1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle 7 * Copyright (C) 1995, 1996 Paul M. Antoine 8 * Copyright (C) 1998 Ulf Carlsson 9 * Copyright (C) 1999 Silicon Graphics, Inc. 10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 11 * Copyright (C) 2000, 01 MIPS Technologies, Inc. 12 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki 13 */ 14 #include <linux/bug.h> 15 #include <linux/compiler.h> 16 #include <linux/init.h> 17 #include <linux/mm.h> 18 #include <linux/module.h> 19 #include <linux/sched.h> 20 #include <linux/smp.h> 21 #include <linux/spinlock.h> 22 #include <linux/kallsyms.h> 23 #include <linux/bootmem.h> 24 #include <linux/interrupt.h> 25 #include <linux/ptrace.h> 26 #include <linux/kgdb.h> 27 #include <linux/kdebug.h> 28 29 #include <asm/bootinfo.h> 30 #include <asm/branch.h> 31 #include <asm/break.h> 32 #include <asm/cpu.h> 33 #include <asm/dsp.h> 34 #include <asm/fpu.h> 35 #include <asm/fpu_emulator.h> 36 #include <asm/mipsregs.h> 37 #include <asm/mipsmtregs.h> 38 #include <asm/module.h> 39 #include <asm/pgtable.h> 40 #include <asm/ptrace.h> 41 #include <asm/sections.h> 42 #include <asm/system.h> 43 #include <asm/tlbdebug.h> 44 #include <asm/traps.h> 45 #include <asm/uaccess.h> 46 #include <asm/watch.h> 47 #include <asm/mmu_context.h> 48 #include <asm/types.h> 49 #include <asm/stacktrace.h> 50 #include <asm/irq.h> 51 52 extern void check_wait(void); 53 extern asmlinkage void r4k_wait(void); 54 extern asmlinkage void rollback_handle_int(void); 55 extern asmlinkage void handle_int(void); 56 extern asmlinkage void handle_tlbm(void); 57 extern asmlinkage void handle_tlbl(void); 58 extern asmlinkage void handle_tlbs(void); 59 extern asmlinkage void handle_adel(void); 60 extern asmlinkage void handle_ades(void); 61 extern asmlinkage void handle_ibe(void); 62 extern asmlinkage void handle_dbe(void); 63 extern asmlinkage void handle_sys(void); 64 extern asmlinkage void handle_bp(void); 65 extern asmlinkage void handle_ri(void); 66 extern asmlinkage void handle_ri_rdhwr_vivt(void); 67 extern asmlinkage void handle_ri_rdhwr(void); 68 extern asmlinkage void handle_cpu(void); 69 extern asmlinkage void handle_ov(void); 70 extern asmlinkage void handle_tr(void); 71 extern asmlinkage void handle_fpe(void); 72 extern asmlinkage void handle_mdmx(void); 73 extern asmlinkage void handle_watch(void); 74 extern asmlinkage void handle_mt(void); 75 extern asmlinkage void handle_dsp(void); 76 extern asmlinkage void handle_mcheck(void); 77 extern asmlinkage void handle_reserved(void); 78 79 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp, 80 struct mips_fpu_struct *ctx, int has_fpu); 81 82 #ifdef CONFIG_CPU_CAVIUM_OCTEON 83 extern asmlinkage void octeon_cop2_restore(struct octeon_cop2_state *task); 84 #endif 85 86 void (*board_be_init)(void); 87 int (*board_be_handler)(struct pt_regs *regs, int is_fixup); 88 void (*board_nmi_handler_setup)(void); 89 void (*board_ejtag_handler_setup)(void); 90 void (*board_bind_eic_interrupt)(int irq, int regset); 91 92 93 static void show_raw_backtrace(unsigned long reg29) 94 { 95 unsigned long *sp = (unsigned long *)(reg29 & ~3); 96 unsigned long addr; 97 98 printk("Call Trace:"); 99 #ifdef CONFIG_KALLSYMS 100 printk("\n"); 101 #endif 102 while (!kstack_end(sp)) { 103 unsigned long __user *p = 104 (unsigned long __user *)(unsigned long)sp++; 105 if (__get_user(addr, p)) { 106 printk(" (Bad stack address)"); 107 break; 108 } 109 if (__kernel_text_address(addr)) 110 print_ip_sym(addr); 111 } 112 printk("\n"); 113 } 114 115 #ifdef CONFIG_KALLSYMS 116 int raw_show_trace; 117 static int __init set_raw_show_trace(char *str) 118 { 119 raw_show_trace = 1; 120 return 1; 121 } 122 __setup("raw_show_trace", set_raw_show_trace); 123 #endif 124 125 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs) 126 { 127 unsigned long sp = regs->regs[29]; 128 unsigned long ra = regs->regs[31]; 129 unsigned long pc = regs->cp0_epc; 130 131 if (raw_show_trace || !__kernel_text_address(pc)) { 132 show_raw_backtrace(sp); 133 return; 134 } 135 printk("Call Trace:\n"); 136 do { 137 print_ip_sym(pc); 138 pc = unwind_stack(task, &sp, pc, &ra); 139 } while (pc); 140 printk("\n"); 141 } 142 143 /* 144 * This routine abuses get_user()/put_user() to reference pointers 145 * with at least a bit of error checking ... 146 */ 147 static void show_stacktrace(struct task_struct *task, 148 const struct pt_regs *regs) 149 { 150 const int field = 2 * sizeof(unsigned long); 151 long stackdata; 152 int i; 153 unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; 154 155 printk("Stack :"); 156 i = 0; 157 while ((unsigned long) sp & (PAGE_SIZE - 1)) { 158 if (i && ((i % (64 / field)) == 0)) 159 printk("\n "); 160 if (i > 39) { 161 printk(" ..."); 162 break; 163 } 164 165 if (__get_user(stackdata, sp++)) { 166 printk(" (Bad stack address)"); 167 break; 168 } 169 170 printk(" %0*lx", field, stackdata); 171 i++; 172 } 173 printk("\n"); 174 show_backtrace(task, regs); 175 } 176 177 void show_stack(struct task_struct *task, unsigned long *sp) 178 { 179 struct pt_regs regs; 180 if (sp) { 181 regs.regs[29] = (unsigned long)sp; 182 regs.regs[31] = 0; 183 regs.cp0_epc = 0; 184 } else { 185 if (task && task != current) { 186 regs.regs[29] = task->thread.reg29; 187 regs.regs[31] = 0; 188 regs.cp0_epc = task->thread.reg31; 189 } else { 190 prepare_frametrace(®s); 191 } 192 } 193 show_stacktrace(task, ®s); 194 } 195 196 /* 197 * The architecture-independent dump_stack generator 198 */ 199 void dump_stack(void) 200 { 201 struct pt_regs regs; 202 203 prepare_frametrace(®s); 204 show_backtrace(current, ®s); 205 } 206 207 EXPORT_SYMBOL(dump_stack); 208 209 static void show_code(unsigned int __user *pc) 210 { 211 long i; 212 unsigned short __user *pc16 = NULL; 213 214 printk("\nCode:"); 215 216 if ((unsigned long)pc & 1) 217 pc16 = (unsigned short __user *)((unsigned long)pc & ~1); 218 for(i = -3 ; i < 6 ; i++) { 219 unsigned int insn; 220 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { 221 printk(" (Bad address in epc)\n"); 222 break; 223 } 