xref: /openbmc/linux/arch/mips/kernel/traps.c (revision b6dcefde)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
13  */
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/init.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/sched.h>
20 #include <linux/smp.h>
21 #include <linux/spinlock.h>
22 #include <linux/kallsyms.h>
23 #include <linux/bootmem.h>
24 #include <linux/interrupt.h>
25 #include <linux/ptrace.h>
26 #include <linux/kgdb.h>
27 #include <linux/kdebug.h>
28 #include <linux/notifier.h>
29 
30 #include <asm/bootinfo.h>
31 #include <asm/branch.h>
32 #include <asm/break.h>
33 #include <asm/cop2.h>
34 #include <asm/cpu.h>
35 #include <asm/dsp.h>
36 #include <asm/fpu.h>
37 #include <asm/fpu_emulator.h>
38 #include <asm/mipsregs.h>
39 #include <asm/mipsmtregs.h>
40 #include <asm/module.h>
41 #include <asm/pgtable.h>
42 #include <asm/ptrace.h>
43 #include <asm/sections.h>
44 #include <asm/system.h>
45 #include <asm/tlbdebug.h>
46 #include <asm/traps.h>
47 #include <asm/uaccess.h>
48 #include <asm/watch.h>
49 #include <asm/mmu_context.h>
50 #include <asm/types.h>
51 #include <asm/stacktrace.h>
52 #include <asm/irq.h>
53 
54 extern void check_wait(void);
55 extern asmlinkage void r4k_wait(void);
56 extern asmlinkage void rollback_handle_int(void);
57 extern asmlinkage void handle_int(void);
58 extern asmlinkage void handle_tlbm(void);
59 extern asmlinkage void handle_tlbl(void);
60 extern asmlinkage void handle_tlbs(void);
61 extern asmlinkage void handle_adel(void);
62 extern asmlinkage void handle_ades(void);
63 extern asmlinkage void handle_ibe(void);
64 extern asmlinkage void handle_dbe(void);
65 extern asmlinkage void handle_sys(void);
66 extern asmlinkage void handle_bp(void);
67 extern asmlinkage void handle_ri(void);
68 extern asmlinkage void handle_ri_rdhwr_vivt(void);
69 extern asmlinkage void handle_ri_rdhwr(void);
70 extern asmlinkage void handle_cpu(void);
71 extern asmlinkage void handle_ov(void);
72 extern asmlinkage void handle_tr(void);
73 extern asmlinkage void handle_fpe(void);
74 extern asmlinkage void handle_mdmx(void);
75 extern asmlinkage void handle_watch(void);
76 extern asmlinkage void handle_mt(void);
77 extern asmlinkage void handle_dsp(void);
78 extern asmlinkage void handle_mcheck(void);
79 extern asmlinkage void handle_reserved(void);
80 
81 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
82 	struct mips_fpu_struct *ctx, int has_fpu);
83 
84 void (*board_be_init)(void);
85 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
86 void (*board_nmi_handler_setup)(void);
87 void (*board_ejtag_handler_setup)(void);
88 void (*board_bind_eic_interrupt)(int irq, int regset);
89 
90 
91 static void show_raw_backtrace(unsigned long reg29)
92 {
93 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
94 	unsigned long addr;
95 
96 	printk("Call Trace:");
97 #ifdef CONFIG_KALLSYMS
98 	printk("\n");
99 #endif
100 	while (!kstack_end(sp)) {
101 		unsigned long __user *p =
102 			(unsigned long __user *)(unsigned long)sp++;
103 		if (__get_user(addr, p)) {
104 			printk(" (Bad stack address)");
105 			break;
106 		}
107 		if (__kernel_text_address(addr))
108 			print_ip_sym(addr);
109 	}
110 	printk("\n");
111 }
112 
113 #ifdef CONFIG_KALLSYMS
114 int raw_show_trace;
115 static int __init set_raw_show_trace(char *str)
116 {
117 	raw_show_trace = 1;
118 	return 1;
119 }
120 __setup("raw_show_trace", set_raw_show_trace);
121 #endif
122 
123 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
124 {
125 	unsigned long sp = regs->regs[29];
126 	unsigned long ra = regs->regs[31];
127 	unsigned long pc = regs->cp0_epc;
128 
129 	if (raw_show_trace || !__kernel_text_address(pc)) {
130 		show_raw_backtrace(sp);
131 		return;
132 	}
133 	printk("Call Trace:\n");
134 	do {
135 		print_ip_sym(pc);
136 		pc = unwind_stack(task, &sp, pc, &ra);
137 	} while (pc);
138 	printk("\n");
139 }
140 
141 /*
142  * This routine abuses get_user()/put_user() to reference pointers
143  * with at least a bit of error checking ...
144  */
145 static void show_stacktrace(struct task_struct *task,
146 	const struct pt_regs *regs)
147 {
148 	const int field = 2 * sizeof(unsigned long);
149 	long stackdata;
150 	int i;
151 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
152 
153 	printk("Stack :");
154 	i = 0;
155 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
156 		if (i && ((i % (64 / field)) == 0))
157 			printk("\n       ");
158 		if (i > 39) {
159 			printk(" ...");
160 			break;
161 		}
162 
163 		if (__get_user(stackdata, sp++)) {
164 			printk(" (Bad stack address)");
165 			break;
166 		}
167 
168 		printk(" %0*lx", field, stackdata);
169 		i++;
170 	}
171 	printk("\n");
172 	show_backtrace(task, regs);
173 }
174 
175 void show_stack(struct task_struct *task, unsigned long *sp)
176 {
177 	struct pt_regs regs;
178 	if (sp) {
179 		regs.regs[29] = (unsigned long)sp;
180 		regs.regs[31] = 0;
181 		regs.cp0_epc = 0;
182 	} else {
183 		if (task && task != current) {
184 			regs.regs[29] = task->thread.reg29;
185 			regs.regs[31] = 0;
186 			regs.cp0_epc = task->thread.reg31;
187 		} else {
188 			prepare_frametrace(&regs);
189 		}
190 	}
191 	show_stacktrace(task, &regs);
192 }
193 
194 /*
195  * The architecture-independent dump_stack generator
196  */
197 void dump_stack(void)
198 {
199 	struct pt_regs regs;
200 
201 	prepare_frametrace(&regs);
202 	show_backtrace(current, &regs);
203 }
204 
205 EXPORT_SYMBOL(dump_stack);
206 
207 static void show_code(unsigned int __user *pc)
208 {
209 	long i;
210 	unsigned short __user *pc16 = NULL;
211 
212 	printk("\nCode:");
213 
214 	if ((unsigned long)pc & 1)
215 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
216 	for(i = -3 ; i < 6 ; i++) {
217 		unsigned int insn;
218 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
