1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle 7 * Copyright (C) 1995, 1996 Paul M. Antoine 8 * Copyright (C) 1998 Ulf Carlsson 9 * Copyright (C) 1999 Silicon Graphics, Inc. 10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki 12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved. 13 * Copyright (C) 2014, Imagination Technologies Ltd. 14 */ 15 #include <linux/bitops.h> 16 #include <linux/bug.h> 17 #include <linux/compiler.h> 18 #include <linux/context_tracking.h> 19 #include <linux/cpu_pm.h> 20 #include <linux/kexec.h> 21 #include <linux/init.h> 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/extable.h> 25 #include <linux/mm.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/debug.h> 28 #include <linux/smp.h> 29 #include <linux/spinlock.h> 30 #include <linux/kallsyms.h> 31 #include <linux/bootmem.h> 32 #include <linux/interrupt.h> 33 #include <linux/ptrace.h> 34 #include <linux/kgdb.h> 35 #include <linux/kdebug.h> 36 #include <linux/kprobes.h> 37 #include <linux/notifier.h> 38 #include <linux/kdb.h> 39 #include <linux/irq.h> 40 #include <linux/perf_event.h> 41 42 #include <asm/addrspace.h> 43 #include <asm/bootinfo.h> 44 #include <asm/branch.h> 45 #include <asm/break.h> 46 #include <asm/cop2.h> 47 #include <asm/cpu.h> 48 #include <asm/cpu-type.h> 49 #include <asm/dsp.h> 50 #include <asm/fpu.h> 51 #include <asm/fpu_emulator.h> 52 #include <asm/idle.h> 53 #include <asm/mips-cm.h> 54 #include <asm/mips-r2-to-r6-emul.h> 55 #include <asm/mips-cm.h> 56 #include <asm/mipsregs.h> 57 #include <asm/mipsmtregs.h> 58 #include <asm/module.h> 59 #include <asm/msa.h> 60 #include <asm/pgtable.h> 61 #include <asm/ptrace.h> 62 #include <asm/sections.h> 63 #include <asm/siginfo.h> 64 #include <asm/tlbdebug.h> 65 #include <asm/traps.h> 66 #include <linux/uaccess.h> 67 #include <asm/watch.h> 68 #include <asm/mmu_context.h> 69 #include <asm/types.h> 70 #include <asm/stacktrace.h> 71 #include <asm/uasm.h> 72 73 extern void check_wait(void); 74 extern asmlinkage void rollback_handle_int(void); 75 extern asmlinkage void handle_int(void); 76 extern u32 handle_tlbl[]; 77 extern u32 handle_tlbs[]; 78 extern u32 handle_tlbm[]; 79 extern asmlinkage void handle_adel(void); 80 extern asmlinkage void handle_ades(void); 81 extern asmlinkage void handle_ibe(void); 82 extern asmlinkage void handle_dbe(void); 83 extern asmlinkage void handle_sys(void); 84 extern asmlinkage void handle_bp(void); 85 extern asmlinkage void handle_ri(void); 86 extern asmlinkage void handle_ri_rdhwr_vivt(void); 87 extern asmlinkage void handle_ri_rdhwr(void); 88 extern asmlinkage void handle_cpu(void); 89 extern asmlinkage void handle_ov(void); 90 extern asmlinkage void handle_tr(void); 91 extern asmlinkage void handle_msa_fpe(void); 92 extern asmlinkage void handle_fpe(void); 93 extern asmlinkage void handle_ftlb(void); 94 extern asmlinkage void handle_msa(void); 95 extern asmlinkage void handle_mdmx(void); 96 extern asmlinkage void handle_watch(void); 97 extern asmlinkage void handle_mt(void); 98 extern asmlinkage void handle_dsp(void); 99 extern asmlinkage void handle_mcheck(void); 100 extern asmlinkage void handle_reserved(void); 101 extern void tlb_do_page_fault_0(void); 102 103 void (*board_be_init)(void); 104 int (*board_be_handler)(struct pt_regs *regs, int is_fixup); 105 void (*board_nmi_handler_setup)(void); 106 void (*board_ejtag_handler_setup)(void); 107 void (*board_bind_eic_interrupt)(int irq, int regset); 108 void (*board_ebase_setup)(void); 109 void(*board_cache_error_setup)(void); 110 111 static void show_raw_backtrace(unsigned long reg29) 112 { 113 unsigned long *sp = (unsigned long *)(reg29 & ~3); 114 unsigned long addr; 115 116 printk("Call Trace:"); 117 #ifdef CONFIG_KALLSYMS 118 printk("\n"); 119 #endif 120 while (!kstack_end(sp)) { 121 unsigned long __user *p = 122 (unsigned long __user *)(unsigned long)sp++; 123 if (__get_user(addr, p)) { 124 printk(" (Bad stack address)"); 125 break; 126 } 127 if (__kernel_text_address(addr)) 128 print_ip_sym(addr); 129 } 130 printk("\n"); 131 } 132 133 #ifdef CONFIG_KALLSYMS 134 int raw_show_trace; 135 static int __init set_raw_show_trace(char *str) 136 { 137 raw_show_trace = 1; 138 return 1; 139 } 140 __setup("raw_show_trace", set_raw_show_trace); 141 #endif 142 143 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs) 144 { 145 unsigned long sp = regs->regs[29]; 146 unsigned long ra = regs->regs[31]; 147 unsigned long pc = regs->cp0_epc; 148 149 if (!task) 150 task = current; 151 152 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) { 153 show_raw_backtrace(sp); 154 return; 155 } 156 printk("Call Trace:\n"); 157 do { 158 print_ip_sym(pc); 159 pc = unwind_stack(task, &sp, pc, &ra); 160 } while (pc); 161 pr_cont("\n"); 162 } 163 164 /* 165 * This routine abuses get_user()/put_user() to reference pointers 166 * with at least a bit of error checking ... 167 */ 168 static void show_stacktrace(struct task_struct *task, 169 const struct pt_regs *regs) 170 { 171 const int field = 2 * sizeof(unsigned long); 172 long stackdata; 173 int i; 174 unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; 175 176 printk("Stack :"); 177 i = 0; 178 while ((unsigned long) sp & (PAGE_SIZE - 1)) { 179 if (i && ((i % (64 / field)) == 0)) { 180 pr_cont("\n"); 181 printk(" "); 182 } 183 if (i > 39) { 184 pr_cont(" ..."); 185 break; 186 } 187 188 if (__get_user(stackdata, sp++)) { 189 pr_cont(" (Bad stack address)"); 190 break; 191 } 192 193 pr_cont(" %0*lx", field, stackdata); 194 i++; 195 } 196 pr_cont("\n"); 197 show_backtrace(task, regs); 198 } 199 200 void show_stack(struct task_struct *task, unsigned long *sp) 201 { 202 struct pt_regs regs; 203 mm_segment_t old_fs = get_fs(); 204 if (sp) { 205 regs.regs[29] = (unsigned long)sp; 206 regs.regs[31] = 0; 207 regs.cp0_epc = 0; 208 } else { 209 if (task && task != current) { 210 regs.regs[29] = task->thread.reg29; 211 regs.regs[31] = 0; 212 regs.cp0_epc = task->thread.reg31; 213 #ifdef CONFIG_KGDB_KDB 214 } else if (atomic_read(&kgdb_active) != -1 && 215 kdb_current_regs) { 216 memcpy(®s, kdb_current_regs, sizeof(regs)); 217 #endif /* CONFIG_KGDB_KDB */ 218 } else { 219 prepare_frametrace(®s); 220 } 221 } 222 /* 223 * show_stack() deals exclusively with kernel mode, so be sure to access 224 * the stack in the kernel (not user) address space. 225 */ 226 set_fs(KERNEL_DS); 227 show_stacktrace(task, ®s); 228 set_fs(old_fs); 229 } 230 231 static void show_code(unsigned int __user *pc) 232 { 233 long i; 234 unsigned short __user *pc16 = NULL; 235 236 printk("Code:"); 237 238 if ((unsigned long)pc & 1) 239 pc16 = (unsigned short __user *)((unsigned long)pc & ~1); 240 for(i = -3 ; i < 6 ; i++) { 241 unsigned int insn; 242 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { 243 pr_cont(" (Bad address in epc)\n"); 244 break; 245 } 246 pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); 247 } 248 pr_cont("\n"); 249 } 250 251 static void __show_regs(const struct pt_regs *regs) 252 { 253 const int field = 2 * sizeof(unsigned long); 254 unsigned int cause = regs->cp0_cause; 255 unsigned int exccode; 256 int i; 257 258 show_regs_print_info(KERN_DEFAULT); 259 260 /* 261 * Saved main processor registers 262 */ 263 for (i = 0; i < 32; ) { 264 if ((i % 4) == 0) 265 printk("$%2d :", i); 266 if (i == 0) 267 pr_cont(" %0*lx", field, 0UL); 268 else if (i == 26 || i == 27) 269 pr_cont(" %*s", field, ""); 270 else 271 pr_cont(" %0*lx", field, regs->regs[i]); 272 273 i++; 274 if ((i % 4) == 0) 275 pr_cont("\n"); 276 } 277 278 #ifdef CONFIG_CPU_HAS_SMARTMIPS 279 printk("Acx : %0*lx\n", field, regs->acx); 280 #endif 281 printk("Hi : %0*lx\n", field, regs->hi); 282 printk("Lo : %0*lx\n", field, regs->lo); 283 284 /* 285 * Saved cp0 registers 286 */ 287 printk("epc : %0*lx %pS\n", field, regs->cp0_epc, 288 (void *) regs->cp0_epc); 289 printk("ra : %0*lx %pS\n", field, regs->regs[31], 290 (void *) regs->regs[31]); 291 292 printk("Status: %08x ", (uint32_t) regs->cp0_status); 293 294 if (cpu_has_3kex) { 295 if (regs->cp0_status & ST0_KUO) 296 pr_cont("KUo "); 297 if (regs->cp0_status & ST0_IEO) 298 pr_cont("IEo "); 299 if (regs->cp0_status & ST0_KUP) 300 pr_cont("KUp "); 301 if (regs->cp0_status & ST0_IEP) 302 pr_cont("IEp "); 303 if (regs->cp0_status & ST0_KUC) 304 pr_cont("KUc "); 305 if (regs->cp0_status & ST0_IEC) 306 pr_cont("IEc "); 307 } else if (cpu_has_4kex) { 308 if (regs->cp0_status & ST0_KX) 309 pr_cont("KX "); 310 if (regs->cp0_status & ST0_SX) 311 pr_cont("SX "); 312 if (regs->cp0_status & ST0_UX) 313 pr_cont("UX "); 314 switch (regs->cp0_status & ST0_KSU) { 315 case KSU_USER: 316 pr_cont("USER "); 317 break; 318 case KSU_SUPERVISOR: 319 pr_cont("SUPERVISOR "); 320 break; 321 case KSU_KERNEL: 322 pr_cont("KERNEL "); 323 break; 324 default: 325 pr_cont("BAD_MODE "); 326 break; 327 } 328 if (regs->cp0_status & ST0_ERL) 329 pr_cont("ERL "); 330 if (regs->cp0_status & ST0_EXL) 331 pr_cont("EXL "); 332 if (regs->cp0_status & ST0_IE) 333 pr_cont("IE "); 334 } 335 pr_cont("\n"); 336 337 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; 338 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode); 339 340 if (1 <= exccode && exccode <= 5) 341 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); 342 343 printk("PrId : %08x (%s)\n", read_c0_prid(), 344 cpu_name_string()); 345 } 346 347 /* 348 * FIXME: really the generic show_regs should take a const pointer argument. 