1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle 7 * Copyright (C) 1995, 1996 Paul M. Antoine 8 * Copyright (C) 1998 Ulf Carlsson 9 * Copyright (C) 1999 Silicon Graphics, Inc. 10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki 12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved. 13 * Copyright (C) 2014, Imagination Technologies Ltd. 14 */ 15 #include <linux/bitops.h> 16 #include <linux/bug.h> 17 #include <linux/compiler.h> 18 #include <linux/context_tracking.h> 19 #include <linux/cpu_pm.h> 20 #include <linux/kexec.h> 21 #include <linux/init.h> 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/extable.h> 25 #include <linux/mm.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/debug.h> 28 #include <linux/smp.h> 29 #include <linux/spinlock.h> 30 #include <linux/kallsyms.h> 31 #include <linux/bootmem.h> 32 #include <linux/interrupt.h> 33 #include <linux/ptrace.h> 34 #include <linux/kgdb.h> 35 #include <linux/kdebug.h> 36 #include <linux/kprobes.h> 37 #include <linux/notifier.h> 38 #include <linux/kdb.h> 39 #include <linux/irq.h> 40 #include <linux/perf_event.h> 41 42 #include <asm/addrspace.h> 43 #include <asm/bootinfo.h> 44 #include <asm/branch.h> 45 #include <asm/break.h> 46 #include <asm/cop2.h> 47 #include <asm/cpu.h> 48 #include <asm/cpu-type.h> 49 #include <asm/dsp.h> 50 #include <asm/fpu.h> 51 #include <asm/fpu_emulator.h> 52 #include <asm/idle.h> 53 #include <asm/mips-cps.h> 54 #include <asm/mips-r2-to-r6-emul.h> 55 #include <asm/mipsregs.h> 56 #include <asm/mipsmtregs.h> 57 #include <asm/module.h> 58 #include <asm/msa.h> 59 #include <asm/pgtable.h> 60 #include <asm/ptrace.h> 61 #include <asm/sections.h> 62 #include <asm/siginfo.h> 63 #include <asm/tlbdebug.h> 64 #include <asm/traps.h> 65 #include <linux/uaccess.h> 66 #include <asm/watch.h> 67 #include <asm/mmu_context.h> 68 #include <asm/types.h> 69 #include <asm/stacktrace.h> 70 #include <asm/tlbex.h> 71 #include <asm/uasm.h> 72 73 extern void check_wait(void); 74 extern asmlinkage void rollback_handle_int(void); 75 extern asmlinkage void handle_int(void); 76 extern asmlinkage void handle_adel(void); 77 extern asmlinkage void handle_ades(void); 78 extern asmlinkage void handle_ibe(void); 79 extern asmlinkage void handle_dbe(void); 80 extern asmlinkage void handle_sys(void); 81 extern asmlinkage void handle_bp(void); 82 extern asmlinkage void handle_ri(void); 83 extern asmlinkage void handle_ri_rdhwr_tlbp(void); 84 extern asmlinkage void handle_ri_rdhwr(void); 85 extern asmlinkage void handle_cpu(void); 86 extern asmlinkage void handle_ov(void); 87 extern asmlinkage void handle_tr(void); 88 extern asmlinkage void handle_msa_fpe(void); 89 extern asmlinkage void handle_fpe(void); 90 extern asmlinkage void handle_ftlb(void); 91 extern asmlinkage void handle_msa(void); 92 extern asmlinkage void handle_mdmx(void); 93 extern asmlinkage void handle_watch(void); 94 extern asmlinkage void handle_mt(void); 95 extern asmlinkage void handle_dsp(void); 96 extern asmlinkage void handle_mcheck(void); 97 extern asmlinkage void handle_reserved(void); 98 extern void tlb_do_page_fault_0(void); 99 100 void (*board_be_init)(void); 101 int (*board_be_handler)(struct pt_regs *regs, int is_fixup); 102 void (*board_nmi_handler_setup)(void); 103 void (*board_ejtag_handler_setup)(void); 104 void (*board_bind_eic_interrupt)(int irq, int regset); 105 void (*board_ebase_setup)(void); 106 void(*board_cache_error_setup)(void); 107 108 static void show_raw_backtrace(unsigned long reg29) 109 { 110 unsigned long *sp = (unsigned long *)(reg29 & ~3); 111 unsigned long addr; 112 113 printk("Call Trace:"); 114 #ifdef CONFIG_KALLSYMS 115 printk("\n"); 116 #endif 117 while (!kstack_end(sp)) { 118 unsigned long __user *p = 119 (unsigned long __user *)(unsigned long)sp++; 120 if (__get_user(addr, p)) { 121 printk(" (Bad stack address)"); 122 break; 123 } 124 if (__kernel_text_address(addr)) 125 print_ip_sym(addr); 126 } 127 printk("\n"); 128 } 129 130 #ifdef CONFIG_KALLSYMS 131 int raw_show_trace; 132 static int __init set_raw_show_trace(char *str) 133 { 134 raw_show_trace = 1; 135 return 1; 136 } 137 __setup("raw_show_trace", set_raw_show_trace); 138 #endif 139 140 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs) 141 { 142 unsigned long sp = regs->regs[29]; 143 unsigned long ra = regs->regs[31]; 144 unsigned long pc = regs->cp0_epc; 145 146 if (!task) 147 task = current; 148 149 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) { 150 show_raw_backtrace(sp); 151 return; 152 } 153 printk("Call Trace:\n"); 154 do { 155 print_ip_sym(pc); 156 pc = unwind_stack(task, &sp, pc, &ra); 157 } while (pc); 158 pr_cont("\n"); 159 } 160 161 /* 162 * This routine abuses get_user()/put_user() to reference pointers 163 * with at least a bit of error checking ... 164 */ 165 static void show_stacktrace(struct task_struct *task, 166 const struct pt_regs *regs) 167 { 168 const int field = 2 * sizeof(unsigned long); 169 long stackdata; 170 int i; 171 unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; 172 173 printk("Stack :"); 174 i = 0; 175 while ((unsigned long) sp & (PAGE_SIZE - 1)) { 176 if (i && ((i % (64 / field)) == 0)) { 177 pr_cont("\n"); 178 printk(" "); 179 } 180 if (i > 39) { 181 pr_cont(" ..."); 182 break; 183 } 184 185 if (__get_user(stackdata, sp++)) { 186 pr_cont(" (Bad stack address)"); 187 break; 188 } 189 190 pr_cont(" %0*lx", field, stackdata); 191 i++; 192 } 193 pr_cont("\n"); 194 show_backtrace(task, regs); 195 } 196 197 void show_stack(struct task_struct *task, unsigned long *sp) 198 { 199 struct pt_regs regs; 200 mm_segment_t old_fs = get_fs(); 201 202 regs.cp0_status = KSU_KERNEL; 203 if (sp) { 204 regs.regs[29] = (unsigned long)sp; 205 regs.regs[31] = 0; 206 regs.cp0_epc = 0; 207 } else { 208 if (task && task != current) { 209 regs.regs[29] = task->thread.reg29; 210 regs.regs[31] = 0; 211 regs.cp0_epc = task->thread.reg31; 212 #ifdef CONFIG_KGDB_KDB 213 } else if (atomic_read(&kgdb_active) != -1 && 214 kdb_current_regs) { 215 memcpy(®s, kdb_current_regs, sizeof(regs)); 216 #endif /* CONFIG_KGDB_KDB */ 217 } else { 218 prepare_frametrace(®s); 219 } 220 } 221 /* 222 * show_stack() deals exclusively with kernel mode, so be sure to access 223 * the stack in the kernel (not user) address space. 