xref: /openbmc/linux/arch/mips/kernel/traps.c (revision d0b73b48)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
13  */
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/kexec.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/mm.h>
21 #include <linux/sched.h>
22 #include <linux/smp.h>
23 #include <linux/spinlock.h>
24 #include <linux/kallsyms.h>
25 #include <linux/bootmem.h>
26 #include <linux/interrupt.h>
27 #include <linux/ptrace.h>
28 #include <linux/kgdb.h>
29 #include <linux/kdebug.h>
30 #include <linux/kprobes.h>
31 #include <linux/notifier.h>
32 #include <linux/kdb.h>
33 #include <linux/irq.h>
34 #include <linux/perf_event.h>
35 
36 #include <asm/bootinfo.h>
37 #include <asm/branch.h>
38 #include <asm/break.h>
39 #include <asm/cop2.h>
40 #include <asm/cpu.h>
41 #include <asm/dsp.h>
42 #include <asm/fpu.h>
43 #include <asm/fpu_emulator.h>
44 #include <asm/mipsregs.h>
45 #include <asm/mipsmtregs.h>
46 #include <asm/module.h>
47 #include <asm/pgtable.h>
48 #include <asm/ptrace.h>
49 #include <asm/sections.h>
50 #include <asm/tlbdebug.h>
51 #include <asm/traps.h>
52 #include <asm/uaccess.h>
53 #include <asm/watch.h>
54 #include <asm/mmu_context.h>
55 #include <asm/types.h>
56 #include <asm/stacktrace.h>
57 #include <asm/uasm.h>
58 
59 extern void check_wait(void);
60 extern asmlinkage void r4k_wait(void);
61 extern asmlinkage void rollback_handle_int(void);
62 extern asmlinkage void handle_int(void);
63 extern asmlinkage void handle_tlbm(void);
64 extern asmlinkage void handle_tlbl(void);
65 extern asmlinkage void handle_tlbs(void);
66 extern asmlinkage void handle_adel(void);
67 extern asmlinkage void handle_ades(void);
68 extern asmlinkage void handle_ibe(void);
69 extern asmlinkage void handle_dbe(void);
70 extern asmlinkage void handle_sys(void);
71 extern asmlinkage void handle_bp(void);
72 extern asmlinkage void handle_ri(void);
73 extern asmlinkage void handle_ri_rdhwr_vivt(void);
74 extern asmlinkage void handle_ri_rdhwr(void);
75 extern asmlinkage void handle_cpu(void);
76 extern asmlinkage void handle_ov(void);
77 extern asmlinkage void handle_tr(void);
78 extern asmlinkage void handle_fpe(void);
79 extern asmlinkage void handle_mdmx(void);
80 extern asmlinkage void handle_watch(void);
81 extern asmlinkage void handle_mt(void);
82 extern asmlinkage void handle_dsp(void);
83 extern asmlinkage void handle_mcheck(void);
84 extern asmlinkage void handle_reserved(void);
85 
86 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
87 				    struct mips_fpu_struct *ctx, int has_fpu,
88 				    void *__user *fault_addr);
89 
90 void (*board_be_init)(void);
91 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
92 void (*board_nmi_handler_setup)(void);
93 void (*board_ejtag_handler_setup)(void);
94 void (*board_bind_eic_interrupt)(int irq, int regset);
95 void (*board_ebase_setup)(void);
96 void __cpuinitdata(*board_cache_error_setup)(void);
97 
98 static void show_raw_backtrace(unsigned long reg29)
99 {
100 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
101 	unsigned long addr;
102 
103 	printk("Call Trace:");
104 #ifdef CONFIG_KALLSYMS
105 	printk("\n");
106 #endif
107 	while (!kstack_end(sp)) {
108 		unsigned long __user *p =
109 			(unsigned long __user *)(unsigned long)sp++;
110 		if (__get_user(addr, p)) {
111 			printk(" (Bad stack address)");
112 			break;
113 		}
114 		if (__kernel_text_address(addr))
115 			print_ip_sym(addr);
116 	}
117 	printk("\n");
118 }
119 
120 #ifdef CONFIG_KALLSYMS
121 int raw_show_trace;
122 static int __init set_raw_show_trace(char *str)
123 {
124 	raw_show_trace = 1;
125 	return 1;
126 }
127 __setup("raw_show_trace", set_raw_show_trace);
128 #endif
129 
130 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
131 {
132 	unsigned long sp = regs->regs[29];
133 	unsigned long ra = regs->regs[31];
134 	unsigned long pc = regs->cp0_epc;
135 
136 	if (!task)
137 		task = current;
138 
139 	if (raw_show_trace || !__kernel_text_address(pc)) {
140 		show_raw_backtrace(sp);
141 		return;
142 	}
143 	printk("Call Trace:\n");
144 	do {
145 		print_ip_sym(pc);
146 		pc = unwind_stack(task, &sp, pc, &ra);
147 	} while (pc);
148 	printk("\n");
149 }
150 
151 /*
152  * This routine abuses get_user()/put_user() to reference pointers
153  * with at least a bit of error checking ...
154  */
155 static void show_stacktrace(struct task_struct *task,
156 	const struct pt_regs *regs)
157 {
158 	const int field = 2 * sizeof(unsigned long);
159 	long stackdata;
160 	int i;
161 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
162 
163 	printk("Stack :");
164 	i = 0;
165 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
166 		if (i && ((i % (64 / field)) == 0))
167 			printk("\n       ");
168 		if (i > 39) {
169 			printk(" ...");
170 			break;
171 		}
172 
173 		if (__get_user(stackdata, sp++)) {
174 			printk(" (Bad stack address)");
175 			break;
176 		}
177 
178 		printk(" %0*lx", field, stackdata);
179 		i++;
180 	}
181 	printk("\n");
182 	show_backtrace(task, regs);
183 }
184 
185 void show_stack(struct task_struct *task, unsigned long *sp)
186 {
187 	struct pt_regs regs;
188 	if (sp) {
189 		regs.regs[29] = (unsigned long)sp;
190 		regs.regs[31] = 0;
191 		regs.cp0_epc = 0;
192 	} else {
193 		if (task && task != current) {
194 			regs.regs[29] = task->thread.reg29;
195 			regs.regs[31] = 0;
196 			regs.cp0_epc = task->thread.reg31;
197 #ifdef CONFIG_KGDB_KDB
198 		} else if (atomic_read(&kgdb_active) != -1 &&
199 			   kdb_current_regs) {
200 			memcpy(&regs, kdb_current_regs, sizeof(regs));
201 #endif /* CONFIG_KGDB_KDB */
202 		} else {
203 			prepare_frametrace(&regs);
204 		}
205 	}
206 	show_stacktrace(task, &regs);
207 }
208 
209 /*
210  * The architecture-independent dump_stack generator
211  */
212 void dump_stack(void)
213 {
214 	struct pt_regs regs;
215 
216 	prepare_frametrace(&regs);
217 	show_backtrace(current, &regs);
218 }
219 
220 EXPORT_SYMBOL(dump_stack);
221 
222 static void show_code(unsigned int __user *pc)
223 {
224 	long i;
225 	unsigned short __user *pc16 = NULL;
226 
227 	printk("\nCode:");
228 
229 	if ((unsigned long)pc & 1)
230 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
231 	for(i = -3 ; i < 6 ; i++) {
232 		unsigned int insn;