349 */ 350 void show_regs(struct pt_regs *regs) 351 { 352 __show_regs((struct pt_regs *)regs); 353 } 354 355 void show_registers(struct pt_regs *regs) 356 { 357 const int field = 2 * sizeof(unsigned long); 358 mm_segment_t old_fs = get_fs(); 359 360 __show_regs(regs); 361 print_modules(); 362 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", 363 current->comm, current->pid, current_thread_info(), current, 364 field, current_thread_info()->tp_value); 365 if (cpu_has_userlocal) { 366 unsigned long tls; 367 368 tls = read_c0_userlocal(); 369 if (tls != current_thread_info()->tp_value) 370 printk("*HwTLS: %0*lx\n", field, tls); 371 } 372 373 if (!user_mode(regs)) 374 /* Necessary for getting the correct stack content */ 375 set_fs(KERNEL_DS); 376 show_stacktrace(current, regs); 377 show_code((unsigned int __user *) regs->cp0_epc); 378 printk("\n"); 379 set_fs(old_fs); 380 } 381 382 static DEFINE_RAW_SPINLOCK(die_lock); 383 384 void __noreturn die(const char *str, struct pt_regs *regs) 385 { 386 static int die_counter; 387 int sig = SIGSEGV; 388 389 oops_enter(); 390 391 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr, 392 SIGSEGV) == NOTIFY_STOP) 393 sig = 0; 394 395 console_verbose(); 396 raw_spin_lock_irq(&die_lock); 397 bust_spinlocks(1); 398 399 printk("%s[#%d]:\n", str, ++die_counter); 400 show_registers(regs); 401 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 402 raw_spin_unlock_irq(&die_lock); 403 404 oops_exit(); 405 406 if (in_interrupt()) 407 panic("Fatal exception in interrupt"); 408 409 if (panic_on_oops) 410 panic("Fatal exception"); 411 412 if (regs && kexec_should_crash(current)) 413 crash_kexec(regs); 414 415 do_exit(sig); 416 } 417 418 extern struct exception_table_entry __start___dbe_table[]; 419 extern struct exception_table_entry __stop___dbe_table[]; 420 421 __asm__( 422 " .section __dbe_table, \"a\"\n" 423 " .previous \n"); 424 425 /* Given an address, look for it in the exception tables. */ 426 static const struct exception_table_entry *search_dbe_tables(unsigned long addr) 427 { 428 const struct exception_table_entry *e; 429 430 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr); 431 if (!e) 432 e = search_module_dbetables(addr); 433 return e; 434 } 435 436 asmlinkage void do_be(struct pt_regs *regs) 437 { 438 const int field = 2 * sizeof(unsigned long); 439 const struct exception_table_entry *fixup = NULL; 440 int data = regs->cp0_cause & 4; 441 int action = MIPS_BE_FATAL; 442 enum ctx_state prev_state; 443 444 prev_state = exception_enter(); 445 /* XXX For now. Fixme, this searches the wrong table ... */ 446 if (data && !user_mode(regs)) 447 fixup = search_dbe_tables(exception_epc(regs)); 448 449 if (fixup) 450 action = MIPS_BE_FIXUP; 451 452 if (board_be_handler) 453 action = board_be_handler(regs, fixup != NULL); 454 else 455 mips_cm_error_report(); 456 457 switch (action) { 458 case MIPS_BE_DISCARD: 459 goto out; 460 case MIPS_BE_FIXUP: 461 if (fixup) { 462 regs->cp0_epc = fixup->nextinsn; 463 goto out; 464 } 465 break; 466 default: 467 break; 468 } 469 470 /* 471 * Assume it would be too dangerous to continue ... 472 */ 473 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", 474 data ? "Data" : "Instruction", 475 field, regs->cp0_epc, field, regs->regs[31]); 476 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr, 477 SIGBUS) == NOTIFY_STOP) 478 goto out; 479 480 die_if_kernel("Oops", regs); 481 force_sig(SIGBUS, current); 482 483 out: 484 exception_exit(prev_state); 485 } 486 487 /* 488 * ll/sc, rdhwr, sync emulation 489 */ 490 491 #define OPCODE 0xfc000000 492 #define BASE 0x03e00000 493 #define RT 0x001f0000 494 #define OFFSET 0x0000ffff 495 #define LL 0xc0000000 496 #define SC 0xe0000000 497 #define SPEC0 0x00000000 498 #define SPEC3 0x7c000000 499 #define RD 0x0000f800 500 #define FUNC 0x0000003f 501 #define SYNC 0x0000000f 502 #define RDHWR 0x0000003b 503 504 /* microMIPS definitions */ 505 #define MM_POOL32A_FUNC 0xfc00ffff 506 #define MM_RDHWR 0x00006b3c 507 #define MM_RS 0x001f0000 508 #define MM_RT 0x03e00000 509 510 /* 511 * The ll_bit is cleared by r*_switch.S 512 */ 513 514 unsigned int ll_bit; 515 struct task_struct *ll_task; 516 517 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) 518 { 519 unsigned long value, __user *vaddr; 520 long offset; 521 522 /* 523 * analyse the ll instruction that just caused a ri exception 524 * and put the referenced address to addr. 525 */ 526 527 /* sign extend offset */ 528 offset = opcode & OFFSET; 529 offset <<= 16; 530 offset >>= 16; 531 532 vaddr = (unsigned long __user *) 533 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 534 535 if ((unsigned long)vaddr & 3) 536 return SIGBUS; 537 if (get_user(value, vaddr)) 538 return SIGSEGV; 539 540 preempt_disable(); 541 542 if (ll_task == NULL || ll_task == current) { 543 ll_bit = 1; 544 } else { 545 ll_bit = 0; 546 } 547 ll_task = current; 548 549 preempt_enable(); 550 551 regs->regs[(opcode & RT) >> 16] = value; 552 553 return 0; 554 } 555 556 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) 557 { 558 unsigned long __user *vaddr; 559 unsigned long reg; 560 long offset; 561 562 /* 563 * analyse the sc instruction that just caused a ri exception 564 * and put the referenced address to addr. 565 */ 566 567 /* sign extend offset */ 568 offset = opcode & OFFSET; 569 offset <<= 16; 570 offset >>= 16; 571 572 vaddr = (unsigned long __user *) 573 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 574 reg = (opcode & RT) >> 16; 575 576 if ((unsigned long)vaddr & 3) 577 return SIGBUS; 578 579 preempt_disable(); 580 581 if (ll_bit == 0 || ll_task != current) { 582 regs->regs[reg] = 0; 583 preempt_enable(); 584 return 0; 585 } 586 587 preempt_enable(); 588 589 if (put_user(regs->regs[reg], vaddr)) 590 return SIGSEGV; 591 592 regs->regs[reg] = 1; 593 594 return 0; 595 } 596 597 /* 598 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both 599 * opcodes are supposed to result in coprocessor unusable exceptions if 600 * executed on ll/sc-less processors. That's the theory. In practice a 601 * few processors such as NEC's VR4100 throw reserved instruction exceptions 602 * instead, so we're doing the emulation thing in both exception handlers. 603 */ 604 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) 605 { 606 if ((opcode & OPCODE) == LL) { 607 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 608 1, regs, 0); 609 return simulate_ll(regs, opcode); 610 } 611 if ((opcode & OPCODE) == SC) { 612 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 613 1, regs, 0); 614 return simulate_sc(regs, opcode); 615 } 616 617 return -1; /* Must be something else ... */ 618 } 619 620 /* 621 * Simulate trapping 'rdhwr' instructions to provide user accessible 622 * registers not implemented in hardware. 