224 */ 225 set_fs(KERNEL_DS); 226 show_stacktrace(task, ®s); 227 set_fs(old_fs); 228 } 229 230 static void show_code(unsigned int __user *pc) 231 { 232 long i; 233 unsigned short __user *pc16 = NULL; 234 235 printk("Code:"); 236 237 if ((unsigned long)pc & 1) 238 pc16 = (unsigned short __user *)((unsigned long)pc & ~1); 239 for(i = -3 ; i < 6 ; i++) { 240 unsigned int insn; 241 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { 242 pr_cont(" (Bad address in epc)\n"); 243 break; 244 } 245 pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); 246 } 247 pr_cont("\n"); 248 } 249 250 static void __show_regs(const struct pt_regs *regs) 251 { 252 const int field = 2 * sizeof(unsigned long); 253 unsigned int cause = regs->cp0_cause; 254 unsigned int exccode; 255 int i; 256 257 show_regs_print_info(KERN_DEFAULT); 258 259 /* 260 * Saved main processor registers 261 */ 262 for (i = 0; i < 32; ) { 263 if ((i % 4) == 0) 264 printk("$%2d :", i); 265 if (i == 0) 266 pr_cont(" %0*lx", field, 0UL); 267 else if (i == 26 || i == 27) 268 pr_cont(" %*s", field, ""); 269 else 270 pr_cont(" %0*lx", field, regs->regs[i]); 271 272 i++; 273 if ((i % 4) == 0) 274 pr_cont("\n"); 275 } 276 277 #ifdef CONFIG_CPU_HAS_SMARTMIPS 278 printk("Acx : %0*lx\n", field, regs->acx); 279 #endif 280 printk("Hi : %0*lx\n", field, regs->hi); 281 printk("Lo : %0*lx\n", field, regs->lo); 282 283 /* 284 * Saved cp0 registers 285 */ 286 printk("epc : %0*lx %pS\n", field, regs->cp0_epc, 287 (void *) regs->cp0_epc); 288 printk("ra : %0*lx %pS\n", field, regs->regs[31], 289 (void *) regs->regs[31]); 290 291 printk("Status: %08x ", (uint32_t) regs->cp0_status); 292 293 if (cpu_has_3kex) { 294 if (regs->cp0_status & ST0_KUO) 295 pr_cont("KUo "); 296 if (regs->cp0_status & ST0_IEO) 297 pr_cont("IEo "); 298 if (regs->cp0_status & ST0_KUP) 299 pr_cont("KUp "); 300 if (regs->cp0_status & ST0_IEP) 301 pr_cont("IEp "); 302 if (regs->cp0_status & ST0_KUC) 303 pr_cont("KUc "); 304 if (regs->cp0_status & ST0_IEC) 305 pr_cont("IEc "); 306 } else if (cpu_has_4kex) { 307 if (regs->cp0_status & ST0_KX) 308 pr_cont("KX "); 309 if (regs->cp0_status & ST0_SX) 310 pr_cont("SX "); 311 if (regs->cp0_status & ST0_UX) 312 pr_cont("UX "); 313 switch (regs->cp0_status & ST0_KSU) { 314 case KSU_USER: 315 pr_cont("USER "); 316 break; 317 case KSU_SUPERVISOR: 318 pr_cont("SUPERVISOR "); 319 break; 320 case KSU_KERNEL: 321 pr_cont("KERNEL "); 322 break; 323 default: 324 pr_cont("BAD_MODE "); 325 break; 326 } 327 if (regs->cp0_status & ST0_ERL) 328 pr_cont("ERL "); 329 if (regs->cp0_status & ST0_EXL) 330 pr_cont("EXL "); 331 if (regs->cp0_status & ST0_IE) 332 pr_cont("IE "); 333 } 334 pr_cont("\n"); 335 336 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; 337 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode); 338 339 if (1 <= exccode && exccode <= 5) 340 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); 341 342 printk("PrId : %08x (%s)\n", read_c0_prid(), 343 cpu_name_string()); 344 } 345 346 /* 347 * FIXME: really the generic show_regs should take a const pointer argument. 348 */ 349 void show_regs(struct pt_regs *regs) 350 { 351 __show_regs((struct pt_regs *)regs); 352 dump_stack(); 353 } 354 355 void show_registers(struct pt_regs *regs) 356 { 357 const int field = 2 * sizeof(unsigned long); 358 mm_segment_t old_fs = get_fs(); 359 360 __show_regs(regs); 361 print_modules(); 362 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", 363 current->comm, current->pid, current_thread_info(), current, 364 field, current_thread_info()->tp_value); 365 if (cpu_has_userlocal) { 366 unsigned long tls; 367 368 tls = read_c0_userlocal(); 369 if (tls != current_thread_info()->tp_value) 370 printk("*HwTLS: %0*lx\n", field, tls); 371 } 372 373 if (!user_mode(regs)) 374 /* Necessary for getting the correct stack content */ 375 set_fs(KERNEL_DS); 376 show_stacktrace(current, regs); 377 show_code((unsigned int __user *) regs->cp0_epc); 378 printk("\n"); 379 set_fs(old_fs); 380 } 381 382 static DEFINE_RAW_SPINLOCK(die_lock); 383 384 void __noreturn die(const char *str, struct pt_regs *regs) 385 { 386 static int die_counter; 387 int sig = SIGSEGV; 388 389 oops_enter(); 390 391 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr, 392 SIGSEGV) == NOTIFY_STOP) 393 sig = 0; 394 395 console_verbose(); 396 raw_spin_lock_irq(&die_lock); 397 bust_spinlocks(1); 398 399 printk("%s[#%d]:\n", str, ++die_counter); 400 show_registers(regs); 401 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 402 raw_spin_unlock_irq(&die_lock); 403 404 oops_exit(); 405 406 if (in_interrupt()) 407 panic("Fatal exception in interrupt"); 408 409 if (panic_on_oops) 410 panic("Fatal exception"); 411 412 if (regs && kexec_should_crash(current)) 413 crash_kexec(regs); 414 415 do_exit(sig); 416 } 417 418 extern struct exception_table_entry __start___dbe_table[]; 419 extern struct exception_table_entry __stop___dbe_table[]; 420 421 __asm__( 422 " .section __dbe_table, \"a\"\n" 423 " .previous \n"); 424 425 /* Given an address, look for it in the exception tables. */ 426 static const struct exception_table_entry *search_dbe_tables(unsigned long addr) 427 { 428 const struct exception_table_entry *e; 429 430 e = search_extable(__start___dbe_table, 431 __stop___dbe_table - __start___dbe_table, addr); 432 if (!e) 433 e = search_module_dbetables(addr); 434 return e; 435 } 436 437 asmlinkage void do_be(struct pt_regs *regs) 438 { 439 const int field = 2 * sizeof(unsigned long); 440 const struct exception_table_entry *fixup = NULL; 441 int data = regs->cp0_cause & 4; 442 int action = MIPS_BE_FATAL; 443 enum ctx_state prev_state; 444 445 prev_state = exception_enter(); 446 /* XXX For now. Fixme, this searches the wrong table ... */ 447 if (data && !user_mode(regs)) 448 fixup = search_dbe_tables(exception_epc(regs)); 449 450 if (fixup) 451 action = MIPS_BE_FIXUP; 452 453 if (board_be_handler) 454 action = board_be_handler(regs, fixup != NULL); 455 else 456 mips_cm_error_report(); 457 458 switch (action) { 459 case MIPS_BE_DISCARD: 460 goto out; 461 case MIPS_BE_FIXUP: 462 if (fixup) { 463 regs->cp0_epc = fixup->nextinsn; 464 goto out; 465 } 466 break; 467 default: 468 break; 469 } 470 471 /* 472 * Assume it would be too dangerous to continue ... 473 */ 474 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", 475 data ? "Data" : "Instruction", 476 field, regs->cp0_epc, field, regs->regs[31]); 477 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr, 478 SIGBUS) == NOTIFY_STOP) 479 goto out; 480 481 die_if_kernel("Oops", regs); 482 force_sig(SIGBUS, current); 483 484 out: 485 exception_exit(prev_state); 486 } 487 488 /* 489 * ll/sc, rdhwr, sync emulation 490 */ 491 492 #define OPCODE 0xfc000000 493 #define BASE 0x03e00000 494 #define RT 0x001f0000 495 #define OFFSET 0x0000ffff 496 #define LL 0xc0000000 497 #define SC 0xe0000000 498 #define SPEC0 0x00000000 499 #define SPEC3 0x7c000000 500 #define RD 0x0000f800 501 #define FUNC 0x0000003f 502 #define SYNC 0x0000000f 503 #define RDHWR 0x0000003b 504 505 /* microMIPS definitions */ 506 #define MM_POOL32A_FUNC 0xfc00ffff 507 #define MM_RDHWR 0x00006b3c 508 #define MM_RS 0x001f0000 509 #define MM_RT 0x03e00000 510 511 /* 512 * The ll_bit is cleared by r*_switch.S 513 */ 514 515 unsigned int ll_bit; 516 struct task_struct *ll_task; 517 518 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) 519 { 520 unsigned long value, __user *vaddr; 521 long offset; 522 523 /* 524 * analyse the ll instruction that just caused a ri exception 525 * and put the referenced address to addr. 526 */ 527 528 /* sign extend offset */ 529 offset = opcode & OFFSET; 530 offset <<= 16; 531 offset >>= 16; 532 533 vaddr = (unsigned long __user *) 534 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 535 536 if ((unsigned long)vaddr & 3) 537 return SIGBUS; 538 if (get_user(value, vaddr)) 539 return SIGSEGV; 540 541 preempt_disable(); 542 543 if (ll_task == NULL || ll_task == current) { 