1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle 7 * Copyright (C) 1995, 1996 Paul M. Antoine 8 * Copyright (C) 1998 Ulf Carlsson 9 * Copyright (C) 1999 Silicon Graphics, Inc. 10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 11 * Copyright (C) 2000, 01 MIPS Technologies, Inc. 12 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki 13 */ 14 #include <linux/bug.h> 15 #include <linux/compiler.h> 16 #include <linux/init.h> 17 #include <linux/mm.h> 18 #include <linux/module.h> 19 #include <linux/sched.h> 20 #include <linux/smp.h> 21 #include <linux/spinlock.h> 22 #include <linux/kallsyms.h> 23 #include <linux/bootmem.h> 24 #include <linux/interrupt.h> 25 #include <linux/ptrace.h> 26 #include <linux/kgdb.h> 27 #include <linux/kdebug.h> 28 #include <linux/notifier.h> 29 30 #include <asm/bootinfo.h> 31 #include <asm/branch.h> 32 #include <asm/break.h> 33 #include <asm/cop2.h> 34 #include <asm/cpu.h> 35 #include <asm/dsp.h> 36 #include <asm/fpu.h> 37 #include <asm/fpu_emulator.h> 38 #include <asm/mipsregs.h> 39 #include <asm/mipsmtregs.h> 40 #include <asm/module.h> 41 #include <asm/pgtable.h> 42 #include <asm/ptrace.h> 43 #include <asm/sections.h> 44 #include <asm/system.h> 45 #include <asm/tlbdebug.h> 46 #include <asm/traps.h> 47 #include <asm/uaccess.h> 48 #include <asm/watch.h> 49 #include <asm/mmu_context.h> 50 #include <asm/types.h> 51 #include <asm/stacktrace.h> 52 #include <asm/irq.h> 53 54 extern void check_wait(void); 55 extern asmlinkage void r4k_wait(void); 56 extern asmlinkage void rollback_handle_int(void); 57 extern asmlinkage void handle_int(void); 58 extern asmlinkage void handle_tlbm(void); 59 extern asmlinkage void handle_tlbl(void); 60 extern asmlinkage void handle_tlbs(void); 61 extern asmlinkage void handle_adel(void); 62 extern asmlinkage void handle_ades(void); 63 extern asmlinkage void handle_ibe(void); 64 extern asmlinkage void handle_dbe(void); 65 extern asmlinkage void handle_sys(void); 66 extern asmlinkage void handle_bp(void); 67 extern asmlinkage void handle_ri(void); 68 extern asmlinkage void handle_ri_rdhwr_vivt(void); 69 extern asmlinkage void handle_ri_rdhwr(void); 70 extern asmlinkage void handle_cpu(void); 71 extern asmlinkage void handle_ov(void); 72 extern asmlinkage void handle_tr(void); 73 extern asmlinkage void handle_fpe(void); 74 extern asmlinkage void handle_mdmx(void); 75 extern asmlinkage void handle_watch(void); 76 extern asmlinkage void handle_mt(void); 77 extern asmlinkage void handle_dsp(void); 78 extern asmlinkage void handle_mcheck(void); 79 extern asmlinkage void handle_reserved(void); 80 81 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp, 82 struct mips_fpu_struct *ctx, int has_fpu); 83 84 void (*board_be_init)(void); 85 int (*board_be_handler)(struct pt_regs *regs, int is_fixup); 86 void (*board_nmi_handler_setup)(void); 87 void (*board_ejtag_handler_setup)(void); 88 void (*board_bind_eic_interrupt)(int irq, int regset); 89 90 91 static void show_raw_backtrace(unsigned long reg29) 92 { 93 unsigned long *sp = (unsigned long *)(reg29 & ~3); 94 unsigned long addr; 95 96 printk("Call Trace:"); 97 #ifdef CONFIG_KALLSYMS 98 printk("\n"); 99 #endif 100 while (!kstack_end(sp)) { 101 unsigned long __user *p = 102 (unsigned long __user *)(unsigned long)sp++; 103 if (__get_user(addr, p)) { 104 printk(" (Bad stack address)"); 105 break; 106 } 107 if (__kernel_text_address(addr)) 108 print_ip_sym(addr); 109 } 110 printk("\n"); 111 } 112 113 #ifdef CONFIG_KALLSYMS 114 int raw_show_trace; 115 static int __init set_raw_show_trace(char *str) 116 { 117 raw_show_trace = 1; 118 return 1; 119 } 120 __setup("raw_show_trace", set_raw_show_trace); 121 #endif 122 123 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs) 124 { 125 unsigned long sp = regs->regs[29]; 126 unsigned long ra = regs->regs[31]; 127 unsigned long pc = regs->cp0_epc; 128 129 if (raw_show_trace || !__kernel_text_address(pc)) { 130 show_raw_backtrace(sp); 131 return; 132 } 133 printk("Call Trace:\n"); 134 do { 135 print_ip_sym(pc); 136 pc = unwind_stack(task, &sp, pc, &ra); 137 } while (pc); 138 printk("\n"); 139 } 140 141 /* 142 * This routine abuses get_user()/put_user() to reference pointers 143 * with at least a bit of error checking ... 144 */ 145 static void show_stacktrace(struct task_struct *task, 146 const struct pt_regs *regs) 147 { 148 const int field = 2 * sizeof(unsigned long); 149 long stackdata; 150 int i; 151 unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; 152 153 printk("Stack :"); 154 i = 0; 155 while ((unsigned long) sp & (PAGE_SIZE - 1)) { 156 if (i && ((i % (64 / field)) == 0)) 157 printk("\n "); 158 if (i > 39) { 159 printk(" ..."); 160 break; 161 } 162 163 if (__get_user(stackdata, sp++)) { 164 printk(" (Bad stack address)"); 165 break; 166 } 167 168 printk(" %0*lx", field, stackdata); 169 i++; 170 } 171 printk("\n"); 172 show_backtrace(task, regs); 173 } 174 175 void show_stack(struct task_struct *task, unsigned long *sp) 176 { 177 struct pt_regs regs; 178 if (sp) { 179 regs.regs[29] = (unsigned long)sp; 180 regs.regs[31] = 0; 181 regs.cp0_epc = 0; 182 } else { 183 if (task && task != current) { 184 regs.regs[29] = task->thread.reg29; 185 regs.regs[31] = 0; 186 regs.cp0_epc = task->thread.reg31; 187 } else { 188 prepare_frametrace(®s); 189 } 190 } 191 show_stacktrace(task, ®s); 192 } 193 194 /* 195 * The architecture-independent dump_stack generator 196 */ 197 void dump_stack(void) 198 { 199 struct pt_regs regs; 200 201 prepare_frametrace(®s); 202 show_backtrace(current, ®s); 203 } 204 205 EXPORT_SYMBOL(dump_stack); 206 207 static void show_code(unsigned int __user *pc) 208 { 209 long i; 210 unsigned short __user *pc16 = NULL; 211 212 printk("\nCode:"); 213 214 if ((unsigned long)pc & 1) 215 pc16 = (unsigned short __user *)((unsigned long)pc & ~1); 216 for(i = -3 ; i < 6 ; i++) { 217 