233 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
234 			printk(" (Bad address in epc)\n");
235 			break;
236 		}
237 		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
238 	}
239 }
240 
241 static void __show_regs(const struct pt_regs *regs)
242 {
243 	const int field = 2 * sizeof(unsigned long);
244 	unsigned int cause = regs->cp0_cause;
245 	int i;
246 
247 	printk("Cpu %d\n", smp_processor_id());
248 
249 	/*
250 	 * Saved main processor registers
251 	 */
252 	for (i = 0; i < 32; ) {
253 		if ((i % 4) == 0)
254 			printk("$%2d   :", i);
255 		if (i == 0)
256 			printk(" %0*lx", field, 0UL);
257 		else if (i == 26 || i == 27)
258 			printk(" %*s", field, "");
259 		else
260 			printk(" %0*lx", field, regs->regs[i]);
261 
262 		i++;
263 		if ((i % 4) == 0)
264 			printk("\n");
265 	}
266 
267 #ifdef CONFIG_CPU_HAS_SMARTMIPS
268 	printk("Acx    : %0*lx\n", field, regs->acx);
269 #endif
270 	printk("Hi    : %0*lx\n", field, regs->hi);
271 	printk("Lo    : %0*lx\n", field, regs->lo);
272 
273 	/*
274 	 * Saved cp0 registers
275 	 */
276 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
277 	       (void *) regs->cp0_epc);
278 	printk("    %s\n", print_tainted());
279 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
280 	       (void *) regs->regs[31]);
281 
282 	printk("Status: %08x    ", (uint32_t) regs->cp0_status);
283 
284 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
285 		if (regs->cp0_status & ST0_KUO)
286 			printk("KUo ");
287 		if (regs->cp0_status & ST0_IEO)
288 			printk("IEo ");
289 		if (regs->cp0_status & ST0_KUP)
290 			printk("KUp ");
291 		if (regs->cp0_status & ST0_IEP)
292 			printk("IEp ");
293 		if (regs->cp0_status & ST0_KUC)
294 			printk("KUc ");
295 		if (regs->cp0_status & ST0_IEC)
296 			printk("IEc ");
297 	} else {
298 		if (regs->cp0_status & ST0_KX)
299 			printk("KX ");
300 		if (regs->cp0_status & ST0_SX)
301 			printk("SX ");
302 		if (regs->cp0_status & ST0_UX)
303 			printk("UX ");
304 		switch (regs->cp0_status & ST0_KSU) {
305 		case KSU_USER:
306 			printk("USER ");
307 			break;
308 		case KSU_SUPERVISOR:
309 			printk("SUPERVISOR ");
310 			break;
311 		case KSU_KERNEL:
312 			printk("KERNEL ");
313 			break;
314 		default:
315 			printk("BAD_MODE ");
316 			break;
317 		}
318 		if (regs->cp0_status & ST0_ERL)
319 			printk("ERL ");
320 		if (regs->cp0_status & ST0_EXL)
321 			printk("EXL ");
322 		if (regs->cp0_status & ST0_IE)
323 			printk("IE ");
324 	}
325 	printk("\n");
326 
327 	printk("Cause : %08x\n", cause);
328 
329 	cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
330 	if (1 <= cause && cause <= 5)
331 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
332 
333 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
334 	       cpu_name_string());
335 }
336 
337 /*
338  * FIXME: really the generic show_regs should take a const pointer argument.
339  */
340 void show_regs(struct pt_regs *regs)
341 {
342 	__show_regs((struct pt_regs *)regs);
343 }
344 
345 void show_registers(struct pt_regs *regs)
346 {
347 	const int field = 2 * sizeof(unsigned long);
348 
349 	__show_regs(regs);
350 	print_modules();
351 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
352 	       current->comm, current->pid, current_thread_info(), current,
353 	      field, current_thread_info()->tp_value);
354 	if (cpu_has_userlocal) {
355 		unsigned long tls;
356 
357 		tls = read_c0_userlocal();
358 		if (tls != current_thread_info()->tp_value)
359 			printk("*HwTLS: %0*lx\n", field, tls);
360 	}
361 
362 	show_stacktrace(current, regs);
363 	show_code((unsigned int __user *) regs->cp0_epc);
364 	printk("\n");
365 }
366 
367 static int regs_to_trapnr(struct pt_regs *regs)
368 {
369 	return (regs->cp0_cause >> 2) & 0x1f;
370 }
371 
372 static DEFINE_RAW_SPINLOCK(die_lock);
373 
374 void __noreturn die(const char *str, struct pt_regs *regs)
375 {
376 	static int die_counter;
377 	int sig = SIGSEGV;
378 #ifdef CONFIG_MIPS_MT_SMTC
379 	unsigned long dvpret;
380 #endif /* CONFIG_MIPS_MT_SMTC */
381 
382 	oops_enter();
383 
384 	if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV) == NOTIFY_STOP)
385 		sig = 0;
386 
387 	console_verbose();
388 	raw_spin_lock_irq(&die_lock);
389 #ifdef CONFIG_MIPS_MT_SMTC
390 	dvpret = dvpe();
391 #endif /* CONFIG_MIPS_MT_SMTC */
392 	bust_spinlocks(1);
393 #ifdef CONFIG_MIPS_MT_SMTC
394 	mips_mt_regdump(dvpret);
395 #endif /* CONFIG_MIPS_MT_SMTC */
396 
397 	printk("%s[#%d]:\n", str, ++die_counter);
398 	show_registers(regs);
399 	add_taint(TAINT_DIE);
400 	raw_spin_unlock_irq(&die_lock);
401 
402 	oops_exit();
403 
404 	if (in_interrupt())
405 		panic("Fatal exception in interrupt");
406 
407 	if (panic_on_oops) {
408 		printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
409 		ssleep(5);
410 		panic("Fatal exception");
411 	}
412 
413 	if (regs && kexec_should_crash(current))
414 		crash_kexec(regs);
415 
416 	do_exit(sig);
417 }
418 
419 extern struct exception_table_entry __start___dbe_table[];
420 extern struct exception_table_entry __stop___dbe_table[];
421 
422 __asm__(
423 "	.section	__dbe_table, \"a\"\n"
424 "	.previous			\n");
425 
426 /* Given an address, look for it in the exception tables. */
427 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
428 {
429 	const struct exception_table_entry *e;
430 
431 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
432 	if (!e)
433 		e = search_module_dbetables(addr);
434 	return e;
435 }
436 
437 asmlinkage void do_be(struct pt_regs *regs)
438 {
439 	const int field = 2 * sizeof(unsigned long);
440 	const struct exception_table_entry *fixup = NULL;
441 	int data = regs->cp0_cause & 4;
442 	int action = MIPS_BE_FATAL;
443 
444 	/* XXX For now.  Fixme, this searches the wrong table ...  */
445 	if (data && !user_mode(regs))
446 		fixup = search_dbe_tables(exception_epc(regs));
447 
448 	if (fixup)
449 		action = MIPS_BE_FIXUP;
450 
451 	if (board_be_handler)
452 		action = board_be_handler(regs, fixup != NULL);
453 
454 	switch (action) {
455 	case MIPS_BE_DISCARD:
456 		return;
457 	case MIPS_BE_FIXUP:
458 		if (fixup) {
459 			regs->cp0_epc = fixup->nextinsn;
460 			return;
461 		}
462 		break;
463 	default:
464 		break;
465 	}
466 
467 	/*
468 	 * Assume it would be too dangerous to continue ...