544 ll_bit = 1; 545 } else { 546 ll_bit = 0; 547 } 548 ll_task = current; 549 550 preempt_enable(); 551 552 regs->regs[(opcode & RT) >> 16] = value; 553 554 return 0; 555 } 556 557 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) 558 { 559 unsigned long __user *vaddr; 560 unsigned long reg; 561 long offset; 562 563 /* 564 * analyse the sc instruction that just caused a ri exception 565 * and put the referenced address to addr. 566 */ 567 568 /* sign extend offset */ 569 offset = opcode & OFFSET; 570 offset <<= 16; 571 offset >>= 16; 572 573 vaddr = (unsigned long __user *) 574 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 575 reg = (opcode & RT) >> 16; 576 577 if ((unsigned long)vaddr & 3) 578 return SIGBUS; 579 580 preempt_disable(); 581 582 if (ll_bit == 0 || ll_task != current) { 583 regs->regs[reg] = 0; 584 preempt_enable(); 585 return 0; 586 } 587 588 preempt_enable(); 589 590 if (put_user(regs->regs[reg], vaddr)) 591 return SIGSEGV; 592 593 regs->regs[reg] = 1; 594 595 return 0; 596 } 597 598 /* 599 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both 600 * opcodes are supposed to result in coprocessor unusable exceptions if 601 * executed on ll/sc-less processors. That's the theory. In practice a 602 * few processors such as NEC's VR4100 throw reserved instruction exceptions 603 * instead, so we're doing the emulation thing in both exception handlers. 604 */ 605 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) 606 { 607 if ((opcode & OPCODE) == LL) { 608 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 609 1, regs, 0); 610 return simulate_ll(regs, opcode); 611 } 612 if ((opcode & OPCODE) == SC) { 613 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 614 1, regs, 0); 615 return simulate_sc(regs, opcode); 616 } 617 618 return -1; /* Must be something else ... */ 619 } 620 621 /* 622 * Simulate trapping 'rdhwr' instructions to provide user accessible 623 * registers not implemented in hardware. 624 */ 625 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt) 626 { 627 struct thread_info *ti = task_thread_info(current); 628 629 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 630 1, regs, 0); 631 switch (rd) { 632 case MIPS_HWR_CPUNUM: /* CPU number */ 633 regs->regs[rt] = smp_processor_id(); 634 return 0; 635 case MIPS_HWR_SYNCISTEP: /* SYNCI length */ 636 regs->regs[rt] = min(current_cpu_data.dcache.linesz, 637 current_cpu_data.icache.linesz); 638 return 0; 639 case MIPS_HWR_CC: /* Read count register */ 640 regs->regs[rt] = read_c0_count(); 641 return 0; 642 case MIPS_HWR_CCRES: /* Count register resolution */ 643 switch (current_cpu_type()) { 644 case CPU_20KC: 645 case CPU_25KF: 646 regs->regs[rt] = 1; 647 break; 648 default: 649 regs->regs[rt] = 2; 650 } 651 return 0; 652 case MIPS_HWR_ULR: /* Read UserLocal register */ 653 regs->regs[rt] = ti->tp_value; 654 return 0; 655 default: 656 return -1; 657 } 658 } 659 660 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode) 661 { 662 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { 663 int rd = (opcode & RD) >> 11; 664 int rt = (opcode & RT) >> 16; 665 666 simulate_rdhwr(regs, rd, rt); 667 return 0; 668 } 669 670 /* Not ours. */ 671 return -1; 672 } 673 674 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode) 675 { 676 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) { 677 int rd = (opcode & MM_RS) >> 16; 678 int rt = (opcode & MM_RT) >> 21; 679 simulate_rdhwr(regs, rd, rt); 680 return 0; 681 } 682 683 /* Not ours. */ 684 return -1; 685 } 686 687 static int simulate_sync(struct pt_regs *regs, unsigned int opcode) 688 { 689 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) { 690 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 691 1, regs, 0); 692 return 0; 693 } 694 695 return -1; /* Must be something else ... */ 696 } 697 698 asmlinkage void do_ov(struct pt_regs *regs) 699 { 700 enum ctx_state prev_state; 701 702 prev_state = exception_enter(); 703 die_if_kernel("Integer overflow", regs); 704 705 force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc, current); 706 exception_exit(prev_state); 707 } 708 709 /* 710 * Send SIGFPE according to FCSR Cause bits, which must have already 711 * been masked against Enable bits. This is impotant as Inexact can 712 * happen together with Overflow or Underflow, and `ptrace' can set 713 * any bits. 714 */ 715 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr, 716 struct task_struct *tsk) 717 { 718 int si_code = FPE_FLTUNK; 719 720 if (fcr31 & FPU_CSR_INV_X) 721 si_code = FPE_FLTINV; 722 else if (fcr31 & FPU_CSR_DIV_X) 723 si_code = FPE_FLTDIV; 724 else if (fcr31 & FPU_CSR_OVF_X) 725 si_code = FPE_FLTOVF; 726 else if (fcr31 & FPU_CSR_UDF_X) 727 si_code = FPE_FLTUND; 728 else if (fcr31 & FPU_CSR_INE_X) 729 si_code = FPE_FLTRES; 730 731 force_sig_fault(SIGFPE, si_code, fault_addr, tsk); 732 } 733 734 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31) 735 { 736 int si_code; 737 struct vm_area_struct *vma; 738 739 switch (sig) { 740 case 0: 741 return 0; 742 743 case SIGFPE: 744 force_fcr31_sig(fcr31, fault_addr, current); 745 return 1; 746 747 case SIGBUS: 748 force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr, current); 749 return 1; 750 751 case SIGSEGV: 752 down_read(¤t->mm->mmap_sem); 753 vma = find_vma(current->mm, (unsigned long)fault_addr); 754 if (vma && (vma->vm_start <= (unsigned long)fault_addr)) 755 si_code = SEGV_ACCERR; 756 else 757 si_code = SEGV_MAPERR; 758 up_read(¤t->mm->mmap_sem); 759 force_sig_fault(SIGSEGV, si_code, fault_addr, current); 760 return 1; 761 762 default: 763 force_sig(sig, current); 764 return 1; 765 } 766 } 767 768 static int simulate_fp(struct pt_regs *regs, unsigned int opcode, 769 unsigned long old_epc, unsigned long old_ra) 770 { 771 union mips_instruction inst = { .word = opcode }; 772 void __user *fault_addr; 773 unsigned long fcr31; 774 int sig; 775 776 /* If it's obviously not an FP instruction, skip it */ 777 switch (inst.i_format.opcode) { 778 case cop1_op: 779 case cop1x_op: 780 case lwc1_op: 781 case ldc1_op: 782 case swc1_op: 783 case sdc1_op: 784 break; 785 786 default: 787 return -1; 788 } 789 790 /* 791 * do_ri skipped over the instruction via compute_return_epc, undo 792 * that for the FPU emulator. 793 */ 794 regs->cp0_epc = old_epc; 795 regs->regs[31] = old_ra; 796 797 /* Save the FP context to struct thread_struct */ 798 lose_fpu(1); 799 800 /* Run the emulator */ 801 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 802 &fault_addr); 803 804 /* 805 * We can't allow the emulated instruction to leave any 806 * enabled Cause bits set in $fcr31. 