unsigned int insn; 218 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { 219 printk(" (Bad address in epc)\n"); 220 break; 221 } 222 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); 223 } 224 } 225 226 static void __show_regs(const struct pt_regs *regs) 227 { 228 const int field = 2 * sizeof(unsigned long); 229 unsigned int cause = regs->cp0_cause; 230 int i; 231 232 printk("Cpu %d\n", smp_processor_id()); 233 234 /* 235 * Saved main processor registers 236 */ 237 for (i = 0; i < 32; ) { 238 if ((i % 4) == 0) 239 printk("$%2d :", i); 240 if (i == 0) 241 printk(" %0*lx", field, 0UL); 242 else if (i == 26 || i == 27) 243 printk(" %*s", field, ""); 244 else 245 printk(" %0*lx", field, regs->regs[i]); 246 247 i++; 248 if ((i % 4) == 0) 249 printk("\n"); 250 } 251 252 #ifdef CONFIG_CPU_HAS_SMARTMIPS 253 printk("Acx : %0*lx\n", field, regs->acx); 254 #endif 255 printk("Hi : %0*lx\n", field, regs->hi); 256 printk("Lo : %0*lx\n", field, regs->lo); 257 258 /* 259 * Saved cp0 registers 260 */ 261 printk("epc : %0*lx %pS\n", field, regs->cp0_epc, 262 (void *) regs->cp0_epc); 263 printk(" %s\n", print_tainted()); 264 printk("ra : %0*lx %pS\n", field, regs->regs[31], 265 (void *) regs->regs[31]); 266 267 printk("Status: %08x ", (uint32_t) regs->cp0_status); 268 269 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) { 270 if (regs->cp0_status & ST0_KUO) 271 printk("KUo "); 272 if (regs->cp0_status & ST0_IEO) 273 printk("IEo "); 274 if (regs->cp0_status & ST0_KUP) 275 printk("KUp "); 276 if (regs->cp0_status & ST0_IEP) 277 printk("IEp "); 278 if (regs->cp0_status & ST0_KUC) 279 printk("KUc "); 280 if (regs->cp0_status & ST0_IEC) 281 printk("IEc "); 282 } else { 283 if (regs->cp0_status & ST0_KX) 284 printk("KX "); 285 if (regs->cp0_status & ST0_SX) 286 printk("SX "); 287 if (regs->cp0_status & ST0_UX) 288 printk("UX "); 289 switch (regs->cp0_status & ST0_KSU) { 290 case KSU_USER: 291 printk("USER "); 292 break; 293 case KSU_SUPERVISOR: 294 printk("SUPERVISOR "); 295 break; 296 case KSU_KERNEL: 297 printk("KERNEL "); 298 break; 299 default: 300 printk("BAD_MODE "); 301 break; 302 } 303 if (regs->cp0_status & ST0_ERL) 304 printk("ERL "); 305 if (regs->cp0_status & ST0_EXL) 306 printk("EXL "); 307 if (regs->cp0_status & ST0_IE) 308 printk("IE "); 309 } 310 printk("\n"); 311 312 printk("Cause : %08x\n", cause); 313 314 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; 315 if (1 <= cause && cause <= 5) 316 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); 317 318 printk("PrId : %08x (%s)\n", read_c0_prid(), 319 cpu_name_string()); 320 } 321 322 /* 323 * FIXME: really the generic show_regs should take a const pointer argument. 324 */ 325 void show_regs(struct pt_regs *regs) 326 { 327 __show_regs((struct pt_regs *)regs); 328 } 329 330 void show_registers(const struct pt_regs *regs) 331 { 332 const int field = 2 * sizeof(unsigned long); 333 334 __show_regs(regs); 335 print_modules(); 336 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", 337 current->comm, current->pid, current_thread_info(), current, 338 field, current_thread_info()->tp_value); 339 if (cpu_has_userlocal) { 340 unsigned long tls; 341 342 tls = read_c0_userlocal(); 343 if (tls != current_thread_info()->tp_value) 344 printk("*HwTLS: %0*lx\n", field, tls); 345 } 346 347 show_stacktrace(current, regs); 348 show_code((unsigned int __user *) regs->cp0_epc); 349 printk("\n"); 350 } 351 352 static DEFINE_SPINLOCK(die_lock); 353 354 void __noreturn die(const char * str, const struct pt_regs * regs) 355 { 356 static int die_counter; 357 #ifdef CONFIG_MIPS_MT_SMTC 358 unsigned long dvpret = dvpe(); 359 #endif /* CONFIG_MIPS_MT_SMTC */ 360 361 console_verbose(); 362 spin_lock_irq(&die_lock); 363 bust_spinlocks(1); 364 #ifdef CONFIG_MIPS_MT_SMTC 365 mips_mt_regdump(dvpret); 366 #endif /* CONFIG_MIPS_MT_SMTC */ 367 printk("%s[#%d]:\n", str, ++die_counter); 368 show_registers(regs); 369 add_taint(TAINT_DIE); 370 spin_unlock_irq(&die_lock); 371 372 if (in_interrupt()) 373 panic("Fatal exception in interrupt"); 374 375 if (panic_on_oops) { 376 printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n"); 377 ssleep(5); 378 panic("Fatal exception"); 379 } 380 381 do_exit(SIGSEGV); 382 } 383 384 extern struct exception_table_entry __start___dbe_table[]; 385 extern struct exception_table_entry __stop___dbe_table[]; 386 387 __asm__( 388 " .section __dbe_table, \"a\"\n" 389 " .previous \n"); 390 391 /* Given an address, look for it in the exception tables. */ 392 static const struct exception_table_entry *search_dbe_tables(unsigned long addr) 393 { 394 const struct exception_table_entry *e; 395 396 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr); 397 if (!e) 398 e = search_module_dbetables(addr); 399 return e; 400 } 401 402 asmlinkage void do_be(struct pt_regs *regs) 403 { 404 const int field = 2 * sizeof(unsigned long); 405 const struct exception_table_entry *fixup = NULL; 406 int data = regs->cp0_cause & 4; 407 int action = MIPS_BE_FATAL; 408 409 /* XXX For now. Fixme, this searches the wrong table ... */ 410 if (data && !user_mode(regs)) 411 fixup = search_dbe_tables(exception_epc(regs)); 412 413 if (fixup) 414 action = MIPS_BE_FIXUP; 415 416 if (board_be_handler) 417 action = board_be_handler(regs, fixup != NULL); 418 419 switch (action) { 420 case MIPS_BE_DISCARD: 421 return; 422 case MIPS_BE_FIXUP: 423 if (fixup) { 424 regs->cp0_epc = fixup->nextinsn; 425 return; 426 } 427 break; 428 default: 429 break; 430 } 431 432 /* 433 * Assume it would be too dangerous to continue ... 