinkage int _save_fp_context32(struct sigcontext32 __user *sc);
1424 extern asmlinkage int _restore_fp_context32(struct sigcontext32 __user *sc);
1425 
1426 extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 __user *sc);
1427 extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 __user *sc);
1428 
1429 static inline void signal32_init(void)
1430 {
1431 	if (cpu_has_fpu) {
1432 		save_fp_context32 = _save_fp_context32;
1433 		restore_fp_context32 = _restore_fp_context32;
1434 	} else {
1435 		save_fp_context32 = fpu_emulator_save_context32;
1436 		restore_fp_context32 = fpu_emulator_restore_context32;
1437 	}
1438 }
1439 #endif
1440 
1441 extern void cpu_cache_init(void);
1442 extern void tlb_init(void);
1443 extern void flush_tlb_handlers(void);
1444 
1445 /*
1446  * Timer interrupt
1447  */
1448 int cp0_compare_irq;
1449 
1450 /*
1451  * Performance counter IRQ or -1 if shared with timer
1452  */
1453 int cp0_perfcount_irq;
1454 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1455 
1456 static int __cpuinitdata noulri;
1457 
1458 static int __init ulri_disable(char *s)
1459 {
1460 	pr_info("Disabling ulri\n");
1461 	noulri = 1;
1462 
1463 	return 1;
1464 }
1465 __setup("noulri", ulri_disable);
1466 
1467 void __cpuinit per_cpu_trap_init(void)
1468 {
1469 	unsigned int cpu = smp_processor_id();
1470 	unsigned int status_set = ST0_CU0;
1471 #ifdef CONFIG_MIPS_MT_SMTC
1472 	int secondaryTC = 0;
1473 	int bootTC = (cpu == 0);
1474 
1475 	/*
1476 	 * Only do per_cpu_trap_init() for first TC of Each VPE.
1477 	 * Note that this hack assumes that the SMTC init code
1478 	 * assigns TCs consecutively and in ascending order.
1479 	 */
1480 
1481 	if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1482 	    ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1483 		secondaryTC = 1;
1484 #endif /* CONFIG_MIPS_MT_SMTC */
1485 
1486 	/*
1487 	 * Disable coprocessors and select 32-bit or 64-bit addressing
1488 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
1489 	 * flag that some firmware may have left set and the TS bit (for
1490 	 * IP27).  Set XX for ISA IV code to work.
1491 	 */
1492 #ifdef CONFIG_64BIT
1493 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1494 #endif
1495 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1496 		status_set |= ST0_XX;
1497 	if (cpu_has_dsp)
1498 		status_set |= ST0_MX;
1499 
1500 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1501 			 status_set);
1502 
1503 	if (cpu_has_mips_r2) {
1504 		unsigned int enable = 0x0000000f | cpu_hwrena_impl_bits;
1505 
1506 		if (!noulri && cpu_has_userlocal)
1507 			enable |= (1 << 29);
1508 
1509 		write_c0_hwrena(enable);
1510 	}
1511 
1512 #ifdef CONFIG_MIPS_MT_SMTC
1513 	if (!secondaryTC) {
1514 #endif /* CONFIG_MIPS_MT_SMTC */
1515 
1516 	if (cpu_has_veic || cpu_has_vint) {
1517 		unsigned long sr = set_c0_status(ST0_BEV);
1518 		write_c0_ebase(ebase);
1519 		write_c0_status(sr);
1520 		/* Setting vector spacing enables EI/VI mode  */
1521 		change_c0_intctl(0x3e0, VECTORSPACING);
1522 	}
1523 	if (cpu_has_divec) {
1524 		if (cpu_has_mipsmt) {
1525 			unsigned int vpflags = dvpe();
1526 			set_c0_cause(CAUSEF_IV);
1527 			evpe(vpflags);
1528 		} else
1529 			set_c0_cause(CAUSEF_IV);
1530 	}
1531 
1532 	/*
1533 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1534 	 *
1535 	 *  o read IntCtl.IPTI to determine the timer interrupt
1536 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
1537 	 */
1538 	if (cpu_has_mips_r2) {
1539 		cp0_compare_irq = (read_c0_intctl() >> 29) & 7;
1540 		cp0_perfcount_irq = (read_c0_intctl() >> 26) & 7;
1541 		if (cp0_perfcount_irq == cp0_compare_irq)
1542 			cp0_perfcount_irq = -1;
1543 	} else {
1544 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1545 		cp0_perfcount_irq = -1;
1546 	}
1547 
1548 #ifdef CONFIG_MIPS_MT_SMTC
1549 	}
1550 #endif /* CONFIG_MIPS_MT_SMTC */
1551 
1552 	cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1553 	TLBMISS_HANDLER_SETUP();
1554 
1555 	atomic_inc(&init_mm.mm_count);
1556 	current->active_mm = &init_mm;
1557 	BUG_ON(current->mm);
1558 	enter_lazy_tlb(&init_mm, current);
1559 
1560 #ifdef CONFIG_MIPS_MT_SMTC
1561 	if (bootTC) {
1562 #endif /* CONFIG_MIPS_MT_SMTC */
1563 		cpu_cache_init();
1564 		tlb_init();
1565 #ifdef CONFIG_MIPS_MT_SMTC
1566 	} else if (!secondaryTC) {
1567 		/*
1568 		 * First TC in non-boot VPE must do subset of tlb_init()
1569 		 * for MMU countrol registers.