807 */ 808 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); 809 current->thread.fpu.fcr31 &= ~fcr31; 810 811 /* Restore the hardware register state */ 812 own_fpu(1); 813 814 /* Send a signal if required. */ 815 process_fpemu_return(sig, fault_addr, fcr31); 816 817 return 0; 818 } 819 820 /* 821 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX 822 */ 823 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) 824 { 825 enum ctx_state prev_state; 826 void __user *fault_addr; 827 int sig; 828 829 prev_state = exception_enter(); 830 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr, 831 SIGFPE) == NOTIFY_STOP) 832 goto out; 833 834 /* Clear FCSR.Cause before enabling interrupts */ 835 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31)); 836 local_irq_enable(); 837 838 die_if_kernel("FP exception in kernel code", regs); 839 840 if (fcr31 & FPU_CSR_UNI_X) { 841 /* 842 * Unimplemented operation exception. If we've got the full 843 * software emulator on-board, let's use it... 844 * 845 * Force FPU to dump state into task/thread context. We're 846 * moving a lot of data here for what is probably a single 847 * instruction, but the alternative is to pre-decode the FP 848 * register operands before invoking the emulator, which seems 849 * a bit extreme for what should be an infrequent event. 850 */ 851 /* Ensure 'resume' not overwrite saved fp context again. */ 852 lose_fpu(1); 853 854 /* Run the emulator */ 855 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 856 &fault_addr); 857 858 /* 859 * We can't allow the emulated instruction to leave any 860 * enabled Cause bits set in $fcr31. 861 */ 862 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); 863 current->thread.fpu.fcr31 &= ~fcr31; 864 865 /* Restore the hardware register state */ 866 own_fpu(1); /* Using the FPU again. */ 867 } else { 868 sig = SIGFPE; 869 fault_addr = (void __user *) regs->cp0_epc; 870 } 871 872 /* Send a signal if required. */ 873 process_fpemu_return(sig, fault_addr, fcr31); 874 875 out: 876 exception_exit(prev_state); 877 } 878 879 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code, 880 const char *str) 881 { 882 char b[40]; 883 884 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 885 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr, 886 SIGTRAP) == NOTIFY_STOP) 887 return; 888 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 889 890 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr, 891 SIGTRAP) == NOTIFY_STOP) 892 return; 893 894 /* 895 * A short test says that IRIX 5.3 sends SIGTRAP for all trap 896 * insns, even for trap and break codes that indicate arithmetic 897 * failures. Weird ... 898 * But should we continue the brokenness??? --macro 899 */ 900 switch (code) { 901 case BRK_OVERFLOW: 902 case BRK_DIVZERO: 903 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 904 die_if_kernel(b, regs); 905 force_sig_fault(SIGFPE, 906 code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF, 907 (void __user *) regs->cp0_epc, current); 908 break; 909 case BRK_BUG: 910 die_if_kernel("Kernel bug detected", regs); 911 force_sig(SIGTRAP, current); 912 break; 913 case BRK_MEMU: 914 /* 915 * This breakpoint code is used by the FPU emulator to retake 916 * control of the CPU after executing the instruction from the 917 * delay slot of an emulated branch. 918 * 919 * Terminate if exception was recognized as a delay slot return 920 * otherwise handle as normal. 921 */ 922 if (do_dsemulret(regs)) 923 return; 924 925 die_if_kernel("Math emu break/trap", regs); 926 force_sig(SIGTRAP, current); 927 break; 928 default: 929 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 930 die_if_kernel(b, regs); 931 if (si_code) { 932 force_sig_fault(SIGTRAP, si_code, NULL, current); 933 } else { 934 force_sig(SIGTRAP, current); 935 } 936 } 937 } 938 939 asmlinkage void do_bp(struct pt_regs *regs) 940 { 941 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 942 unsigned int opcode, bcode; 943 enum ctx_state prev_state; 944 mm_segment_t seg; 945 946 seg = get_fs(); 947 if (!user_mode(regs)) 948 set_fs(KERNEL_DS); 949 950 prev_state = exception_enter(); 951 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 952 if (get_isa16_mode(regs->cp0_epc)) { 953 u16 instr[2]; 954 955 if (__get_user(instr[0], (u16 __user *)epc)) 956 goto out_sigsegv; 957 958 if (!cpu_has_mmips) { 959 /* MIPS16e mode */ 960 bcode = (instr[0] >> 5) & 0x3f; 961 } else if (mm_insn_16bit(instr[0])) { 962 /* 16-bit microMIPS BREAK */ 963 bcode = instr[0] & 0xf; 964 } else { 965 /* 32-bit microMIPS BREAK */ 966 if (__get_user(instr[1], (u16 __user *)(epc + 2))) 967 goto out_sigsegv; 968 opcode = (instr[0] << 16) | instr[1]; 969 bcode = (opcode >> 6) & ((1 << 20) - 1); 970 } 971 } else { 972 if (__get_user(opcode, (unsigned int __user *)epc)) 973 goto out_sigsegv; 974 bcode = (opcode >> 6) & ((1 << 20) - 1); 975 } 976 977 /* 978 * There is the ancient bug in the MIPS assemblers that the break 979 * code starts left to bit 16 instead to bit 6 in the opcode. 980 * Gas is bug-compatible, but not always, grrr... 981 * We handle both cases with a simple heuristics. --macro 982 */ 983 if (bcode >= (1 << 10)) 984 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10); 985 986 /* 987 * notify the kprobe handlers, if instruction is likely to 988 * pertain to them. 989 */ 990 switch (bcode) { 991 case BRK_UPROBE: 992 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode, 993 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 994 goto out; 995 else 996 break; 997 case BRK_UPROBE_XOL: 998 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode, 999 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1000 goto out; 1001 else 1002 break; 1003 case BRK_KPROBE_BP: 1004 if (notify_die(DIE_BREAK, "debug", regs, bcode, 1005 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1006 goto out; 1007 else 1008 break; 1009 case BRK_KPROBE_SSTEPBP: 1010 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, 1011 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1012 goto out; 1013 else 1014 break; 1015 default: 1016 break; 1017 } 1018 1019 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break"); 1020 1021 out: 1022 set_fs(seg); 1023 exception_exit(prev_state); 1024 return; 1025 1026 out_sigsegv: 1027 force_sig(SIGSEGV, current); 1028 goto out; 1029 } 1030 1031 asmlinkage void do_tr(struct pt_regs *regs) 1032 { 1033 u32 opcode, tcode = 0; 1034 enum ctx_state prev_state; 1035 u16 instr[2]; 1036 mm_segment_t seg; 1037 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 1038 1039 seg = get_fs(); 1040 if (!user_mode(regs)) 1041 set_fs(get_ds()); 1042 1043 prev_state = exception_enter(); 1044 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1045 if (get_isa16_mode(regs->cp0_epc)) { 1046 if (__get_user(instr[0], (u16 __user *)(epc + 0)) || 1047 __get_user(instr[1], (u16 __user *)(epc + 2))) 1048 goto out_sigsegv; 1049 opcode = (instr[0] << 16) | instr[1]; 1050 /* Immediate versions don't provide a code. */ 1051 if (!(opcode & OPCODE)) 1052 tcode = (opcode >> 12) & ((1 << 4) - 1); 1053 } else { 1054 if (__get_user(opcode, (u32 __user *)epc)) 1055 goto out_sigsegv; 1056 /* Immediate versions don't provide a code. */ 1057 if (!(opcode & OPCODE)) 1058 tcode = (opcode >> 6) & ((1 << 10) - 1); 1059 } 1060 1061 do_trap_or_bp(regs, tcode, 0, "Trap"); 1062 1063 out: 1064 set_fs(seg); 1065 exception_exit(prev_state); 1066 return; 1067 1068 out_sigsegv: 1069 force_sig(SIGSEGV, current); 1070 goto out; 1071 } 1072 1073 asmlinkage void do_ri(struct pt_regs *regs) 1074 { 1075 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); 1076 unsigned long old_epc = regs->cp0_epc; 1077 unsigned long old31 = regs->regs[31]; 1078 enum ctx_state prev_state; 1079 unsigned int opcode = 0; 1080 int status = -1; 1081 1082 /* 1083 * Avoid any kernel code. Just emulate the R2 instruction 1084 * as quickly as possible. 