623 */ 624 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt) 625 { 626 struct thread_info *ti = task_thread_info(current); 627 628 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 629 1, regs, 0); 630 switch (rd) { 631 case MIPS_HWR_CPUNUM: /* CPU number */ 632 regs->regs[rt] = smp_processor_id(); 633 return 0; 634 case MIPS_HWR_SYNCISTEP: /* SYNCI length */ 635 regs->regs[rt] = min(current_cpu_data.dcache.linesz, 636 current_cpu_data.icache.linesz); 637 return 0; 638 case MIPS_HWR_CC: /* Read count register */ 639 regs->regs[rt] = read_c0_count(); 640 return 0; 641 case MIPS_HWR_CCRES: /* Count register resolution */ 642 switch (current_cpu_type()) { 643 case CPU_20KC: 644 case CPU_25KF: 645 regs->regs[rt] = 1; 646 break; 647 default: 648 regs->regs[rt] = 2; 649 } 650 return 0; 651 case MIPS_HWR_ULR: /* Read UserLocal register */ 652 regs->regs[rt] = ti->tp_value; 653 return 0; 654 default: 655 return -1; 656 } 657 } 658 659 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode) 660 { 661 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { 662 int rd = (opcode & RD) >> 11; 663 int rt = (opcode & RT) >> 16; 664 665 simulate_rdhwr(regs, rd, rt); 666 return 0; 667 } 668 669 /* Not ours. */ 670 return -1; 671 } 672 673 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode) 674 { 675 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) { 676 int rd = (opcode & MM_RS) >> 16; 677 int rt = (opcode & MM_RT) >> 21; 678 simulate_rdhwr(regs, rd, rt); 679 return 0; 680 } 681 682 /* Not ours. */ 683 return -1; 684 } 685 686 static int simulate_sync(struct pt_regs *regs, unsigned int opcode) 687 { 688 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) { 689 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 690 1, regs, 0); 691 return 0; 692 } 693 694 return -1; /* Must be something else ... */ 695 } 696 697 asmlinkage void do_ov(struct pt_regs *regs) 698 { 699 enum ctx_state prev_state; 700 siginfo_t info = { 701 .si_signo = SIGFPE, 702 .si_code = FPE_INTOVF, 703 .si_addr = (void __user *)regs->cp0_epc, 704 }; 705 706 prev_state = exception_enter(); 707 die_if_kernel("Integer overflow", regs); 708 709 force_sig_info(SIGFPE, &info, current); 710 exception_exit(prev_state); 711 } 712 713 /* 714 * Send SIGFPE according to FCSR Cause bits, which must have already 715 * been masked against Enable bits. This is impotant as Inexact can 716 * happen together with Overflow or Underflow, and `ptrace' can set 717 * any bits. 718 */ 719 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr, 720 struct task_struct *tsk) 721 { 722 struct siginfo si = { .si_addr = fault_addr, .si_signo = SIGFPE }; 723 724 if (fcr31 & FPU_CSR_INV_X) 725 si.si_code = FPE_FLTINV; 726 else if (fcr31 & FPU_CSR_DIV_X) 727 si.si_code = FPE_FLTDIV; 728 else if (fcr31 & FPU_CSR_OVF_X) 729 si.si_code = FPE_FLTOVF; 730 else if (fcr31 & FPU_CSR_UDF_X) 731 si.si_code = FPE_FLTUND; 732 else if (fcr31 & FPU_CSR_INE_X) 733 si.si_code = FPE_FLTRES; 734 else 735 si.si_code = __SI_FAULT; 736 force_sig_info(SIGFPE, &si, tsk); 737 } 738 739 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31) 740 { 741 struct siginfo si = { 0 }; 742 struct vm_area_struct *vma; 743 744 switch (sig) { 745 case 0: 746 return 0; 747 748 case SIGFPE: 749 force_fcr31_sig(fcr31, fault_addr, current); 750 return 1; 751 752 case SIGBUS: 753 si.si_addr = fault_addr; 754 si.si_signo = sig; 755 si.si_code = BUS_ADRERR; 756 force_sig_info(sig, &si, current); 757 return 1; 758 759 case SIGSEGV: 760 si.si_addr = fault_addr; 761 si.si_signo = sig; 762 down_read(¤t->mm->mmap_sem); 763 vma = find_vma(current->mm, (unsigned long)fault_addr); 764 if (vma && (vma->vm_start <= (unsigned long)fault_addr)) 765 si.si_code = SEGV_ACCERR; 766 else 767 si.si_code = SEGV_MAPERR; 768 up_read(¤t->mm->mmap_sem); 769 force_sig_info(sig, &si, current); 770 return 1; 771 772 default: 773 force_sig(sig, current); 774 return 1; 775 } 776 } 777 778 static int simulate_fp(struct pt_regs *regs, unsigned int opcode, 779 unsigned long old_epc, unsigned long old_ra) 780 { 781 union mips_instruction inst = { .word = opcode }; 782 void __user *fault_addr; 783 unsigned long fcr31; 784 int sig; 785 786 /* If it's obviously not an FP instruction, skip it */ 787 switch (inst.i_format.opcode) { 788 case cop1_op: 789 case cop1x_op: 790 case lwc1_op: 791 case ldc1_op: 792 case swc1_op: 793 case sdc1_op: 794 break; 795 796 default: 797 return -1; 798 } 799 800 /* 801 * do_ri skipped over the instruction via compute_return_epc, undo 802 * that for the FPU emulator. 803 */ 804 regs->cp0_epc = old_epc; 805 regs->regs[31] = old_ra; 806 807 /* Save the FP context to struct thread_struct */ 808 lose_fpu(1); 809 810 /* Run the emulator */ 811 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 812 &fault_addr); 813 814 /* 815 * We can't allow the emulated instruction to leave any 816 * enabled Cause bits set in $fcr31. 817 */ 818 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); 819 current->thread.fpu.fcr31 &= ~fcr31; 820 821 /* Restore the hardware register state */ 822 own_fpu(1); 823 824 /* Send a signal if required. */ 825 process_fpemu_return(sig, fault_addr, fcr31); 826 827 return 0; 828 } 829 830 /* 831 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX 832 */ 833 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) 834 { 835 enum ctx_state prev_state; 836 void __user *fault_addr; 837 int sig; 838 839 prev_state = exception_enter(); 840 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr, 841 SIGFPE) == NOTIFY_STOP) 842 goto out; 843 844 /* Clear FCSR.Cause before enabling interrupts */ 845 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31)); 846 local_irq_enable(); 847 848 die_if_kernel("FP exception in kernel code", regs); 849 850 if (fcr31 & FPU_CSR_UNI_X) { 851 /* 852 * Unimplemented operation exception. If we've got the full 853 * software emulator on-board, let's use it... 854 * 855 * Force FPU to dump state into task/thread context. We're 856 * moving a lot of data here for what is probably a single 857 * instruction, but the alternative is to pre-decode the FP 858 * register operands before invoking the emulator, which seems 859 * a bit extreme for what should be an infrequent event. 860 */ 861 /* Ensure 'resume' not overwrite saved fp context again. */ 862 lose_fpu(1); 863 864 /* Run the emulator */ 865 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 866 &fault_addr); 867 868 /* 869 * We can't allow the emulated instruction to leave any 870 * enabled Cause bits set in $fcr31. 871 */ 872 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); 873 current->thread.fpu.fcr31 &= ~fcr31; 874 875 /* Restore the hardware register state */ 876 own_fpu(1); /* Using the FPU again. */ 877 } else { 878 sig = SIGFPE; 879 fault_addr = (void __user *) regs->cp0_epc; 880 } 881 882 /* Send a signal if required. */ 883 process_fpemu_return(sig, fault_addr, fcr31); 884 885 out: 886 exception_exit(prev_state); 887 } 888 889 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code, 890 const char *str) 891 { 892 siginfo_t info = { 0 }; 893 char b[40]; 894 895 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 896 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr, 897 SIGTRAP) == NOTIFY_STOP) 898 return; 899 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 900 901 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr, 902 SIGTRAP) == NOTIFY_STOP) 903 return; 904 905 /* 906 * A short test says that IRIX 5.3 sends SIGTRAP for all trap 907 * insns, even for trap and break codes that indicate arithmetic 908 * failures. Weird ... 909 * But should we continue the brokenness??? --macro 910 */ 911 switch (code) { 912 case BRK_OVERFLOW: 913 case BRK_DIVZERO: 914 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 915 die_if_kernel(b, regs); 916 if (code == BRK_DIVZERO) 917 info.si_code = FPE_INTDIV; 918 else 919 info.si_code = FPE_INTOVF; 920 info.si_signo = SIGFPE; 921 info.si_addr = (void __user *) regs->cp0_epc; 922 force_sig_info(SIGFPE, &info, current); 923 break; 924 case BRK_BUG: 925 die_if_kernel("Kernel bug detected", regs); 926 force_sig(SIGTRAP, current); 927 break; 928 case BRK_MEMU: 929 /* 930 * This breakpoint code is used by the FPU emulator to retake 931 * control of the CPU after executing the instruction from the 932 * delay slot of an emulated branch. 933 * 934 * Terminate if exception was recognized as a delay slot return 935 * otherwise handle as normal. 936 */ 937 if (do_dsemulret(regs)) 938 return; 939 940 die_if_kernel("Math emu break/trap", regs); 941 force_sig(SIGTRAP, current); 942 break; 943 default: 944 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 945 die_if_kernel(b, regs); 946 if (si_code) { 947 info.si_signo = SIGTRAP; 948 info.si_code = si_code; 949 force_sig_info(SIGTRAP, &info, current); 950 } else { 951 force_sig(SIGTRAP, current); 952 } 953 } 954 } 955 956 asmlinkage void do_bp(struct pt_regs *regs) 957 { 958 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 959 unsigned int opcode, bcode; 960 enum ctx_state prev_state; 961 mm_segment_t seg; 962 963 seg = get_fs(); 964 if (!user_mode(regs)) 965 set_fs(KERNEL_DS); 966 967 prev_state = exception_enter(); 968 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 969 if (get_isa16_mode(regs->cp0_epc)) { 970 u16 instr[2]; 971 972 if (__get_user(instr[0], (u16 __user *)epc)) 973 goto out_sigsegv; 974 975 if (!cpu_has_mmips) { 976 /* MIPS16e mode */ 977 bcode = (instr[0] >> 5) & 0x3f; 978 } else if (mm_insn_16bit(instr[0])) { 979 /* 16-bit microMIPS BREAK */ 980 bcode = instr[0] & 0xf; 981 } else { 982 /* 32-bit microMIPS BREAK */ 983 if (__get_user(instr[1], (u16 __user *)(epc + 2))) 984 goto out_sigsegv; 985 opcode = (instr[0] << 16) | instr[1]; 986 bcode = (opcode >> 6) & ((1 << 20) - 1); 987 } 988 } else { 989 if (__get_user(opcode, (unsigned int __user *)epc)) 990 goto out_sigsegv; 991 bcode = (opcode >> 6) & ((1 << 20) - 1); 992 } 993 994 /* 995 * There is the ancient bug in the MIPS assemblers that the break 996 * code starts left to bit 16 instead to bit 6 in the opcode. 