219 			printk(" (Bad address in epc)\n");
220 			break;
221 		}
222 		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
223 	}
224 }
225 
226 static void __show_regs(const struct pt_regs *regs)
227 {
228 	const int field = 2 * sizeof(unsigned long);
229 	unsigned int cause = regs->cp0_cause;
230 	int i;
231 
232 	printk("Cpu %d\n", smp_processor_id());
233 
234 	/*
235 	 * Saved main processor registers
236 	 */
237 	for (i = 0; i < 32; ) {
238 		if ((i % 4) == 0)
239 			printk("$%2d   :", i);
240 		if (i == 0)
241 			printk(" %0*lx", field, 0UL);
242 		else if (i == 26 || i == 27)
243 			printk(" %*s", field, "");
244 		else
245 			printk(" %0*lx", field, regs->regs[i]);
246 
247 		i++;
248 		if ((i % 4) == 0)
249 			printk("\n");
250 	}
251 
252 #ifdef CONFIG_CPU_HAS_SMARTMIPS
253 	printk("Acx    : %0*lx\n", field, regs->acx);
254 #endif
255 	printk("Hi    : %0*lx\n", field, regs->hi);
256 	printk("Lo    : %0*lx\n", field, regs->lo);
257 
258 	/*
259 	 * Saved cp0 registers
260 	 */
261 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
262 	       (void *) regs->cp0_epc);
263 	printk("    %s\n", print_tainted());
264 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
265 	       (void *) regs->regs[31]);
266 
267 	printk("Status: %08x    ", (uint32_t) regs->cp0_status);
268 
269 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
270 		if (regs->cp0_status & ST0_KUO)
271 			printk("KUo ");
272 		if (regs->cp0_status & ST0_IEO)
273 			printk("IEo ");
274 		if (regs->cp0_status & ST0_KUP)
275 			printk("KUp ");
276 		if (regs->cp0_status & ST0_IEP)
277 			printk("IEp ");
278 		if (regs->cp0_status & ST0_KUC)
279 			printk("KUc ");
280 		if (regs->cp0_status & ST0_IEC)
281 			printk("IEc ");
282 	} else {
283 		if (regs->cp0_status & ST0_KX)
284 			printk("KX ");
285 		if (regs->cp0_status & ST0_SX)
286 			printk("SX ");
287 		if (regs->cp0_status & ST0_UX)
288 			printk("UX ");
289 		switch (regs->cp0_status & ST0_KSU) {
290 		case KSU_USER:
291 			printk("USER ");
292 			break;
293 		case KSU_SUPERVISOR:
294 			printk("SUPERVISOR ");
295 			break;
296 		case KSU_KERNEL:
297 			printk("KERNEL ");
298 			break;
299 		default:
300 			printk("BAD_MODE ");
301 			break;
302 		}
303 		if (regs->cp0_status & ST0_ERL)
304 			printk("ERL ");
305 		if (regs->cp0_status & ST0_EXL)
306 			printk("EXL ");
307 		if (regs->cp0_status & ST0_IE)
308 			printk("IE ");
309 	}
310 	printk("\n");
311 
312 	printk("Cause : %08x\n", cause);
313 
314 	cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
315 	if (1 <= cause && cause <= 5)
316 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
317 
318 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
319 	       cpu_name_string());
320 }
321 
322 /*
323  * FIXME: really the generic show_regs should take a const pointer argument.
324  */
325 void show_regs(struct pt_regs *regs)
326 {
327 	__show_regs((struct pt_regs *)regs);
328 }
329 
330 void show_registers(const struct pt_regs *regs)
331 {
332 	const int field = 2 * sizeof(unsigned long);
333 
334 	__show_regs(regs);
335 	print_modules();
336 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
337 	       current->comm, current->pid, current_thread_info(), current,
338 	      field, current_thread_info()->tp_value);
339 	if (cpu_has_userlocal) {
340 		unsigned long tls;
341 
342 		tls = read_c0_userlocal();
343 		if (tls != current_thread_info()->tp_value)
344 			printk("*HwTLS: %0*lx\n", field, tls);
345 	}
346 
347 	show_stacktrace(current, regs);
348 	show_code((unsigned int __user *) regs->cp0_epc);
349 	printk("\n");
350 }
351 
352 static DEFINE_SPINLOCK(die_lock);
353 
354 void __noreturn die(const char * str, const struct pt_regs * regs)
355 {
356 	static int die_counter;
357 #ifdef CONFIG_MIPS_MT_SMTC
358 	unsigned long dvpret = dvpe();
359 #endif /* CONFIG_MIPS_MT_SMTC */
360 
361 	console_verbose();
362 	spin_lock_irq(&die_lock);
363 	bust_spinlocks(1);
364 #ifdef CONFIG_MIPS_MT_SMTC
365 	mips_mt_regdump(dvpret);
366 #endif /* CONFIG_MIPS_MT_SMTC */
367 	printk("%s[#%d]:\n", str, ++die_counter);
368 	show_registers(regs);
369 	add_taint(TAINT_DIE);
370 	spin_unlock_irq(&die_lock);
371 
372 	if (in_interrupt())
373 		panic("Fatal exception in interrupt");
374 
375 	if (panic_on_oops) {
376 		printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
377 		ssleep(5);
378 		panic("Fatal exception");
379 	}
380 
381 	do_exit(SIGSEGV);
382 }
383 
384 extern struct exception_table_entry __start___dbe_table[];
385 extern struct exception_table_entry __stop___dbe_table[];
386 
387 __asm__(
388 "	.section	__dbe_table, \"a\"\n"
389 "	.previous			\n");
390 
391 /* Given an address, look for it in the exception tables. */
392 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
393 {
394 	const struct exception_table_entry *e;
395 
396 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
397 	if (!e)
398 		e = search_module_dbetables(addr);
399 	return e;
400 }
401 
402 asmlinkage void do_be(struct pt_regs *regs)
403 {
404 	const int field = 2 * sizeof(unsigned long);
405 	const struct exception_table_entry *fixup = NULL;
406 	int data = regs->cp0_cause & 4;
407 	int action = MIPS_BE_FATAL;
408 
409 	/* XXX For now.  Fixme, this searches the wrong table ...  */
410 	if (data && !user_mode(regs))
411 		fixup = search_dbe_tables(exception_epc(regs));
412 
413 	if (fixup)
414 		action = MIPS_BE_FIXUP;
415 
416 	if (board_be_handler)
417 		action = board_be_handler(regs, fixup != NULL);
418 
419 	switch (action) {
420 	case MIPS_BE_DISCARD:
421 		return;
422 	case MIPS_BE_FIXUP:
423 		if (fixup) {
424 			regs->cp0_epc = fixup->nextinsn;
425 			return;
426 		}
427 		break;
428 	default:
429 		break;
430 	}
431 
432 	/*
433 	 * Assume it would be too dangerous to continue ...