1570 		 */
1571 		write_c0_pagemask(PM_DEFAULT_MASK);
1572 		write_c0_wired(0);
1573 	}
1574 #endif /* CONFIG_MIPS_MT_SMTC */
1575 }
1576 
1577 /* Install CPU exception handler */
1578 void __init set_handler(unsigned long offset, void *addr, unsigned long size)
1579 {
1580 	memcpy((void *)(ebase + offset), addr, size);
1581 	local_flush_icache_range(ebase + offset, ebase + offset + size);
1582 }
1583 
1584 static char panic_null_cerr[] __cpuinitdata =
1585 	"Trying to set NULL cache error exception handler";
1586 
1587 /*
1588  * Install uncached CPU exception handler.
1589  * This is suitable only for the cache error exception which is the only
1590  * exception handler that is being run uncached.
1591  */
1592 void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1593 	unsigned long size)
1594 {
1595 #ifdef CONFIG_32BIT
1596 	unsigned long uncached_ebase = KSEG1ADDR(ebase);
1597 #endif
1598 #ifdef CONFIG_64BIT
1599 	unsigned long uncached_ebase = TO_UNCAC(ebase);
1600 #endif
1601 
1602 	if (!addr)
1603 		panic(panic_null_cerr);
1604 
1605 	memcpy((void *)(uncached_ebase + offset), addr, size);
1606 }
1607 
1608 static int __initdata rdhwr_noopt;
1609 static int __init set_rdhwr_noopt(char *str)
1610 {
1611 	rdhwr_noopt = 1;
1612 	return 1;
1613 }
1614 
1615 __setup("rdhwr_noopt", set_rdhwr_noopt);
1616 
1617 void __init trap_init(void)
1618 {
1619 	extern char except_vec3_generic, except_vec3_r4000;
1620 	extern char except_vec4;
1621 	unsigned long i;
1622 	int rollback;
1623 
1624 	check_wait();
1625 	rollback = (cpu_wait == r4k_wait);
1626 
1627 #if defined(CONFIG_KGDB)
1628 	if (kgdb_early_setup)
1629 		return;	/* Already done */
1630 #endif
1631 
1632 	if (cpu_has_veic || cpu_has_vint) {
1633 		unsigned long size = 0x200 + VECTORSPACING*64;
1634 		ebase = (unsigned long)
1635 			__alloc_bootmem(size, 1 << fls(size), 0);
1636 	} else {
1637 		ebase = CAC_BASE;
1638 		if (cpu_has_mips_r2)
1639 			ebase += (read_c0_ebase() & 0x3ffff000);
1640 	}
1641 
1642 	per_cpu_trap_init();
1643 
1644 	/*
1645 	 * Copy the generic exception handlers to their final destination.
1646 	 * This will be overriden later as suitable for a particular
1647 	 * configuration.