997 * Gas is bug-compatible, but not always, grrr... 998 * We handle both cases with a simple heuristics. --macro 999 */ 1000 if (bcode >= (1 << 10)) 1001 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10); 1002 1003 /* 1004 * notify the kprobe handlers, if instruction is likely to 1005 * pertain to them. 1006 */ 1007 switch (bcode) { 1008 case BRK_UPROBE: 1009 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode, 1010 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1011 goto out; 1012 else 1013 break; 1014 case BRK_UPROBE_XOL: 1015 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode, 1016 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1017 goto out; 1018 else 1019 break; 1020 case BRK_KPROBE_BP: 1021 if (notify_die(DIE_BREAK, "debug", regs, bcode, 1022 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1023 goto out; 1024 else 1025 break; 1026 case BRK_KPROBE_SSTEPBP: 1027 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, 1028 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1029 goto out; 1030 else 1031 break; 1032 default: 1033 break; 1034 } 1035 1036 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break"); 1037 1038 out: 1039 set_fs(seg); 1040 exception_exit(prev_state); 1041 return; 1042 1043 out_sigsegv: 1044 force_sig(SIGSEGV, current); 1045 goto out; 1046 } 1047 1048 asmlinkage void do_tr(struct pt_regs *regs) 1049 { 1050 u32 opcode, tcode = 0; 1051 enum ctx_state prev_state; 1052 u16 instr[2]; 1053 mm_segment_t seg; 1054 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 1055 1056 seg = get_fs(); 1057 if (!user_mode(regs)) 1058 set_fs(get_ds()); 1059 1060 prev_state = exception_enter(); 1061 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1062 if (get_isa16_mode(regs->cp0_epc)) { 1063 if (__get_user(instr[0], (u16 __user *)(epc + 0)) || 1064 __get_user(instr[1], (u16 __user *)(epc + 2))) 1065 goto out_sigsegv; 1066 opcode = (instr[0] << 16) | instr[1]; 1067 /* Immediate versions don't provide a code. */ 1068 if (!(opcode & OPCODE)) 1069 tcode = (opcode >> 12) & ((1 << 4) - 1); 1070 } else { 1071 if (__get_user(opcode, (u32 __user *)epc)) 1072 goto out_sigsegv; 1073 /* Immediate versions don't provide a code. */ 1074 if (!(opcode & OPCODE)) 1075 tcode = (opcode >> 6) & ((1 << 10) - 1); 1076 } 1077 1078 do_trap_or_bp(regs, tcode, 0, "Trap"); 1079 1080 out: 1081 set_fs(seg); 1082 exception_exit(prev_state); 1083 return; 1084 1085 out_sigsegv: 1086 force_sig(SIGSEGV, current); 1087 goto out; 1088 } 1089 1090 asmlinkage void do_ri(struct pt_regs *regs) 1091 { 1092 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); 1093 unsigned long old_epc = regs->cp0_epc; 1094 unsigned long old31 = regs->regs[31]; 1095 enum ctx_state prev_state; 1096 unsigned int opcode = 0; 1097 int status = -1; 1098 1099 /* 1100 * Avoid any kernel code. Just emulate the R2 instruction 1101 * as quickly as possible. 1102 */ 1103 if (mipsr2_emulation && cpu_has_mips_r6 && 1104 likely(user_mode(regs)) && 1105 likely(get_user(opcode, epc) >= 0)) { 1106 unsigned long fcr31 = 0; 1107 1108 status = mipsr2_decoder(regs, opcode, &fcr31); 1109 switch (status) { 1110 case 0: 1111 case SIGEMT: 1112 return; 1113 case SIGILL: 1114 goto no_r2_instr; 1115 default: 1116 process_fpemu_return(status, 1117 ¤t->thread.cp0_baduaddr, 1118 fcr31); 1119 return; 1120 } 1121 } 1122 1123 no_r2_instr: 1124 1125 prev_state = exception_enter(); 1126 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1127 1128 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr, 1129 SIGILL) == NOTIFY_STOP) 1130 goto out; 1131 1132 die_if_kernel("Reserved instruction in kernel code", regs); 1133 1134 if (unlikely(compute_return_epc(regs) < 0)) 1135 goto out; 1136 1137 if (!get_isa16_mode(regs->cp0_epc)) { 1138 if (unlikely(get_user(opcode, epc) < 0)) 1139 status = SIGSEGV; 1140 1141 if (!cpu_has_llsc && status < 0) 1142 status = simulate_llsc(regs, opcode); 1143 1144 if (status < 0) 1145 status = simulate_rdhwr_normal(regs, opcode); 1146 1147 if (status < 0) 1148 status = simulate_sync(regs, opcode); 1149 1150 if (status < 0) 1151 status = simulate_fp(regs, opcode, old_epc, old31); 1152 } else if (cpu_has_mmips) { 1153 unsigned short mmop[2] = { 0 }; 1154 1155 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0)) 1156 status = SIGSEGV; 1157 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0)) 1158 status = SIGSEGV; 1159 opcode = mmop[0]; 1160 opcode = (opcode << 16) | mmop[1]; 1161 1162 if (status < 0) 1163 status = simulate_rdhwr_mm(regs, opcode); 1164 } 1165 1166 if (status < 0) 1167 status = SIGILL; 1168 1169 if (unlikely(status > 0)) { 1170 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1171 regs->regs[31] = old31; 1172 force_sig(status, current); 1173 } 1174 1175 out: 1176 exception_exit(prev_state); 1177 } 1178 1179 /* 1180 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've 1181 * emulated more than some threshold number of instructions, force migration to 1182 * a "CPU" that has FP support. 1183 */ 1184 static void mt_ase_fp_affinity(void) 1185 { 1186 #ifdef CONFIG_MIPS_MT_FPAFF 1187 if (mt_fpemul_threshold > 0 && 1188 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { 1189 /* 1190 * If there's no FPU present, or if the application has already 1191 * restricted the allowed set to exclude any CPUs with FPUs, 1192 * we'll skip the procedure. 1193 */ 1194 if (cpumask_intersects(¤t->cpus_allowed, &mt_fpu_cpumask)) { 1195 cpumask_t tmask; 1196 1197 current->thread.user_cpus_allowed 1198 = current->cpus_allowed; 1199 cpumask_and(&tmask, ¤t->cpus_allowed, 1200 &mt_fpu_cpumask); 1201 set_cpus_allowed_ptr(current, &tmask); 1202 set_thread_flag(TIF_FPUBOUND); 1203 } 1204 } 1205 #endif /* CONFIG_MIPS_MT_FPAFF */ 1206 } 1207 1208 /* 1209 * No lock; only written during early bootup by CPU 0. 1210 */ 1211 static RAW_NOTIFIER_HEAD(cu2_chain); 1212 1213 int __ref register_cu2_notifier(struct notifier_block *nb) 1214 { 1215 return raw_notifier_chain_register(&cu2_chain, nb); 1216 } 1217 1218 int cu2_notifier_call_chain(unsigned long val, void *v) 1219 { 1220 return raw_notifier_call_chain(&cu2_chain, val, v); 1221 } 1222 1223 static int default_cu2_call(struct notifier_block *nfb, unsigned long action, 1224 void *data) 1225 { 1226 struct pt_regs *regs = data; 1227 1228 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid " 1229 "instruction", regs); 1230 force_sig(SIGILL, current); 1231 1232 return NOTIFY_OK; 1233 } 1234 1235 static int wait_on_fp_mode_switch(atomic_t *p) 1236 { 1237 /* 1238 * The FP mode for this task is currently being switched. That may 1239 * involve modifications to the format of this tasks FP context which 1240 * make it unsafe to proceed with execution for the moment. Instead, 1241 * schedule some other task. 1242 */ 1243 schedule(); 1244 return 0; 1245 } 1246 1247 static int enable_restore_fp_context(int msa) 1248 { 1249 int err, was_fpu_owner, prior_msa; 1250 1251 /* 1252 * If an FP mode switch is currently underway, wait for it to 1253 * complete before proceeding. 1254 */ 1255 wait_on_atomic_t(¤t->mm->context.fp_mode_switching, 1256 wait_on_fp_mode_switch, TASK_KILLABLE); 1257 1258 if (!used_math()) { 1259 /* First time FP context user. */ 1260 preempt_disable(); 1261 err = init_fpu(); 1262 if (msa && !err) { 1263 enable_msa(); 1264 init_msa_upper(); 1265 set_thread_flag(TIF_USEDMSA); 1266 set_thread_flag(TIF_MSA_CTX_LIVE); 1267 } 1268 preempt_enable(); 1269 if (!err) 1270 set_used_math(); 1271 return err; 1272 } 1273 1274 /* 1275 * This task has formerly used the FP context. 1276 * 1277 * If this thread has no live MSA vector context then we can simply 1278 * restore the scalar FP context. If it has live MSA vector context 1279 * (that is, it has or may have used MSA since last performing a 1280 * function call) then we'll need to restore the vector context. This 1281 * applies even if we're currently only executing a scalar FP 1282 * instruction. This is because if we were to later execute an MSA 1283 * instruction then we'd either have to: 1284 * 1285 * - Restore the vector context & clobber any registers modified by 1286 * scalar FP instructions between now & then. 1287 * 1288 * or 1289 * 1290 * - Not restore the vector context & lose the most significant bits 1291 * of all vector registers. 