434 	 */
435 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
436 	       data ? "Data" : "Instruction",
437 	       field, regs->cp0_epc, field, regs->regs[31]);
438 	if (notify_die(DIE_OOPS, "bus error", regs, SIGBUS, 0, 0)
439 	    == NOTIFY_STOP)
440 		return;
441 
442 	die_if_kernel("Oops", regs);
443 	force_sig(SIGBUS, current);
444 }
445 
446 /*
447  * ll/sc, rdhwr, sync emulation
448  */
449 
450 #define OPCODE 0xfc000000
451 #define BASE   0x03e00000
452 #define RT     0x001f0000
453 #define OFFSET 0x0000ffff
454 #define LL     0xc0000000
455 #define SC     0xe0000000
456 #define SPEC0  0x00000000
457 #define SPEC3  0x7c000000
458 #define RD     0x0000f800
459 #define FUNC   0x0000003f
460 #define SYNC   0x0000000f
461 #define RDHWR  0x0000003b
462 
463 /*
464  * The ll_bit is cleared by r*_switch.S
465  */
466 
467 unsigned int ll_bit;
468 struct task_struct *ll_task;
469 
470 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
471 {
472 	unsigned long value, __user *vaddr;
473 	long offset;
474 
475 	/*
476 	 * analyse the ll instruction that just caused a ri exception
477 	 * and put the referenced address to addr.
478 	 */
479 
480 	/* sign extend offset */
481 	offset = opcode & OFFSET;
482 	offset <<= 16;
483 	offset >>= 16;
484 
485 	vaddr = (unsigned long __user *)
486 	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
487 
488 	if ((unsigned long)vaddr & 3)
489 		return SIGBUS;
490 	if (get_user(value, vaddr))
491 		return SIGSEGV;
492 
493 	preempt_disable();
494 
495 	if (ll_task == NULL || ll_task == current) {
496 		ll_bit = 1;
497 	} else {
498 		ll_bit = 0;
499 	}
500 	ll_task = current;
501 
502 	preempt_enable();
503 
504 	regs->regs[(opcode & RT) >> 16] = value;
505 
506 	return 0;
507 }
508 
509 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
510 {
511 	unsigned long __user *vaddr;
512 	unsigned long reg;
513 	long offset;
514 
515 	/*
516 	 * analyse the sc instruction that just caused a ri exception
517 	 * and put the referenced address to addr.
518 	 */
519 
520 	/* sign extend offset */
521 	offset = opcode & OFFSET;
522 	offset <<= 16;
523 	offset >>= 16;
524 
525 	vaddr = (unsigned long __user *)
526 	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
527 	reg = (opcode & RT) >> 16;
528 
529 	if ((unsigned long)vaddr & 3)
530 		return SIGBUS;
531 
532 	preempt_disable();
533 
534 	if (ll_bit == 0 || ll_task != current) {
535 		regs->regs[reg] = 0;
536 		preempt_enable();
537 		return 0;
538 	}
539 
540 	preempt_enable();
541 
542 	if (put_user(regs->regs[reg], vaddr))
543 		return SIGSEGV;
544 
545 	regs->regs[reg] = 1;
546 
547 	return 0;
548 }
549 
550 /*
551  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
552  * opcodes are supposed to result in coprocessor unusable exceptions if
553  * executed on ll/sc-less processors.  That's the theory.  In practice a
554  * few processors such as NEC's VR4100 throw reserved instruction exceptions
555  * instead, so we're doing the emulation thing in both exception handlers.
556  */
557 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
558 {
559 	if ((opcode & OPCODE) == LL)
560 		return simulate_ll(regs, opcode);
561 	if ((opcode & OPCODE) == SC)
562 		return simulate_sc(regs, opcode);
563 
564 	return -1;			/* Must be something else ... */
565 }
566 
567 /*
568  * Simulate trapping 'rdhwr' instructions to provide user accessible
569  * registers not implemented in hardware.
570  */
571 static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode)
572 {
573 	struct thread_info *ti = task_thread_info(current);
574 
575 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
576 		int rd = (opcode & RD) >> 11;
577 		int rt = (opcode & RT) >> 16;
578 		switch (rd) {
579 		case 0:		/* CPU number */
580 			regs->regs[rt] = smp_processor_id();
581 			return 0;
582 		case 1:		/* SYNCI length */
583 			regs->regs[rt] = min(current_cpu_data.dcache.linesz,
584 					     current_cpu_data.icache.linesz);
585 			return 0;
586 		case 2:		/* Read count register */
587 			regs->regs[rt] = read_c0_count();
588 			return 0;
589 		case 3:		/* Count register resolution */
590 			switch (current_cpu_data.cputype) {
591 			case CPU_20KC:
592 			case CPU_25KF:
593 				regs->regs[rt] = 1;
594 				break;
595 			default:
596 				regs->regs[rt] = 2;
597 			}
598 			return 0;
599 		case 29:
600 			regs->regs[rt] = ti->tp_value;
601 			return 0;
602 		default:
603 			return -1;
604 		}
605 	}
606 
607 	/* Not ours.  */
608 	return -1;
609 }
610 
611 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
612 {
613 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC)
614 		return 0;
615 
616 	return -1;			/* Must be something else ... */
617 }
618 
619 asmlinkage void do_ov(struct pt_regs *regs)
620 {
621 	siginfo_t info;
622 
623 	die_if_kernel("Integer overflow", regs);
624 
625 	info.si_code = FPE_INTOVF;
626 	info.si_signo = SIGFPE;
627 	info.si_errno = 0;
628 	info.si_addr = (void __user *) regs->cp0_epc;
629 	force_sig_info(SIGFPE, &info, current);
630 }
631 
632 /*
633  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
634  */
635 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
636 {
637 	siginfo_t info;
638 
639 	if (notify_die(DIE_FP, "FP exception", regs, SIGFPE, 0, 0)
640 	    == NOTIFY_STOP)
641 		return;
642 	die_if_kernel("FP exception in kernel code", regs);
643 
644 	if (fcr31 & FPU_CSR_UNI_X) {
645 		int sig;
646 
647 		/*
648 		 * Unimplemented operation exception.  If we've got the full
649 		 * software emulator on-board, let's use it...
650 		 *
651 		 * Force FPU to dump state into task/thread context.  We're
652 		 * moving a lot of data here for what is probably a single
653 		 * instruction, but the alternative is to pre-decode the FP
654 		 * register operands before invoking the emulator, which seems
655 		 * a bit extreme for what should be an infrequent event.
656 		 */
657 		/* Ensure 'resume' not overwrite saved fp context again. */
658 		lose_fpu(1);
659 
660 		/* Run the emulator */
661 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1);
662 
663 		/*
664 		 * We can't allow the emulated instruction to leave any of
665 		 * the cause bit set in $fcr31.