1648 	 */
1649 	set_handler(0x180, &except_vec3_generic, 0x80);
1650 
1651 	/*
1652 	 * Setup default vectors
1653 	 */
1654 	for (i = 0; i <= 31; i++)
1655 		set_except_vector(i, handle_reserved);
1656 
1657 	/*
1658 	 * Copy the EJTAG debug exception vector handler code to it's final
1659 	 * destination.
1660 	 */
1661 	if (cpu_has_ejtag && board_ejtag_handler_setup)
1662 		board_ejtag_handler_setup();
1663 
1664 	/*
1665 	 * Only some CPUs have the watch exceptions.
1666 	 */
1667 	if (cpu_has_watch)
1668 		set_except_vector(23, handle_watch);
1669 
1670 	/*
1671 	 * Initialise interrupt handlers
1672 	 */
1673 	if (cpu_has_veic || cpu_has_vint) {
1674 		int nvec = cpu_has_veic ? 64 : 8;
1675 		for (i = 0; i < nvec; i++)
1676 			set_vi_handler(i, NULL);
1677 	}
1678 	else if (cpu_has_divec)
1679 		set_handler(0x200, &except_vec4, 0x8);
1680 
1681 	/*
1682 	 * Some CPUs can enable/disable for cache parity detection, but does
1683 	 * it different ways.
1684 	 */
1685 	parity_protection_init();
1686 
1687 	/*
1688 	 * The Data Bus Errors / Instruction Bus Errors are signaled
1689 	 * by external hardware.  Therefore these two exceptions
1690 	 * may have board specific handlers.
1691 	 */
1692 	if (board_be_init)
1693 		board_be_init();
1694 
1695 	set_except_vector(0, rollback ? rollback_handle_int : handle_int);
1696 	set_except_vector(1, handle_tlbm);
1697 	set_except_vector(2, handle_tlbl);
1698 	set_except_vector(3, handle_tlbs);
1699 
1700 	set_except_vector(4, handle_adel);
1701 	set_except_vector(5, handle_ades);
1702 
1703 	set_except_vector(6, handle_ibe);
1704 	set_except_vector(7, handle_dbe);
1705 
1706 	set_except_vector(8, handle_sys);
1707 	set_except_vector(9, handle_bp);
1708 	set_except_vector(10, rdhwr_noopt ? handle_ri :
1709 			  (cpu_has_vtag_icache ?
1710 			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1711 	set_except_vector(11, handle_cpu);
1712 	set_except_vector(12, handle_ov);
1713 	set_except_vector(13, handle_tr);
1714 
1715 	if (current_cpu_type() == CPU_R6000 ||
1716 	    current_cpu_type() == CPU_R6000A) {
1717 		/*
1718 		 * The R6000 is the only R-series CPU that features a machine
1719 		 * check exception (similar to the R4000 cache error) and
1720 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
1721 		 * written yet.  Well, anyway there is no R6000 machine on the
1722 		 * current list of targets for Linux/MIPS.
1723 		 * (Duh, crap, there is someone with a triple R6k machine)
1724 		 */
1725 		//set_except_vector(14, handle_mc);
1726 		//set_except_vector(15, handle_ndc);
1727 	}
1728 
1729 
1730 	if (board_nmi_handler_setup)
1731 		board_nmi_handler_setup();
1732 
1733 	if (cpu_has_fpu && !cpu_has_nofpuex)
1734 		set_except_vector(15, handle_fpe);
1735 
1736 	set_except_vector(22, handle_mdmx);
1737 
1738 	if (cpu_has_mcheck)
1739 		set_except_vector(24, handle_mcheck);
1740 
1741 	if (cpu_has_mipsmt)
1742 		set_except_vector(25, handle_mt);
1743 
1744 	set_except_vector(26, handle_dsp);
1745 
1746 	if (cpu_has_vce)
1747 		/* Special exception: R4[04]00 uses also the divec space. */
1748 		memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100);
1749 	else if (cpu_has_4kex)
1750 		memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80);
1751 	else
1752 		memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80);
1753 
1754 	signal_init();
1755 #ifdef CONFIG_MIPS32_COMPAT
1756 	signal32_init();
1757 #endif
1758 
1759 	local_flush_icache_range(ebase, ebase + 0x400);
1760 	flush_tlb_handlers();
1761 
1762 	sort_extable(__start___dbe_table, __stop___dbe_table);
1763 }
1764