434 */ 435 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", 436 data ? "Data" : "Instruction", 437 field, regs->cp0_epc, field, regs->regs[31]); 438 if (notify_die(DIE_OOPS, "bus error", regs, SIGBUS, 0, 0) 439 == NOTIFY_STOP) 440 return; 441 442 die_if_kernel("Oops", regs); 443 force_sig(SIGBUS, current); 444 } 445 446 /* 447 * ll/sc, rdhwr, sync emulation 448 */ 449 450 #define OPCODE 0xfc000000 451 #define BASE 0x03e00000 452 #define RT 0x001f0000 453 #define OFFSET 0x0000ffff 454 #define LL 0xc0000000 455 #define SC 0xe0000000 456 #define SPEC0 0x00000000 457 #define SPEC3 0x7c000000 458 #define RD 0x0000f800 459 #define FUNC 0x0000003f 460 #define SYNC 0x0000000f 461 #define RDHWR 0x0000003b 462 463 /* 464 * The ll_bit is cleared by r*_switch.S 465 */ 466 467 unsigned int ll_bit; 468 struct task_struct *ll_task; 469 470 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) 471 { 472 unsigned long value, __user *vaddr; 473 long offset; 474 475 /* 476 * analyse the ll instruction that just caused a ri exception 477 * and put the referenced address to addr. 478 */ 479 480 /* sign extend offset */ 481 offset = opcode & OFFSET; 482 offset <<= 16; 483 offset >>= 16; 484 485 vaddr = (unsigned long __user *) 486 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 487 488 if ((unsigned long)vaddr & 3) 489 return SIGBUS; 490 if (get_user(value, vaddr)) 491 return SIGSEGV; 492 493 preempt_disable(); 494 495 if (ll_task == NULL || ll_task == current) { 496 ll_bit = 1; 497 } else { 498 ll_bit = 0; 499 } 500 ll_task = current; 501 502 preempt_enable(); 503 504 regs->regs[(opcode & RT) >> 16] = value; 505 506 return 0; 507 } 508 509 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) 510 { 511 unsigned long __user *vaddr; 512 unsigned long reg; 513 long offset; 514 515 /* 516 * analyse the sc instruction that just caused a ri exception 517 * and put the referenced address to addr. 518 */ 519 520 /* sign extend offset */ 521 offset = opcode & OFFSET; 522 offset <<= 16; 523 offset >>= 16; 524 525 vaddr = (unsigned long __user *) 526 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 527 reg = (opcode & RT) >> 16; 528 529 if ((unsigned long)vaddr & 3) 530 return SIGBUS; 531 532 preempt_disable(); 533 534 if (ll_bit == 0 || ll_task != current) { 535 regs->regs[reg] = 0; 536 preempt_enable(); 537 return 0; 538 } 539 540 preempt_enable(); 541 542 if (put_user(regs->regs[reg], vaddr)) 543 return SIGSEGV; 544 545 regs->regs[reg] = 1; 546 547 return 0; 548 } 549 550 /* 551 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both 552 * opcodes are supposed to result in coprocessor unusable exceptions if 553 * executed on ll/sc-less processors. That's the theory. In practice a 554 * few processors such as NEC's VR4100 throw reserved instruction exceptions 555 * instead, so we're doing the emulation thing in both exception handlers. 556 */ 557 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) 558 { 559 if ((opcode & OPCODE) == LL) 560 return simulate_ll(regs, opcode); 561 if ((opcode & OPCODE) == SC) 562 return simulate_sc(regs, opcode); 563 564 return -1; /* Must be something else ... */ 565 } 566 567 /* 568 * Simulate trapping 'rdhwr' instructions to provide user accessible 569 * registers not implemented in hardware. 570 */ 571 static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode) 572 { 573 struct thread_info *ti = task_thread_info(current); 574 575 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { 576 int rd = (opcode & RD) >> 11; 577 int rt = (opcode & RT) >> 16; 578 switch (rd) { 579 case 0: /* CPU number */ 580 regs->regs[rt] = smp_processor_id(); 581 return 0; 582 case 1: /* SYNCI length */ 583 regs->regs[rt] = min(current_cpu_data.dcache.linesz, 584 current_cpu_data.icache.linesz); 585 return 0; 586 case 2: /* Read count register */ 587 regs->regs[rt] = read_c0_count(); 588 return 0; 589 case 3: /* Count register resolution */ 590 switch (current_cpu_data.cputype) { 591 case CPU_20KC: 592 case CPU_25KF: 593 regs->regs[rt] = 1; 594 break; 595 default: 596 regs->regs[rt] = 2; 597 } 598 return 0; 599 case 29: 600 regs->regs[rt] = ti->tp_value; 601 return 0; 602 default: 603 return -1; 604 } 605 } 606 607 /* Not ours. */ 608 return -1; 609 } 610 611 static int simulate_sync(struct pt_regs *regs, unsigned int opcode) 612 { 613 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) 614 return 0; 615 616 return -1; /* Must be something else ... */ 617 } 618 619 asmlinkage void do_ov(struct pt_regs *regs) 620 { 621 siginfo_t info; 622 623 die_if_kernel("Integer overflow", regs); 624 625 info.si_code = FPE_INTOVF; 626 info.si_signo = SIGFPE; 627 info.si_errno = 0; 628 info.si_addr = (void __user *) regs->cp0_epc; 629 force_sig_info(SIGFPE, &info, current); 630 } 631 632 /* 633 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX 634 */ 635 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) 636 { 637 siginfo_t info; 638 639 if (notify_die(DIE_FP, "FP exception", regs, SIGFPE, 0, 0) 640 == NOTIFY_STOP) 641 return; 642 die_if_kernel("FP exception in kernel code", regs); 643 644 if (fcr31 & FPU_CSR_UNI_X) { 645 int sig; 646 647 /* 648 * Unimplemented operation exception. If we've got the full 649 * software emulator on-board, let's use it... 650 * 651 * Force FPU to dump state into task/thread context. We're 652 * moving a lot of data here for what is probably a single 653 * instruction, but the alternative is to pre-decode the FP 654 * register operands before invoking the emulator, which seems 655 * a bit extreme for what should be an infrequent event. 656 */ 657 /* Ensure 'resume' not overwrite saved fp context again. */ 658 lose_fpu(1); 659 660 /* Run the emulator */ 661 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1); 662 663 /* 664 * We can't allow the emulated instruction to leave any of 665 * the cause bit set in $fcr31. 