666 		 */
667 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
668 
669 		/* Restore the hardware register state */
670 		own_fpu(1);	/* Using the FPU again.  */
671 
672 		/* If something went wrong, signal */
673 		if (sig)
674 			force_sig(sig, current);
675 
676 		return;
677 	} else if (fcr31 & FPU_CSR_INV_X)
678 		info.si_code = FPE_FLTINV;
679 	else if (fcr31 & FPU_CSR_DIV_X)
680 		info.si_code = FPE_FLTDIV;
681 	else if (fcr31 & FPU_CSR_OVF_X)
682 		info.si_code = FPE_FLTOVF;
683 	else if (fcr31 & FPU_CSR_UDF_X)
684 		info.si_code = FPE_FLTUND;
685 	else if (fcr31 & FPU_CSR_INE_X)
686 		info.si_code = FPE_FLTRES;
687 	else
688 		info.si_code = __SI_FAULT;
689 	info.si_signo = SIGFPE;
690 	info.si_errno = 0;
691 	info.si_addr = (void __user *) regs->cp0_epc;
692 	force_sig_info(SIGFPE, &info, current);
693 }
694 
695 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
696 	const char *str)
697 {
698 	siginfo_t info;
699 	char b[40];
700 
701 	if (notify_die(DIE_TRAP, str, regs, code, 0, 0) == NOTIFY_STOP)
702 		return;
703 
704 	/*
705 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
706 	 * insns, even for trap and break codes that indicate arithmetic
707 	 * failures.  Weird ...
708 	 * But should we continue the brokenness???  --macro
709 	 */
710 	switch (code) {
711 	case BRK_OVERFLOW:
712 	case BRK_DIVZERO:
713 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
714 		die_if_kernel(b, regs);
715 		if (code == BRK_DIVZERO)
716 			info.si_code = FPE_INTDIV;
717 		else
718 			info.si_code = FPE_INTOVF;
719 		info.si_signo = SIGFPE;
720 		info.si_errno = 0;
721 		info.si_addr = (void __user *) regs->cp0_epc;
722 		force_sig_info(SIGFPE, &info, current);
723 		break;
724 	case BRK_BUG:
725 		die_if_kernel("Kernel bug detected", regs);
726 		force_sig(SIGTRAP, current);
727 		break;
728 	case BRK_MEMU:
729 		/*
730 		 * Address errors may be deliberately induced by the FPU
731 		 * emulator to retake control of the CPU after executing the
732 		 * instruction in the delay slot of an emulated branch.
733 		 *
734 		 * Terminate if exception was recognized as a delay slot return
735 		 * otherwise handle as normal.
736 		 */
737 		if (do_dsemulret(regs))
738 			return;
739 
740 		die_if_kernel("Math emu break/trap", regs);
741 		force_sig(SIGTRAP, current);
742 		break;
743 	default:
744 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
745 		die_if_kernel(b, regs);
746 		force_sig(SIGTRAP, current);
747 	}
748 }
749 
750 asmlinkage void do_bp(struct pt_regs *regs)
751 {
752 	unsigned int opcode, bcode;
753 
754 	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
755 		goto out_sigsegv;
756 
757 	/*
758 	 * There is the ancient bug in the MIPS assemblers that the break
759 	 * code starts left to bit 16 instead to bit 6 in the opcode.
760 	 * Gas is bug-compatible, but not always, grrr...
761 	 * We handle both cases with a simple heuristics.  --macro
762 	 */
763 	bcode = ((opcode >> 6) & ((1 << 20) - 1));
764 	if (bcode >= (1 << 10))
765 		bcode >>= 10;
766 
767 	do_trap_or_bp(regs, bcode, "Break");
768 	return;
769 
770 out_sigsegv:
771 	force_sig(SIGSEGV, current);
772 }
773 
774 asmlinkage void do_tr(struct pt_regs *regs)
775 {
776 	unsigned int opcode, tcode = 0;
777 
778 	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
779 		goto out_sigsegv;
780 
781 	/* Immediate versions don't provide a code.  */
782 	if (!(opcode & OPCODE))
783 		tcode = ((opcode >> 6) & ((1 << 10) - 1));
784 
785 	do_trap_or_bp(regs, tcode, "Trap");
786 	return;
787 
788 out_sigsegv:
789 	force_sig(SIGSEGV, current);
790 }
791 
792 asmlinkage void do_ri(struct pt_regs *regs)
793 {
794 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
795 	unsigned long old_epc = regs->cp0_epc;
796 	unsigned int opcode = 0;
797 	int status = -1;
798 
799 	if (notify_die(DIE_RI, "RI Fault", regs, SIGSEGV, 0, 0)
800 	    == NOTIFY_STOP)
801 		return;
802 
803 	die_if_kernel("Reserved instruction in kernel code", regs);
804 
805 	if (unlikely(compute_return_epc(regs) < 0))
806 		return;
807 
808 	if (unlikely(get_user(opcode, epc) < 0))
809 		status = SIGSEGV;
810 
811 	if (!cpu_has_llsc && status < 0)
812 		status = simulate_llsc(regs, opcode);
813 
814 	if (status < 0)
815 		status = simulate_rdhwr(regs, opcode);
816 
817 	if (status < 0)
818 		status = simulate_sync(regs, opcode);
819 
820 	if (status < 0)
821 		status = SIGILL;
822 
823 	if (unlikely(status > 0)) {
824 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
825 		force_sig(status, current);
826 	}
827 }
828 
829 /*
830  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
831  * emulated more than some threshold number of instructions, force migration to
832  * a "CPU" that has FP support.
833  */
834 static void mt_ase_fp_affinity(void)
835 {
836 #ifdef CONFIG_MIPS_MT_FPAFF
837 	if (mt_fpemul_threshold > 0 &&
838 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
839 		/*
840 		 * If there's no FPU present, or if the application has already
841 		 * restricted the allowed set to exclude any CPUs with FPUs,
842 		 * we'll skip the procedure.
843 		 */
844 		if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
845 			cpumask_t tmask;
846 
847 			current->thread.user_cpus_allowed
848 				= current->cpus_allowed;
849 			cpus_and(tmask, current->cpus_allowed,
850 				mt_fpu_cpumask);
851 			set_cpus_allowed(current, tmask);
852 			set_thread_flag(TIF_FPUBOUND);
853 		}
854 	}
855 #endif /* CONFIG_MIPS_MT_FPAFF */
856 }
857 
858 /*
859  * No lock; only written during early bootup by CPU 0.