224 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); 225 } 226 } 227 228 static void __show_regs(const struct pt_regs *regs) 229 { 230 const int field = 2 * sizeof(unsigned long); 231 unsigned int cause = regs->cp0_cause; 232 int i; 233 234 printk("Cpu %d\n", smp_processor_id()); 235 236 /* 237 * Saved main processor registers 238 */ 239 for (i = 0; i < 32; ) { 240 if ((i % 4) == 0) 241 printk("$%2d :", i); 242 if (i == 0) 243 printk(" %0*lx", field, 0UL); 244 else if (i == 26 || i == 27) 245 printk(" %*s", field, ""); 246 else 247 printk(" %0*lx", field, regs->regs[i]); 248 249 i++; 250 if ((i % 4) == 0) 251 printk("\n"); 252 } 253 254 #ifdef CONFIG_CPU_HAS_SMARTMIPS 255 printk("Acx : %0*lx\n", field, regs->acx); 256 #endif 257 printk("Hi : %0*lx\n", field, regs->hi); 258 printk("Lo : %0*lx\n", field, regs->lo); 259 260 /* 261 * Saved cp0 registers 262 */ 263 printk("epc : %0*lx %pS\n", field, regs->cp0_epc, 264 (void *) regs->cp0_epc); 265 printk(" %s\n", print_tainted()); 266 printk("ra : %0*lx %pS\n", field, regs->regs[31], 267 (void *) regs->regs[31]); 268 269 printk("Status: %08x ", (uint32_t) regs->cp0_status); 270 271 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) { 272 if (regs->cp0_status & ST0_KUO) 273 printk("KUo "); 274 if (regs->cp0_status & ST0_IEO) 275 printk("IEo "); 276 if (regs->cp0_status & ST0_KUP) 277 printk("KUp "); 278 if (regs->cp0_status & ST0_IEP) 279 printk("IEp "); 280 if (regs->cp0_status & ST0_KUC) 281 printk("KUc "); 282 if (regs->cp0_status & ST0_IEC) 283 printk("IEc "); 284 } else { 285 if (regs->cp0_status & ST0_KX) 286 printk("KX "); 287 if (regs->cp0_status & ST0_SX) 288 printk("SX "); 289 if (regs->cp0_status & ST0_UX) 290 printk("UX "); 291 switch (regs->cp0_status & ST0_KSU) { 292 case KSU_USER: 293 printk("USER "); 294 break; 295 case KSU_SUPERVISOR: 296 printk("SUPERVISOR "); 297 break; 298 case KSU_KERNEL: 299 printk("KERNEL "); 300 break; 301 default: 302 printk("BAD_MODE "); 303 break; 304 } 305 if (regs->cp0_status & ST0_ERL) 306 printk("ERL "); 307 if (regs->cp0_status & ST0_EXL) 308 printk("EXL "); 309 if (regs->cp0_status & ST0_IE) 310 printk("IE "); 311 } 312 printk("\n"); 313 314 printk("Cause : %08x\n", cause); 315 316 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; 317 if (1 <= cause && cause <= 5) 318 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); 319 320 printk("PrId : %08x (%s)\n", read_c0_prid(), 321 cpu_name_string()); 322 } 323 324 /* 325 * FIXME: really the generic show_regs should take a const pointer argument. 326 */ 327 void show_regs(struct pt_regs *regs) 328 { 329 __show_regs((struct pt_regs *)regs); 330 } 331 332 void show_registers(const struct pt_regs *regs) 333 { 334 const int field = 2 * sizeof(unsigned long); 335 336 __show_regs(regs); 337 print_modules(); 338 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", 339 current->comm, current->pid, current_thread_info(), current, 340 field, current_thread_info()->tp_value); 341 if (cpu_has_userlocal) { 342 unsigned long tls; 343 344 tls = read_c0_userlocal(); 345 if (tls != current_thread_info()->tp_value) 346 printk("*HwTLS: %0*lx\n", field, tls); 347 } 348 349 show_stacktrace(current, regs); 350 show_code((unsigned int __user *) regs->cp0_epc); 351 printk("\n"); 352 } 353 354 static DEFINE_SPINLOCK(die_lock); 355 356 void __noreturn die(const char * str, const struct pt_regs * regs) 357 { 358 static int die_counter; 359 #ifdef CONFIG_MIPS_MT_SMTC 360 unsigned long dvpret = dvpe(); 361 #endif /* CONFIG_MIPS_MT_SMTC */ 362 363 console_verbose(); 364 spin_lock_irq(&die_lock); 365 bust_spinlocks(1); 366 #ifdef CONFIG_MIPS_MT_SMTC 367 mips_mt_regdump(dvpret); 368 #endif /* CONFIG_MIPS_MT_SMTC */ 369 printk("%s[#%d]:\n", str, ++die_counter); 370 show_registers(regs); 371 add_taint(TAINT_DIE); 372 spin_unlock_irq(&die_lock); 373 374 if (in_interrupt()) 375 panic("Fatal exception in interrupt"); 376 377 if (panic_on_oops) { 378 printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n"); 379 ssleep(5); 380 panic("Fatal exception"); 381 } 382 383 do_exit(SIGSEGV); 384 } 385 386 extern struct exception_table_entry __start___dbe_table[]; 387 extern struct exception_table_entry __stop___dbe_table[]; 388 389 __asm__( 390 " .section __dbe_table, \"a\"\n" 391 " .previous \n"); 392 393 /* Given an address, look for it in the exception tables. */ 394 static const struct exception_table_entry *search_dbe_tables(unsigned long addr) 395 { 396 const struct exception_table_entry *e; 397 398 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr); 399 if (!e) 400 e = search_module_dbetables(addr); 401 return e; 402 } 403 404 asmlinkage void do_be(struct pt_regs *regs) 405 { 406 const int field = 2 * sizeof(unsigned long); 407 const struct exception_table_entry *fixup = NULL; 408 int data = regs->cp0_cause & 4; 409 int action = MIPS_BE_FATAL; 410 411 /* XXX For now. Fixme, this searches the wrong table ... */ 412 if (data && !user_mode(regs)) 413 fixup = search_dbe_tables(exception_epc(regs)); 414 415 if (fixup) 416 action = MIPS_BE_FIXUP; 417 418 if (board_be_handler) 419 action = board_be_handler(regs, fixup != NULL); 420 421 switch (action) { 422 case MIPS_BE_DISCARD: 423 return; 424 case MIPS_BE_FIXUP: 425 if (fixup) { 426 regs->cp0_epc = fixup->nextinsn; 427 return; 428 } 429 break; 430 default: 431 break; 432 } 433 434 /* 435 * Assume it would be too dangerous to continue ... 