666 */ 667 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 668 669 /* Restore the hardware register state */ 670 own_fpu(1); /* Using the FPU again. */ 671 672 /* If something went wrong, signal */ 673 if (sig) 674 force_sig(sig, current); 675 676 return; 677 } else if (fcr31 & FPU_CSR_INV_X) 678 info.si_code = FPE_FLTINV; 679 else if (fcr31 & FPU_CSR_DIV_X) 680 info.si_code = FPE_FLTDIV; 681 else if (fcr31 & FPU_CSR_OVF_X) 682 info.si_code = FPE_FLTOVF; 683 else if (fcr31 & FPU_CSR_UDF_X) 684 info.si_code = FPE_FLTUND; 685 else if (fcr31 & FPU_CSR_INE_X) 686 info.si_code = FPE_FLTRES; 687 else 688 info.si_code = __SI_FAULT; 689 info.si_signo = SIGFPE; 690 info.si_errno = 0; 691 info.si_addr = (void __user *) regs->cp0_epc; 692 force_sig_info(SIGFPE, &info, current); 693 } 694 695 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code, 696 const char *str) 697 { 698 siginfo_t info; 699 char b[40]; 700 701 if (notify_die(DIE_TRAP, str, regs, code, 0, 0) == NOTIFY_STOP) 702 return; 703 704 /* 705 * A short test says that IRIX 5.3 sends SIGTRAP for all trap 706 * insns, even for trap and break codes that indicate arithmetic 707 * failures. Weird ... 708 * But should we continue the brokenness??? --macro 709 */ 710 switch (code) { 711 case BRK_OVERFLOW: 712 case BRK_DIVZERO: 713 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 714 die_if_kernel(b, regs); 715 if (code == BRK_DIVZERO) 716 info.si_code = FPE_INTDIV; 717 else 718 info.si_code = FPE_INTOVF; 719 info.si_signo = SIGFPE; 720 info.si_errno = 0; 721 info.si_addr = (void __user *) regs->cp0_epc; 722 force_sig_info(SIGFPE, &info, current); 723 break; 724 case BRK_BUG: 725 die_if_kernel("Kernel bug detected", regs); 726 force_sig(SIGTRAP, current); 727 break; 728 case BRK_MEMU: 729 /* 730 * Address errors may be deliberately induced by the FPU 731 * emulator to retake control of the CPU after executing the 732 * instruction in the delay slot of an emulated branch. 733 * 734 * Terminate if exception was recognized as a delay slot return 735 * otherwise handle as normal. 736 */ 737 if (do_dsemulret(regs)) 738 return; 739 740 die_if_kernel("Math emu break/trap", regs); 741 force_sig(SIGTRAP, current); 742 break; 743 default: 744 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 745 die_if_kernel(b, regs); 746 force_sig(SIGTRAP, current); 747 } 748 } 749 750 asmlinkage void do_bp(struct pt_regs *regs) 751 { 752 unsigned int opcode, bcode; 753 754 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs))) 755 goto out_sigsegv; 756 757 /* 758 * There is the ancient bug in the MIPS assemblers that the break 759 * code starts left to bit 16 instead to bit 6 in the opcode. 760 * Gas is bug-compatible, but not always, grrr... 761 * We handle both cases with a simple heuristics. --macro 762 */ 763 bcode = ((opcode >> 6) & ((1 << 20) - 1)); 764 if (bcode >= (1 << 10)) 765 bcode >>= 10; 766 767 do_trap_or_bp(regs, bcode, "Break"); 768 return; 769 770 out_sigsegv: 771 force_sig(SIGSEGV, current); 772 } 773 774 asmlinkage void do_tr(struct pt_regs *regs) 775 { 776 unsigned int opcode, tcode = 0; 777 778 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs))) 779 goto out_sigsegv; 780 781 /* Immediate versions don't provide a code. */ 782 if (!(opcode & OPCODE)) 783 tcode = ((opcode >> 6) & ((1 << 10) - 1)); 784 785 do_trap_or_bp(regs, tcode, "Trap"); 786 return; 787 788 out_sigsegv: 789 force_sig(SIGSEGV, current); 790 } 791 792 asmlinkage void do_ri(struct pt_regs *regs) 793 { 794 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); 795 unsigned long old_epc = regs->cp0_epc; 796 unsigned int opcode = 0; 797 int status = -1; 798 799 if (notify_die(DIE_RI, "RI Fault", regs, SIGSEGV, 0, 0) 800 == NOTIFY_STOP) 801 return; 802 803 die_if_kernel("Reserved instruction in kernel code", regs); 804 805 if (unlikely(compute_return_epc(regs) < 0)) 806 return; 807 808 if (unlikely(get_user(opcode, epc) < 0)) 809 status = SIGSEGV; 810 811 if (!cpu_has_llsc && status < 0) 812 status = simulate_llsc(regs, opcode); 813 814 if (status < 0) 815 status = simulate_rdhwr(regs, opcode); 816 817 if (status < 0) 818 status = simulate_sync(regs, opcode); 819 820 if (status < 0) 821 status = SIGILL; 822 823 if (unlikely(status > 0)) { 824 regs->cp0_epc = old_epc; /* Undo skip-over. */ 825 force_sig(status, current); 826 } 827 } 828 829 /* 830 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've 831 * emulated more than some threshold number of instructions, force migration to 832 * a "CPU" that has FP support. 833 */ 834 static void mt_ase_fp_affinity(void) 835 { 836 #ifdef CONFIG_MIPS_MT_FPAFF 837 if (mt_fpemul_threshold > 0 && 838 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { 839 /* 840 * If there's no FPU present, or if the application has already 841 * restricted the allowed set to exclude any CPUs with FPUs, 842 * we'll skip the procedure. 843 */ 844 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) { 845 cpumask_t tmask; 846 847 current->thread.user_cpus_allowed 848 = current->cpus_allowed; 849 cpus_and(tmask, current->cpus_allowed, 850 mt_fpu_cpumask); 851 set_cpus_allowed(current, tmask); 852 set_thread_flag(TIF_FPUBOUND); 853 } 854 } 855 #endif /* CONFIG_MIPS_MT_FPAFF */ 856 } 857 858 /* 859 * No lock; only written during early bootup by CPU 0. 