1085 */ 1086 if (mipsr2_emulation && cpu_has_mips_r6 && 1087 likely(user_mode(regs)) && 1088 likely(get_user(opcode, epc) >= 0)) { 1089 unsigned long fcr31 = 0; 1090 1091 status = mipsr2_decoder(regs, opcode, &fcr31); 1092 switch (status) { 1093 case 0: 1094 case SIGEMT: 1095 return; 1096 case SIGILL: 1097 goto no_r2_instr; 1098 default: 1099 process_fpemu_return(status, 1100 ¤t->thread.cp0_baduaddr, 1101 fcr31); 1102 return; 1103 } 1104 } 1105 1106 no_r2_instr: 1107 1108 prev_state = exception_enter(); 1109 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1110 1111 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr, 1112 SIGILL) == NOTIFY_STOP) 1113 goto out; 1114 1115 die_if_kernel("Reserved instruction in kernel code", regs); 1116 1117 if (unlikely(compute_return_epc(regs) < 0)) 1118 goto out; 1119 1120 if (!get_isa16_mode(regs->cp0_epc)) { 1121 if (unlikely(get_user(opcode, epc) < 0)) 1122 status = SIGSEGV; 1123 1124 if (!cpu_has_llsc && status < 0) 1125 status = simulate_llsc(regs, opcode); 1126 1127 if (status < 0) 1128 status = simulate_rdhwr_normal(regs, opcode); 1129 1130 if (status < 0) 1131 status = simulate_sync(regs, opcode); 1132 1133 if (status < 0) 1134 status = simulate_fp(regs, opcode, old_epc, old31); 1135 } else if (cpu_has_mmips) { 1136 unsigned short mmop[2] = { 0 }; 1137 1138 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0)) 1139 status = SIGSEGV; 1140 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0)) 1141 status = SIGSEGV; 1142 opcode = mmop[0]; 1143 opcode = (opcode << 16) | mmop[1]; 1144 1145 if (status < 0) 1146 status = simulate_rdhwr_mm(regs, opcode); 1147 } 1148 1149 if (status < 0) 1150 status = SIGILL; 1151 1152 if (unlikely(status > 0)) { 1153 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1154 regs->regs[31] = old31; 1155 force_sig(status, current); 1156 } 1157 1158 out: 1159 exception_exit(prev_state); 1160 } 1161 1162 /* 1163 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've 1164 * emulated more than some threshold number of instructions, force migration to 1165 * a "CPU" that has FP support. 1166 */ 1167 static void mt_ase_fp_affinity(void) 1168 { 1169 #ifdef CONFIG_MIPS_MT_FPAFF 1170 if (mt_fpemul_threshold > 0 && 1171 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { 1172 /* 1173 * If there's no FPU present, or if the application has already 1174 * restricted the allowed set to exclude any CPUs with FPUs, 1175 * we'll skip the procedure. 1176 */ 1177 if (cpumask_intersects(¤t->cpus_allowed, &mt_fpu_cpumask)) { 1178 cpumask_t tmask; 1179 1180 current->thread.user_cpus_allowed 1181 = current->cpus_allowed; 1182 cpumask_and(&tmask, ¤t->cpus_allowed, 1183 &mt_fpu_cpumask); 1184 set_cpus_allowed_ptr(current, &tmask); 1185 set_thread_flag(TIF_FPUBOUND); 1186 } 1187 } 1188 #endif /* CONFIG_MIPS_MT_FPAFF */ 1189 } 1190 1191 /* 1192 * No lock; only written during early bootup by CPU 0. 1193 */ 1194 static RAW_NOTIFIER_HEAD(cu2_chain); 1195 1196 int __ref register_cu2_notifier(struct notifier_block *nb) 1197 { 1198 return raw_notifier_chain_register(&cu2_chain, nb); 1199 } 1200 1201 int cu2_notifier_call_chain(unsigned long val, void *v) 1202 { 1203 return raw_notifier_call_chain(&cu2_chain, val, v); 1204 } 1205 1206 static int default_cu2_call(struct notifier_block *nfb, unsigned long action, 1207 void *data) 1208 { 1209 struct pt_regs *regs = data; 1210 1211 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid " 1212 "instruction", regs); 1213 force_sig(SIGILL, current); 1214 1215 return NOTIFY_OK; 1216 } 1217 1218 static int enable_restore_fp_context(int msa) 1219 { 1220 int err, was_fpu_owner, prior_msa; 1221 1222 if (!used_math()) { 1223 /* First time FP context user. */ 1224 preempt_disable(); 1225 err = init_fpu(); 1226 if (msa && !err) { 1227 enable_msa(); 1228 init_msa_upper(); 1229 set_thread_flag(TIF_USEDMSA); 1230 set_thread_flag(TIF_MSA_CTX_LIVE); 1231 } 1232 preempt_enable(); 1233 if (!err) 1234 set_used_math(); 1235 return err; 1236 } 1237 1238 /* 1239 * This task has formerly used the FP context. 1240 * 1241 * If this thread has no live MSA vector context then we can simply 1242 * restore the scalar FP context. If it has live MSA vector context 1243 * (that is, it has or may have used MSA since last performing a 1244 * function call) then we'll need to restore the vector context. This 1245 * applies even if we're currently only executing a scalar FP 1246 * instruction. This is because if we were to later execute an MSA 1247 * instruction then we'd either have to: 1248 * 1249 * - Restore the vector context & clobber any registers modified by 1250 * scalar FP instructions between now & then. 1251 * 1252 * or 1253 * 1254 * - Not restore the vector context & lose the most significant bits 1255 * of all vector registers. 1256 * 1257 * Neither of those options is acceptable. We cannot restore the least 1258 * significant bits of the registers now & only restore the most 1259 * significant bits later because the most significant bits of any 1260 * vector registers whose aliased FP register is modified now will have 1261 * been zeroed. We'd have no way to know that when restoring the vector 1262 * context & thus may load an outdated value for the most significant 1263 * bits of a vector register. 1264 */ 1265 if (!msa && !thread_msa_context_live()) 1266 return own_fpu(1); 1267 1268 /* 1269 * This task is using or has previously used MSA. Thus we require 1270 * that Status.FR == 1. 1271 */ 1272 preempt_disable(); 1273 was_fpu_owner = is_fpu_owner(); 1274 err = own_fpu_inatomic(0); 1275 if (err) 1276 goto out; 1277 1278 enable_msa(); 1279 write_msa_csr(current->thread.fpu.msacsr); 1280 set_thread_flag(TIF_USEDMSA); 1281 1282 /* 1283 * If this is the first time that the task is using MSA and it has 1284 * previously used scalar FP in this time slice then we already nave 1285 * FP context which we shouldn't clobber. We do however need to clear 1286 * the upper 64b of each vector register so that this task has no 1287 * opportunity to see data left behind by another. 1288 */ 1289 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE); 1290 if (!prior_msa && was_fpu_owner) { 1291 init_msa_upper(); 1292 1293 goto out; 1294 } 1295 1296 if (!prior_msa) { 1297 /* 1298 * Restore the least significant 64b of each vector register 1299 * from the existing scalar FP context. 