469 	 */
470 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
471 	       data ? "Data" : "Instruction",
472 	       field, regs->cp0_epc, field, regs->regs[31]);
473 	if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), SIGBUS)
474 	    == NOTIFY_STOP)
475 		return;
476 
477 	die_if_kernel("Oops", regs);
478 	force_sig(SIGBUS, current);
479 }
480 
481 /*
482  * ll/sc, rdhwr, sync emulation
483  */
484 
485 #define OPCODE 0xfc000000
486 #define BASE   0x03e00000
487 #define RT     0x001f0000
488 #define OFFSET 0x0000ffff
489 #define LL     0xc0000000
490 #define SC     0xe0000000
491 #define SPEC0  0x00000000
492 #define SPEC3  0x7c000000
493 #define RD     0x0000f800
494 #define FUNC   0x0000003f
495 #define SYNC   0x0000000f
496 #define RDHWR  0x0000003b
497 
498 /*
499  * The ll_bit is cleared by r*_switch.S
500  */
501 
502 unsigned int ll_bit;
503 struct task_struct *ll_task;
504 
505 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
506 {
507 	unsigned long value, __user *vaddr;
508 	long offset;
509 
510 	/*
511 	 * analyse the ll instruction that just caused a ri exception
512 	 * and put the referenced address to addr.
513 	 */
514 
515 	/* sign extend offset */
516 	offset = opcode & OFFSET;
517 	offset <<= 16;
518 	offset >>= 16;
519 
520 	vaddr = (unsigned long __user *)
521 	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
522 
523 	if ((unsigned long)vaddr & 3)
524 		return SIGBUS;
525 	if (get_user(value, vaddr))
526 		return SIGSEGV;
527 
528 	preempt_disable();
529 
530 	if (ll_task == NULL || ll_task == current) {
531 		ll_bit = 1;
532 	} else {
533 		ll_bit = 0;
534 	}
535 	ll_task = current;
536 
537 	preempt_enable();
538 
539 	regs->regs[(opcode & RT) >> 16] = value;
540 
541 	return 0;
542 }
543 
544 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
545 {
546 	unsigned long __user *vaddr;
547 	unsigned long reg;
548 	long offset;
549 
550 	/*
551 	 * analyse the sc instruction that just caused a ri exception
552 	 * and put the referenced address to addr.
553 	 */
554 
555 	/* sign extend offset */
556 	offset = opcode & OFFSET;
557 	offset <<= 16;
558 	offset >>= 16;
559 
560 	vaddr = (unsigned long __user *)
561 	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
562 	reg = (opcode & RT) >> 16;
563 
564 	if ((unsigned long)vaddr & 3)
565 		return SIGBUS;
566 
567 	preempt_disable();
568 
569 	if (ll_bit == 0 || ll_task != current) {
570 		regs->regs[reg] = 0;
571 		preempt_enable();
572 		return 0;
573 	}
574 
575 	preempt_enable();
576 
577 	if (put_user(regs->regs[reg], vaddr))
578 		return SIGSEGV;
579 
580 	regs->regs[reg] = 1;
581 
582 	return 0;
583 }
584 
585 /*
586  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
587  * opcodes are supposed to result in coprocessor unusable exceptions if
588  * executed on ll/sc-less processors.  That's the theory.  In practice a
589  * few processors such as NEC's VR4100 throw reserved instruction exceptions
590  * instead, so we're doing the emulation thing in both exception handlers.
591  */
592 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
593 {
594 	if ((opcode & OPCODE) == LL) {
595 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
596 				1, regs, 0);
597 		return simulate_ll(regs, opcode);
598 	}
599 	if ((opcode & OPCODE) == SC) {
600 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
601 				1, regs, 0);
602 		return simulate_sc(regs, opcode);
603 	}
604 
605 	return -1;			/* Must be something else ... */
606 }
607 
608 /*
609  * Simulate trapping 'rdhwr' instructions to provide user accessible
610  * registers not implemented in hardware.
611  */
612 static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode)
613 {
614 	struct thread_info *ti = task_thread_info(current);
615 
616 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
617 		int rd = (opcode & RD) >> 11;
618 		int rt = (opcode & RT) >> 16;
619 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
620 				1, regs, 0);
621 		switch (rd) {
622 		case 0:		/* CPU number */
623 			regs->regs[rt] = smp_processor_id();
624 			return 0;
625 		case 1:		/* SYNCI length */
626 			regs->regs[rt] = min(current_cpu_data.dcache.linesz,
627 					     current_cpu_data.icache.linesz);
628 			return 0;
629 		case 2:		/* Read count register */
630 			regs->regs[rt] = read_c0_count();
631 			return 0;
632 		case 3:		/* Count register resolution */
633 			switch (current_cpu_data.cputype) {
634 			case CPU_20KC:
635 			case CPU_25KF:
636 				regs->regs[rt] = 1;
637 				break;
638 			default:
639 				regs->regs[rt] = 2;
640 			}
641 			return 0;
642 		case 29:
643 			regs->regs[rt] = ti->tp_value;
644 			return 0;
645 		default:
646 			return -1;
647 		}
648 	}
649 
650 	/* Not ours.  */
651 	return -1;
652 }
653 
654 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
655 {
656 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
657 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
658 				1, regs, 0);
659 		return 0;
660 	}
661 
662 	return -1;			/* Must be something else ... */
663 }
664 
665 asmlinkage void do_ov(struct pt_regs *regs)
666 {
667 	siginfo_t info;
668 
669 	die_if_kernel("Integer overflow", regs);
670 
671 	info.si_code = FPE_INTOVF;
672 	info.si_signo = SIGFPE;
673 	info.si_errno = 0;
674 	info.si_addr = (void __user *) regs->cp0_epc;
675 	force_sig_info(SIGFPE, &info, current);
676 }
677 
678 static int process_fpemu_return(int sig, void __user *fault_addr)
679 {
680 	if (sig == SIGSEGV || sig == SIGBUS) {
681 		struct siginfo si = {0};
682 		si.si_addr = fault_addr;
683 		si.si_signo = sig;
684 		if (sig == SIGSEGV) {
685 			if (find_vma(current->mm, (unsigned long)fault_addr))
686 				si.si_code = SEGV_ACCERR;
687 			else
688 				si.si_code = SEGV_MAPERR;
689 		} else {
690 			si.si_code = BUS_ADRERR;
691 		}
692 		force_sig_info(sig, &si, current);
693 		return 1;
694 	} else if (sig) {
695 		force_sig(sig, current);
696 		return 1;
697 	} else {
698 		return 0;
699 	}
700 }
701 
702 /*
703  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
704  */
705 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
706 {
707 	siginfo_t info = {0};
708 
709 	if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), SIGFPE)
710 	    == NOTIFY_STOP)
711 		return;
712 	die_if_kernel("FP exception in kernel code", regs);
713 
714 	if (fcr31 & FPU_CSR_UNI_X) {
715 		int sig;
716 		void __user *fault_addr = NULL;
717 
718 		/*
719 		 * Unimplemented operation exception.  If we've got the full
720 		 * software emulator on-board, let's use it...
721 		 *
722 		 * Force FPU to dump state into task/thread context.  We're
723 		 * moving a lot of data here for what is probably a single
724 		 * instruction, but the alternative is to pre-decode the FP
725 		 * register operands before invoking the emulator, which seems
726 		 * a bit extreme for what should be an infrequent event.
727 		 */
728 		/* Ensure 'resume' not overwrite saved fp context again. */
729 		lose_fpu(1);
730 
731 		/* Run the emulator */
732 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
733 					       &fault_addr);
734 
735 		/*
736 		 * We can't allow the emulated instruction to leave any of
737 		 * the cause bit set in $fcr31.