436 */ 437 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", 438 data ? "Data" : "Instruction", 439 field, regs->cp0_epc, field, regs->regs[31]); 440 if (notify_die(DIE_OOPS, "bus error", regs, SIGBUS, 0, 0) 441 == NOTIFY_STOP) 442 return; 443 444 die_if_kernel("Oops", regs); 445 force_sig(SIGBUS, current); 446 } 447 448 /* 449 * ll/sc, rdhwr, sync emulation 450 */ 451 452 #define OPCODE 0xfc000000 453 #define BASE 0x03e00000 454 #define RT 0x001f0000 455 #define OFFSET 0x0000ffff 456 #define LL 0xc0000000 457 #define SC 0xe0000000 458 #define SPEC0 0x00000000 459 #define SPEC3 0x7c000000 460 #define RD 0x0000f800 461 #define FUNC 0x0000003f 462 #define SYNC 0x0000000f 463 #define RDHWR 0x0000003b 464 465 /* 466 * The ll_bit is cleared by r*_switch.S 467 */ 468 469 unsigned int ll_bit; 470 struct task_struct *ll_task; 471 472 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) 473 { 474 unsigned long value, __user *vaddr; 475 long offset; 476 477 /* 478 * analyse the ll instruction that just caused a ri exception 479 * and put the referenced address to addr. 480 */ 481 482 /* sign extend offset */ 483 offset = opcode & OFFSET; 484 offset <<= 16; 485 offset >>= 16; 486 487 vaddr = (unsigned long __user *) 488 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 489 490 if ((unsigned long)vaddr & 3) 491 return SIGBUS; 492 if (get_user(value, vaddr)) 493 return SIGSEGV; 494 495 preempt_disable(); 496 497 if (ll_task == NULL || ll_task == current) { 498 ll_bit = 1; 499 } else { 500 ll_bit = 0; 501 } 502 ll_task = current; 503 504 preempt_enable(); 505 506 regs->regs[(opcode & RT) >> 16] = value; 507 508 return 0; 509 } 510 511 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) 512 { 513 unsigned long __user *vaddr; 514 unsigned long reg; 515 long offset; 516 517 /* 518 * analyse the sc instruction that just caused a ri exception 519 * and put the referenced address to addr. 520 */ 521 522 /* sign extend offset */ 523 offset = opcode & OFFSET; 524 offset <<= 16; 525 offset >>= 16; 526 527 vaddr = (unsigned long __user *) 528 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 529 reg = (opcode & RT) >> 16; 530 531 if ((unsigned long)vaddr & 3) 532 return SIGBUS; 533 534 preempt_disable(); 535 536 if (ll_bit == 0 || ll_task != current) { 537 regs->regs[reg] = 0; 538 preempt_enable(); 539 return 0; 540 } 541 542 preempt_enable(); 543 544 if (put_user(regs->regs[reg], vaddr)) 545 return SIGSEGV; 546 547 regs->regs[reg] = 1; 548 549 return 0; 550 } 551 552 /* 553 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both 554 * opcodes are supposed to result in coprocessor unusable exceptions if 555 * executed on ll/sc-less processors. That's the theory. In practice a 556 * few processors such as NEC's VR4100 throw reserved instruction exceptions 557 * instead, so we're doing the emulation thing in both exception handlers. 558 */ 559 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) 560 { 561 if ((opcode & OPCODE) == LL) 562 return simulate_ll(regs, opcode); 563 if ((opcode & OPCODE) == SC) 564 return simulate_sc(regs, opcode); 565 566 return -1; /* Must be something else ... */ 567 } 568 569 /* 570 * Simulate trapping 'rdhwr' instructions to provide user accessible 571 * registers not implemented in hardware. 572 */ 573 static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode) 574 { 575 struct thread_info *ti = task_thread_info(current); 576 577 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { 578 int rd = (opcode & RD) >> 11; 579 int rt = (opcode & RT) >> 16; 580 switch (rd) { 581 case 0: /* CPU number */ 582 regs->regs[rt] = smp_processor_id(); 583 return 0; 584 case 1: /* SYNCI length */ 585 regs->regs[rt] = min(current_cpu_data.dcache.linesz, 586 current_cpu_data.icache.linesz); 587 return 0; 588 case 2: /* Read count register */ 589 regs->regs[rt] = read_c0_count(); 590 return 0; 591 case 3: /* Count register resolution */ 592 switch (current_cpu_data.cputype) { 593 case CPU_20KC: 594 case CPU_25KF: 595 regs->regs[rt] = 1; 596 break; 597 default: 598 regs->regs[rt] = 2; 599 } 600 return 0; 601 case 29: 602 regs->regs[rt] = ti->tp_value; 603 return 0; 604 default: 605 return -1; 606 } 607 } 608 609 /* Not ours. */ 610 return -1; 611 } 612 613 static int simulate_sync(struct pt_regs *regs, unsigned int opcode) 614 { 615 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) 616 return 0; 617 618 return -1; /* Must be something else ... */ 619 } 620 621 asmlinkage void do_ov(struct pt_regs *regs) 622 { 623 siginfo_t info; 624 625 die_if_kernel("Integer overflow", regs); 626 627 info.si_code = FPE_INTOVF; 628 info.si_signo = SIGFPE; 629 info.si_errno = 0; 630 info.si_addr = (void __user *) regs->cp0_epc; 631 force_sig_info(SIGFPE, &info, current); 632 } 633 634 /* 635 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX 636 */ 637 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) 638 { 639 siginfo_t info; 640 641 if (notify_die(DIE_FP, "FP exception", regs, SIGFPE, 0, 0) 642 == NOTIFY_STOP) 643 return; 644 die_if_kernel("FP exception in kernel code", regs); 645 646 if (fcr31 & FPU_CSR_UNI_X) { 647 int sig; 648 649 /* 650 * Unimplemented operation exception. If we've got the full 651 * software emulator on-board, let's use it... 652 * 653 * Force FPU to dump state into task/thread context. We're 654 * moving a lot of data here for what is probably a single 655 * instruction, but the alternative is to pre-decode the FP 656 * register operands before invoking the emulator, which seems 657 * a bit extreme for what should be an infrequent event. 658 */ 659 /* Ensure 'resume' not overwrite saved fp context again. */ 660 lose_fpu(1); 661 662 /* Run the emulator */ 663 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1); 664 665 /* 666 * We can't allow the emulated instruction to leave any of 667 * the cause bit set in $fcr31. 668 */ 669 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 670 671 /* Restore the hardware register state */ 672 own_fpu(1); /* Using the FPU again. */ 673 674 /* If something went wrong, signal */ 675 if (sig) 676 force_sig(sig, current); 677 678 return; 679 } else if (fcr31 & FPU_CSR_INV_X) 680 info.si_code = FPE_FLTINV; 681 else if (fcr31 & FPU_CSR_DIV_X) 682 info.si_code = FPE_FLTDIV; 683 else if (fcr31 & FPU_CSR_OVF_X) 684 info.si_code = FPE_FLTOVF; 685 else if (fcr31 & FPU_CSR_UDF_X) 686 info.si_code = FPE_FLTUND; 687 else if (fcr31 & FPU_CSR_INE_X) 688 info.si_code = FPE_FLTRES; 689 else 690 info.si_code = __SI_FAULT; 691 info.si_signo = SIGFPE; 692 info.si_errno = 0; 693 info.si_addr = (void __user *) regs->cp0_epc; 694 force_sig_info(SIGFPE, &info, current); 695 } 696 697 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code, 698 const char *str) 699 { 700 siginfo_t info; 701 char b[40]; 702 703 if (notify_die(DIE_TRAP, str, regs, code, 0, 0) == NOTIFY_STOP) 704 return; 705 706 /* 707 * A short test says that IRIX 5.3 sends SIGTRAP for all trap 708 * insns, even for trap and break codes that indicate arithmetic 709 * failures. Weird ... 