860 */ 861 static RAW_NOTIFIER_HEAD(cu2_chain); 862 863 int __ref register_cu2_notifier(struct notifier_block *nb) 864 { 865 return raw_notifier_chain_register(&cu2_chain, nb); 866 } 867 868 int cu2_notifier_call_chain(unsigned long val, void *v) 869 { 870 return raw_notifier_call_chain(&cu2_chain, val, v); 871 } 872 873 static int default_cu2_call(struct notifier_block *nfb, unsigned long action, 874 void *data) 875 { 876 struct pt_regs *regs = data; 877 878 switch (action) { 879 default: 880 die_if_kernel("Unhandled kernel unaligned access or invalid " 881 "instruction", regs); 882 /* Fall through */ 883 884 case CU2_EXCEPTION: 885 force_sig(SIGILL, current); 886 } 887 888 return NOTIFY_OK; 889 } 890 891 static struct notifier_block default_cu2_notifier = { 892 .notifier_call = default_cu2_call, 893 .priority = 0x80000000, /* Run last */ 894 }; 895 896 asmlinkage void do_cpu(struct pt_regs *regs) 897 { 898 unsigned int __user *epc; 899 unsigned long old_epc; 900 unsigned int opcode; 901 unsigned int cpid; 902 int status; 903 unsigned long __maybe_unused flags; 904 905 die_if_kernel("do_cpu invoked from kernel context!", regs); 906 907 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; 908 909 switch (cpid) { 910 case 0: 911 epc = (unsigned int __user *)exception_epc(regs); 912 old_epc = regs->cp0_epc; 913 opcode = 0; 914 status = -1; 915 916 if (unlikely(compute_return_epc(regs) < 0)) 917 return; 918 919 if (unlikely(get_user(opcode, epc) < 0)) 920 status = SIGSEGV; 921 922 if (!cpu_has_llsc && status < 0) 923 status = simulate_llsc(regs, opcode); 924 925 if (status < 0) 926 status = simulate_rdhwr(regs, opcode); 927 928 if (status < 0) 929 status = SIGILL; 930 931 if (unlikely(status > 0)) { 932 regs->cp0_epc = old_epc; /* Undo skip-over. */ 933 force_sig(status, current); 934 } 935 936 return; 937 938 case 1: 939 if (used_math()) /* Using the FPU again. */ 940 own_fpu(1); 941 else { /* First time FPU user. */ 942 init_fpu(); 943 set_used_math(); 944 } 945 946 if (!raw_cpu_has_fpu) { 947 int sig; 948 sig = fpu_emulator_cop1Handler(regs, 949 ¤t->thread.fpu, 0); 950 if (sig) 951 force_sig(sig, current); 952 else 953 mt_ase_fp_affinity(); 954 } 955 956 return; 957 958 case 2: 959 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); 960 break; 961 962 case 3: 963 break; 964 } 965 966 force_sig(SIGILL, current); 967 } 968 969 asmlinkage void do_mdmx(struct pt_regs *regs) 970 { 971 force_sig(SIGILL, current); 972 } 973 974 /* 975 * Called with interrupts disabled. 976 */ 977 asmlinkage void do_watch(struct pt_regs *regs) 978 { 979 u32 cause; 980 981 /* 982 * Clear WP (bit 22) bit of cause register so we don't loop 983 * forever. 984 */ 985 cause = read_c0_cause(); 986 cause &= ~(1 << 22); 987 write_c0_cause(cause); 988 989 /* 990 * If the current thread has the watch registers loaded, save 991 * their values and send SIGTRAP. Otherwise another thread 992 * left the registers set, clear them and continue. 993 */ 994 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { 995 mips_read_watch_registers(); 996 local_irq_enable(); 997 force_sig(SIGTRAP, current); 998 } else { 999 mips_clear_watch_registers(); 1000 local_irq_enable(); 1001 } 1002 } 1003 1004 asmlinkage void do_mcheck(struct pt_regs *regs) 1005 { 1006 const int field = 2 * sizeof(unsigned long); 1007 int multi_match = regs->cp0_status & ST0_TS; 1008 1009 show_regs(regs); 1010 1011 if (multi_match) { 1012 printk("Index : %0x\n", read_c0_index()); 1013 printk("Pagemask: %0x\n", read_c0_pagemask()); 1014 printk("EntryHi : %0*lx\n", field, read_c0_entryhi()); 1015 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0()); 1016 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1()); 1017 printk("\n"); 1018 dump_tlb_all(); 1019 } 1020 1021 show_code((unsigned int __user *) regs->cp0_epc); 1022 1023 /* 1024 * Some chips may have other causes of machine check (e.g. SB1 1025 * graduation timer) 1026 */ 1027 panic("Caught Machine Check exception - %scaused by multiple " 1028 "matching entries in the TLB.", 1029 (multi_match) ? "" : "not "); 1030 } 1031 1032 asmlinkage void do_mt(struct pt_regs *regs) 1033 { 1034 int subcode; 1035 1036 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) 1037 >> VPECONTROL_EXCPT_SHIFT; 1038 switch (subcode) { 1039 case 0: 1040 printk(KERN_DEBUG "Thread Underflow\n"); 1041 break; 1042 case 1: 1043 printk(KERN_DEBUG "Thread Overflow\n"); 1044 break; 1045 case 2: 1046 printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); 1047 break; 1048 case 3: 1049 printk(KERN_DEBUG "Gating Storage Exception\n"); 1050 break; 1051 case 4: 1052 printk(KERN_DEBUG "YIELD Scheduler Exception\n"); 1053 break; 1054 case 5: 1055 printk(KERN_DEBUG "Gating Storage Schedulier Exception\n"); 1056 break; 1057 default: 1058 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", 1059 subcode); 1060 break; 1061 } 1062 die_if_kernel("MIPS MT Thread exception in kernel", regs); 1063 1064 force_sig(SIGILL, current); 1065 } 1066 1067 1068 asmlinkage void do_dsp(struct pt_regs *regs) 1069 { 1070 if (cpu_has_dsp) 1071 panic("Unexpected DSP exception\n"); 1072 1073 force_sig(SIGILL, current); 1074 } 1075 1076 asmlinkage void do_reserved(struct pt_regs *regs) 1077 { 1078 /* 1079 * Game over - no way to handle this if it ever occurs. Most probably 1080 * caused by a new unknown cpu type or after another deadly 1081 * hard/software error. 1082 */ 1083 show_regs(regs); 1084 panic("Caught reserved exception %ld - should not happen.", 1085 (regs->cp0_cause & 0x7f) >> 2); 1086 } 1087 1088 static int __initdata l1parity = 1; 1089 static int __init nol1parity(char *s) 1090 { 1091 l1parity = 0; 1092 return 1; 1093 } 1094 __setup("nol1par", nol1parity); 1095 static int __initdata l2parity = 1; 1096 static int __init nol2parity(char *s) 1097 { 1098 l2parity = 0; 1099 return 1; 1100 } 1101 __setup("nol2par", nol2parity); 1102 1103 /* 1104 * Some MIPS CPUs can enable/disable for cache parity detection, but do 1105 * it different ways. 1106 */ 1107 static inline void parity_protection_init(void) 1108 { 1109 switch (current_cpu_type()) { 1110 case CPU_24K: 1111 case CPU_34K: 1112 case CPU_74K: 1113 case CPU_1004K: 1114 { 1115 #define ERRCTL_PE 0x80000000 1116 #define ERRCTL_L2P 0x00800000 1117 unsigned long errctl; 1118 unsigned int l1parity_present, l2parity_present; 1119 1120 errctl = read_c0_ecc(); 1121 errctl &= ~(ERRCTL_PE|ERRCTL_L2P); 1122 1123 /* probe L1 parity support */ 1124 write_c0_ecc(errctl | ERRCTL_PE); 1125 back_to_back_c0_hazard(); 1126 l1parity_present = (read_c0_ecc() & ERRCTL_PE); 1127 1128 /* probe L2 parity support */ 1129 write_c0_ecc(errctl|ERRCTL_L2P); 1130 back_to_back_c0_hazard(); 