738 		 */
739 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
740 
741 		/* Restore the hardware register state */
742 		own_fpu(1);	/* Using the FPU again.  */
743 
744 		/* If something went wrong, signal */
745 		process_fpemu_return(sig, fault_addr);
746 
747 		return;
748 	} else if (fcr31 & FPU_CSR_INV_X)
749 		info.si_code = FPE_FLTINV;
750 	else if (fcr31 & FPU_CSR_DIV_X)
751 		info.si_code = FPE_FLTDIV;
752 	else if (fcr31 & FPU_CSR_OVF_X)
753 		info.si_code = FPE_FLTOVF;
754 	else if (fcr31 & FPU_CSR_UDF_X)
755 		info.si_code = FPE_FLTUND;
756 	else if (fcr31 & FPU_CSR_INE_X)
757 		info.si_code = FPE_FLTRES;
758 	else
759 		info.si_code = __SI_FAULT;
760 	info.si_signo = SIGFPE;
761 	info.si_errno = 0;
762 	info.si_addr = (void __user *) regs->cp0_epc;
763 	force_sig_info(SIGFPE, &info, current);
764 }
765 
766 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
767 	const char *str)
768 {
769 	siginfo_t info;
770 	char b[40];
771 
772 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
773 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
774 		return;
775 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
776 
777 	if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
778 		return;
779 
780 	/*
781 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
782 	 * insns, even for trap and break codes that indicate arithmetic
783 	 * failures.  Weird ...
784 	 * But should we continue the brokenness???  --macro
785 	 */
786 	switch (code) {
787 	case BRK_OVERFLOW:
788 	case BRK_DIVZERO:
789 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
790 		die_if_kernel(b, regs);
791 		if (code == BRK_DIVZERO)
792 			info.si_code = FPE_INTDIV;
793 		else
794 			info.si_code = FPE_INTOVF;
795 		info.si_signo = SIGFPE;
796 		info.si_errno = 0;
797 		info.si_addr = (void __user *) regs->cp0_epc;
798 		force_sig_info(SIGFPE, &info, current);
799 		break;
800 	case BRK_BUG:
801 		die_if_kernel("Kernel bug detected", regs);
802 		force_sig(SIGTRAP, current);
803 		break;
804 	case BRK_MEMU:
805 		/*
806 		 * Address errors may be deliberately induced by the FPU
807 		 * emulator to retake control of the CPU after executing the
808 		 * instruction in the delay slot of an emulated branch.
809 		 *
810 		 * Terminate if exception was recognized as a delay slot return
811 		 * otherwise handle as normal.
812 		 */
813 		if (do_dsemulret(regs))
814 			return;
815 
816 		die_if_kernel("Math emu break/trap", regs);
817 		force_sig(SIGTRAP, current);
818 		break;
819 	default:
820 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
821 		die_if_kernel(b, regs);
822 		force_sig(SIGTRAP, current);
823 	}
824 }
825 
826 asmlinkage void do_bp(struct pt_regs *regs)
827 {
828 	unsigned int opcode, bcode;
829 
830 	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
831 		goto out_sigsegv;
832 
833 	/*
834 	 * There is the ancient bug in the MIPS assemblers that the break
835 	 * code starts left to bit 16 instead to bit 6 in the opcode.
836 	 * Gas is bug-compatible, but not always, grrr...
837 	 * We handle both cases with a simple heuristics.  --macro
838 	 */
839 	bcode = ((opcode >> 6) & ((1 << 20) - 1));
840 	if (bcode >= (1 << 10))
841 		bcode >>= 10;
842 
843 	/*
844 	 * notify the kprobe handlers, if instruction is likely to
845 	 * pertain to them.
846 	 */
847 	switch (bcode) {
848 	case BRK_KPROBE_BP:
849 		if (notify_die(DIE_BREAK, "debug", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
850 			return;
851 		else
852 			break;
853 	case BRK_KPROBE_SSTEPBP:
854 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
855 			return;
856 		else
857 			break;
858 	default:
859 		break;
860 	}
861 
862 	do_trap_or_bp(regs, bcode, "Break");
863 	return;
864 
865 out_sigsegv:
866 	force_sig(SIGSEGV, current);
867 }
868 
869 asmlinkage void do_tr(struct pt_regs *regs)
870 {
871 	unsigned int opcode, tcode = 0;
872 
873 	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
874 		goto out_sigsegv;
875 
876 	/* Immediate versions don't provide a code.  */
877 	if (!(opcode & OPCODE))
878 		tcode = ((opcode >> 6) & ((1 << 10) - 1));
879 
880 	do_trap_or_bp(regs, tcode, "Trap");
881 	return;
882 
883 out_sigsegv:
884 	force_sig(SIGSEGV, current);
885 }
886 
887 asmlinkage void do_ri(struct pt_regs *regs)
888 {
889 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
890 	unsigned long old_epc = regs->cp0_epc;
891 	unsigned int opcode = 0;
892 	int status = -1;
893 
894 	if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), SIGILL)
895 	    == NOTIFY_STOP)
896 		return;
897 
898 	die_if_kernel("Reserved instruction in kernel code", regs);
899 
900 	if (unlikely(compute_return_epc(regs) < 0))
901 		return;
902 
903 	if (unlikely(get_user(opcode, epc) < 0))
904 		status = SIGSEGV;
905 
906 	if (!cpu_has_llsc && status < 0)
907 		status = simulate_llsc(regs, opcode);
908 
909 	if (status < 0)
910 		status = simulate_rdhwr(regs, opcode);
911 
912 	if (status < 0)
913 		status = simulate_sync(regs, opcode);
914 
915 	if (status < 0)
916 		status = SIGILL;
917 
918 	if (unlikely(status > 0)) {
919 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
920 		force_sig(status, current);
921 	}
922 }
923 
924 /*
925  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
926  * emulated more than some threshold number of instructions, force migration to
927  * a "CPU" that has FP support.
928  */
929 static void mt_ase_fp_affinity(void)
930 {
931 #ifdef CONFIG_MIPS_MT_FPAFF
932 	if (mt_fpemul_threshold > 0 &&
933 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
934 		/*
935 		 * If there's no FPU present, or if the application has already
936 		 * restricted the allowed set to exclude any CPUs with FPUs,
937 		 * we'll skip the procedure.
938 		 */
939 		if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
940 			cpumask_t tmask;
941 
942 			current->thread.user_cpus_allowed
943 				= current->cpus_allowed;
944 			cpus_and(tmask, current->cpus_allowed,
945 				mt_fpu_cpumask);
946 			set_cpus_allowed_ptr(current, &tmask);
947 			set_thread_flag(TIF_FPUBOUND);
948 		}
949 	}
950 #endif /* CONFIG_MIPS_MT_FPAFF */
951 }
952 
953 /*
954  * No lock; only written during early bootup by CPU 0.