710 * But should we continue the brokenness??? --macro 711 */ 712 switch (code) { 713 case BRK_OVERFLOW: 714 case BRK_DIVZERO: 715 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 716 die_if_kernel(b, regs); 717 if (code == BRK_DIVZERO) 718 info.si_code = FPE_INTDIV; 719 else 720 info.si_code = FPE_INTOVF; 721 info.si_signo = SIGFPE; 722 info.si_errno = 0; 723 info.si_addr = (void __user *) regs->cp0_epc; 724 force_sig_info(SIGFPE, &info, current); 725 break; 726 case BRK_BUG: 727 die_if_kernel("Kernel bug detected", regs); 728 force_sig(SIGTRAP, current); 729 break; 730 case BRK_MEMU: 731 /* 732 * Address errors may be deliberately induced by the FPU 733 * emulator to retake control of the CPU after executing the 734 * instruction in the delay slot of an emulated branch. 735 * 736 * Terminate if exception was recognized as a delay slot return 737 * otherwise handle as normal. 738 */ 739 if (do_dsemulret(regs)) 740 return; 741 742 die_if_kernel("Math emu break/trap", regs); 743 force_sig(SIGTRAP, current); 744 break; 745 default: 746 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 747 die_if_kernel(b, regs); 748 force_sig(SIGTRAP, current); 749 } 750 } 751 752 asmlinkage void do_bp(struct pt_regs *regs) 753 { 754 unsigned int opcode, bcode; 755 756 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs))) 757 goto out_sigsegv; 758 759 /* 760 * There is the ancient bug in the MIPS assemblers that the break 761 * code starts left to bit 16 instead to bit 6 in the opcode. 762 * Gas is bug-compatible, but not always, grrr... 763 * We handle both cases with a simple heuristics. --macro 764 */ 765 bcode = ((opcode >> 6) & ((1 << 20) - 1)); 766 if (bcode >= (1 << 10)) 767 bcode >>= 10; 768 769 do_trap_or_bp(regs, bcode, "Break"); 770 return; 771 772 out_sigsegv: 773 force_sig(SIGSEGV, current); 774 } 775 776 asmlinkage void do_tr(struct pt_regs *regs) 777 { 778 unsigned int opcode, tcode = 0; 779 780 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs))) 781 goto out_sigsegv; 782 783 /* Immediate versions don't provide a code. */ 784 if (!(opcode & OPCODE)) 785 tcode = ((opcode >> 6) & ((1 << 10) - 1)); 786 787 do_trap_or_bp(regs, tcode, "Trap"); 788 return; 789 790 out_sigsegv: 791 force_sig(SIGSEGV, current); 792 } 793 794 asmlinkage void do_ri(struct pt_regs *regs) 795 { 796 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); 797 unsigned long old_epc = regs->cp0_epc; 798 unsigned int opcode = 0; 799 int status = -1; 800 801 if (notify_die(DIE_RI, "RI Fault", regs, SIGSEGV, 0, 0) 802 == NOTIFY_STOP) 803 return; 804 805 die_if_kernel("Reserved instruction in kernel code", regs); 806 807 if (unlikely(compute_return_epc(regs) < 0)) 808 return; 809 810 if (unlikely(get_user(opcode, epc) < 0)) 811 status = SIGSEGV; 812 813 if (!cpu_has_llsc && status < 0) 814 status = simulate_llsc(regs, opcode); 815 816 if (status < 0) 817 status = simulate_rdhwr(regs, opcode); 818 819 if (status < 0) 820 status = simulate_sync(regs, opcode); 821 822 if (status < 0) 823 status = SIGILL; 824 825 if (unlikely(status > 0)) { 826 regs->cp0_epc = old_epc; /* Undo skip-over. */ 827 force_sig(status, current); 828 } 829 } 830 831 /* 832 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've 833 * emulated more than some threshold number of instructions, force migration to 834 * a "CPU" that has FP support. 835 */ 836 static void mt_ase_fp_affinity(void) 837 { 838 #ifdef CONFIG_MIPS_MT_FPAFF 839 if (mt_fpemul_threshold > 0 && 840 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { 841 /* 842 * If there's no FPU present, or if the application has already 843 * restricted the allowed set to exclude any CPUs with FPUs, 844 * we'll skip the procedure. 845 */ 846 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) { 847 cpumask_t tmask; 848 849 current->thread.user_cpus_allowed 850 = current->cpus_allowed; 851 cpus_and(tmask, current->cpus_allowed, 852 mt_fpu_cpumask); 853 set_cpus_allowed(current, tmask); 854 set_thread_flag(TIF_FPUBOUND); 855 } 856 } 857 #endif /* CONFIG_MIPS_MT_FPAFF */ 858 } 859 860 asmlinkage void do_cpu(struct pt_regs *regs) 861 { 862 unsigned int __user *epc; 863 unsigned long old_epc; 864 unsigned int opcode; 865 unsigned int cpid; 866 int status; 867 unsigned long __maybe_unused flags; 868 869 die_if_kernel("do_cpu invoked from kernel context!", regs); 870 871 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; 872 873 switch (cpid) { 874 case 0: 875 epc = (unsigned int __user *)exception_epc(regs); 876 old_epc = regs->cp0_epc; 877 opcode = 0; 878 status = -1; 879 880 if (unlikely(compute_return_epc(regs) < 0)) 881 return; 882 883 if (unlikely(get_user(opcode, epc) < 0)) 884 status = SIGSEGV; 885 886 if (!cpu_has_llsc && status < 0) 887 status = simulate_llsc(regs, opcode); 888 889 if (status < 0) 890 status = simulate_rdhwr(regs, opcode); 891 892 if (status < 0) 893 status = SIGILL; 894 895 if (unlikely(status > 0)) { 896 regs->cp0_epc = old_epc; /* Undo skip-over. */ 897 force_sig(status, current); 898 } 899 900 return; 901 902 case 1: 903 if (used_math()) /* Using the FPU again. */ 904 own_fpu(1); 905 else { /* First time FPU user. */ 906 init_fpu(); 907 set_used_math(); 908 } 909 910 if (!raw_cpu_has_fpu) { 911 int sig; 912 sig = fpu_emulator_cop1Handler(regs, 913 ¤t->thread.fpu, 0); 914 if (sig) 915 force_sig(sig, current); 916 else 917 mt_ase_fp_affinity(); 918 } 919 920 return; 921 922 case 2: 923 #ifdef CONFIG_CPU_CAVIUM_OCTEON 924 prefetch(¤t->thread.cp2); 925 local_irq_save(flags); 926 KSTK_STATUS(current) |= ST0_CU2; 927 status = read_c0_status(); 928 write_c0_status(status | ST0_CU2); 929 octeon_cop2_restore(&(current->thread.cp2)); 930 write_c0_status(status & ~ST0_CU2); 931 local_irq_restore(flags); 932 return; 933 #endif 934 case 3: 935 break; 936 } 937 938 force_sig(SIGILL, current); 939 } 940 941 asmlinkage void do_mdmx(struct pt_regs *regs) 942 { 943 force_sig(SIGILL, current); 944 } 945 946 /* 947 * Called with interrupts disabled. 