1292 * 1293 * Neither of those options is acceptable. We cannot restore the least 1294 * significant bits of the registers now & only restore the most 1295 * significant bits later because the most significant bits of any 1296 * vector registers whose aliased FP register is modified now will have 1297 * been zeroed. We'd have no way to know that when restoring the vector 1298 * context & thus may load an outdated value for the most significant 1299 * bits of a vector register. 1300 */ 1301 if (!msa && !thread_msa_context_live()) 1302 return own_fpu(1); 1303 1304 /* 1305 * This task is using or has previously used MSA. Thus we require 1306 * that Status.FR == 1. 1307 */ 1308 preempt_disable(); 1309 was_fpu_owner = is_fpu_owner(); 1310 err = own_fpu_inatomic(0); 1311 if (err) 1312 goto out; 1313 1314 enable_msa(); 1315 write_msa_csr(current->thread.fpu.msacsr); 1316 set_thread_flag(TIF_USEDMSA); 1317 1318 /* 1319 * If this is the first time that the task is using MSA and it has 1320 * previously used scalar FP in this time slice then we already nave 1321 * FP context which we shouldn't clobber. We do however need to clear 1322 * the upper 64b of each vector register so that this task has no 1323 * opportunity to see data left behind by another. 1324 */ 1325 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE); 1326 if (!prior_msa && was_fpu_owner) { 1327 init_msa_upper(); 1328 1329 goto out; 1330 } 1331 1332 if (!prior_msa) { 1333 /* 1334 * Restore the least significant 64b of each vector register 1335 * from the existing scalar FP context. 1336 */ 1337 _restore_fp(current); 1338 1339 /* 1340 * The task has not formerly used MSA, so clear the upper 64b 1341 * of each vector register such that it cannot see data left 1342 * behind by another task. 1343 */ 1344 init_msa_upper(); 1345 } else { 1346 /* We need to restore the vector context. */ 1347 restore_msa(current); 1348 1349 /* Restore the scalar FP control & status register */ 1350 if (!was_fpu_owner) 1351 write_32bit_cp1_register(CP1_STATUS, 1352 current->thread.fpu.fcr31); 1353 } 1354 1355 out: 1356 preempt_enable(); 1357 1358 return 0; 1359 } 1360 1361 asmlinkage void do_cpu(struct pt_regs *regs) 1362 { 1363 enum ctx_state prev_state; 1364 unsigned int __user *epc; 1365 unsigned long old_epc, old31; 1366 void __user *fault_addr; 1367 unsigned int opcode; 1368 unsigned long fcr31; 1369 unsigned int cpid; 1370 int status, err; 1371 int sig; 1372 1373 prev_state = exception_enter(); 1374 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; 1375 1376 if (cpid != 2) 1377 die_if_kernel("do_cpu invoked from kernel context!", regs); 1378 1379 switch (cpid) { 1380 case 0: 1381 epc = (unsigned int __user *)exception_epc(regs); 1382 old_epc = regs->cp0_epc; 1383 old31 = regs->regs[31]; 1384 opcode = 0; 1385 status = -1; 1386 1387 if (unlikely(compute_return_epc(regs) < 0)) 1388 break; 1389 1390 if (!get_isa16_mode(regs->cp0_epc)) { 1391 if (unlikely(get_user(opcode, epc) < 0)) 1392 status = SIGSEGV; 1393 1394 if (!cpu_has_llsc && status < 0) 1395 status = simulate_llsc(regs, opcode); 1396 } 1397 1398 if (status < 0) 1399 status = SIGILL; 1400 1401 if (unlikely(status > 0)) { 1402 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1403 regs->regs[31] = old31; 1404 force_sig(status, current); 1405 } 1406 1407 break; 1408 1409 case 3: 1410 /* 1411 * The COP3 opcode space and consequently the CP0.Status.CU3 1412 * bit and the CP0.Cause.CE=3 encoding have been removed as 1413 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs 1414 * up the space has been reused for COP1X instructions, that 1415 * are enabled by the CP0.Status.CU1 bit and consequently 1416 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable 1417 * exceptions. Some FPU-less processors that implement one 1418 * of these ISAs however use this code erroneously for COP1X 1419 * instructions. Therefore we redirect this trap to the FP 1420 * emulator too. 1421 */ 1422 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) { 1423 force_sig(SIGILL, current); 1424 break; 1425 } 1426 /* Fall through. */ 1427 1428 case 1: 1429 err = enable_restore_fp_context(0); 1430 1431 if (raw_cpu_has_fpu && !err) 1432 break; 1433 1434 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0, 1435 &fault_addr); 1436 1437 /* 1438 * We can't allow the emulated instruction to leave 1439 * any enabled Cause bits set in $fcr31. 1440 */ 1441 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); 1442 current->thread.fpu.fcr31 &= ~fcr31; 1443 1444 /* Send a signal if required. */ 1445 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err) 1446 mt_ase_fp_affinity(); 1447 1448 break; 1449 1450 case 2: 1451 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); 1452 break; 1453 } 1454 1455 exception_exit(prev_state); 1456 } 1457 1458 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr) 1459 { 1460 enum ctx_state prev_state; 1461 1462 prev_state = exception_enter(); 1463 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1464 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0, 1465 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP) 1466 goto out; 1467 1468 /* Clear MSACSR.Cause before enabling interrupts */ 1469 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF); 1470 local_irq_enable(); 1471 1472 die_if_kernel("do_msa_fpe invoked from kernel context!", regs); 1473 force_sig(SIGFPE, current); 1474 out: 1475 exception_exit(prev_state); 1476 } 1477 1478 asmlinkage void do_msa(struct pt_regs *regs) 1479 { 1480 enum ctx_state prev_state; 1481 int err; 1482 1483 prev_state = exception_enter(); 1484 1485 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) { 1486 force_sig(SIGILL, current); 1487 goto out; 1488 } 1489 1490 die_if_kernel("do_msa invoked from kernel context!", regs); 1491 1492 err = enable_restore_fp_context(1); 1493 if (err) 1494 force_sig(SIGILL, current); 1495 out: 1496 exception_exit(prev_state); 1497 } 1498 1499 asmlinkage void do_mdmx(struct pt_regs *regs) 1500 { 1501 enum ctx_state prev_state; 1502 1503 prev_state = exception_enter(); 1504 force_sig(SIGILL, current); 1505 exception_exit(prev_state); 1506 } 1507 1508 /* 1509 * Called with interrupts disabled. 1510 */ 1511 asmlinkage void do_watch(struct pt_regs *regs) 1512 { 1513 siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT }; 1514 enum ctx_state prev_state; 1515 1516 prev_state = exception_enter(); 1517 /* 1518 * Clear WP (bit 22) bit of cause register so we don't loop 1519 * forever. 1520 */ 1521 clear_c0_cause(CAUSEF_WP); 1522 1523 /* 1524 * If the current thread has the watch registers loaded, save 1525 * their values and send SIGTRAP. Otherwise another thread 1526 * left the registers set, clear them and continue. 1527 */ 1528 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { 1529 mips_read_watch_registers(); 1530 local_irq_enable(); 1531 force_sig_info(SIGTRAP, &info, current); 1532 } else { 1533 mips_clear_watch_registers(); 1534 local_irq_enable(); 1535 } 1536 exception_exit(prev_state); 1537 } 1538 1539 asmlinkage void do_mcheck(struct pt_regs *regs) 1540 { 1541 int multi_match = regs->cp0_status & ST0_TS; 1542 enum ctx_state prev_state; 1543 mm_segment_t old_fs = get_fs(); 1544 1545 prev_state = exception_enter(); 1546 show_regs(regs); 1547 1548 if (multi_match) { 1549 dump_tlb_regs(); 1550 pr_info("\n"); 1551 dump_tlb_all(); 1552 } 1553 1554 if (!user_mode(regs)) 1555 set_fs(KERNEL_DS); 1556 1557 show_code((unsigned int __user *) regs->cp0_epc); 1558 1559 set_fs(old_fs); 1560 1561 /* 1562 * Some chips may have other causes of machine check (e.g. SB1 1563 * graduation timer) 1564 */ 1565 panic("Caught Machine Check exception - %scaused by multiple " 1566 "matching entries in the TLB.", 1567 (multi_match) ? "" : "not "); 1568 } 1569 1570 asmlinkage void do_mt(struct pt_regs *regs) 1571 { 1572 int subcode; 1573 1574 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) 1575 >> VPECONTROL_EXCPT_SHIFT; 1576 switch (subcode) { 1577 case 0: 1578 printk(KERN_DEBUG "Thread Underflow\n"); 1579 break; 1580 case 1: 1581 printk(KERN_DEBUG "Thread Overflow\n"); 1582 break; 1583 case 2: 1584 printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); 1585 break; 1586 case 3: 1587 printk(KERN_DEBUG "Gating Storage Exception\n"); 1588 break; 1589 case 4: 1590 printk(KERN_DEBUG "YIELD Scheduler Exception\n"); 1591 break; 1592 case 5: 1593 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n"); 1594 break; 1595 default: 1596 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", 1597 subcode); 1598 break; 1599 } 1600 die_if_kernel("MIPS MT Thread exception in kernel", regs); 1601 1602 force_sig(SIGILL, current); 1603 } 1604 1605 1606 asmlinkage void do_dsp(struct pt_regs *regs) 1607 { 1608 if (cpu_has_dsp) 1609 panic("Unexpected DSP exception"); 1610 1611 force_sig(SIGILL, current); 1612 } 1613 1614 asmlinkage void do_reserved(struct pt_regs *regs) 1615 { 1616 /* 1617 * Game over - no way to handle this if it ever occurs. Most probably 1618 * caused by a new unknown cpu type or after another deadly 1619 * hard/software error. 