955  */
956 static RAW_NOTIFIER_HEAD(cu2_chain);
957 
958 int __ref register_cu2_notifier(struct notifier_block *nb)
959 {
960 	return raw_notifier_chain_register(&cu2_chain, nb);
961 }
962 
963 int cu2_notifier_call_chain(unsigned long val, void *v)
964 {
965 	return raw_notifier_call_chain(&cu2_chain, val, v);
966 }
967 
968 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
969         void *data)
970 {
971 	struct pt_regs *regs = data;
972 
973 	switch (action) {
974 	default:
975 		die_if_kernel("Unhandled kernel unaligned access or invalid "
976 			      "instruction", regs);
977 		/* Fall through  */
978 
979 	case CU2_EXCEPTION:
980 		force_sig(SIGILL, current);
981 	}
982 
983 	return NOTIFY_OK;
984 }
985 
986 asmlinkage void do_cpu(struct pt_regs *regs)
987 {
988 	unsigned int __user *epc;
989 	unsigned long old_epc;
990 	unsigned int opcode;
991 	unsigned int cpid;
992 	int status;
993 	unsigned long __maybe_unused flags;
994 
995 	die_if_kernel("do_cpu invoked from kernel context!", regs);
996 
997 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
998 
999 	switch (cpid) {
1000 	case 0:
1001 		epc = (unsigned int __user *)exception_epc(regs);
1002 		old_epc = regs->cp0_epc;
1003 		opcode = 0;
1004 		status = -1;
1005 
1006 		if (unlikely(compute_return_epc(regs) < 0))
1007 			return;
1008 
1009 		if (unlikely(get_user(opcode, epc) < 0))
1010 			status = SIGSEGV;
1011 
1012 		if (!cpu_has_llsc && status < 0)
1013 			status = simulate_llsc(regs, opcode);
1014 
1015 		if (status < 0)
1016 			status = simulate_rdhwr(regs, opcode);
1017 
1018 		if (status < 0)
1019 			status = SIGILL;
1020 
1021 		if (unlikely(status > 0)) {
1022 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1023 			force_sig(status, current);
1024 		}
1025 
1026 		return;
1027 
1028 	case 3:
1029 		/*
1030 		 * Old (MIPS I and MIPS II) processors will set this code
1031 		 * for COP1X opcode instructions that replaced the original
1032 		 * COP3 space.  We don't limit COP1 space instructions in
1033 		 * the emulator according to the CPU ISA, so we want to
1034 		 * treat COP1X instructions consistently regardless of which
1035 		 * code the CPU chose.  Therefore we redirect this trap to
1036 		 * the FP emulator too.
1037 		 *
1038 		 * Then some newer FPU-less processors use this code
1039 		 * erroneously too, so they are covered by this choice
1040 		 * as well.
1041 		 */
1042 		if (raw_cpu_has_fpu)
1043 			break;
1044 		/* Fall through.  */
1045 
1046 	case 1:
1047 		if (used_math())	/* Using the FPU again.  */
1048 			own_fpu(1);
1049 		else {			/* First time FPU user.  */
1050 			init_fpu();
1051 			set_used_math();
1052 		}
1053 
1054 		if (!raw_cpu_has_fpu) {
1055 			int sig;
1056 			void __user *fault_addr = NULL;
1057 			sig = fpu_emulator_cop1Handler(regs,
1058 						       &current->thread.fpu,
1059 						       0, &fault_addr);
1060 			if (!process_fpemu_return(sig, fault_addr))
1061 				mt_ase_fp_affinity();
1062 		}
1063 
1064 		return;
1065 
1066 	case 2:
1067 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1068 		return;
1069 	}
1070 
1071 	force_sig(SIGILL, current);
1072 }
1073 
1074 asmlinkage void do_mdmx(struct pt_regs *regs)
1075 {
1076 	force_sig(SIGILL, current);
1077 }
1078 
1079 /*
1080  * Called with interrupts disabled.
1081  */
1082 asmlinkage void do_watch(struct pt_regs *regs)
1083 {
1084 	u32 cause;
1085 
1086 	/*
1087 	 * Clear WP (bit 22) bit of cause register so we don't loop
1088 	 * forever.
1089 	 */
1090 	cause = read_c0_cause();
1091 	cause &= ~(1 << 22);
1092 	write_c0_cause(cause);
1093 
1094 	/*
1095 	 * If the current thread has the watch registers loaded, save
1096 	 * their values and send SIGTRAP.  Otherwise another thread
1097 	 * left the registers set, clear them and continue.
1098 	 */
1099 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1100 		mips_read_watch_registers();
1101 		local_irq_enable();
1102 		force_sig(SIGTRAP, current);
1103 	} else {
1104 		mips_clear_watch_registers();
1105 		local_irq_enable();
1106 	}
1107 }
1108 
1109 asmlinkage void do_mcheck(struct pt_regs *regs)
1110 {
1111 	const int field = 2 * sizeof(unsigned long);
1112 	int multi_match = regs->cp0_status & ST0_TS;
1113 
1114 	show_regs(regs);
1115 
1116 	if (multi_match) {
1117 		printk("Index   : %0x\n", read_c0_index());
1118 		printk("Pagemask: %0x\n", read_c0_pagemask());
1119 		printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1120 		printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1121 		printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1122 		printk("\n");
1123 		dump_tlb_all();
1124 	}
1125 
1126 	show_code((unsigned int __user *) regs->cp0_epc);
1127 
1128 	/*
1129 	 * Some chips may have other causes of machine check (e.g. SB1
1130 	 * graduation timer)
1131 	 */
1132 	panic("Caught Machine Check exception - %scaused by multiple "
1133 	      "matching entries in the TLB.",
1134 	      (multi_match) ? "" : "not ");
1135 }
1136 
1137 asmlinkage void do_mt(struct pt_regs *regs)
1138 {
1139 	int subcode;
1140 
1141 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1142 			>> VPECONTROL_EXCPT_SHIFT;
1143 	switch (subcode) {
1144 	case 0:
1145 		printk(KERN_DEBUG "Thread Underflow\n");
1146 		break;
1147 	case 1:
1148 		printk(KERN_DEBUG "Thread Overflow\n");
1149 		break;
1150 	case 2:
1151 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1152 		break;
1153 	case 3:
1154 		printk(KERN_DEBUG "Gating Storage Exception\n");
1155 		break;
1156 	case 4:
1157 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1158 		break;
1159 	case 5:
1160 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1161 		break;
1162 	default:
1163 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1164 			subcode);
1165 		break;
1166 	}
1167 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1168 
1169 	force_sig(SIGILL, current);
1170 }
1171 
1172 
1173 asmlinkage void do_dsp(struct pt_regs *regs)
1174 {
1175 	if (cpu_has_dsp)
1176 		panic("Unexpected DSP exception");
1177 
1178 	force_sig(SIGILL, current);
1179 }
1180 
1181 asmlinkage void do_reserved(struct pt_regs *regs)
1182 {
1183 	/*
1184 	 * Game over - no way to handle this if it ever occurs.  Most probably
1185 	 * caused by a new unknown cpu type or after another deadly
1186 	 * hard/software error.
1187 	 */
1188 	show_regs(regs);
1189 	panic("Caught reserved exception %ld - should not happen.",
1190 	      (regs->cp0_cause & 0x7f) >> 2);
1191 }
1192 
1193 static int __initdata l1parity = 1;
1194 static int __init nol1parity(char *s)
1195 {
1196 	l1parity = 0;
1197 	return 1;
1198 }
1199 __setup("nol1par", nol1parity);
1200 static int __initdata l2parity = 1;
1201 static int __init nol2parity(char *s)
1202 {
1203 	l2parity = 0;
1204 	return 1;
1205 }
1206 __setup("nol2par", nol2parity);
1207 
1208 /*
1209  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1210  * it different ways.