948 */ 949 asmlinkage void do_watch(struct pt_regs *regs) 950 { 951 u32 cause; 952 953 /* 954 * Clear WP (bit 22) bit of cause register so we don't loop 955 * forever. 956 */ 957 cause = read_c0_cause(); 958 cause &= ~(1 << 22); 959 write_c0_cause(cause); 960 961 /* 962 * If the current thread has the watch registers loaded, save 963 * their values and send SIGTRAP. Otherwise another thread 964 * left the registers set, clear them and continue. 965 */ 966 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { 967 mips_read_watch_registers(); 968 local_irq_enable(); 969 force_sig(SIGTRAP, current); 970 } else { 971 mips_clear_watch_registers(); 972 local_irq_enable(); 973 } 974 } 975 976 asmlinkage void do_mcheck(struct pt_regs *regs) 977 { 978 const int field = 2 * sizeof(unsigned long); 979 int multi_match = regs->cp0_status & ST0_TS; 980 981 show_regs(regs); 982 983 if (multi_match) { 984 printk("Index : %0x\n", read_c0_index()); 985 printk("Pagemask: %0x\n", read_c0_pagemask()); 986 printk("EntryHi : %0*lx\n", field, read_c0_entryhi()); 987 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0()); 988 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1()); 989 printk("\n"); 990 dump_tlb_all(); 991 } 992 993 show_code((unsigned int __user *) regs->cp0_epc); 994 995 /* 996 * Some chips may have other causes of machine check (e.g. SB1 997 * graduation timer) 998 */ 999 panic("Caught Machine Check exception - %scaused by multiple " 1000 "matching entries in the TLB.", 1001 (multi_match) ? "" : "not "); 1002 } 1003 1004 asmlinkage void do_mt(struct pt_regs *regs) 1005 { 1006 int subcode; 1007 1008 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) 1009 >> VPECONTROL_EXCPT_SHIFT; 1010 switch (subcode) { 1011 case 0: 1012 printk(KERN_DEBUG "Thread Underflow\n"); 1013 break; 1014 case 1: 1015 printk(KERN_DEBUG "Thread Overflow\n"); 1016 break; 1017 case 2: 1018 printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); 1019 break; 1020 case 3: 1021 printk(KERN_DEBUG "Gating Storage Exception\n"); 1022 break; 1023 case 4: 1024 printk(KERN_DEBUG "YIELD Scheduler Exception\n"); 1025 break; 1026 case 5: 1027 printk(KERN_DEBUG "Gating Storage Schedulier Exception\n"); 1028 break; 1029 default: 1030 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", 1031 subcode); 1032 break; 1033 } 1034 die_if_kernel("MIPS MT Thread exception in kernel", regs); 1035 1036 force_sig(SIGILL, current); 1037 } 1038 1039 1040 asmlinkage void do_dsp(struct pt_regs *regs) 1041 { 1042 if (cpu_has_dsp) 1043 panic("Unexpected DSP exception\n"); 1044 1045 force_sig(SIGILL, current); 1046 } 1047 1048 asmlinkage void do_reserved(struct pt_regs *regs) 1049 { 1050 /* 1051 * Game over - no way to handle this if it ever occurs. Most probably 1052 * caused by a new unknown cpu type or after another deadly 1053 * hard/software error. 1054 */ 1055 show_regs(regs); 1056 panic("Caught reserved exception %ld - should not happen.", 1057 (regs->cp0_cause & 0x7f) >> 2); 1058 } 1059 1060 static int __initdata l1parity = 1; 1061 static int __init nol1parity(char *s) 1062 { 1063 l1parity = 0; 1064 return 1; 1065 } 1066 __setup("nol1par", nol1parity); 1067 static int __initdata l2parity = 1; 1068 static int __init nol2parity(char *s) 1069 { 1070 l2parity = 0; 1071 return 1; 1072 } 1073 __setup("nol2par", nol2parity); 1074 1075 /* 1076 * Some MIPS CPUs can enable/disable for cache parity detection, but do 1077 * it different ways. 1078 */ 1079 static inline void parity_protection_init(void) 1080 { 1081 switch (current_cpu_type()) { 1082 case CPU_24K: 1083 case CPU_34K: 1084 case CPU_74K: 1085 case CPU_1004K: 1086 { 1087 #define ERRCTL_PE 0x80000000 1088 #define ERRCTL_L2P 0x00800000 1089 unsigned long errctl; 1090 unsigned int l1parity_present, l2parity_present; 1091 1092 errctl = read_c0_ecc(); 1093 errctl &= ~(ERRCTL_PE|ERRCTL_L2P); 1094 1095 /* probe L1 parity support */ 1096 write_c0_ecc(errctl | ERRCTL_PE); 1097 back_to_back_c0_hazard(); 1098 l1parity_present = (read_c0_ecc() & ERRCTL_PE); 1099 1100 /* probe L2 parity support */ 1101 write_c0_ecc(errctl|ERRCTL_L2P); 1102 back_to_back_c0_hazard(); 1103 l2parity_present = (read_c0_ecc() & ERRCTL_L2P); 1104 1105 if (l1parity_present && l2parity_present) { 1106 if (l1parity) 1107 errctl |= ERRCTL_PE; 1108 if (l1parity ^ l2parity) 1109 errctl |= ERRCTL_L2P; 1110 } else if (l1parity_present) { 1111 if (l1parity) 1112 errctl |= ERRCTL_PE; 1113 } else if (l2parity_present) { 1114 if (l2parity) 1115 errctl |= ERRCTL_L2P; 1116 } else { 1117 /* No parity available */ 1118 } 1119 1120 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); 1121 1122 write_c0_ecc(errctl); 1123 back_to_back_c0_hazard(); 1124 errctl = read_c0_ecc(); 1125 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); 1126 1127 if (l1parity_present) 1128 printk(KERN_INFO "Cache parity protection %sabled\n", 1129 (errctl & ERRCTL_PE) ? "en" : "dis"); 1130 1131 if (l2parity_present) { 1132 if (l1parity_present && l1parity) 1133 errctl ^= ERRCTL_L2P; 1134 printk(KERN_INFO "L2 cache parity protection %sabled\n", 1135 (errctl & ERRCTL_L2P) ? "en" : "dis"); 1136 } 1137 } 1138 break; 1139 1140 case CPU_5KC: 1141 write_c0_ecc(0x80000000); 1142 back_to_back_c0_hazard(); 1143 /* Set the PE bit (bit 31) in the c0_errctl register. */ 1144 printk(KERN_INFO "Cache parity protection %sabled\n", 1145 (read_c0_ecc() & 0x80000000) ? "en" : "dis"); 1146 break; 1147 case CPU_20KC: 1148 case CPU_25KF: 1149 /* Clear the DE bit (bit 16) in the c0_status register. */ 1150 printk(KERN_INFO "Enable cache parity protection for " 1151 "MIPS 20KC/25KF CPUs.