1131 l2parity_present = (read_c0_ecc() & ERRCTL_L2P); 1132 1133 if (l1parity_present && l2parity_present) { 1134 if (l1parity) 1135 errctl |= ERRCTL_PE; 1136 if (l1parity ^ l2parity) 1137 errctl |= ERRCTL_L2P; 1138 } else if (l1parity_present) { 1139 if (l1parity) 1140 errctl |= ERRCTL_PE; 1141 } else if (l2parity_present) { 1142 if (l2parity) 1143 errctl |= ERRCTL_L2P; 1144 } else { 1145 /* No parity available */ 1146 } 1147 1148 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); 1149 1150 write_c0_ecc(errctl); 1151 back_to_back_c0_hazard(); 1152 errctl = read_c0_ecc(); 1153 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); 1154 1155 if (l1parity_present) 1156 printk(KERN_INFO "Cache parity protection %sabled\n", 1157 (errctl & ERRCTL_PE) ? "en" : "dis"); 1158 1159 if (l2parity_present) { 1160 if (l1parity_present && l1parity) 1161 errctl ^= ERRCTL_L2P; 1162 printk(KERN_INFO "L2 cache parity protection %sabled\n", 1163 (errctl & ERRCTL_L2P) ? "en" : "dis"); 1164 } 1165 } 1166 break; 1167 1168 case CPU_5KC: 1169 write_c0_ecc(0x80000000); 1170 back_to_back_c0_hazard(); 1171 /* Set the PE bit (bit 31) in the c0_errctl register. */ 1172 printk(KERN_INFO "Cache parity protection %sabled\n", 1173 (read_c0_ecc() & 0x80000000) ? "en" : "dis"); 1174 break; 1175 case CPU_20KC: 1176 case CPU_25KF: 1177 /* Clear the DE bit (bit 16) in the c0_status register. */ 1178 printk(KERN_INFO "Enable cache parity protection for " 1179 "MIPS 20KC/25KF CPUs.\n"); 1180 clear_c0_status(ST0_DE); 1181 break; 1182 default: 1183 break; 1184 } 1185 } 1186 1187 asmlinkage void cache_parity_error(void) 1188 { 1189 const int field = 2 * sizeof(unsigned long); 1190 unsigned int reg_val; 1191 1192 /* For the moment, report the problem and hang. */ 1193 printk("Cache error exception:\n"); 1194 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1195 reg_val = read_c0_cacheerr(); 1196 printk("c0_cacheerr == %08x\n", reg_val); 1197 1198 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1199 reg_val & (1<<30) ? "secondary" : "primary", 1200 reg_val & (1<<31) ? "data" : "insn"); 1201 printk("Error bits: %s%s%s%s%s%s%s\n", 1202 reg_val & (1<<29) ? "ED " : "", 1203 reg_val & (1<<28) ? "ET " : "", 1204 reg_val & (1<<26) ? "EE " : "", 1205 reg_val & (1<<25) ? "EB " : "", 1206 reg_val & (1<<24) ? "EI " : "", 1207 reg_val & (1<<23) ? "E1 " : "", 1208 reg_val & (1<<22) ? "E0 " : ""); 1209 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); 1210 1211 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) 1212 if (reg_val & (1<<22)) 1213 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); 1214 1215 if (reg_val & (1<<23)) 1216 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); 1217 #endif 1218 1219 panic("Can't handle the cache error!"); 1220 } 1221 1222 /* 1223 * SDBBP EJTAG debug exception handler. 1224 * We skip the instruction and return to the next instruction. 1225 */ 1226 void ejtag_exception_handler(struct pt_regs *regs) 1227 { 1228 const int field = 2 * sizeof(unsigned long); 1229 unsigned long depc, old_epc; 1230 unsigned int debug; 1231 1232 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); 1233 depc = read_c0_depc(); 1234 debug = read_c0_debug(); 1235 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); 1236 if (debug & 0x80000000) { 1237 /* 1238 * In branch delay slot. 1239 * We cheat a little bit here and use EPC to calculate the 1240 * debug return address (DEPC). EPC is restored after the 1241 * calculation. 1242 */ 1243 old_epc = regs->cp0_epc; 1244 regs->cp0_epc = depc; 1245 __compute_return_epc(regs); 1246 depc = regs->cp0_epc; 1247 regs->cp0_epc = old_epc; 1248 } else 1249 depc += 4; 1250 write_c0_depc(depc); 1251 1252 #if 0 1253 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); 1254 write_c0_debug(debug | 0x100); 1255 #endif 1256 } 1257 1258 /* 1259 * NMI exception handler. 1260 */ 1261 NORET_TYPE void ATTRIB_NORET nmi_exception_handler(struct pt_regs *regs) 1262 { 1263 bust_spinlocks(1); 1264 printk("NMI taken!!!!\n"); 1265 die("NMI", regs); 1266 } 1267 1268 #define VECTORSPACING 0x100 /* for EI/VI mode */ 1269 1270 unsigned long ebase; 1271 unsigned long exception_handlers[32]; 1272 unsigned long vi_handlers[64]; 1273 1274 /* 1275 * As a side effect of the way this is implemented we're limited 1276 * to interrupt handlers in the address range from 1277 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ... 1278 */ 1279 void *set_except_vector(int n, void *addr) 1280 { 1281 unsigned long handler = (unsigned long) addr; 1282 unsigned long old_handler = exception_handlers[n]; 1283 1284 exception_handlers[n] = handler; 1285 if (n == 0 && cpu_has_divec) { 1286 *(u32 *)(ebase + 0x200) = 0x08000000 | 1287 (0x03ffffff & (handler >> 2)); 1288 local_flush_icache_range(ebase + 0x200, ebase + 0x204); 1289 } 1290 return (void *)old_handler; 1291 } 1292 1293 static asmlinkage void do_default_vi(void) 1294 { 1295 show_regs(get_irq_regs()); 1296 panic("Caught unexpected vectored interrupt."); 1297 } 1298 1299 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) 1300 { 1301 unsigned long handler; 1302 unsigned long old_handler = vi_handlers[n]; 1303 int srssets = current_cpu_data.srsets; 1304 u32 *w; 1305 unsigned char *b; 1306 1307 BUG_ON(!cpu_has_veic && !cpu_has_vint); 1308 1309 if (addr == NULL) { 1310 handler = (unsigned long) do_default_vi; 1311 srs = 0; 1312 } else 1313 handler = (unsigned long) addr; 1314 vi_handlers[n] = (unsigned long) addr; 1315 1316 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); 1317 1318 if (srs >= srssets) 1319 panic("Shadow register set %d not supported", srs); 1320 1321 if (cpu_has_veic) { 1322 if (board_bind_eic_interrupt) 1323 board_bind_eic_interrupt(n, srs); 1324 } else if (cpu_has_vint) { 1325 /* SRSMap is only defined if shadow sets are implemented */ 1326 if (srssets > 1) 1327 change_c0_srsmap(0xf << n*4, srs << n*4); 1328 } 1329 1330 if (srs == 0) { 1331 /* 1332 * If no shadow set is selected then use the default handler 1333 * that does normal register saving and a standard interrupt exit 1334 */ 1335 1336 extern char except_vec_vi, except_vec_vi_lui; 1337 extern char except_vec_vi_ori, except_vec_vi_end; 1338 extern char rollback_except_vec_vi; 1339 char *vec_start = (cpu_wait == r4k_wait) ? 