1211  */
1212 static inline void parity_protection_init(void)
1213 {
1214 	switch (current_cpu_type()) {
1215 	case CPU_24K:
1216 	case CPU_34K:
1217 	case CPU_74K:
1218 	case CPU_1004K:
1219 		{
1220 #define ERRCTL_PE	0x80000000
1221 #define ERRCTL_L2P	0x00800000
1222 			unsigned long errctl;
1223 			unsigned int l1parity_present, l2parity_present;
1224 
1225 			errctl = read_c0_ecc();
1226 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1227 
1228 			/* probe L1 parity support */
1229 			write_c0_ecc(errctl | ERRCTL_PE);
1230 			back_to_back_c0_hazard();
1231 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1232 
1233 			/* probe L2 parity support */
1234 			write_c0_ecc(errctl|ERRCTL_L2P);
1235 			back_to_back_c0_hazard();
1236 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1237 
1238 			if (l1parity_present && l2parity_present) {
1239 				if (l1parity)
1240 					errctl |= ERRCTL_PE;
1241 				if (l1parity ^ l2parity)
1242 					errctl |= ERRCTL_L2P;
1243 			} else if (l1parity_present) {
1244 				if (l1parity)
1245 					errctl |= ERRCTL_PE;
1246 			} else if (l2parity_present) {
1247 				if (l2parity)
1248 					errctl |= ERRCTL_L2P;
1249 			} else {
1250 				/* No parity available */
1251 			}
1252 
1253 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1254 
1255 			write_c0_ecc(errctl);
1256 			back_to_back_c0_hazard();
1257 			errctl = read_c0_ecc();
1258 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1259 
1260 			if (l1parity_present)
1261 				printk(KERN_INFO "Cache parity protection %sabled\n",
1262 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1263 
1264 			if (l2parity_present) {
1265 				if (l1parity_present && l1parity)
1266 					errctl ^= ERRCTL_L2P;
1267 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1268 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1269 			}
1270 		}
1271 		break;
1272 
1273 	case CPU_5KC:
1274 	case CPU_5KE:
1275 	case CPU_LOONGSON1:
1276 		write_c0_ecc(0x80000000);
1277 		back_to_back_c0_hazard();
1278 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1279 		printk(KERN_INFO "Cache parity protection %sabled\n",
1280 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1281 		break;
1282 	case CPU_20KC:
1283 	case CPU_25KF:
1284 		/* Clear the DE bit (bit 16) in the c0_status register. */
1285 		printk(KERN_INFO "Enable cache parity protection for "
1286 		       "MIPS 20KC/25KF CPUs.\n");
1287 		clear_c0_status(ST0_DE);
1288 		break;
1289 	default:
1290 		break;
1291 	}
1292 }
1293 
1294 asmlinkage void cache_parity_error(void)
1295 {
1296 	const int field = 2 * sizeof(unsigned long);
1297 	unsigned int reg_val;
1298 
1299 	/* For the moment, report the problem and hang. */
1300 	printk("Cache error exception:\n");
1301 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1302 	reg_val = read_c0_cacheerr();
1303 	printk("c0_cacheerr == %08x\n", reg_val);
1304 
1305 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1306 	       reg_val & (1<<30) ? "secondary" : "primary",
1307 	       reg_val & (1<<31) ? "data" : "insn");
1308 	printk("Error bits: %s%s%s%s%s%s%s\n",
1309 	       reg_val & (1<<29) ? "ED " : "",
1310 	       reg_val & (1<<28) ? "ET " : "",
1311 	       reg_val & (1<<26) ? "EE " : "",
1312 	       reg_val & (1<<25) ? "EB " : "",
1313 	       reg_val & (1<<24) ? "EI " : "",
1314 	       reg_val & (1<<23) ? "E1 " : "",
1315 	       reg_val & (1<<22) ? "E0 " : "");
1316 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1317 
1318 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1319 	if (reg_val & (1<<22))
1320 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1321 
1322 	if (reg_val & (1<<23))
1323 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1324 #endif
1325 
1326 	panic("Can't handle the cache error!");
1327 }
1328 
1329 /*
1330  * SDBBP EJTAG debug exception handler.
1331  * We skip the instruction and return to the next instruction.
1332  */
1333 void ejtag_exception_handler(struct pt_regs *regs)
1334 {
1335 	const int field = 2 * sizeof(unsigned long);
1336 	unsigned long depc, old_epc;
1337 	unsigned int debug;
1338 
1339 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1340 	depc = read_c0_depc();
1341 	debug = read_c0_debug();
1342 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1343 	if (debug & 0x80000000) {
1344 		/*
1345 		 * In branch delay slot.
1346 		 * We cheat a little bit here and use EPC to calculate the
1347 		 * debug return address (DEPC). EPC is restored after the
1348 		 * calculation.
1349 		 */
1350 		old_epc = regs->cp0_epc;
1351 		regs->cp0_epc = depc;
1352 		__compute_return_epc(regs);
1353 		depc = regs->cp0_epc;
1354 		regs->cp0_epc = old_epc;
1355 	} else
1356 		depc += 4;
1357 	write_c0_depc(depc);
1358 
1359 #if 0
1360 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1361 	write_c0_debug(debug | 0x100);
1362 #endif
1363 }
1364 
1365 /*
1366  * NMI exception handler.
1367  * No lock; only written during early bootup by CPU 0.
1368  */
1369 static RAW_NOTIFIER_HEAD(nmi_chain);
1370 
1371 int register_nmi_notifier(struct notifier_block *nb)
1372 {
1373 	return raw_notifier_chain_register(&nmi_chain, nb);
1374 }
1375 
1376 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1377 {
1378 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1379 	bust_spinlocks(1);
1380 	printk("NMI taken!!!!\n");
1381 	die("NMI", regs);
1382 }
1383 
1384 #define VECTORSPACING 0x100	/* for EI/VI mode */
1385 
1386 unsigned long ebase;
1387 unsigned long exception_handlers[32];
1388 unsigned long vi_handlers[64];
1389 
1390 void __init *set_except_vector(int n, void *addr)
1391 {
1392 	unsigned long handler = (unsigned long) addr;
1393 	unsigned long old_handler = exception_handlers[n];
1394 
1395 	exception_handlers[n] = handler;
1396 	if (n == 0 && cpu_has_divec) {
1397 		unsigned long jump_mask = ~((1 << 28) - 1);
1398 		u32 *buf = (u32 *)(ebase + 0x200);
1399 		unsigned int k0 = 26;
1400 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1401 			uasm_i_j(&buf, handler & ~jump_mask);
1402 			uasm_i_nop(&buf);
1403 		} else {
1404 			UASM_i_LA(&buf, k0, handler);
1405 			uasm_i_jr(&buf, k0);
1406 			uasm_i_nop(&buf);
1407 		}
1408 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1409 	}
1410 	return (void *)old_handler;
1411 }
1412 
1413 static asmlinkage void do_default_vi(void)
1414 {
1415 	show_regs(get_irq_regs());
1416 	panic("Caught unexpected vectored interrupt.");
1417 }
1418 
1419 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1420 {
1421 	unsigned long handler;
1422 	unsigned long old_handler = vi_handlers[n];
1423 	int srssets = current_cpu_data.srsets;
1424 	u32 *w;
1425 	unsigned char *b;
1426 
1427 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1428 
1429 	if (addr == NULL) {
1430 		handler = (unsigned long) do_default_vi;
1431 		srs = 0;
1432 	} else
1433 		handler = (unsigned long) addr;
1434 	vi_handlers[n] = (unsigned long) addr;
1435 
1436 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1437 
1438 	if (srs >= srssets)
1439 		panic("Shadow register set %d not supported", srs);
1440 
1441 	if (cpu_has_veic) {
1442 		if (board_bind_eic_interrupt)
1443 			board_bind_eic_interrupt(n, srs);
1444 	} else if (cpu_has_vint) {
1445 		/* SRSMap is only defined if shadow sets are implemented */
1446 		if (srssets > 1)
1447 			change_c0_srsmap(0xf << n*4, srs << n*4);
1448 	}
1449 
1450 	if (srs == 0) {
1451 		/*
1452 		 * If no shadow set is selected then use the default handler
1453 		 * that does normal register saving and a standard interrupt exit
1454 		 */
1455 
1456 		extern char except_vec_vi, except_vec_vi_lui;
1457 		extern char except_vec_vi_ori, except_vec_vi_end;
1458 		extern char rollback_except_vec_vi;
1459 		char *vec_start = (cpu_wait == r4k_wait) ?