1300 */ 1301 _restore_fp(current); 1302 1303 /* 1304 * The task has not formerly used MSA, so clear the upper 64b 1305 * of each vector register such that it cannot see data left 1306 * behind by another task. 1307 */ 1308 init_msa_upper(); 1309 } else { 1310 /* We need to restore the vector context. */ 1311 restore_msa(current); 1312 1313 /* Restore the scalar FP control & status register */ 1314 if (!was_fpu_owner) 1315 write_32bit_cp1_register(CP1_STATUS, 1316 current->thread.fpu.fcr31); 1317 } 1318 1319 out: 1320 preempt_enable(); 1321 1322 return 0; 1323 } 1324 1325 asmlinkage void do_cpu(struct pt_regs *regs) 1326 { 1327 enum ctx_state prev_state; 1328 unsigned int __user *epc; 1329 unsigned long old_epc, old31; 1330 void __user *fault_addr; 1331 unsigned int opcode; 1332 unsigned long fcr31; 1333 unsigned int cpid; 1334 int status, err; 1335 int sig; 1336 1337 prev_state = exception_enter(); 1338 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; 1339 1340 if (cpid != 2) 1341 die_if_kernel("do_cpu invoked from kernel context!", regs); 1342 1343 switch (cpid) { 1344 case 0: 1345 epc = (unsigned int __user *)exception_epc(regs); 1346 old_epc = regs->cp0_epc; 1347 old31 = regs->regs[31]; 1348 opcode = 0; 1349 status = -1; 1350 1351 if (unlikely(compute_return_epc(regs) < 0)) 1352 break; 1353 1354 if (!get_isa16_mode(regs->cp0_epc)) { 1355 if (unlikely(get_user(opcode, epc) < 0)) 1356 status = SIGSEGV; 1357 1358 if (!cpu_has_llsc && status < 0) 1359 status = simulate_llsc(regs, opcode); 1360 } 1361 1362 if (status < 0) 1363 status = SIGILL; 1364 1365 if (unlikely(status > 0)) { 1366 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1367 regs->regs[31] = old31; 1368 force_sig(status, current); 1369 } 1370 1371 break; 1372 1373 case 3: 1374 /* 1375 * The COP3 opcode space and consequently the CP0.Status.CU3 1376 * bit and the CP0.Cause.CE=3 encoding have been removed as 1377 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs 1378 * up the space has been reused for COP1X instructions, that 1379 * are enabled by the CP0.Status.CU1 bit and consequently 1380 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable 1381 * exceptions. Some FPU-less processors that implement one 1382 * of these ISAs however use this code erroneously for COP1X 1383 * instructions. Therefore we redirect this trap to the FP 1384 * emulator too. 1385 */ 1386 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) { 1387 force_sig(SIGILL, current); 1388 break; 1389 } 1390 /* Fall through. */ 1391 1392 case 1: 1393 err = enable_restore_fp_context(0); 1394 1395 if (raw_cpu_has_fpu && !err) 1396 break; 1397 1398 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0, 1399 &fault_addr); 1400 1401 /* 1402 * We can't allow the emulated instruction to leave 1403 * any enabled Cause bits set in $fcr31. 1404 */ 1405 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); 1406 current->thread.fpu.fcr31 &= ~fcr31; 1407 1408 /* Send a signal if required. */ 1409 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err) 1410 mt_ase_fp_affinity(); 1411 1412 break; 1413 1414 case 2: 1415 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); 1416 break; 1417 } 1418 1419 exception_exit(prev_state); 1420 } 1421 1422 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr) 1423 { 1424 enum ctx_state prev_state; 1425 1426 prev_state = exception_enter(); 1427 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1428 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0, 1429 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP) 1430 goto out; 1431 1432 /* Clear MSACSR.Cause before enabling interrupts */ 1433 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF); 1434 local_irq_enable(); 1435 1436 die_if_kernel("do_msa_fpe invoked from kernel context!", regs); 1437 force_sig(SIGFPE, current); 1438 out: 1439 exception_exit(prev_state); 1440 } 1441 1442 asmlinkage void do_msa(struct pt_regs *regs) 1443 { 1444 enum ctx_state prev_state; 1445 int err; 1446 1447 prev_state = exception_enter(); 1448 1449 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) { 1450 force_sig(SIGILL, current); 1451 goto out; 1452 } 1453 1454 die_if_kernel("do_msa invoked from kernel context!", regs); 1455 1456 err = enable_restore_fp_context(1); 1457 if (err) 1458 force_sig(SIGILL, current); 1459 out: 1460 exception_exit(prev_state); 1461 } 1462 1463 asmlinkage void do_mdmx(struct pt_regs *regs) 1464 { 1465 enum ctx_state prev_state; 1466 1467 prev_state = exception_enter(); 1468 force_sig(SIGILL, current); 1469 exception_exit(prev_state); 1470 } 1471 1472 /* 1473 * Called with interrupts disabled. 1474 */ 1475 asmlinkage void do_watch(struct pt_regs *regs) 1476 { 1477 enum ctx_state prev_state; 1478 1479 prev_state = exception_enter(); 1480 /* 1481 * Clear WP (bit 22) bit of cause register so we don't loop 1482 * forever. 1483 */ 1484 clear_c0_cause(CAUSEF_WP); 1485 1486 /* 1487 * If the current thread has the watch registers loaded, save 1488 * their values and send SIGTRAP. Otherwise another thread 1489 * left the registers set, clear them and continue. 1490 */ 1491 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { 1492 mips_read_watch_registers(); 1493 local_irq_enable(); 1494 force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL, current); 1495 } else { 1496 mips_clear_watch_registers(); 1497 local_irq_enable(); 1498 } 1499 exception_exit(prev_state); 1500 } 1501 1502 asmlinkage void do_mcheck(struct pt_regs *regs) 1503 { 1504 int multi_match = regs->cp0_status & ST0_TS; 1505 enum ctx_state prev_state; 1506 mm_segment_t old_fs = get_fs(); 1507 1508 prev_state = exception_enter(); 1509 show_regs(regs); 1510 1511 if (multi_match) { 1512 dump_tlb_regs(); 1513 pr_info("\n"); 1514 dump_tlb_all(); 1515 } 1516 1517 if (!user_mode(regs)) 1518 set_fs(KERNEL_DS); 1519 1520 show_code((unsigned int __user *) regs->cp0_epc); 1521 1522 set_fs(old_fs); 1523 1524 /* 1525 * Some chips may have other causes of machine check (e.g. SB1 1526 * graduation timer) 1527 */ 1528 panic("Caught Machine Check exception - %scaused by multiple " 1529 "matching entries in the TLB.", 1530 (multi_match) ? "" : "not "); 1531 } 1532 1533 asmlinkage void do_mt(struct pt_regs *regs) 1534 { 1535 int subcode; 1536 1537 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) 1538 >> VPECONTROL_EXCPT_SHIFT; 1539 switch (subcode) { 1540 case 0: 1541 printk(KERN_DEBUG "Thread Underflow\n"); 1542 break; 1543 case 1: 1544 printk(KERN_DEBUG "Thread Overflow\n"); 1545 break; 1546 case 2: 1547 printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); 1548 break; 1549 case 3: 1550 printk(KERN_DEBUG "Gating Storage Exception\n"); 1551 break; 1552 case 4: 1553 printk(KERN_DEBUG "YIELD Scheduler Exception\n"); 1554 break; 1555 case 5: 1556 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n"); 1557 break; 1558 default: 1559 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", 1560 subcode); 1561 break; 1562 } 1563 die_if_kernel("MIPS MT Thread exception in kernel", regs); 1564 1565 force_sig(SIGILL, current); 1566 } 1567 1568 1569 asmlinkage void do_dsp(struct pt_regs *regs) 1570 { 1571 if (cpu_has_dsp) 1572 panic("Unexpected DSP exception"); 1573 1574 force_sig(SIGILL, current); 1575 } 1576 1577 asmlinkage void do_reserved(struct pt_regs *regs) 1578 { 1579 /* 1580 * Game over - no way to handle this if it ever occurs. Most probably 1581 * caused by a new unknown cpu type or after another deadly 1582 * hard/software error. 