1340 &rollback_except_vec_vi : &except_vec_vi; 1341 #ifdef CONFIG_MIPS_MT_SMTC 1342 /* 1343 * We need to provide the SMTC vectored interrupt handler 1344 * not only with the address of the handler, but with the 1345 * Status.IM bit to be masked before going there. 1346 */ 1347 extern char except_vec_vi_mori; 1348 const int mori_offset = &except_vec_vi_mori - vec_start; 1349 #endif /* CONFIG_MIPS_MT_SMTC */ 1350 const int handler_len = &except_vec_vi_end - vec_start; 1351 const int lui_offset = &except_vec_vi_lui - vec_start; 1352 const int ori_offset = &except_vec_vi_ori - vec_start; 1353 1354 if (handler_len > VECTORSPACING) { 1355 /* 1356 * Sigh... panicing won't help as the console 1357 * is probably not configured :( 1358 */ 1359 panic("VECTORSPACING too small"); 1360 } 1361 1362 memcpy(b, vec_start, handler_len); 1363 #ifdef CONFIG_MIPS_MT_SMTC 1364 BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */ 1365 1366 w = (u32 *)(b + mori_offset); 1367 *w = (*w & 0xffff0000) | (0x100 << n); 1368 #endif /* CONFIG_MIPS_MT_SMTC */ 1369 w = (u32 *)(b + lui_offset); 1370 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff); 1371 w = (u32 *)(b + ori_offset); 1372 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff); 1373 local_flush_icache_range((unsigned long)b, 1374 (unsigned long)(b+handler_len)); 1375 } 1376 else { 1377 /* 1378 * In other cases jump directly to the interrupt handler 1379 * 1380 * It is the handlers responsibility to save registers if required 1381 * (eg hi/lo) and return from the exception using "eret" 1382 */ 1383 w = (u32 *)b; 1384 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */ 1385 *w = 0; 1386 local_flush_icache_range((unsigned long)b, 1387 (unsigned long)(b+8)); 1388 } 1389 1390 return (void *)old_handler; 1391 } 1392 1393 void *set_vi_handler(int n, vi_handler_t addr) 1394 { 1395 return set_vi_srs_handler(n, addr, 0); 1396 } 1397 1398 extern void cpu_cache_init(void); 1399 extern void tlb_init(void); 1400 extern void flush_tlb_handlers(void); 1401 1402 /* 1403 * Timer interrupt 1404 */ 1405 int cp0_compare_irq; 1406 int cp0_compare_irq_shift; 1407 1408 /* 1409 * Performance counter IRQ or -1 if shared with timer 1410 */ 1411 int cp0_perfcount_irq; 1412 EXPORT_SYMBOL_GPL(cp0_perfcount_irq); 1413 1414 static int __cpuinitdata noulri; 1415 1416 static int __init ulri_disable(char *s) 1417 { 1418 pr_info("Disabling ulri\n"); 1419 noulri = 1; 1420 1421 return 1; 1422 } 1423 __setup("noulri", ulri_disable); 1424 1425 void __cpuinit per_cpu_trap_init(void) 1426 { 1427 unsigned int cpu = smp_processor_id(); 1428 unsigned int status_set = ST0_CU0; 1429 #ifdef CONFIG_MIPS_MT_SMTC 1430 int secondaryTC = 0; 1431 int bootTC = (cpu == 0); 1432 1433 /* 1434 * Only do per_cpu_trap_init() for first TC of Each VPE. 1435 * Note that this hack assumes that the SMTC init code 1436 * assigns TCs consecutively and in ascending order. 1437 */ 1438 1439 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) && 1440 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id)) 1441 secondaryTC = 1; 1442 #endif /* CONFIG_MIPS_MT_SMTC */ 1443 1444 /* 1445 * Disable coprocessors and select 32-bit or 64-bit addressing 1446 * and the 16/32 or 32/32 FPR register model. Reset the BEV 1447 * flag that some firmware may have left set and the TS bit (for 1448 * IP27). Set XX for ISA IV code to work. 1449 */ 1450 #ifdef CONFIG_64BIT 1451 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; 1452 #endif 1453 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV) 1454 status_set |= ST0_XX; 1455 if (cpu_has_dsp) 1456 status_set |= ST0_MX; 1457 1458 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, 1459 status_set); 1460 1461 if (cpu_has_mips_r2) { 1462 unsigned int enable = 0x0000000f | cpu_hwrena_impl_bits; 1463 1464 if (!noulri && cpu_has_userlocal) 1465 enable |= (1 << 29); 1466 1467 write_c0_hwrena(enable); 1468 } 1469 1470 #ifdef CONFIG_MIPS_MT_SMTC 1471 if (!secondaryTC) { 1472 #endif /* CONFIG_MIPS_MT_SMTC */ 1473 1474 if (cpu_has_veic || cpu_has_vint) { 1475 unsigned long sr = set_c0_status(ST0_BEV); 1476 write_c0_ebase(ebase); 1477 write_c0_status(sr); 1478 /* Setting vector spacing enables EI/VI mode */ 1479 change_c0_intctl(0x3e0, VECTORSPACING); 1480 } 1481 if (cpu_has_divec) { 1482 if (cpu_has_mipsmt) { 1483 unsigned int vpflags = dvpe(); 1484 set_c0_cause(CAUSEF_IV); 1485 evpe(vpflags); 1486 } else 1487 set_c0_cause(CAUSEF_IV); 1488 } 1489 1490 /* 1491 * Before R2 both interrupt numbers were fixed to 7, so on R2 only: 1492 * 1493 * o read IntCtl.IPTI to determine the timer interrupt 1494 * o read IntCtl.IPPCI to determine the performance counter interrupt 1495 */ 1496 if (cpu_has_mips_r2) { 1497 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; 1498 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; 1499 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; 1500 if (cp0_perfcount_irq == cp0_compare_irq) 1501 cp0_perfcount_irq = -1; 1502 } else { 1503 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; 1504 cp0_compare_irq_shift = cp0_compare_irq; 1505 cp0_perfcount_irq = -1; 1506 } 1507 1508 #ifdef CONFIG_MIPS_MT_SMTC 1509 } 1510 #endif /* CONFIG_MIPS_MT_SMTC */ 1511 1512 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION; 1513 TLBMISS_HANDLER_SETUP(); 1514 1515 atomic_inc(&init_mm.mm_count); 1516 current->active_mm = &init_mm; 1517 BUG_ON(current->mm); 1518 enter_lazy_tlb(&init_mm, current); 1519 1520 #ifdef CONFIG_MIPS_MT_SMTC 1521 if (bootTC) { 1522 #endif /* CONFIG_MIPS_MT_SMTC */ 1523 cpu_cache_init(); 1524 tlb_init(); 1525 #ifdef CONFIG_MIPS_MT_SMTC 1526 } else if (!secondaryTC) { 1527 /* 1528 * First TC in non-boot VPE must do subset of tlb_init() 1529 * for MMU countrol registers. 