1460 			&rollback_except_vec_vi : &except_vec_vi;
1461 #ifdef CONFIG_MIPS_MT_SMTC
1462 		/*
1463 		 * We need to provide the SMTC vectored interrupt handler
1464 		 * not only with the address of the handler, but with the
1465 		 * Status.IM bit to be masked before going there.
1466 		 */
1467 		extern char except_vec_vi_mori;
1468 		const int mori_offset = &except_vec_vi_mori - vec_start;
1469 #endif /* CONFIG_MIPS_MT_SMTC */
1470 		const int handler_len = &except_vec_vi_end - vec_start;
1471 		const int lui_offset = &except_vec_vi_lui - vec_start;
1472 		const int ori_offset = &except_vec_vi_ori - vec_start;
1473 
1474 		if (handler_len > VECTORSPACING) {
1475 			/*
1476 			 * Sigh... panicing won't help as the console
1477 			 * is probably not configured :(
1478 			 */
1479 			panic("VECTORSPACING too small");
1480 		}
1481 
1482 		memcpy(b, vec_start, handler_len);
1483 #ifdef CONFIG_MIPS_MT_SMTC
1484 		BUG_ON(n > 7);	/* Vector index %d exceeds SMTC maximum. */
1485 
1486 		w = (u32 *)(b + mori_offset);
1487 		*w = (*w & 0xffff0000) | (0x100 << n);
1488 #endif /* CONFIG_MIPS_MT_SMTC */
1489 		w = (u32 *)(b + lui_offset);
1490 		*w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1491 		w = (u32 *)(b + ori_offset);
1492 		*w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1493 		local_flush_icache_range((unsigned long)b,
1494 					 (unsigned long)(b+handler_len));
1495 	}
1496 	else {
1497 		/*
1498 		 * In other cases jump directly to the interrupt handler
1499 		 *
1500 		 * It is the handlers responsibility to save registers if required
1501 		 * (eg hi/lo) and return from the exception using "eret"
1502 		 */
1503 		w = (u32 *)b;
1504 		*w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1505 		*w = 0;
1506 		local_flush_icache_range((unsigned long)b,
1507 					 (unsigned long)(b+8));
1508 	}
1509 
1510 	return (void *)old_handler;
1511 }
1512 
1513 void *set_vi_handler(int n, vi_handler_t addr)
1514 {
1515 	return set_vi_srs_handler(n, addr, 0);
1516 }
1517 
1518 extern void tlb_init(void);
1519 extern void flush_tlb_handlers(void);
1520 
1521 /*
1522  * Timer interrupt
1523  */
1524 int cp0_compare_irq;
1525 EXPORT_SYMBOL_GPL(cp0_compare_irq);
1526 int cp0_compare_irq_shift;
1527 
1528 /*
1529  * Performance counter IRQ or -1 if shared with timer
1530  */
1531 int cp0_perfcount_irq;
1532 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1533 
1534 static int __cpuinitdata noulri;
1535 
1536 static int __init ulri_disable(char *s)
1537 {
1538 	pr_info("Disabling ulri\n");
1539 	noulri = 1;
1540 
1541 	return 1;
1542 }
1543 __setup("noulri", ulri_disable);
1544 
1545 void __cpuinit per_cpu_trap_init(bool is_boot_cpu)
1546 {
1547 	unsigned int cpu = smp_processor_id();
1548 	unsigned int status_set = ST0_CU0;
1549 	unsigned int hwrena = cpu_hwrena_impl_bits;
1550 #ifdef CONFIG_MIPS_MT_SMTC
1551 	int secondaryTC = 0;
1552 	int bootTC = (cpu == 0);
1553 
1554 	/*
1555 	 * Only do per_cpu_trap_init() for first TC of Each VPE.
1556 	 * Note that this hack assumes that the SMTC init code
1557 	 * assigns TCs consecutively and in ascending order.
1558 	 */
1559 
1560 	if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1561 	    ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1562 		secondaryTC = 1;
1563 #endif /* CONFIG_MIPS_MT_SMTC */
1564 
1565 	/*
1566 	 * Disable coprocessors and select 32-bit or 64-bit addressing
1567 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
1568 	 * flag that some firmware may have left set and the TS bit (for
1569 	 * IP27).  Set XX for ISA IV code to work.
1570 	 */
1571 #ifdef CONFIG_64BIT
1572 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1573 #endif
1574 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1575 		status_set |= ST0_XX;
1576 	if (cpu_has_dsp)
1577 		status_set |= ST0_MX;
1578 
1579 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1580 			 status_set);
1581 
1582 	if (cpu_has_mips_r2)
1583 		hwrena |= 0x0000000f;
1584 
1585 	if (!noulri && cpu_has_userlocal)
1586 		hwrena |= (1 << 29);
1587 
1588 	if (hwrena)
1589 		write_c0_hwrena(hwrena);
1590 
1591 #ifdef CONFIG_MIPS_MT_SMTC
1592 	if (!secondaryTC) {
1593 #endif /* CONFIG_MIPS_MT_SMTC */
1594 
1595 	if (cpu_has_veic || cpu_has_vint) {
1596 		unsigned long sr = set_c0_status(ST0_BEV);
1597 		write_c0_ebase(ebase);
1598 		write_c0_status(sr);
1599 		/* Setting vector spacing enables EI/VI mode  */
1600 		change_c0_intctl(0x3e0, VECTORSPACING);
1601 	}
1602 	if (cpu_has_divec) {
1603 		if (cpu_has_mipsmt) {
1604 			unsigned int vpflags = dvpe();
1605 			set_c0_cause(CAUSEF_IV);
1606 			evpe(vpflags);
1607 		} else
1608 			set_c0_cause(CAUSEF_IV);
1609 	}
1610 
1611 	/*
1612 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1613 	 *
1614 	 *  o read IntCtl.IPTI to determine the timer interrupt
1615 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
1616 	 */
1617 	if (cpu_has_mips_r2) {
1618 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1619 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1620 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1621 		if (cp0_perfcount_irq == cp0_compare_irq)
1622 			cp0_perfcount_irq = -1;
1623 	} else {
1624 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1625 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
1626 		cp0_perfcount_irq = -1;
1627 	}
1628 
1629 #ifdef CONFIG_MIPS_MT_SMTC
1630 	}
1631 #endif /* CONFIG_MIPS_MT_SMTC */
1632 
1633 	if (!cpu_data[cpu].asid_cache)
1634 		cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1635 
1636 	atomic_inc(&init_mm.mm_count);
1637 	current->active_mm = &init_mm;
1638 	BUG_ON(current->mm);
1639 	enter_lazy_tlb(&init_mm, current);
1640 
1641 #ifdef CONFIG_MIPS_MT_SMTC
1642 	if (bootTC) {
1643 #endif /* CONFIG_MIPS_MT_SMTC */
1644 		/* Boot CPU's cache setup in setup_arch(). */
1645 		if (!is_boot_cpu)
1646 			cpu_cache_init();
1647 		tlb_init();
1648 #ifdef CONFIG_MIPS_MT_SMTC
1649 	} else if (!secondaryTC) {
1650 		/*
1651 		 * First TC in non-boot VPE must do subset of tlb_init()
1652 		 * for MMU countrol registers.