860  */
861 static RAW_NOTIFIER_HEAD(cu2_chain);
862 
863 int __ref register_cu2_notifier(struct notifier_block *nb)
864 {
865 	return raw_notifier_chain_register(&cu2_chain, nb);
866 }
867 
868 int cu2_notifier_call_chain(unsigned long val, void *v)
869 {
870 	return raw_notifier_call_chain(&cu2_chain, val, v);
871 }
872 
873 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
874         void *data)
875 {
876 	struct pt_regs *regs = data;
877 
878 	switch (action) {
879 	default:
880 		die_if_kernel("Unhandled kernel unaligned access or invalid "
881 			      "instruction", regs);
882 		/* Fall through  */
883 
884 	case CU2_EXCEPTION:
885 		force_sig(SIGILL, current);
886 	}
887 
888 	return NOTIFY_OK;
889 }
890 
891 static struct notifier_block default_cu2_notifier = {
892 	.notifier_call	= default_cu2_call,
893 	.priority	= 0x80000000,		/* Run last  */
894 };
895 
896 asmlinkage void do_cpu(struct pt_regs *regs)
897 {
898 	unsigned int __user *epc;
899 	unsigned long old_epc;
900 	unsigned int opcode;
901 	unsigned int cpid;
902 	int status;
903 	unsigned long __maybe_unused flags;
904 
905 	die_if_kernel("do_cpu invoked from kernel context!", regs);
906 
907 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
908 
909 	switch (cpid) {
910 	case 0:
911 		epc = (unsigned int __user *)exception_epc(regs);
912 		old_epc = regs->cp0_epc;
913 		opcode = 0;
914 		status = -1;
915 
916 		if (unlikely(compute_return_epc(regs) < 0))
917 			return;
918 
919 		if (unlikely(get_user(opcode, epc) < 0))
920 			status = SIGSEGV;
921 
922 		if (!cpu_has_llsc && status < 0)
923 			status = simulate_llsc(regs, opcode);
924 
925 		if (status < 0)
926 			status = simulate_rdhwr(regs, opcode);
927 
928 		if (status < 0)
929 			status = SIGILL;
930 
931 		if (unlikely(status > 0)) {
932 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
933 			force_sig(status, current);
934 		}
935 
936 		return;
937 
938 	case 1:
939 		if (used_math())	/* Using the FPU again.  */
940 			own_fpu(1);
941 		else {			/* First time FPU user.  */
942 			init_fpu();
943 			set_used_math();
944 		}
945 
946 		if (!raw_cpu_has_fpu) {
947 			int sig;
948 			sig = fpu_emulator_cop1Handler(regs,
949 						&current->thread.fpu, 0);
950 			if (sig)
951 				force_sig(sig, current);
952 			else
953 				mt_ase_fp_affinity();
954 		}
955 
956 		return;
957 
958 	case 2:
959 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
960 		break;
961 
962 	case 3:
963 		break;
964 	}
965 
966 	force_sig(SIGILL, current);
967 }
968 
969 asmlinkage void do_mdmx(struct pt_regs *regs)
970 {
971 	force_sig(SIGILL, current);
972 }
973 
974 /*
975  * Called with interrupts disabled.
976  */
977 asmlinkage void do_watch(struct pt_regs *regs)
978 {
979 	u32 cause;
980 
981 	/*
982 	 * Clear WP (bit 22) bit of cause register so we don't loop
983 	 * forever.
984 	 */
985 	cause = read_c0_cause();
986 	cause &= ~(1 << 22);
987 	write_c0_cause(cause);
988 
989 	/*
990 	 * If the current thread has the watch registers loaded, save
991 	 * their values and send SIGTRAP.  Otherwise another thread
992 	 * left the registers set, clear them and continue.
993 	 */
994 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
995 		mips_read_watch_registers();
996 		local_irq_enable();
997 		force_sig(SIGTRAP, current);
998 	} else {
999 		mips_clear_watch_registers();
1000 		local_irq_enable();
1001 	}
1002 }
1003 
1004 asmlinkage void do_mcheck(struct pt_regs *regs)
1005 {
1006 	const int field = 2 * sizeof(unsigned long);
1007 	int multi_match = regs->cp0_status & ST0_TS;
1008 
1009 	show_regs(regs);
1010 
1011 	if (multi_match) {
1012 		printk("Index   : %0x\n", read_c0_index());
1013 		printk("Pagemask: %0x\n", read_c0_pagemask());
1014 		printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1015 		printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1016 		printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1017 		printk("\n");
1018 		dump_tlb_all();
1019 	}
1020 
1021 	show_code((unsigned int __user *) regs->cp0_epc);
1022 
1023 	/*
1024 	 * Some chips may have other causes of machine check (e.g. SB1
1025 	 * graduation timer)
1026 	 */
1027 	panic("Caught Machine Check exception - %scaused by multiple "
1028 	      "matching entries in the TLB.",
1029 	      (multi_match) ? "" : "not ");
1030 }
1031 
1032 asmlinkage void do_mt(struct pt_regs *regs)
1033 {
1034 	int subcode;
1035 
1036 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1037 			>> VPECONTROL_EXCPT_SHIFT;
1038 	switch (subcode) {
1039 	case 0:
1040 		printk(KERN_DEBUG "Thread Underflow\n");
1041 		break;
1042 	case 1:
1043 		printk(KERN_DEBUG "Thread Overflow\n");
1044 		break;
1045 	case 2:
1046 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1047 		break;
1048 	case 3:
1049 		printk(KERN_DEBUG "Gating Storage Exception\n");
1050 		break;
1051 	case 4:
1052 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1053 		break;
1054 	case 5:
1055 		printk(KERN_DEBUG "Gating Storage Schedulier Exception\n");
1056 		break;
1057 	default:
1058 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1059 			subcode);
1060 		break;
1061 	}
1062 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1063 
1064 	force_sig(SIGILL, current);
1065 }
1066 
1067 
1068 asmlinkage void do_dsp(struct pt_regs *regs)
1069 {
1070 	if (cpu_has_dsp)
1071 		panic("Unexpected DSP exception\n");
1072 
1073 	force_sig(SIGILL, current);
1074 }
1075 
1076 asmlinkage void do_reserved(struct pt_regs *regs)
1077 {
1078 	/*
1079 	 * Game over - no way to handle this if it ever occurs.  Most probably
1080 	 * caused by a new unknown cpu type or after another deadly
1081 	 * hard/software error.
1082 	 */
1083 	show_regs(regs);
1084 	panic("Caught reserved exception %ld - should not happen.",
1085 	      (regs->cp0_cause & 0x7f) >> 2);
1086 }
1087 
1088 static int __initdata l1parity = 1;
1089 static int __init nol1parity(char *s)
1090 {
1091 	l1parity = 0;
1092 	return 1;
1093 }
1094 __setup("nol1par", nol1parity);
1095 static int __initdata l2parity = 1;
1096 static int __init nol2parity(char *s)
1097 {
1098 	l2parity = 0;
1099 	return 1;
1100 }
1101 __setup("nol2par", nol2parity);
1102 
1103 /*
1104  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1105  * it different ways.