\n"); 1152 clear_c0_status(ST0_DE); 1153 break; 1154 default: 1155 break; 1156 } 1157 } 1158 1159 asmlinkage void cache_parity_error(void) 1160 { 1161 const int field = 2 * sizeof(unsigned long); 1162 unsigned int reg_val; 1163 1164 /* For the moment, report the problem and hang. */ 1165 printk("Cache error exception:\n"); 1166 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1167 reg_val = read_c0_cacheerr(); 1168 printk("c0_cacheerr == %08x\n", reg_val); 1169 1170 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1171 reg_val & (1<<30) ? "secondary" : "primary", 1172 reg_val & (1<<31) ? "data" : "insn"); 1173 printk("Error bits: %s%s%s%s%s%s%s\n", 1174 reg_val & (1<<29) ? "ED " : "", 1175 reg_val & (1<<28) ? "ET " : "", 1176 reg_val & (1<<26) ? "EE " : "", 1177 reg_val & (1<<25) ? "EB " : "", 1178 reg_val & (1<<24) ? "EI " : "", 1179 reg_val & (1<<23) ? "E1 " : "", 1180 reg_val & (1<<22) ? "E0 " : ""); 1181 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); 1182 1183 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) 1184 if (reg_val & (1<<22)) 1185 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); 1186 1187 if (reg_val & (1<<23)) 1188 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); 1189 #endif 1190 1191 panic("Can't handle the cache error!"); 1192 } 1193 1194 /* 1195 * SDBBP EJTAG debug exception handler. 1196 * We skip the instruction and return to the next instruction. 1197 */ 1198 void ejtag_exception_handler(struct pt_regs *regs) 1199 { 1200 const int field = 2 * sizeof(unsigned long); 1201 unsigned long depc, old_epc; 1202 unsigned int debug; 1203 1204 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); 1205 depc = read_c0_depc(); 1206 debug = read_c0_debug(); 1207 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); 1208 if (debug & 0x80000000) { 1209 /* 1210 * In branch delay slot. 1211 * We cheat a little bit here and use EPC to calculate the 1212 * debug return address (DEPC). EPC is restored after the 1213 * calculation. 1214 */ 1215 old_epc = regs->cp0_epc; 1216 regs->cp0_epc = depc; 1217 __compute_return_epc(regs); 1218 depc = regs->cp0_epc; 1219 regs->cp0_epc = old_epc; 1220 } else 1221 depc += 4; 1222 write_c0_depc(depc); 1223 1224 #if 0 1225 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); 1226 write_c0_debug(debug | 0x100); 1227 #endif 1228 } 1229 1230 /* 1231 * NMI exception handler. 1232 */ 1233 NORET_TYPE void ATTRIB_NORET nmi_exception_handler(struct pt_regs *regs) 1234 { 1235 bust_spinlocks(1); 1236 printk("NMI taken!!!!\n"); 1237 die("NMI", regs); 1238 } 1239 1240 #define VECTORSPACING 0x100 /* for EI/VI mode */ 1241 1242 unsigned long ebase; 1243 unsigned long exception_handlers[32]; 1244 unsigned long vi_handlers[64]; 1245 1246 /* 1247 * As a side effect of the way this is implemented we're limited 1248 * to interrupt handlers in the address range from 1249 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ... 1250 */ 1251 void *set_except_vector(int n, void *addr) 1252 { 1253 unsigned long handler = (unsigned long) addr; 1254 unsigned long old_handler = exception_handlers[n]; 1255 1256 exception_handlers[n] = handler; 1257 if (n == 0 && cpu_has_divec) { 1258 *(u32 *)(ebase + 0x200) = 0x08000000 | 1259 (0x03ffffff & (handler >> 2)); 1260 local_flush_icache_range(ebase + 0x200, ebase + 0x204); 1261 } 1262 return (void *)old_handler; 1263 } 1264 1265 static asmlinkage void do_default_vi(void) 1266 { 1267 show_regs(get_irq_regs()); 1268 panic("Caught unexpected vectored interrupt."); 1269 } 1270 1271 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) 1272 { 1273 unsigned long handler; 1274 unsigned long old_handler = vi_handlers[n]; 1275 int srssets = current_cpu_data.srsets; 1276 u32 *w; 1277 unsigned char *b; 1278 1279 BUG_ON(!cpu_has_veic && !cpu_has_vint); 1280 1281 if (addr == NULL) { 1282 handler = (unsigned long) do_default_vi; 1283 srs = 0; 1284 } else 1285 handler = (unsigned long) addr; 1286 vi_handlers[n] = (unsigned long) addr; 1287 1288 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); 1289 1290 if (srs >= srssets) 1291 panic("Shadow register set %d not supported", srs); 1292 1293 if (cpu_has_veic) { 1294 if (board_bind_eic_interrupt) 1295 board_bind_eic_interrupt(n, srs); 1296 } else if (cpu_has_vint) { 1297 /* SRSMap is only defined if shadow sets are implemented */ 1298 if (srssets > 1) 1299 change_c0_srsmap(0xf << n*4, srs << n*4); 1300 } 1301 1302 if (srs == 0) { 1303 /* 1304 * If no shadow set is selected then use the default handler 1305 * that does normal register saving and a standard interrupt exit 1306 */ 1307 1308 extern char except_vec_vi, except_vec_vi_lui; 1309 extern char except_vec_vi_ori, except_vec_vi_end; 1310 extern char rollback_except_vec_vi; 1311 char *vec_start = (cpu_wait == r4k_wait) ? 1312 &rollback_except_vec_vi : &except_vec_vi; 1313 #ifdef CONFIG_MIPS_MT_SMTC 1314 /* 1315 * We need to provide the SMTC vectored interrupt handler 1316 * not only with the address of the handler, but with the 1317 * Status.IM bit to be masked before going there. 1318 */ 1319 extern char except_vec_vi_mori; 1320 const int mori_offset = &except_vec_vi_mori - vec_start; 1321 #endif /* CONFIG_MIPS_MT_SMTC */ 1322 const int handler_len = &except_vec_vi_end - vec_start; 1323 const int lui_offset = &except_vec_vi_lui - vec_start; 1324 const int ori_offset = &except_vec_vi_ori - vec_start; 1325 1326 if (handler_len > VECTORSPACING) { 1327 /* 1328 * Sigh... panicing won't help as the console 1329 * is probably not configured :( 1330 */ 1331 panic("VECTORSPACING too small"); 1332 } 1333 1334 memcpy(b, vec_start, handler_len); 1335 #ifdef CONFIG_MIPS_MT_SMTC 1336 BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */ 1337 1338 w = (u32 *)(b + mori_offset); 1339 *w = (*w & 0xffff0000) | (0x100 << n); 1340 #endif /* CONFIG_MIPS_MT_SMTC */ 1341 w = (u32 *)(b + lui_offset); 1342 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff); 1343 w = (u32 *)(b + ori_offset); 1344 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff); 1345 local_flush_icache_range((unsigned long)b, 1346 (unsigned long)(b+handler_len)); 1347 } 1348 else { 1349 /* 1350 * In other cases jump directly to the interrupt handler 1351 * 1352 * It is