1530 */ 1531 write_c0_pagemask(PM_DEFAULT_MASK); 1532 write_c0_wired(0); 1533 } 1534 #endif /* CONFIG_MIPS_MT_SMTC */ 1535 } 1536 1537 /* Install CPU exception handler */ 1538 void __init set_handler(unsigned long offset, void *addr, unsigned long size) 1539 { 1540 memcpy((void *)(ebase + offset), addr, size); 1541 local_flush_icache_range(ebase + offset, ebase + offset + size); 1542 } 1543 1544 static char panic_null_cerr[] __cpuinitdata = 1545 "Trying to set NULL cache error exception handler"; 1546 1547 /* 1548 * Install uncached CPU exception handler. 1549 * This is suitable only for the cache error exception which is the only 1550 * exception handler that is being run uncached. 1551 */ 1552 void __cpuinit set_uncached_handler(unsigned long offset, void *addr, 1553 unsigned long size) 1554 { 1555 #ifdef CONFIG_32BIT 1556 unsigned long uncached_ebase = KSEG1ADDR(ebase); 1557 #endif 1558 #ifdef CONFIG_64BIT 1559 unsigned long uncached_ebase = TO_UNCAC(ebase); 1560 #endif 1561 1562 if (!addr) 1563 panic(panic_null_cerr); 1564 1565 memcpy((void *)(uncached_ebase + offset), addr, size); 1566 } 1567 1568 static int __initdata rdhwr_noopt; 1569 static int __init set_rdhwr_noopt(char *str) 1570 { 1571 rdhwr_noopt = 1; 1572 return 1; 1573 } 1574 1575 __setup("rdhwr_noopt", set_rdhwr_noopt); 1576 1577 void __init trap_init(void) 1578 { 1579 extern char except_vec3_generic, except_vec3_r4000; 1580 extern char except_vec4; 1581 unsigned long i; 1582 int rollback; 1583 1584 check_wait(); 1585 rollback = (cpu_wait == r4k_wait); 1586 1587 #if defined(CONFIG_KGDB) 1588 if (kgdb_early_setup) 1589 return; /* Already done */ 1590 #endif 1591 1592 if (cpu_has_veic || cpu_has_vint) { 1593 unsigned long size = 0x200 + VECTORSPACING*64; 1594 ebase = (unsigned long) 1595 __alloc_bootmem(size, 1 << fls(size), 0); 1596 } else { 1597 ebase = CAC_BASE; 1598 if (cpu_has_mips_r2) 1599 ebase += (read_c0_ebase() & 0x3ffff000); 1600 } 1601 1602 per_cpu_trap_init(); 1603 1604 /* 1605 * Copy the generic exception handlers to their final destination. 1606 * This will be overriden later as suitable for a particular 1607 * configuration. 1608 */ 1609 set_handler(0x180, &except_vec3_generic, 0x80); 1610 1611 /* 1612 * Setup default vectors 1613 */ 1614 for (i = 0; i <= 31; i++) 1615 set_except_vector(i, handle_reserved); 1616 1617 /* 1618 * Copy the EJTAG debug exception vector handler code to it's final 1619 * destination. 1620 */ 1621 if (cpu_has_ejtag && board_ejtag_handler_setup) 1622 board_ejtag_handler_setup(); 1623 1624 /* 1625 * Only some CPUs have the watch exceptions. 1626 */ 1627 if (cpu_has_watch) 1628 set_except_vector(23, handle_watch); 1629 1630 /* 1631 * Initialise interrupt handlers 1632 */ 1633 if (cpu_has_veic || cpu_has_vint) { 1634 int nvec = cpu_has_veic ? 64 : 8; 1635 for (i = 0; i < nvec; i++) 1636 set_vi_handler(i, NULL); 1637 } 1638 else if (cpu_has_divec) 1639 set_handler(0x200, &except_vec4, 0x8); 1640 1641 /* 1642 * Some CPUs can enable/disable for cache parity detection, but does 1643 * it different ways. 1644 */ 1645 parity_protection_init(); 1646 1647 /* 1648 * The Data Bus Errors / Instruction Bus Errors are signaled 1649 * by external hardware. Therefore these two exceptions 1650 * may have board specific handlers. 1651 */ 1652 if (board_be_init) 1653 board_be_init(); 1654 1655 set_except_vector(0, rollback ? rollback_handle_int : handle_int); 1656 set_except_vector(1, handle_tlbm); 1657 set_except_vector(2, handle_tlbl); 1658 set_except_vector(3, handle_tlbs); 1659 1660 set_except_vector(4, handle_adel); 1661 set_except_vector(5, handle_ades); 1662 1663 set_except_vector(6, handle_ibe); 1664 set_except_vector(7, handle_dbe); 1665 1666 set_except_vector(8, handle_sys); 1667 set_except_vector(9, handle_bp); 1668 set_except_vector(10, rdhwr_noopt ? handle_ri : 1669 (cpu_has_vtag_icache ? 1670 handle_ri_rdhwr_vivt : handle_ri_rdhwr)); 1671 set_except_vector(11, handle_cpu); 1672 set_except_vector(12, handle_ov); 1673 set_except_vector(13, handle_tr); 1674 1675 if (current_cpu_type() == CPU_R6000 || 1676 current_cpu_type() == CPU_R6000A) { 1677 /* 1678 * The R6000 is the only R-series CPU that features a machine 1679 * check exception (similar to the R4000 cache error) and 1680 * unaligned ldc1/sdc1 exception. The handlers have not been 1681 * written yet. Well, anyway there is no R6000 machine on the 1682 * current list of targets for Linux/MIPS. 1683 * (Duh, crap, there is someone with a triple R6k machine) 1684 */ 1685 //set_except_vector(14, handle_mc); 1686 //set_except_vector(15, handle_ndc); 1687 } 1688 1689 1690 if (board_nmi_handler_setup) 1691 board_nmi_handler_setup(); 1692 1693 if (cpu_has_fpu && !cpu_has_nofpuex) 1694 set_except_vector(15, handle_fpe); 1695 1696 set_except_vector(22, handle_mdmx); 1697 1698 if (cpu_has_mcheck) 1699 set_except_vector(24, handle_mcheck); 1700 1701 if (cpu_has_mipsmt) 1702 set_except_vector(25, handle_mt); 1703 1704 set_except_vector(26, handle_dsp); 1705 1706 if (cpu_has_vce) 1707 /* Special exception: R4[04]00 uses also the divec space. */ 1708 memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100); 1709 else if (cpu_has_4kex) 1710 memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80); 1711 else 1712 memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80); 1713 1714 local_flush_icache_range(ebase, ebase + 0x400); 1715 flush_tlb_handlers(); 1716 1717 sort_extable(__start___dbe_table, __stop___dbe_table); 1718 1719 register_cu2_notifier(&default_cu2_notifier); 1720 } 1721