1106  */
1107 static inline void parity_protection_init(void)
1108 {
1109 	switch (current_cpu_type()) {
1110 	case CPU_24K:
1111 	case CPU_34K:
1112 	case CPU_74K:
1113 	case CPU_1004K:
1114 		{
1115 #define ERRCTL_PE	0x80000000
1116 #define ERRCTL_L2P	0x00800000
1117 			unsigned long errctl;
1118 			unsigned int l1parity_present, l2parity_present;
1119 
1120 			errctl = read_c0_ecc();
1121 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1122 
1123 			/* probe L1 parity support */
1124 			write_c0_ecc(errctl | ERRCTL_PE);
1125 			back_to_back_c0_hazard();
1126 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1127 
1128 			/* probe L2 parity support */
1129 			write_c0_ecc(errctl|ERRCTL_L2P);
1130 			back_to_back_c0_hazard();
1131 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1132 
1133 			if (l1parity_present && l2parity_present) {
1134 				if (l1parity)
1135 					errctl |= ERRCTL_PE;
1136 				if (l1parity ^ l2parity)
1137 					errctl |= ERRCTL_L2P;
1138 			} else if (l1parity_present) {
1139 				if (l1parity)
1140 					errctl |= ERRCTL_PE;
1141 			} else if (l2parity_present) {
1142 				if (l2parity)
1143 					errctl |= ERRCTL_L2P;
1144 			} else {
1145 				/* No parity available */
1146 			}
1147 
1148 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1149 
1150 			write_c0_ecc(errctl);
1151 			back_to_back_c0_hazard();
1152 			errctl = read_c0_ecc();
1153 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1154 
1155 			if (l1parity_present)
1156 				printk(KERN_INFO "Cache parity protection %sabled\n",
1157 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1158 
1159 			if (l2parity_present) {
1160 				if (l1parity_present && l1parity)
1161 					errctl ^= ERRCTL_L2P;
1162 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1163 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1164 			}
1165 		}
1166 		break;
1167 
1168 	case CPU_5KC:
1169 		write_c0_ecc(0x80000000);
1170 		back_to_back_c0_hazard();
1171 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1172 		printk(KERN_INFO "Cache parity protection %sabled\n",
1173 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1174 		break;
1175 	case CPU_20KC:
1176 	case CPU_25KF:
1177 		/* Clear the DE bit (bit 16) in the c0_status register. */
1178 		printk(KERN_INFO "Enable cache parity protection for "
1179 		       "MIPS 20KC/25KF CPUs.\n");
1180 		clear_c0_status(ST0_DE);
1181 		break;
1182 	default:
1183 		break;
1184 	}
1185 }
1186 
1187 asmlinkage void cache_parity_error(void)
1188 {
1189 	const int field = 2 * sizeof(unsigned long);
1190 	unsigned int reg_val;
1191 
1192 	/* For the moment, report the problem and hang. */
1193 	printk("Cache error exception:\n");
1194 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1195 	reg_val = read_c0_cacheerr();
1196 	printk("c0_cacheerr == %08x\n", reg_val);
1197 
1198 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1199 	       reg_val & (1<<30) ? "secondary" : "primary",
1200 	       reg_val & (1<<31) ? "data" : "insn");
1201 	printk("Error bits: %s%s%s%s%s%s%s\n",
1202 	       reg_val & (1<<29) ? "ED " : "",
1203 	       reg_val & (1<<28) ? "ET " : "",
1204 	       reg_val & (1<<26) ? "EE " : "",
1205 	       reg_val & (1<<25) ? "EB " : "",
1206 	       reg_val & (1<<24) ? "EI " : "",
1207 	       reg_val & (1<<23) ? "E1 " : "",
1208 	       reg_val & (1<<22) ? "E0 " : "");
1209 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1210 
1211 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1212 	if (reg_val & (1<<22))
1213 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1214 
1215 	if (reg_val & (1<<23))
1216 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1217 #endif
1218 
1219 	panic("Can't handle the cache error!");
1220 }
1221 
1222 /*
1223  * SDBBP EJTAG debug exception handler.
1224  * We skip the instruction and return to the next instruction.
1225  */
1226 void ejtag_exception_handler(struct pt_regs *regs)
1227 {
1228 	const int field = 2 * sizeof(unsigned long);
1229 	unsigned long depc, old_epc;
1230 	unsigned int debug;
1231 
1232 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1233 	depc = read_c0_depc();
1234 	debug = read_c0_debug();
1235 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1236 	if (debug & 0x80000000) {
1237 		/*
1238 		 * In branch delay slot.
1239 		 * We cheat a little bit here and use EPC to calculate the
1240 		 * debug return address (DEPC). EPC is restored after the
1241 		 * calculation.
1242 		 */
1243 		old_epc = regs->cp0_epc;
1244 		regs->cp0_epc = depc;
1245 		__compute_return_epc(regs);
1246 		depc = regs->cp0_epc;
1247 		regs->cp0_epc = old_epc;
1248 	} else
1249 		depc += 4;
1250 	write_c0_depc(depc);
1251 
1252 #if 0
1253 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1254 	write_c0_debug(debug | 0x100);
1255 #endif
1256 }
1257 
1258 /*
1259  * NMI exception handler.
1260  */
1261 NORET_TYPE void ATTRIB_NORET nmi_exception_handler(struct pt_regs *regs)
1262 {
1263 	bust_spinlocks(1);
1264 	printk("NMI taken!!!!\n");
1265 	die("NMI", regs);
1266 }
1267 
1268 #define VECTORSPACING 0x100	/* for EI/VI mode */
1269 
1270 unsigned long ebase;
1271 unsigned long exception_handlers[32];
1272 unsigned long vi_handlers[64];
1273 
1274 /*
1275  * As a side effect of the way this is implemented we're limited
1276  * to interrupt handlers in the address range from
1277  * KSEG0 <= x < KSEG0 + 256mb on the Nevada.  Oh well ...
1278  */
1279 void *set_except_vector(int n, void *addr)
1280 {
1281 	unsigned long handler = (unsigned long) addr;
1282 	unsigned long old_handler = exception_handlers[n];
1283 
1284 	exception_handlers[n] = handler;
1285 	if (n == 0 && cpu_has_divec) {
1286 		*(u32 *)(ebase + 0x200) = 0x08000000 |
1287 					  (0x03ffffff & (handler >> 2));
1288 		local_flush_icache_range(ebase + 0x200, ebase + 0x204);
1289 	}
1290 	return (void *)old_handler;
1291 }
1292 
1293 static asmlinkage void do_default_vi(void)
1294 {
1295 	show_regs(get_irq_regs());
1296 	panic("Caught unexpected vectored interrupt.");
1297 }
1298 
1299 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1300 {
1301 	unsigned long handler;
1302 	unsigned long old_handler = vi_handlers[n];
1303 	int srssets = current_cpu_data.srsets;
1304 	u32 *w;
1305 	unsigned char *b;
1306 
1307 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1308 
1309 	if (addr == NULL) {
1310 		handler = (unsigned long) do_default_vi;
1311 		srs = 0;
1312 	} else
1313 		handler = (unsigned long) addr;
1314 	vi_handlers[n] = (unsigned long) addr;
1315 
1316 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1317 
1318 	if (srs >= srssets)
1319 		panic("Shadow register set %d not supported", srs);
1320 
1321 	if (cpu_has_veic) {
1322 		if (board_bind_eic_interrupt)
1323 			board_bind_eic_interrupt(n, srs);
1324 	} else if (cpu_has_vint) {
1325 		/* SRSMap is only defined if shadow sets are implemented */
1326 		if (srssets > 1)
1327 			change_c0_srsmap(0xf << n*4, srs << n*4);
1328 	}
1329 
1330 	if (srs == 0) {
1331 		/*
1332 		 * If no shadow set is selected then use the default handler
1333 		 * that does normal register saving and a standard interrupt exit
1334 		 */
1335 
1336 		extern char except_vec_vi, except_vec_vi_lui;
1337 		extern char except_vec_vi_ori, except_vec_vi_end;
1338 		extern char rollback_except_vec_vi;
1339 		char *vec_start = (cpu_wait == r4k_wait) ?