the handlers responsibility to save registers if required 1353 * (eg hi/lo) and return from the exception using "eret" 1354 */ 1355 w = (u32 *)b; 1356 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */ 1357 *w = 0; 1358 local_flush_icache_range((unsigned long)b, 1359 (unsigned long)(b+8)); 1360 } 1361 1362 return (void *)old_handler; 1363 } 1364 1365 void *set_vi_handler(int n, vi_handler_t addr) 1366 { 1367 return set_vi_srs_handler(n, addr, 0); 1368 } 1369 1370 /* 1371 * This is used by native signal handling 1372 */ 1373 asmlinkage int (*save_fp_context)(struct sigcontext __user *sc); 1374 asmlinkage int (*restore_fp_context)(struct sigcontext __user *sc); 1375 1376 extern asmlinkage int _save_fp_context(struct sigcontext __user *sc); 1377 extern asmlinkage int _restore_fp_context(struct sigcontext __user *sc); 1378 1379 extern asmlinkage int fpu_emulator_save_context(struct sigcontext __user *sc); 1380 extern asmlinkage int fpu_emulator_restore_context(struct sigcontext __user *sc); 1381 1382 #ifdef CONFIG_SMP 1383 static int smp_save_fp_context(struct sigcontext __user *sc) 1384 { 1385 return raw_cpu_has_fpu 1386 ? _save_fp_context(sc) 1387 : fpu_emulator_save_context(sc); 1388 } 1389 1390 static int smp_restore_fp_context(struct sigcontext __user *sc) 1391 { 1392 return raw_cpu_has_fpu 1393 ? _restore_fp_context(sc) 1394 : fpu_emulator_restore_context(sc); 1395 } 1396 #endif 1397 1398 static inline void signal_init(void) 1399 { 1400 #ifdef CONFIG_SMP 1401 /* For now just do the cpu_has_fpu check when the functions are invoked */ 1402 save_fp_context = smp_save_fp_context; 1403 restore_fp_context = smp_restore_fp_context; 1404 #else 1405 if (cpu_has_fpu) { 1406 save_fp_context = _save_fp_context; 1407 restore_fp_context = _restore_fp_context; 1408 } else { 1409 save_fp_context = fpu_emulator_save_context; 1410 restore_fp_context = fpu_emulator_restore_context; 1411 } 1412 #endif 1413 } 1414 1415 #ifdef CONFIG_MIPS32_COMPAT 1416 1417 /* 1418 * This is used by 32-bit signal stuff on the 64-bit kernel 1419 */ 1420 asmlinkage int (*save_fp_context32)(struct sigcontext32 __user *sc); 1421 asmlinkage int (*restore_fp_context32)(struct sigcontext32 __user *sc); 1422 1423 extern asmlinkage int _save_fp_context32(struct sigcontext32 __user *sc); 1424 extern asmlinkage int _restore_fp_context32(struct sigcontext32 __user *sc); 1425 1426 extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 __user *sc); 1427 extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 __user *sc); 1428 1429 static inline void signal32_init(void) 1430 { 1431 if (cpu_has_fpu) { 1432 save_fp_context32 = _save_fp_context32; 1433 restore_fp_context32 = _restore_fp_context32; 1434 } else { 1435 save_fp_context32 = fpu_emulator_save_context32; 1436 restore_fp_context32 = fpu_emulator_restore_context32; 1437 } 1438 } 1439 #endif 1440 1441 extern void cpu_cache_init(void); 1442 extern void tlb_init(void); 1443 extern void flush_tlb_handlers(void); 1444 1445 /* 1446 * Timer interrupt 1447 */ 1448 int cp0_compare_irq; 1449 1450 /* 1451 * Performance counter IRQ or -1 if shared with timer 1452 */ 1453 int cp0_perfcount_irq; 1454 EXPORT_SYMBOL_GPL(cp0_perfcount_irq); 1455 1456 static int __cpuinitdata noulri; 1457 1458 static int __init ulri_disable(char *s) 1459 { 1460 pr_info("Disabling ulri\n"); 1461 noulri = 1; 1462 1463 return 1; 1464 } 1465 __setup("noulri", ulri_disable); 1466 1467 void __cpuinit per_cpu_trap_init(void) 1468 { 1469 unsigned int cpu = smp_processor_id(); 1470 unsigned int status_set = ST0_CU0; 1471 #ifdef CONFIG_MIPS_MT_SMTC 1472 int secondaryTC = 0; 1473 int bootTC = (cpu == 0); 1474 1475 /* 1476 * Only do per_cpu_trap_init() for first TC of Each VPE. 1477 * Note that this hack assumes that the SMTC init code 1478 * assigns TCs consecutively and in ascending order. 1479 */ 1480 1481 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) && 1482 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id)) 1483 secondaryTC = 1; 1484 #endif /* CONFIG_MIPS_MT_SMTC */ 1485 1486 /* 1487 * Disable coprocessors and select 32-bit or 64-bit addressing 1488 * and the 16/32 or 32/32 FPR register model. Reset the BEV 1489 * flag that some firmware may have left set and the TS bit (for 1490 * IP27). Set XX for ISA IV code to work. 1491 */ 1492 #ifdef CONFIG_64BIT 1493 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; 1494 #endif 1495 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV) 1496 status_set |= ST0_XX; 1497 if (cpu_has_dsp) 1498 status_set |= ST0_MX; 1499 1500 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, 1501 status_set); 1502 1503 if (cpu_has_mips_r2) { 1504 unsigned int enable = 0x0000000f | cpu_hwrena_impl_bits; 1505 1506 if (!noulri && cpu_has_userlocal) 1507 enable |= (1 << 29); 1508 1509 write_c0_hwrena(enable); 1510 } 1511 1512 #ifdef CONFIG_MIPS_MT_SMTC 1513 if (!secondaryTC) { 1514 #endif /* CONFIG_MIPS_MT_SMTC */ 1515 1516 if (cpu_has_veic || cpu_has_vint) { 1517 unsigned long sr = set_c0_status(ST0_BEV); 1518 write_c0_ebase(ebase); 1519 write_c0_status(sr); 1520 /* Setting vector spacing enables EI/VI mode */ 1521 change_c0_intctl(0x3e0, VECTORSPACING); 1522 } 1523 if (cpu_has_divec) { 1524 if (cpu_has_mipsmt) { 1525 unsigned int vpflags = dvpe(); 1526 set_c0_cause(CAUSEF_IV); 1527 evpe(vpflags); 1528 } else 1529 set_c0_cause(CAUSEF_IV); 1530 } 1531 1532 /* 1533 * Before R2 both interrupt numbers were fixed to 7, so on R2 only: 1534 * 1535 * o read IntCtl.IPTI to determine the timer interrupt 1536 * o read IntCtl.IPPCI to determine the performance counter interrupt 1537 */ 1538 if (cpu_has_mips_r2) { 1539 cp0_compare_irq = (read_c0_intctl() >> 29) & 7; 1540 cp0_perfcount_irq = (read_c0_intctl() >> 26) & 7; 1541 if (cp0_perfcount_irq == cp0_compare_irq) 1542 cp0_perfcount_irq = -1; 1543 } else { 1544 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; 1545 cp0_perfcount_irq = -1; 1546 } 1547 1548 #ifdef CONFIG_MIPS_MT_SMTC 1549 } 1550 #endif /* CONFIG_MIPS_MT_SMTC */ 1551 1552 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION; 1553 TLBMISS_HANDLER_SETUP(); 1554 1555 atomic_inc(&init_mm.mm_count); 1556 current->active_mm = &init_mm; 1557 BUG_ON(current->mm); 1558 enter_lazy_tlb(&init_mm, current); 1559 1560 #ifdef CONFIG_MIPS_MT_SMTC 1561 if (bootTC) { 1562 #endif /* CONFIG_MIPS_MT_SMTC */ 1563 cpu_cache_init(); 1564 tlb_init(); 1565 #ifdef CONFIG_MIPS_MT_SMTC 1566 } else if (!secondaryTC) { 1567 /* 1568 * First TC in non-boot VPE must do subset of tlb_init() 1569 * for MMU countrol registers. 