1620 */ 1621 show_regs(regs); 1622 panic("Caught reserved exception %ld - should not happen.", 1623 (regs->cp0_cause & 0x7f) >> 2); 1624 } 1625 1626 static int __initdata l1parity = 1; 1627 static int __init nol1parity(char *s) 1628 { 1629 l1parity = 0; 1630 return 1; 1631 } 1632 __setup("nol1par", nol1parity); 1633 static int __initdata l2parity = 1; 1634 static int __init nol2parity(char *s) 1635 { 1636 l2parity = 0; 1637 return 1; 1638 } 1639 __setup("nol2par", nol2parity); 1640 1641 /* 1642 * Some MIPS CPUs can enable/disable for cache parity detection, but do 1643 * it different ways. 1644 */ 1645 static inline void parity_protection_init(void) 1646 { 1647 #define ERRCTL_PE 0x80000000 1648 #define ERRCTL_L2P 0x00800000 1649 1650 if (mips_cm_revision() >= CM_REV_CM3) { 1651 ulong gcr_ectl, cp0_ectl; 1652 1653 /* 1654 * With CM3 systems we need to ensure that the L1 & L2 1655 * parity enables are set to the same value, since this 1656 * is presumed by the hardware engineers. 1657 * 1658 * If the user disabled either of L1 or L2 ECC checking, 1659 * disable both. 1660 */ 1661 l1parity &= l2parity; 1662 l2parity &= l1parity; 1663 1664 /* Probe L1 ECC support */ 1665 cp0_ectl = read_c0_ecc(); 1666 write_c0_ecc(cp0_ectl | ERRCTL_PE); 1667 back_to_back_c0_hazard(); 1668 cp0_ectl = read_c0_ecc(); 1669 1670 /* Probe L2 ECC support */ 1671 gcr_ectl = read_gcr_err_control(); 1672 1673 if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT_MSK) || 1674 !(cp0_ectl & ERRCTL_PE)) { 1675 /* 1676 * One of L1 or L2 ECC checking isn't supported, 1677 * so we cannot enable either. 1678 */ 1679 l1parity = l2parity = 0; 1680 } 1681 1682 /* Configure L1 ECC checking */ 1683 if (l1parity) 1684 cp0_ectl |= ERRCTL_PE; 1685 else 1686 cp0_ectl &= ~ERRCTL_PE; 1687 write_c0_ecc(cp0_ectl); 1688 back_to_back_c0_hazard(); 1689 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity); 1690 1691 /* Configure L2 ECC checking */ 1692 if (l2parity) 1693 gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK; 1694 else 1695 gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK; 1696 write_gcr_err_control(gcr_ectl); 1697 gcr_ectl = read_gcr_err_control(); 1698 gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK; 1699 WARN_ON(!!gcr_ectl != l2parity); 1700 1701 pr_info("Cache parity protection %sabled\n", 1702 l1parity ? "en" : "dis"); 1703 return; 1704 } 1705 1706 switch (current_cpu_type()) { 1707 case CPU_24K: 1708 case CPU_34K: 1709 case CPU_74K: 1710 case CPU_1004K: 1711 case CPU_1074K: 1712 case CPU_INTERAPTIV: 1713 case CPU_PROAPTIV: 1714 case CPU_P5600: 1715 case CPU_QEMU_GENERIC: 1716 case CPU_P6600: 1717 { 1718 unsigned long errctl; 1719 unsigned int l1parity_present, l2parity_present; 1720 1721 errctl = read_c0_ecc(); 1722 errctl &= ~(ERRCTL_PE|ERRCTL_L2P); 1723 1724 /* probe L1 parity support */ 1725 write_c0_ecc(errctl | ERRCTL_PE); 1726 back_to_back_c0_hazard(); 1727 l1parity_present = (read_c0_ecc() & ERRCTL_PE); 1728 1729 /* probe L2 parity support */ 1730 write_c0_ecc(errctl|ERRCTL_L2P); 1731 back_to_back_c0_hazard(); 1732 l2parity_present = (read_c0_ecc() & ERRCTL_L2P); 1733 1734 if (l1parity_present && l2parity_present) { 1735 if (l1parity) 1736 errctl |= ERRCTL_PE; 1737 if (l1parity ^ l2parity) 1738 errctl |= ERRCTL_L2P; 1739 } else if (l1parity_present) { 1740 if (l1parity) 1741 errctl |= ERRCTL_PE; 1742 } else if (l2parity_present) { 1743 if (l2parity) 1744 errctl |= ERRCTL_L2P; 1745 } else { 1746 /* No parity available */ 1747 } 1748 1749 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); 1750 1751 write_c0_ecc(errctl); 1752 back_to_back_c0_hazard(); 1753 errctl = read_c0_ecc(); 1754 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); 1755 1756 if (l1parity_present) 1757 printk(KERN_INFO "Cache parity protection %sabled\n", 1758 (errctl & ERRCTL_PE) ? "en" : "dis"); 1759 1760 if (l2parity_present) { 1761 if (l1parity_present && l1parity) 1762 errctl ^= ERRCTL_L2P; 1763 printk(KERN_INFO "L2 cache parity protection %sabled\n", 1764 (errctl & ERRCTL_L2P) ? "en" : "dis"); 1765 } 1766 } 1767 break; 1768 1769 case CPU_5KC: 1770 case CPU_5KE: 1771 case CPU_LOONGSON1: 1772 write_c0_ecc(0x80000000); 1773 back_to_back_c0_hazard(); 1774 /* Set the PE bit (bit 31) in the c0_errctl register. */ 1775 printk(KERN_INFO "Cache parity protection %sabled\n", 1776 (read_c0_ecc() & 0x80000000) ? "en" : "dis"); 1777 break; 1778 case CPU_20KC: 1779 case CPU_25KF: 1780 /* Clear the DE bit (bit 16) in the c0_status register. */ 1781 printk(KERN_INFO "Enable cache parity protection for " 1782 "MIPS 20KC/25KF CPUs.\n"); 1783 clear_c0_status(ST0_DE); 1784 break; 1785 default: 1786 break; 1787 } 1788 } 1789 1790 asmlinkage void cache_parity_error(void) 1791 { 1792 const int field = 2 * sizeof(unsigned long); 1793 unsigned int reg_val; 1794 1795 /* For the moment, report the problem and hang. */ 1796 printk("Cache error exception:\n"); 1797 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1798 reg_val = read_c0_cacheerr(); 1799 printk("c0_cacheerr == %08x\n", reg_val); 1800 1801 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1802 reg_val & (1<<30) ? "secondary" : "primary", 1803 reg_val & (1<<31) ? "data" : "insn"); 1804 if ((cpu_has_mips_r2_r6) && 1805 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { 1806 pr_err("Error bits: %s%s%s%s%s%s%s%s\n", 1807 reg_val & (1<<29) ? "ED " : "", 1808 reg_val & (1<<28) ? "ET " : "", 1809 reg_val & (1<<27) ? "ES " : "", 1810 reg_val & (1<<26) ? "EE " : "", 1811 reg_val & (1<<25) ? "EB " : "", 1812 reg_val & (1<<24) ? "EI " : "", 1813 reg_val & (1<<23) ? "E1 " : "", 1814 reg_val & (1<<22) ? "E0 " : ""); 1815 } else { 1816 pr_err("Error bits: %s%s%s%s%s%s%s\n", 1817 reg_val & (1<<29) ? "ED " : "", 1818 reg_val & (1<<28) ? "ET " : "", 1819 reg_val & (1<<26) ? "EE " : "", 1820 reg_val & (1<<25) ? "EB " : "", 1821 reg_val & (1<<24) ? "EI " : "", 1822 reg_val & (1<<23) ? "E1 " : "", 1823 reg_val & (1<<22) ? "E0 " : ""); 1824 } 1825 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); 1826 1827 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) 1828 if (reg_val & (1<<22)) 1829 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); 1830 1831 if (reg_val & (1<<23)) 1832 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); 1833 #endif 1834 1835 panic("Can't handle the cache error!"); 1836 } 1837 1838 asmlinkage void do_ftlb(void) 1839 { 1840 const int field = 2 * sizeof(unsigned long); 1841 unsigned int reg_val; 1842 1843 /* For the moment, report the problem and hang. */ 1844 if ((cpu_has_mips_r2_r6) && 1845 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) || 1846 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) { 1847 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n", 1848 read_c0_ecc()); 1849 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1850 reg_val = read_c0_cacheerr(); 1851 pr_err("c0_cacheerr == %08x\n", reg_val); 1852 1853 if ((reg_val & 0xc0000000) == 0xc0000000) { 1854 pr_err("Decoded c0_cacheerr: FTLB parity error\n"); 1855 } else { 1856 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1857 reg_val & (1<<30) ? "secondary" : "primary", 1858 reg_val & (1<<31) ? "data" : "insn"); 1859 } 1860 } else { 1861 pr_err("FTLB error exception\n"); 1862 } 1863 /* Just print the cacheerr bits for now */ 1864 cache_parity_error(); 1865 } 1866 1867 /* 1868 * SDBBP EJTAG debug exception handler. 1869 * We skip the instruction and return to the next instruction. 1870 */ 1871 void ejtag_exception_handler(struct pt_regs *regs) 1872 { 1873 const int field = 2 * sizeof(unsigned long); 1874 unsigned long depc, old_epc, old_ra; 1875 unsigned int debug; 1876 1877 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); 1878 depc = read_c0_depc(); 1879 debug = read_c0_debug(); 1880 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); 1881 if (debug & 0x80000000) { 1882 /* 1883 * In branch delay slot. 1884 * We cheat a little bit here and use EPC to calculate the 1885 * debug return address (DEPC). EPC is restored after the 1886 * calculation. 1887 */ 1888 old_epc = regs->cp0_epc; 1889 old_ra = regs->regs[31]; 1890 regs->cp0_epc = depc; 1891 compute_return_epc(regs); 1892 depc = regs->cp0_epc; 1893 regs->cp0_epc = old_epc; 1894 regs->regs[31] = old_ra; 1895 } else 1896 depc += 4; 1897 write_c0_depc(depc); 1898 1899 #if 0 1900 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); 1901 write_c0_debug(debug | 0x100); 1902 #endif 1903 } 1904 1905 /* 1906 * NMI exception handler. 