1340 			&rollback_except_vec_vi : &except_vec_vi;
1341 #ifdef CONFIG_MIPS_MT_SMTC
1342 		/*
1343 		 * We need to provide the SMTC vectored interrupt handler
1344 		 * not only with the address of the handler, but with the
1345 		 * Status.IM bit to be masked before going there.
1346 		 */
1347 		extern char except_vec_vi_mori;
1348 		const int mori_offset = &except_vec_vi_mori - vec_start;
1349 #endif /* CONFIG_MIPS_MT_SMTC */
1350 		const int handler_len = &except_vec_vi_end - vec_start;
1351 		const int lui_offset = &except_vec_vi_lui - vec_start;
1352 		const int ori_offset = &except_vec_vi_ori - vec_start;
1353 
1354 		if (handler_len > VECTORSPACING) {
1355 			/*
1356 			 * Sigh... panicing won't help as the console
1357 			 * is probably not configured :(
1358 			 */
1359 			panic("VECTORSPACING too small");
1360 		}
1361 
1362 		memcpy(b, vec_start, handler_len);
1363 #ifdef CONFIG_MIPS_MT_SMTC
1364 		BUG_ON(n > 7);	/* Vector index %d exceeds SMTC maximum. */
1365 
1366 		w = (u32 *)(b + mori_offset);
1367 		*w = (*w & 0xffff0000) | (0x100 << n);
1368 #endif /* CONFIG_MIPS_MT_SMTC */
1369 		w = (u32 *)(b + lui_offset);
1370 		*w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1371 		w = (u32 *)(b + ori_offset);
1372 		*w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1373 		local_flush_icache_range((unsigned long)b,
1374 					 (unsigned long)(b+handler_len));
1375 	}
1376 	else {
1377 		/*
1378 		 * In other cases jump directly to the interrupt handler
1379 		 *
1380 		 * It is the handlers responsibility to save registers if required
1381 		 * (eg hi/lo) and return from the exception using "eret"
1382 		 */
1383 		w = (u32 *)b;
1384 		*w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1385 		*w = 0;
1386 		local_flush_icache_range((unsigned long)b,
1387 					 (unsigned long)(b+8));
1388 	}
1389 
1390 	return (void *)old_handler;
1391 }
1392 
1393 void *set_vi_handler(int n, vi_handler_t addr)
1394 {
1395 	return set_vi_srs_handler(n, addr, 0);
1396 }
1397 
1398 extern void cpu_cache_init(void);
1399 extern void tlb_init(void);
1400 extern void flush_tlb_handlers(void);
1401 
1402 /*
1403  * Timer interrupt
1404  */
1405 int cp0_compare_irq;
1406 int cp0_compare_irq_shift;
1407 
1408 /*
1409  * Performance counter IRQ or -1 if shared with timer
1410  */
1411 int cp0_perfcount_irq;
1412 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1413 
1414 static int __cpuinitdata noulri;
1415 
1416 static int __init ulri_disable(char *s)
1417 {
1418 	pr_info("Disabling ulri\n");
1419 	noulri = 1;
1420 
1421 	return 1;
1422 }
1423 __setup("noulri", ulri_disable);
1424 
1425 void __cpuinit per_cpu_trap_init(void)
1426 {
1427 	unsigned int cpu = smp_processor_id();
1428 	unsigned int status_set = ST0_CU0;
1429 #ifdef CONFIG_MIPS_MT_SMTC
1430 	int secondaryTC = 0;
1431 	int bootTC = (cpu == 0);
1432 
1433 	/*
1434 	 * Only do per_cpu_trap_init() for first TC of Each VPE.
1435 	 * Note that this hack assumes that the SMTC init code
1436 	 * assigns TCs consecutively and in ascending order.
1437 	 */
1438 
1439 	if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1440 	    ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1441 		secondaryTC = 1;
1442 #endif /* CONFIG_MIPS_MT_SMTC */
1443 
1444 	/*
1445 	 * Disable coprocessors and select 32-bit or 64-bit addressing
1446 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
1447 	 * flag that some firmware may have left set and the TS bit (for
1448 	 * IP27).  Set XX for ISA IV code to work.
1449 	 */
1450 #ifdef CONFIG_64BIT
1451 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1452 #endif
1453 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1454 		status_set |= ST0_XX;
1455 	if (cpu_has_dsp)
1456 		status_set |= ST0_MX;
1457 
1458 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1459 			 status_set);
1460 
1461 	if (cpu_has_mips_r2) {
1462 		unsigned int enable = 0x0000000f | cpu_hwrena_impl_bits;
1463 
1464 		if (!noulri && cpu_has_userlocal)
1465 			enable |= (1 << 29);
1466 
1467 		write_c0_hwrena(enable);
1468 	}
1469 
1470 #ifdef CONFIG_MIPS_MT_SMTC
1471 	if (!secondaryTC) {
1472 #endif /* CONFIG_MIPS_MT_SMTC */
1473 
1474 	if (cpu_has_veic || cpu_has_vint) {
1475 		unsigned long sr = set_c0_status(ST0_BEV);
1476 		write_c0_ebase(ebase);
1477 		write_c0_status(sr);
1478 		/* Setting vector spacing enables EI/VI mode  */
1479 		change_c0_intctl(0x3e0, VECTORSPACING);
1480 	}
1481 	if (cpu_has_divec) {
1482 		if (cpu_has_mipsmt) {
1483 			unsigned int vpflags = dvpe();
1484 			set_c0_cause(CAUSEF_IV);
1485 			evpe(vpflags);
1486 		} else
1487 			set_c0_cause(CAUSEF_IV);
1488 	}
1489 
1490 	/*
1491 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1492 	 *
1493 	 *  o read IntCtl.IPTI to determine the timer interrupt
1494 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
1495 	 */
1496 	if (cpu_has_mips_r2) {
1497 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1498 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1499 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1500 		if (cp0_perfcount_irq == cp0_compare_irq)
1501 			cp0_perfcount_irq = -1;
1502 	} else {
1503 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1504 		cp0_compare_irq_shift = cp0_compare_irq;
1505 		cp0_perfcount_irq = -1;
1506 	}
1507 
1508 #ifdef CONFIG_MIPS_MT_SMTC
1509 	}
1510 #endif /* CONFIG_MIPS_MT_SMTC */
1511 
1512 	cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1513 	TLBMISS_HANDLER_SETUP();
1514 
1515 	atomic_inc(&init_mm.mm_count);
1516 	current->active_mm = &init_mm;
1517 	BUG_ON(current->mm);
1518 	enter_lazy_tlb(&init_mm, current);
1519 
1520 #ifdef CONFIG_MIPS_MT_SMTC
1521 	if (bootTC) {
1522 #endif /* CONFIG_MIPS_MT_SMTC */
1523 		cpu_cache_init();
1524 		tlb_init();
1525 #ifdef CONFIG_MIPS_MT_SMTC
1526 	} else if (!secondaryTC) {
1527 		/*
1528 		 * First TC in non-boot VPE must do subset of tlb_init()
1529 		 * for MMU countrol registers.