1583 */ 1584 show_regs(regs); 1585 panic("Caught reserved exception %ld - should not happen.", 1586 (regs->cp0_cause & 0x7f) >> 2); 1587 } 1588 1589 static int __initdata l1parity = 1; 1590 static int __init nol1parity(char *s) 1591 { 1592 l1parity = 0; 1593 return 1; 1594 } 1595 __setup("nol1par", nol1parity); 1596 static int __initdata l2parity = 1; 1597 static int __init nol2parity(char *s) 1598 { 1599 l2parity = 0; 1600 return 1; 1601 } 1602 __setup("nol2par", nol2parity); 1603 1604 /* 1605 * Some MIPS CPUs can enable/disable for cache parity detection, but do 1606 * it different ways. 1607 */ 1608 static inline void parity_protection_init(void) 1609 { 1610 #define ERRCTL_PE 0x80000000 1611 #define ERRCTL_L2P 0x00800000 1612 1613 if (mips_cm_revision() >= CM_REV_CM3) { 1614 ulong gcr_ectl, cp0_ectl; 1615 1616 /* 1617 * With CM3 systems we need to ensure that the L1 & L2 1618 * parity enables are set to the same value, since this 1619 * is presumed by the hardware engineers. 1620 * 1621 * If the user disabled either of L1 or L2 ECC checking, 1622 * disable both. 1623 */ 1624 l1parity &= l2parity; 1625 l2parity &= l1parity; 1626 1627 /* Probe L1 ECC support */ 1628 cp0_ectl = read_c0_ecc(); 1629 write_c0_ecc(cp0_ectl | ERRCTL_PE); 1630 back_to_back_c0_hazard(); 1631 cp0_ectl = read_c0_ecc(); 1632 1633 /* Probe L2 ECC support */ 1634 gcr_ectl = read_gcr_err_control(); 1635 1636 if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) || 1637 !(cp0_ectl & ERRCTL_PE)) { 1638 /* 1639 * One of L1 or L2 ECC checking isn't supported, 1640 * so we cannot enable either. 1641 */ 1642 l1parity = l2parity = 0; 1643 } 1644 1645 /* Configure L1 ECC checking */ 1646 if (l1parity) 1647 cp0_ectl |= ERRCTL_PE; 1648 else 1649 cp0_ectl &= ~ERRCTL_PE; 1650 write_c0_ecc(cp0_ectl); 1651 back_to_back_c0_hazard(); 1652 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity); 1653 1654 /* Configure L2 ECC checking */ 1655 if (l2parity) 1656 gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN; 1657 else 1658 gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN; 1659 write_gcr_err_control(gcr_ectl); 1660 gcr_ectl = read_gcr_err_control(); 1661 gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN; 1662 WARN_ON(!!gcr_ectl != l2parity); 1663 1664 pr_info("Cache parity protection %sabled\n", 1665 l1parity ? "en" : "dis"); 1666 return; 1667 } 1668 1669 switch (current_cpu_type()) { 1670 case CPU_24K: 1671 case CPU_34K: 1672 case CPU_74K: 1673 case CPU_1004K: 1674 case CPU_1074K: 1675 case CPU_INTERAPTIV: 1676 case CPU_PROAPTIV: 1677 case CPU_P5600: 1678 case CPU_QEMU_GENERIC: 1679 case CPU_P6600: 1680 { 1681 unsigned long errctl; 1682 unsigned int l1parity_present, l2parity_present; 1683 1684 errctl = read_c0_ecc(); 1685 errctl &= ~(ERRCTL_PE|ERRCTL_L2P); 1686 1687 /* probe L1 parity support */ 1688 write_c0_ecc(errctl | ERRCTL_PE); 1689 back_to_back_c0_hazard(); 1690 l1parity_present = (read_c0_ecc() & ERRCTL_PE); 1691 1692 /* probe L2 parity support */ 1693 write_c0_ecc(errctl|ERRCTL_L2P); 1694 back_to_back_c0_hazard(); 1695 l2parity_present = (read_c0_ecc() & ERRCTL_L2P); 1696 1697 if (l1parity_present && l2parity_present) { 1698 if (l1parity) 1699 errctl |= ERRCTL_PE; 1700 if (l1parity ^ l2parity) 1701 errctl |= ERRCTL_L2P; 1702 } else if (l1parity_present) { 1703 if (l1parity) 1704 errctl |= ERRCTL_PE; 1705 } else if (l2parity_present) { 1706 if (l2parity) 1707 errctl |= ERRCTL_L2P; 1708 } else { 1709 /* No parity available */ 1710 } 1711 1712 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); 1713 1714 write_c0_ecc(errctl); 1715 back_to_back_c0_hazard(); 1716 errctl = read_c0_ecc(); 1717 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); 1718 1719 if (l1parity_present) 1720 printk(KERN_INFO "Cache parity protection %sabled\n", 1721 (errctl & ERRCTL_PE) ? "en" : "dis"); 1722 1723 if (l2parity_present) { 1724 if (l1parity_present && l1parity) 1725 errctl ^= ERRCTL_L2P; 1726 printk(KERN_INFO "L2 cache parity protection %sabled\n", 1727 (errctl & ERRCTL_L2P) ? "en" : "dis"); 1728 } 1729 } 1730 break; 1731 1732 case CPU_5KC: 1733 case CPU_5KE: 1734 case CPU_LOONGSON1: 1735 write_c0_ecc(0x80000000); 1736 back_to_back_c0_hazard(); 1737 /* Set the PE bit (bit 31) in the c0_errctl register. */ 1738 printk(KERN_INFO "Cache parity protection %sabled\n", 1739 (read_c0_ecc() & 0x80000000) ? "en" : "dis"); 1740 break; 1741 case CPU_20KC: 1742 case CPU_25KF: 1743 /* Clear the DE bit (bit 16) in the c0_status register. */ 1744 printk(KERN_INFO "Enable cache parity protection for " 1745 "MIPS 20KC/25KF CPUs.\n"); 1746 clear_c0_status(ST0_DE); 1747 break; 1748 default: 1749 break; 1750 } 1751 } 1752 1753 asmlinkage void cache_parity_error(void) 1754 { 1755 const int field = 2 * sizeof(unsigned long); 1756 unsigned int reg_val; 1757 1758 /* For the moment, report the problem and hang. */ 1759 printk("Cache error exception:\n"); 1760 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1761 reg_val = read_c0_cacheerr(); 1762 printk("c0_cacheerr == %08x\n", reg_val); 1763 1764 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1765 reg_val & (1<<30) ? "secondary" : "primary", 1766 reg_val & (1<<31) ? "data" : "insn"); 1767 if ((cpu_has_mips_r2_r6) && 1768 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { 1769 pr_err("Error bits: %s%s%s%s%s%s%s%s\n", 1770 reg_val & (1<<29) ? "ED " : "", 1771 reg_val & (1<<28) ? "ET " : "", 1772 reg_val & (1<<27) ? "ES " : "", 1773 reg_val & (1<<26) ? "EE " : "", 1774 reg_val & (1<<25) ? "EB " : "", 1775 reg_val & (1<<24) ? "EI " : "", 1776 reg_val & (1<<23) ? "E1 " : "", 1777 reg_val & (1<<22) ? "E0 " : ""); 1778 } else { 1779 pr_err("Error bits: %s%s%s%s%s%s%s\n", 1780 reg_val & (1<<29) ? "ED " : "", 1781 reg_val & (1<<28) ? "ET " : "", 1782 reg_val & (1<<26) ? "EE " : "", 1783 reg_val & (1<<25) ? "EB " : "", 1784 reg_val & (1<<24) ? "EI " : "", 1785 reg_val & (1<<23) ? "E1 " : "", 1786 reg_val & (1<<22) ? "E0 " : ""); 1787 } 1788 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); 1789 1790 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) 1791 if (reg_val & (1<<22)) 1792 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); 1793 1794 if (reg_val & (1<<23)) 1795 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); 1796 #endif 1797 1798 panic("Can't handle the cache error!"); 1799 } 1800 1801 asmlinkage void do_ftlb(void) 1802 { 1803 const int field = 2 * sizeof(unsigned long); 1804 unsigned int reg_val; 1805 1806 /* For the moment, report the problem and hang. */ 1807 if ((cpu_has_mips_r2_r6) && 1808 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) || 1809 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) { 1810 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n", 1811 read_c0_ecc()); 1812 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1813 reg_val = read_c0_cacheerr(); 1814 pr_err("c0_cacheerr == %08x\n", reg_val); 1815 1816 if ((reg_val & 0xc0000000) == 0xc0000000) { 1817 pr_err("Decoded c0_cacheerr: FTLB parity error\n"); 1818 } else { 1819 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1820 reg_val & (1<<30) ? "secondary" : "primary", 1821 reg_val & (1<<31) ? "data" : "insn"); 1822 } 1823 } else { 1824 pr_err("FTLB error exception\n"); 1825 } 1826 /* Just print the cacheerr bits for now */ 1827 cache_parity_error(); 1828 } 1829 1830 /* 1831 * SDBBP EJTAG debug exception handler. 