1907 * No lock; only written during early bootup by CPU 0. 1908 */ 1909 static RAW_NOTIFIER_HEAD(nmi_chain); 1910 1911 int register_nmi_notifier(struct notifier_block *nb) 1912 { 1913 return raw_notifier_chain_register(&nmi_chain, nb); 1914 } 1915 1916 void __noreturn nmi_exception_handler(struct pt_regs *regs) 1917 { 1918 char str[100]; 1919 1920 nmi_enter(); 1921 raw_notifier_call_chain(&nmi_chain, 0, regs); 1922 bust_spinlocks(1); 1923 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n", 1924 smp_processor_id(), regs->cp0_epc); 1925 regs->cp0_epc = read_c0_errorepc(); 1926 die(str, regs); 1927 nmi_exit(); 1928 } 1929 1930 #define VECTORSPACING 0x100 /* for EI/VI mode */ 1931 1932 unsigned long ebase; 1933 EXPORT_SYMBOL_GPL(ebase); 1934 unsigned long exception_handlers[32]; 1935 unsigned long vi_handlers[64]; 1936 1937 void __init *set_except_vector(int n, void *addr) 1938 { 1939 unsigned long handler = (unsigned long) addr; 1940 unsigned long old_handler; 1941 1942 #ifdef CONFIG_CPU_MICROMIPS 1943 /* 1944 * Only the TLB handlers are cache aligned with an even 1945 * address. All other handlers are on an odd address and 1946 * require no modification. Otherwise, MIPS32 mode will 1947 * be entered when handling any TLB exceptions. That 1948 * would be bad...since we must stay in microMIPS mode. 1949 */ 1950 if (!(handler & 0x1)) 1951 handler |= 1; 1952 #endif 1953 old_handler = xchg(&exception_handlers[n], handler); 1954 1955 if (n == 0 && cpu_has_divec) { 1956 #ifdef CONFIG_CPU_MICROMIPS 1957 unsigned long jump_mask = ~((1 << 27) - 1); 1958 #else 1959 unsigned long jump_mask = ~((1 << 28) - 1); 1960 #endif 1961 u32 *buf = (u32 *)(ebase + 0x200); 1962 unsigned int k0 = 26; 1963 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { 1964 uasm_i_j(&buf, handler & ~jump_mask); 1965 uasm_i_nop(&buf); 1966 } else { 1967 UASM_i_LA(&buf, k0, handler); 1968 uasm_i_jr(&buf, k0); 1969 uasm_i_nop(&buf); 1970 } 1971 local_flush_icache_range(ebase + 0x200, (unsigned long)buf); 1972 } 1973 return (void *)old_handler; 1974 } 1975 1976 static void do_default_vi(void) 1977 { 1978 show_regs(get_irq_regs()); 1979 panic("Caught unexpected vectored interrupt."); 1980 } 1981 1982 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) 1983 { 1984 unsigned long handler; 1985 unsigned long old_handler = vi_handlers[n]; 1986 int srssets = current_cpu_data.srsets; 1987 u16 *h; 1988 unsigned char *b; 1989 1990 BUG_ON(!cpu_has_veic && !cpu_has_vint); 1991 1992 if (addr == NULL) { 1993 handler = (unsigned long) do_default_vi; 1994 srs = 0; 1995 } else 1996 handler = (unsigned long) addr; 1997 vi_handlers[n] = handler; 1998 1999 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); 2000 2001 if (srs >= srssets) 2002 panic("Shadow register set %d not supported", srs); 2003 2004 if (cpu_has_veic) { 2005 if (board_bind_eic_interrupt) 2006 board_bind_eic_interrupt(n, srs); 2007 } else if (cpu_has_vint) { 2008 /* SRSMap is only defined if shadow sets are implemented */ 2009 if (srssets > 1) 2010 change_c0_srsmap(0xf << n*4, srs << n*4); 2011 } 2012 2013 if (srs == 0) { 2014 /* 2015 * If no shadow set is selected then use the default handler 2016 * that does normal register saving and standard interrupt exit 2017 */ 2018 extern char except_vec_vi, except_vec_vi_lui; 2019 extern char except_vec_vi_ori, except_vec_vi_end; 2020 extern char rollback_except_vec_vi; 2021 char *vec_start = using_rollback_handler() ? 2022 &rollback_except_vec_vi : &except_vec_vi; 2023 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN) 2024 const int lui_offset = &except_vec_vi_lui - vec_start + 2; 2025 const int ori_offset = &except_vec_vi_ori - vec_start + 2; 2026 #else 2027 const int lui_offset = &except_vec_vi_lui - vec_start; 2028 const int ori_offset = &except_vec_vi_ori - vec_start; 2029 #endif 2030 const int handler_len = &except_vec_vi_end - vec_start; 2031 2032 if (handler_len > VECTORSPACING) { 2033 /* 2034 * Sigh... panicing won't help as the console 2035 * is probably not configured :( 2036 */ 2037 panic("VECTORSPACING too small"); 2038 } 2039 2040 set_handler(((unsigned long)b - ebase), vec_start, 2041 #ifdef CONFIG_CPU_MICROMIPS 2042 (handler_len - 1)); 2043 #else 2044 handler_len); 2045 #endif 2046 h = (u16 *)(b + lui_offset); 2047 *h = (handler >> 16) & 0xffff; 2048 h = (u16 *)(b + ori_offset); 2049 *h = (handler & 0xffff); 2050 local_flush_icache_range((unsigned long)b, 2051 (unsigned long)(b+handler_len)); 2052 } 2053 else { 2054 /* 2055 * In other cases jump directly to the interrupt handler. It 2056 * is the handler's responsibility to save registers if required 2057 * (eg hi/lo) and return from the exception using "eret". 2058 */ 2059 u32 insn; 2060 2061 h = (u16 *)b; 2062 /* j handler */ 2063 #ifdef CONFIG_CPU_MICROMIPS 2064 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1); 2065 #else 2066 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2); 2067 #endif 2068 h[0] = (insn >> 16) & 0xffff; 2069 h[1] = insn & 0xffff; 2070 h[2] = 0; 2071 h[3] = 0; 2072 local_flush_icache_range((unsigned long)b, 2073 (unsigned long)(b+8)); 2074 } 2075 2076 return (void *)old_handler; 2077 } 2078 2079 void *set_vi_handler(int n, vi_handler_t addr) 2080 { 2081 return set_vi_srs_handler(n, addr, 0); 2082 } 2083 2084 extern void tlb_init(void); 2085 2086 /* 2087 * Timer interrupt 2088 */ 2089 int cp0_compare_irq; 2090 EXPORT_SYMBOL_GPL(cp0_compare_irq); 2091 int cp0_compare_irq_shift; 2092 2093 /* 2094 * Performance counter IRQ or -1 if shared with timer 2095 */ 2096 int cp0_perfcount_irq; 2097 EXPORT_SYMBOL_GPL(cp0_perfcount_irq); 2098 2099 /* 2100 * Fast debug channel IRQ or -1 if not present 2101 */ 2102 int cp0_fdc_irq; 2103 EXPORT_SYMBOL_GPL(cp0_fdc_irq); 2104 2105 static int noulri; 2106 2107 static int __init ulri_disable(char *s) 2108 { 2109 pr_info("Disabling ulri\n"); 2110 noulri = 1; 2111 2112 return 1; 2113 } 2114 __setup("noulri", ulri_disable); 2115 2116 /* configure STATUS register */ 2117 static void configure_status(void) 2118 { 2119 /* 2120 * Disable coprocessors and select 32-bit or 64-bit addressing 2121 * and the 16/32 or 32/32 FPR register model. Reset the BEV 2122 * flag that some firmware may have left set and the TS bit (for 2123 * IP27). Set XX for ISA IV code to work. 2124 */ 2125 unsigned int status_set = ST0_CU0; 2126 #ifdef CONFIG_64BIT 2127 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; 2128 #endif 2129 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV) 2130 status_set |= ST0_XX; 2131 if (cpu_has_dsp) 2132 status_set |= ST0_MX; 2133 2134 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, 2135 status_set); 2136 } 2137 2138 unsigned int hwrena; 2139 EXPORT_SYMBOL_GPL(hwrena); 2140 2141 /* configure HWRENA register */ 2142 static void configure_hwrena(void) 2143 { 2144 hwrena = cpu_hwrena_impl_bits; 2145 2146 if (cpu_has_mips_r2_r6) 2147 hwrena |= MIPS_HWRENA_CPUNUM | 2148 MIPS_HWRENA_SYNCISTEP | 2149 MIPS_HWRENA_CC | 2150 MIPS_HWRENA_CCRES; 2151 2152 if (!noulri && cpu_has_userlocal) 2153 hwrena |= MIPS_HWRENA_ULR; 2154 2155 if (hwrena) 2156 write_c0_hwrena(hwrena); 2157 } 2158 2159 static void configure_exception_vector(void) 2160 { 2161 if (cpu_has_veic || cpu_has_vint) { 2162 unsigned long sr = set_c0_status(ST0_BEV); 2163 /* If available, use WG to set top bits of EBASE */ 2164 if (cpu_has_ebase_wg) { 2165 #ifdef CONFIG_64BIT 2166 write_c0_ebase_64(ebase | MIPS_EBASE_WG); 2167 #else 2168 write_c0_ebase(ebase | MIPS_EBASE_WG); 2169 #endif 2170 } 2171 write_c0_ebase(ebase); 2172 write_c0_status(sr); 2173 /* Setting vector spacing enables EI/VI mode */ 2174 change_c0_intctl(0x3e0, VECTORSPACING); 2175 } 2176 if (cpu_has_divec) { 2177 if (cpu_has_mipsmt) { 2178 unsigned int vpflags = dvpe(); 2179 set_c0_cause(CAUSEF_IV); 2180 evpe(vpflags); 2181 } else 2182 set_c0_cause(CAUSEF_IV); 2183 } 2184 } 2185 2186 void per_cpu_trap_init(bool is_boot_cpu) 2187 { 2188 unsigned int cpu = smp_processor_id(); 2189 2190 configure_status(); 2191 configure_hwrena(); 2192 2193 configure_exception_vector(); 2194 2195 /* 2196 * Before R2 both interrupt numbers were fixed to 7, so on R2 only: 2197 * 2198 * o read IntCtl.IPTI to determine the timer interrupt 2199 * o read IntCtl.IPPCI to determine the performance counter interrupt 2200 * o read IntCtl.IPFDC to determine the fast debug channel interrupt 2201 */ 2202 if (cpu_has_mips_r2_r6) { 2203 /* 2204 * We shouldn't trust a secondary core has a sane EBASE register 2205 * so use the one calculated by the boot CPU. 2206 */ 2207 if (!is_boot_cpu) { 2208 /* If available, use WG to set top bits of EBASE */ 2209 if (cpu_has_ebase_wg) { 