1653 		 */
1654 		write_c0_pagemask(PM_DEFAULT_MASK);
1655 		write_c0_wired(0);
1656 	}
1657 #endif /* CONFIG_MIPS_MT_SMTC */
1658 	TLBMISS_HANDLER_SETUP();
1659 }
1660 
1661 /* Install CPU exception handler */
1662 void __cpuinit set_handler(unsigned long offset, void *addr, unsigned long size)
1663 {
1664 	memcpy((void *)(ebase + offset), addr, size);
1665 	local_flush_icache_range(ebase + offset, ebase + offset + size);
1666 }
1667 
1668 static char panic_null_cerr[] __cpuinitdata =
1669 	"Trying to set NULL cache error exception handler";
1670 
1671 /*
1672  * Install uncached CPU exception handler.
1673  * This is suitable only for the cache error exception which is the only
1674  * exception handler that is being run uncached.
1675  */
1676 void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1677 	unsigned long size)
1678 {
1679 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
1680 
1681 	if (!addr)
1682 		panic(panic_null_cerr);
1683 
1684 	memcpy((void *)(uncached_ebase + offset), addr, size);
1685 }
1686 
1687 static int __initdata rdhwr_noopt;
1688 static int __init set_rdhwr_noopt(char *str)
1689 {
1690 	rdhwr_noopt = 1;
1691 	return 1;
1692 }
1693 
1694 __setup("rdhwr_noopt", set_rdhwr_noopt);
1695 
1696 void __init trap_init(void)
1697 {
1698 	extern char except_vec3_generic, except_vec3_r4000;
1699 	extern char except_vec4;
1700 	unsigned long i;
1701 	int rollback;
1702 
1703 	check_wait();
1704 	rollback = (cpu_wait == r4k_wait);
1705 
1706 #if defined(CONFIG_KGDB)
1707 	if (kgdb_early_setup)
1708 		return;	/* Already done */
1709 #endif
1710 
1711 	if (cpu_has_veic || cpu_has_vint) {
1712 		unsigned long size = 0x200 + VECTORSPACING*64;
1713 		ebase = (unsigned long)
1714 			__alloc_bootmem(size, 1 << fls(size), 0);
1715 	} else {
1716 		ebase = CKSEG0;
1717 		if (cpu_has_mips_r2)
1718 			ebase += (read_c0_ebase() & 0x3ffff000);
1719 	}
1720 
1721 	if (board_ebase_setup)
1722 		board_ebase_setup();
1723 	per_cpu_trap_init(true);
1724 
1725 	/*
1726 	 * Copy the generic exception handlers to their final destination.
1727 	 * This will be overriden later as suitable for a particular
1728 	 * configuration.
1729 	 */
1730 	set_handler(0x180, &except_vec3_generic, 0x80);
1731 
1732 	/*
1733 	 * Setup default vectors
1734 	 */
1735 	for (i = 0; i <= 31; i++)
1736 		set_except_vector(i, handle_reserved);
1737 
1738 	/*
1739 	 * Copy the EJTAG debug exception vector handler code to it's final
1740 	 * destination.
1741 	 */
1742 	if (cpu_has_ejtag && board_ejtag_handler_setup)
1743 		board_ejtag_handler_setup();
1744 
1745 	/*
1746 	 * Only some CPUs have the watch exceptions.
1747 	 */
1748 	if (cpu_has_watch)
1749 		set_except_vector(23, handle_watch);
1750 
1751 	/*
1752 	 * Initialise interrupt handlers
1753 	 */
1754 	if (cpu_has_veic || cpu_has_vint) {
1755 		int nvec = cpu_has_veic ? 64 : 8;
1756 		for (i = 0; i < nvec; i++)
1757 			set_vi_handler(i, NULL);
1758 	}
1759 	else if (cpu_has_divec)
1760 		set_handler(0x200, &except_vec4, 0x8);
1761 
1762 	/*
1763 	 * Some CPUs can enable/disable for cache parity detection, but does
1764 	 * it different ways.
1765 	 */
1766 	parity_protection_init();
1767 
1768 	/*
1769 	 * The Data Bus Errors / Instruction Bus Errors are signaled
1770 	 * by external hardware.  Therefore these two exceptions
1771 	 * may have board specific handlers.
1772 	 */
1773 	if (board_be_init)
1774 		board_be_init();
1775 
1776 	set_except_vector(0, rollback ? rollback_handle_int : handle_int);
1777 	set_except_vector(1, handle_tlbm);
1778 	set_except_vector(2, handle_tlbl);
1779 	set_except_vector(3, handle_tlbs);
1780 
1781 	set_except_vector(4, handle_adel);
1782 	set_except_vector(5, handle_ades);
1783 
1784 	set_except_vector(6, handle_ibe);
1785 	set_except_vector(7, handle_dbe);
1786 
1787 	set_except_vector(8, handle_sys);
1788 	set_except_vector(9, handle_bp);
1789 	set_except_vector(10, rdhwr_noopt ? handle_ri :
1790 			  (cpu_has_vtag_icache ?
1791 			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1792 	set_except_vector(11, handle_cpu);
1793 	set_except_vector(12, handle_ov);
1794 	set_except_vector(13, handle_tr);
1795 
1796 	if (current_cpu_type() == CPU_R6000 ||
1797 	    current_cpu_type() == CPU_R6000A) {
1798 		/*
1799 		 * The R6000 is the only R-series CPU that features a machine
1800 		 * check exception (similar to the R4000 cache error) and
1801 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
1802 		 * written yet.  Well, anyway there is no R6000 machine on the
1803 		 * current list of targets for Linux/MIPS.
1804 		 * (Duh, crap, there is someone with a triple R6k machine)
1805 		 */
1806 		//set_except_vector(14, handle_mc);
1807 		//set_except_vector(15, handle_ndc);
1808 	}
1809 
1810 
1811 	if (board_nmi_handler_setup)
1812 		board_nmi_handler_setup();
1813 
1814 	if (cpu_has_fpu && !cpu_has_nofpuex)
1815 		set_except_vector(15, handle_fpe);
1816 
1817 	set_except_vector(22, handle_mdmx);
1818 
1819 	if (cpu_has_mcheck)
1820 		set_except_vector(24, handle_mcheck);
1821 
1822 	if (cpu_has_mipsmt)
1823 		set_except_vector(25, handle_mt);
1824 
1825 	set_except_vector(26, handle_dsp);
1826 
1827 	if (board_cache_error_setup)
1828 		board_cache_error_setup();
1829 
1830 	if (cpu_has_vce)
1831 		/* Special exception: R4[04]00 uses also the divec space. */
1832 		memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100);
1833 	else if (cpu_has_4kex)
1834 		memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80);
1835 	else
1836 		memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80);
1837 
1838 	local_flush_icache_range(ebase, ebase + 0x400);
1839 	flush_tlb_handlers();
1840 
1841 	sort_extable(__start___dbe_table, __stop___dbe_table);
1842 
1843 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
1844 }
1845