1570 */ 1571 write_c0_pagemask(PM_DEFAULT_MASK); 1572 write_c0_wired(0); 1573 } 1574 #endif /* CONFIG_MIPS_MT_SMTC */ 1575 } 1576 1577 /* Install CPU exception handler */ 1578 void __init set_handler(unsigned long offset, void *addr, unsigned long size) 1579 { 1580 memcpy((void *)(ebase + offset), addr, size); 1581 local_flush_icache_range(ebase + offset, ebase + offset + size); 1582 } 1583 1584 static char panic_null_cerr[] __cpuinitdata = 1585 "Trying to set NULL cache error exception handler"; 1586 1587 /* 1588 * Install uncached CPU exception handler. 1589 * This is suitable only for the cache error exception which is the only 1590 * exception handler that is being run uncached. 1591 */ 1592 void __cpuinit set_uncached_handler(unsigned long offset, void *addr, 1593 unsigned long size) 1594 { 1595 #ifdef CONFIG_32BIT 1596 unsigned long uncached_ebase = KSEG1ADDR(ebase); 1597 #endif 1598 #ifdef CONFIG_64BIT 1599 unsigned long uncached_ebase = TO_UNCAC(ebase); 1600 #endif 1601 1602 if (!addr) 1603 panic(panic_null_cerr); 1604 1605 memcpy((void *)(uncached_ebase + offset), addr, size); 1606 } 1607 1608 static int __initdata rdhwr_noopt; 1609 static int __init set_rdhwr_noopt(char *str) 1610 { 1611 rdhwr_noopt = 1; 1612 return 1; 1613 } 1614 1615 __setup("rdhwr_noopt", set_rdhwr_noopt); 1616 1617 void __init trap_init(void) 1618 { 1619 extern char except_vec3_generic, except_vec3_r4000; 1620 extern char except_vec4; 1621 unsigned long i; 1622 int rollback; 1623 1624 check_wait(); 1625 rollback = (cpu_wait == r4k_wait); 1626 1627 #if defined(CONFIG_KGDB) 1628 if (kgdb_early_setup) 1629 return; /* Already done */ 1630 #endif 1631 1632 if (cpu_has_veic || cpu_has_vint) { 1633 unsigned long size = 0x200 + VECTORSPACING*64; 1634 ebase = (unsigned long) 1635 __alloc_bootmem(size, 1 << fls(size), 0); 1636 } else { 1637 ebase = CAC_BASE; 1638 if (cpu_has_mips_r2) 1639 ebase += (read_c0_ebase() & 0x3ffff000); 1640 } 1641 1642 per_cpu_trap_init(); 1643 1644 /* 1645 * Copy the generic exception handlers to their final destination. 1646 * This will be overriden later as suitable for a particular 1647 * configuration. 1648 */ 1649 set_handler(0x180, &except_vec3_generic, 0x80); 1650 1651 /* 1652 * Setup default vectors 1653 */ 1654 for (i = 0; i <= 31; i++) 1655 set_except_vector(i, handle_reserved); 1656 1657 /* 1658 * Copy the EJTAG debug exception vector handler code to it's final 1659 * destination. 1660 */ 1661 if (cpu_has_ejtag && board_ejtag_handler_setup) 1662 board_ejtag_handler_setup(); 1663 1664 /* 1665 * Only some CPUs have the watch exceptions. 1666 */ 1667 if (cpu_has_watch) 1668 set_except_vector(23, handle_watch); 1669 1670 /* 1671 * Initialise interrupt handlers 1672 */ 1673 if (cpu_has_veic || cpu_has_vint) { 1674 int nvec = cpu_has_veic ? 64 : 8; 1675 for (i = 0; i < nvec; i++) 1676 set_vi_handler(i, NULL); 1677 } 1678 else if (cpu_has_divec) 1679 set_handler(0x200, &except_vec4, 0x8); 1680 1681 /* 1682 * Some CPUs can enable/disable for cache parity detection, but does 1683 * it different ways. 1684 */ 1685 parity_protection_init(); 1686 1687 /* 1688 * The Data Bus Errors / Instruction Bus Errors are signaled 1689 * by external hardware. Therefore these two exceptions 1690 * may have board specific handlers. 1691 */ 1692 if (board_be_init) 1693 board_be_init(); 1694 1695 set_except_vector(0, rollback ? rollback_handle_int : handle_int); 1696 set_except_vector(1, handle_tlbm); 1697 set_except_vector(2, handle_tlbl); 1698 set_except_vector(3, handle_tlbs); 1699 1700 set_except_vector(4, handle_adel); 1701 set_except_vector(5, handle_ades); 1702 1703 set_except_vector(6, handle_ibe); 1704 set_except_vector(7, handle_dbe); 1705 1706 set_except_vector(8, handle_sys); 1707 set_except_vector(9, handle_bp); 1708 set_except_vector(10, rdhwr_noopt ? handle_ri : 1709 (cpu_has_vtag_icache ? 1710 handle_ri_rdhwr_vivt : handle_ri_rdhwr)); 1711 set_except_vector(11, handle_cpu); 1712 set_except_vector(12, handle_ov); 1713 set_except_vector(13, handle_tr); 1714 1715 if (current_cpu_type() == CPU_R6000 || 1716 current_cpu_type() == CPU_R6000A) { 1717 /* 1718 * The R6000 is the only R-series CPU that features a machine 1719 * check exception (similar to the R4000 cache error) and 1720 * unaligned ldc1/sdc1 exception. The handlers have not been 1721 * written yet. Well, anyway there is no R6000 machine on the 1722 * current list of targets for Linux/MIPS. 1723 * (Duh, crap, there is someone with a triple R6k machine) 1724 */ 1725 //set_except_vector(14, handle_mc); 1726 //set_except_vector(15, handle_ndc); 1727 } 1728 1729 1730 if (board_nmi_handler_setup) 1731 board_nmi_handler_setup(); 1732 1733 if (cpu_has_fpu && !cpu_has_nofpuex) 1734 set_except_vector(15, handle_fpe); 1735 1736 set_except_vector(22, handle_mdmx); 1737 1738 if (cpu_has_mcheck) 1739 set_except_vector(24, handle_mcheck); 1740 1741 if (cpu_has_mipsmt) 1742 set_except_vector(25, handle_mt); 1743 1744 set_except_vector(26, handle_dsp); 1745 1746 if (cpu_has_vce) 1747 /* Special exception: R4[04]00 uses also the divec space. */ 1748 memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100); 1749 else if (cpu_has_4kex) 1750 memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80); 1751 else 1752 memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80); 1753 1754 signal_init(); 1755 #ifdef CONFIG_MIPS32_COMPAT 1756 signal32_init(); 1757 #endif 1758 1759 local_flush_icache_range(ebase, ebase + 0x400); 1760 flush_tlb_handlers(); 1761 1762 sort_extable(__start___dbe_table, __stop___dbe_table); 1763 } 1764