2210 #ifdef CONFIG_64BIT 2211 write_c0_ebase_64(ebase | MIPS_EBASE_WG); 2212 #else 2213 write_c0_ebase(ebase | MIPS_EBASE_WG); 2214 #endif 2215 } 2216 write_c0_ebase(ebase); 2217 } 2218 2219 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; 2220 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; 2221 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; 2222 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7; 2223 if (!cp0_fdc_irq) 2224 cp0_fdc_irq = -1; 2225 2226 } else { 2227 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; 2228 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ; 2229 cp0_perfcount_irq = -1; 2230 cp0_fdc_irq = -1; 2231 } 2232 2233 if (!cpu_data[cpu].asid_cache) 2234 cpu_data[cpu].asid_cache = asid_first_version(cpu); 2235 2236 mmgrab(&init_mm); 2237 current->active_mm = &init_mm; 2238 BUG_ON(current->mm); 2239 enter_lazy_tlb(&init_mm, current); 2240 2241 /* Boot CPU's cache setup in setup_arch(). */ 2242 if (!is_boot_cpu) 2243 cpu_cache_init(); 2244 tlb_init(); 2245 TLBMISS_HANDLER_SETUP(); 2246 } 2247 2248 /* Install CPU exception handler */ 2249 void set_handler(unsigned long offset, void *addr, unsigned long size) 2250 { 2251 #ifdef CONFIG_CPU_MICROMIPS 2252 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size); 2253 #else 2254 memcpy((void *)(ebase + offset), addr, size); 2255 #endif 2256 local_flush_icache_range(ebase + offset, ebase + offset + size); 2257 } 2258 2259 static char panic_null_cerr[] = 2260 "Trying to set NULL cache error exception handler"; 2261 2262 /* 2263 * Install uncached CPU exception handler. 2264 * This is suitable only for the cache error exception which is the only 2265 * exception handler that is being run uncached. 2266 */ 2267 void set_uncached_handler(unsigned long offset, void *addr, 2268 unsigned long size) 2269 { 2270 unsigned long uncached_ebase = CKSEG1ADDR(ebase); 2271 2272 if (!addr) 2273 panic(panic_null_cerr); 2274 2275 memcpy((void *)(uncached_ebase + offset), addr, size); 2276 } 2277 2278 static int __initdata rdhwr_noopt; 2279 static int __init set_rdhwr_noopt(char *str) 2280 { 2281 rdhwr_noopt = 1; 2282 return 1; 2283 } 2284 2285 __setup("rdhwr_noopt", set_rdhwr_noopt); 2286 2287 void __init trap_init(void) 2288 { 2289 extern char except_vec3_generic; 2290 extern char except_vec4; 2291 extern char except_vec3_r4000; 2292 unsigned long i; 2293 2294 check_wait(); 2295 2296 if (cpu_has_veic || cpu_has_vint) { 2297 unsigned long size = 0x200 + VECTORSPACING*64; 2298 phys_addr_t ebase_pa; 2299 2300 ebase = (unsigned long) 2301 __alloc_bootmem(size, 1 << fls(size), 0); 2302 2303 /* 2304 * Try to ensure ebase resides in KSeg0 if possible. 2305 * 2306 * It shouldn't generally be in XKPhys on MIPS64 to avoid 2307 * hitting a poorly defined exception base for Cache Errors. 2308 * The allocation is likely to be in the low 512MB of physical, 2309 * in which case we should be able to convert to KSeg0. 2310 * 2311 * EVA is special though as it allows segments to be rearranged 2312 * and to become uncached during cache error handling. 2313 */ 2314 ebase_pa = __pa(ebase); 2315 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000)) 2316 ebase = CKSEG0ADDR(ebase_pa); 2317 } else { 2318 ebase = CAC_BASE; 2319 2320 if (cpu_has_mips_r2_r6) { 2321 if (cpu_has_ebase_wg) { 2322 #ifdef CONFIG_64BIT 2323 ebase = (read_c0_ebase_64() & ~0xfff); 2324 #else 2325 ebase = (read_c0_ebase() & ~0xfff); 2326 #endif 2327 } else { 2328 ebase += (read_c0_ebase() & 0x3ffff000); 2329 } 2330 } 2331 } 2332 2333 if (cpu_has_mmips) { 2334 unsigned int config3 = read_c0_config3(); 2335 2336 if (IS_ENABLED(CONFIG_CPU_MICROMIPS)) 2337 write_c0_config3(config3 | MIPS_CONF3_ISA_OE); 2338 else 2339 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE); 2340 } 2341 2342 if (board_ebase_setup) 2343 board_ebase_setup(); 2344 per_cpu_trap_init(true); 2345 2346 /* 2347 * Copy the generic exception handlers to their final destination. 2348 * This will be overridden later as suitable for a particular 2349 * configuration. 2350 */ 2351 set_handler(0x180, &except_vec3_generic, 0x80); 2352 2353 /* 2354 * Setup default vectors 2355 */ 2356 for (i = 0; i <= 31; i++) 2357 set_except_vector(i, handle_reserved); 2358 2359 /* 2360 * Copy the EJTAG debug exception vector handler code to it's final 2361 * destination. 2362 */ 2363 if (cpu_has_ejtag && board_ejtag_handler_setup) 2364 board_ejtag_handler_setup(); 2365 2366 /* 2367 * Only some CPUs have the watch exceptions. 2368 */ 2369 if (cpu_has_watch) 2370 set_except_vector(EXCCODE_WATCH, handle_watch); 2371 2372 /* 2373 * Initialise interrupt handlers 2374 */ 2375 if (cpu_has_veic || cpu_has_vint) { 2376 int nvec = cpu_has_veic ? 64 : 8; 2377 for (i = 0; i < nvec; i++) 2378 set_vi_handler(i, NULL); 2379 } 2380 else if (cpu_has_divec) 2381 set_handler(0x200, &except_vec4, 0x8); 2382 2383 /* 2384 * Some CPUs can enable/disable for cache parity detection, but does 2385 * it different ways. 2386 */ 2387 parity_protection_init(); 2388 2389 /* 2390 * The Data Bus Errors / Instruction Bus Errors are signaled 2391 * by external hardware. Therefore these two exceptions 2392 * may have board specific handlers. 2393 */ 2394 if (board_be_init) 2395 board_be_init(); 2396 2397 set_except_vector(EXCCODE_INT, using_rollback_handler() ? 2398 rollback_handle_int : handle_int); 2399 set_except_vector(EXCCODE_MOD, handle_tlbm); 2400 set_except_vector(EXCCODE_TLBL, handle_tlbl); 2401 set_except_vector(EXCCODE_TLBS, handle_tlbs); 2402 2403 set_except_vector(EXCCODE_ADEL, handle_adel); 2404 set_except_vector(EXCCODE_ADES, handle_ades); 2405 2406 set_except_vector(EXCCODE_IBE, handle_ibe); 2407 set_except_vector(EXCCODE_DBE, handle_dbe); 2408 2409 set_except_vector(EXCCODE_SYS, handle_sys); 2410 set_except_vector(EXCCODE_BP, handle_bp); 2411 set_except_vector(EXCCODE_RI, rdhwr_noopt ? handle_ri : 2412 (cpu_has_vtag_icache ? 2413 handle_ri_rdhwr_vivt : handle_ri_rdhwr)); 2414 set_except_vector(EXCCODE_CPU, handle_cpu); 2415 set_except_vector(EXCCODE_OV, handle_ov); 2416 set_except_vector(EXCCODE_TR, handle_tr); 2417 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe); 2418 2419 if (current_cpu_type() == CPU_R6000 || 2420 current_cpu_type() == CPU_R6000A) { 2421 /* 2422 * The R6000 is the only R-series CPU that features a machine 2423 * check exception (similar to the R4000 cache error) and 2424 * unaligned ldc1/sdc1 exception. The handlers have not been 2425 * written yet. Well, anyway there is no R6000 machine on the 2426 * current list of targets for Linux/MIPS. 2427 * (Duh, crap, there is someone with a triple R6k machine) 2428 */ 2429 //set_except_vector(14, handle_mc); 2430 //set_except_vector(15, handle_ndc); 2431 } 2432 2433 2434 if (board_nmi_handler_setup) 2435 board_nmi_handler_setup(); 2436 2437 if (cpu_has_fpu && !cpu_has_nofpuex) 2438 set_except_vector(EXCCODE_FPE, handle_fpe); 2439 2440 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb); 2441 2442 if (cpu_has_rixiex) { 2443 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0); 2444 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0); 2445 } 2446 2447 set_except_vector(EXCCODE_MSADIS, handle_msa); 2448 set_except_vector(EXCCODE_MDMX, handle_mdmx); 2449 2450 if (cpu_has_mcheck) 2451 set_except_vector(EXCCODE_MCHECK, handle_mcheck); 2452 2453 if (cpu_has_mipsmt) 2454 set_except_vector(EXCCODE_THREAD, handle_mt); 2455 2456 set_except_vector(EXCCODE_DSPDIS, handle_dsp); 2457 2458 if (board_cache_error_setup) 2459 board_cache_error_setup(); 2460 2461 if (cpu_has_vce) 2462 /* Special exception: R4[04]00 uses also the divec space. */ 2463 set_handler(0x180, &except_vec3_r4000, 0x100); 2464 else if (cpu_has_4kex) 2465 set_handler(0x180, &except_vec3_generic, 0x80); 2466 else 2467 set_handler(0x080, &except_vec3_generic, 0x80); 2468 2469 local_flush_icache_range(ebase, ebase + 0x400); 2470 2471 sort_extable(__start___dbe_table, __stop___dbe_table); 2472 2473 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */ 2474 } 2475 2476 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd, 2477 void *v) 2478 { 2479 switch (cmd) { 2480 case CPU_PM_ENTER_FAILED: 2481 case CPU_PM_EXIT: 2482 configure_status(); 2483 configure_hwrena(); 2484 configure_exception_vector(); 2485 2486 /* Restore register with CPU number for TLB handlers */ 2487 TLBMISS_HANDLER_RESTORE(); 2488 2489 break; 2490 } 2491 2492 return NOTIFY_OK; 2493 } 2494 2495 static struct notifier_block trap_pm_notifier_block = { 2496 .notifier_call = trap_pm_notifier, 2497 }; 2498 2499 static int __init trap_pm_init(void) 2500 { 2501 return cpu_pm_register_notifier(&trap_pm_notifier_block); 2502 } 2503 arch_initcall(trap_pm_init); 2504