1530 		 */
1531 		write_c0_pagemask(PM_DEFAULT_MASK);
1532 		write_c0_wired(0);
1533 	}
1534 #endif /* CONFIG_MIPS_MT_SMTC */
1535 }
1536 
1537 /* Install CPU exception handler */
1538 void __init set_handler(unsigned long offset, void *addr, unsigned long size)
1539 {
1540 	memcpy((void *)(ebase + offset), addr, size);
1541 	local_flush_icache_range(ebase + offset, ebase + offset + size);
1542 }
1543 
1544 static char panic_null_cerr[] __cpuinitdata =
1545 	"Trying to set NULL cache error exception handler";
1546 
1547 /*
1548  * Install uncached CPU exception handler.
1549  * This is suitable only for the cache error exception which is the only
1550  * exception handler that is being run uncached.
1551  */
1552 void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1553 	unsigned long size)
1554 {
1555 #ifdef CONFIG_32BIT
1556 	unsigned long uncached_ebase = KSEG1ADDR(ebase);
1557 #endif
1558 #ifdef CONFIG_64BIT
1559 	unsigned long uncached_ebase = TO_UNCAC(ebase);
1560 #endif
1561 
1562 	if (!addr)
1563 		panic(panic_null_cerr);
1564 
1565 	memcpy((void *)(uncached_ebase + offset), addr, size);
1566 }
1567 
1568 static int __initdata rdhwr_noopt;
1569 static int __init set_rdhwr_noopt(char *str)
1570 {
1571 	rdhwr_noopt = 1;
1572 	return 1;
1573 }
1574 
1575 __setup("rdhwr_noopt", set_rdhwr_noopt);
1576 
1577 void __init trap_init(void)
1578 {
1579 	extern char except_vec3_generic, except_vec3_r4000;
1580 	extern char except_vec4;
1581 	unsigned long i;
1582 	int rollback;
1583 
1584 	check_wait();
1585 	rollback = (cpu_wait == r4k_wait);
1586 
1587 #if defined(CONFIG_KGDB)
1588 	if (kgdb_early_setup)
1589 		return;	/* Already done */
1590 #endif
1591 
1592 	if (cpu_has_veic || cpu_has_vint) {
1593 		unsigned long size = 0x200 + VECTORSPACING*64;
1594 		ebase = (unsigned long)
1595 			__alloc_bootmem(size, 1 << fls(size), 0);
1596 	} else {
1597 		ebase = CAC_BASE;
1598 		if (cpu_has_mips_r2)
1599 			ebase += (read_c0_ebase() & 0x3ffff000);
1600 	}
1601 
1602 	per_cpu_trap_init();
1603 
1604 	/*
1605 	 * Copy the generic exception handlers to their final destination.
1606 	 * This will be overriden later as suitable for a particular
1607 	 * configuration.
1608 	 */
1609 	set_handler(0x180, &except_vec3_generic, 0x80);
1610 
1611 	/*
1612 	 * Setup default vectors
1613 	 */
1614 	for (i = 0; i <= 31; i++)
1615 		set_except_vector(i, handle_reserved);
1616 
1617 	/*
1618 	 * Copy the EJTAG debug exception vector handler code to it's final
1619 	 * destination.
1620 	 */
1621 	if (cpu_has_ejtag && board_ejtag_handler_setup)
1622 		board_ejtag_handler_setup();
1623 
1624 	/*
1625 	 * Only some CPUs have the watch exceptions.
1626 	 */
1627 	if (cpu_has_watch)
1628 		set_except_vector(23, handle_watch);
1629 
1630 	/*
1631 	 * Initialise interrupt handlers
1632 	 */
1633 	if (cpu_has_veic || cpu_has_vint) {
1634 		int nvec = cpu_has_veic ? 64 : 8;
1635 		for (i = 0; i < nvec; i++)
1636 			set_vi_handler(i, NULL);
1637 	}
1638 	else if (cpu_has_divec)
1639 		set_handler(0x200, &except_vec4, 0x8);
1640 
1641 	/*
1642 	 * Some CPUs can enable/disable for cache parity detection, but does
1643 	 * it different ways.
1644 	 */
1645 	parity_protection_init();
1646 
1647 	/*
1648 	 * The Data Bus Errors / Instruction Bus Errors are signaled
1649 	 * by external hardware.  Therefore these two exceptions
1650 	 * may have board specific handlers.
1651 	 */
1652 	if (board_be_init)
1653 		board_be_init();
1654 
1655 	set_except_vector(0, rollback ? rollback_handle_int : handle_int);
1656 	set_except_vector(1, handle_tlbm);
1657 	set_except_vector(2, handle_tlbl);
1658 	set_except_vector(3, handle_tlbs);
1659 
1660 	set_except_vector(4, handle_adel);
1661 	set_except_vector(5, handle_ades);
1662 
1663 	set_except_vector(6, handle_ibe);
1664 	set_except_vector(7, handle_dbe);
1665 
1666 	set_except_vector(8, handle_sys);
1667 	set_except_vector(9, handle_bp);
1668 	set_except_vector(10, rdhwr_noopt ? handle_ri :
1669 			  (cpu_has_vtag_icache ?
1670 			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1671 	set_except_vector(11, handle_cpu);
1672 	set_except_vector(12, handle_ov);
1673 	set_except_vector(13, handle_tr);
1674 
1675 	if (current_cpu_type() == CPU_R6000 ||
1676 	    current_cpu_type() == CPU_R6000A) {
1677 		/*
1678 		 * The R6000 is the only R-series CPU that features a machine
1679 		 * check exception (similar to the R4000 cache error) and
1680 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
1681 		 * written yet.  Well, anyway there is no R6000 machine on the
1682 		 * current list of targets for Linux/MIPS.
1683 		 * (Duh, crap, there is someone with a triple R6k machine)
1684 		 */
1685 		//set_except_vector(14, handle_mc);
1686 		//set_except_vector(15, handle_ndc);
1687 	}
1688 
1689 
1690 	if (board_nmi_handler_setup)
1691 		board_nmi_handler_setup();
1692 
1693 	if (cpu_has_fpu && !cpu_has_nofpuex)
1694 		set_except_vector(15, handle_fpe);
1695 
1696 	set_except_vector(22, handle_mdmx);
1697 
1698 	if (cpu_has_mcheck)
1699 		set_except_vector(24, handle_mcheck);
1700 
1701 	if (cpu_has_mipsmt)
1702 		set_except_vector(25, handle_mt);
1703 
1704 	set_except_vector(26, handle_dsp);
1705 
1706 	if (cpu_has_vce)
1707 		/* Special exception: R4[04]00 uses also the divec space. */
1708 		memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100);
1709 	else if (cpu_has_4kex)
1710 		memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80);
1711 	else
1712 		memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80);
1713 
1714 	local_flush_icache_range(ebase, ebase + 0x400);
1715 	flush_tlb_handlers();
1716 
1717 	sort_extable(__start___dbe_table, __stop___dbe_table);
1718 
1719 	register_cu2_notifier(&default_cu2_notifier);
1720 }
1721