1832 * We skip the instruction and return to the next instruction. 1833 */ 1834 void ejtag_exception_handler(struct pt_regs *regs) 1835 { 1836 const int field = 2 * sizeof(unsigned long); 1837 unsigned long depc, old_epc, old_ra; 1838 unsigned int debug; 1839 1840 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); 1841 depc = read_c0_depc(); 1842 debug = read_c0_debug(); 1843 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); 1844 if (debug & 0x80000000) { 1845 /* 1846 * In branch delay slot. 1847 * We cheat a little bit here and use EPC to calculate the 1848 * debug return address (DEPC). EPC is restored after the 1849 * calculation. 1850 */ 1851 old_epc = regs->cp0_epc; 1852 old_ra = regs->regs[31]; 1853 regs->cp0_epc = depc; 1854 compute_return_epc(regs); 1855 depc = regs->cp0_epc; 1856 regs->cp0_epc = old_epc; 1857 regs->regs[31] = old_ra; 1858 } else 1859 depc += 4; 1860 write_c0_depc(depc); 1861 1862 #if 0 1863 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); 1864 write_c0_debug(debug | 0x100); 1865 #endif 1866 } 1867 1868 /* 1869 * NMI exception handler. 1870 * No lock; only written during early bootup by CPU 0. 1871 */ 1872 static RAW_NOTIFIER_HEAD(nmi_chain); 1873 1874 int register_nmi_notifier(struct notifier_block *nb) 1875 { 1876 return raw_notifier_chain_register(&nmi_chain, nb); 1877 } 1878 1879 void __noreturn nmi_exception_handler(struct pt_regs *regs) 1880 { 1881 char str[100]; 1882 1883 nmi_enter(); 1884 raw_notifier_call_chain(&nmi_chain, 0, regs); 1885 bust_spinlocks(1); 1886 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n", 1887 smp_processor_id(), regs->cp0_epc); 1888 regs->cp0_epc = read_c0_errorepc(); 1889 die(str, regs); 1890 nmi_exit(); 1891 } 1892 1893 #define VECTORSPACING 0x100 /* for EI/VI mode */ 1894 1895 unsigned long ebase; 1896 EXPORT_SYMBOL_GPL(ebase); 1897 unsigned long exception_handlers[32]; 1898 unsigned long vi_handlers[64]; 1899 1900 void __init *set_except_vector(int n, void *addr) 1901 { 1902 unsigned long handler = (unsigned long) addr; 1903 unsigned long old_handler; 1904 1905 #ifdef CONFIG_CPU_MICROMIPS 1906 /* 1907 * Only the TLB handlers are cache aligned with an even 1908 * address. All other handlers are on an odd address and 1909 * require no modification. Otherwise, MIPS32 mode will 1910 * be entered when handling any TLB exceptions. That 1911 * would be bad...since we must stay in microMIPS mode. 1912 */ 1913 if (!(handler & 0x1)) 1914 handler |= 1; 1915 #endif 1916 old_handler = xchg(&exception_handlers[n], handler); 1917 1918 if (n == 0 && cpu_has_divec) { 1919 #ifdef CONFIG_CPU_MICROMIPS 1920 unsigned long jump_mask = ~((1 << 27) - 1); 1921 #else 1922 unsigned long jump_mask = ~((1 << 28) - 1); 1923 #endif 1924 u32 *buf = (u32 *)(ebase + 0x200); 1925 unsigned int k0 = 26; 1926 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { 1927 uasm_i_j(&buf, handler & ~jump_mask); 1928 uasm_i_nop(&buf); 1929 } else { 1930 UASM_i_LA(&buf, k0, handler); 1931 uasm_i_jr(&buf, k0); 1932 uasm_i_nop(&buf); 1933 } 1934 local_flush_icache_range(ebase + 0x200, (unsigned long)buf); 1935 } 1936 return (void *)old_handler; 1937 } 1938 1939 static void do_default_vi(void) 1940 { 1941 show_regs(get_irq_regs()); 1942 panic("Caught unexpected vectored interrupt."); 1943 } 1944 1945 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) 1946 { 1947 unsigned long handler; 1948 unsigned long old_handler = vi_handlers[n]; 1949 int srssets = current_cpu_data.srsets; 1950 u16 *h; 1951 unsigned char *b; 1952 1953 BUG_ON(!cpu_has_veic && !cpu_has_vint); 1954 1955 if (addr == NULL) { 1956 handler = (unsigned long) do_default_vi; 1957 srs = 0; 1958 } else 1959 handler = (unsigned long) addr; 1960 vi_handlers[n] = handler; 1961 1962 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); 1963 1964 if (srs >= srssets) 1965 panic("Shadow register set %d not supported", srs); 1966 1967 if (cpu_has_veic) { 1968 if (board_bind_eic_interrupt) 1969 board_bind_eic_interrupt(n, srs); 1970 } else if (cpu_has_vint) { 1971 /* SRSMap is only defined if shadow sets are implemented */ 1972 if (srssets > 1) 1973 change_c0_srsmap(0xf << n*4, srs << n*4); 1974 } 1975 1976 if (srs == 0) { 1977 /* 1978 * If no shadow set is selected then use the default handler 1979 * that does normal register saving and standard interrupt exit 1980 */ 1981 extern char except_vec_vi, except_vec_vi_lui; 1982 extern char except_vec_vi_ori, except_vec_vi_end; 1983 extern char rollback_except_vec_vi; 1984 char *vec_start = using_rollback_handler() ? 1985 &rollback_except_vec_vi : &except_vec_vi; 1986 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN) 1987 const int lui_offset = &except_vec_vi_lui - vec_start + 2; 1988 const int ori_offset = &except_vec_vi_ori - vec_start + 2; 1989 #else 1990 const int lui_offset = &except_vec_vi_lui - vec_start; 1991 const int ori_offset = &except_vec_vi_ori - vec_start; 1992 #endif 1993 const int handler_len = &except_vec_vi_end - vec_start; 1994 1995 if (handler_len > VECTORSPACING) { 1996 /* 1997 * Sigh... panicing won't help as the console 1998 * is probably not configured :( 1999 */ 2000 panic("VECTORSPACING too small"); 2001 } 2002 2003 set_handler(((unsigned long)b - ebase), vec_start, 2004 #ifdef CONFIG_CPU_MICROMIPS 2005 (handler_len - 1)); 2006 #else 2007 handler_len); 2008 #endif 2009 h = (u16 *)(b + lui_offset); 2010 *h = (handler >> 16) & 0xffff; 2011 h = (u16 *)(b + ori_offset); 2012 *h = (handler & 0xffff); 2013 local_flush_icache_range((unsigned long)b, 2014 (unsigned long)(b+handler_len)); 2015 } 2016 else { 2017 /* 2018 * In other cases jump directly to the interrupt handler. It 2019 * is the handler's responsibility to save registers if required 2020 * (eg hi/lo) and return from the exception using "eret". 2021 */ 2022 u32 insn; 2023 2024 h = (u16 *)b; 2025 /* j handler */ 2026 #ifdef CONFIG_CPU_MICROMIPS 2027 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1); 2028 #else 2029 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2); 2030 #endif 2031 h[0] = (insn >> 16) & 0xffff; 2032 h[1] = insn & 0xffff; 2033 h[2] = 0; 2034 h[3] = 0; 2035 local_flush_icache_range((unsigned long)b, 2036 (unsigned long)(b+8)); 2037 } 2038 2039 return (void *)old_handler; 2040 } 2041 2042 void *set_vi_handler(int n, vi_handler_t addr) 2043 { 2044 return set_vi_srs_handler(n, addr, 0); 2045 } 2046 2047 extern void tlb_init(void); 2048 2049 /* 2050 * Timer interrupt 2051 */ 2052 int cp0_compare_irq; 2053 EXPORT_SYMBOL_GPL(cp0_compare_irq); 2054 int cp0_compare_irq_shift; 2055 2056 /* 2057 * Performance counter IRQ or -1 if shared with timer 2058 */ 2059 int cp0_perfcount_irq; 2060 EXPORT_SYMBOL_GPL(cp0_perfcount_irq); 2061 2062 /* 2063 * Fast debug channel IRQ or -1 if not present 2064 */ 2065 int cp0_fdc_irq; 2066 EXPORT_SYMBOL_GPL(cp0_fdc_irq); 2067 2068 static int noulri; 2069 2070 static int __init ulri_disable(char *s) 2071 { 2072 pr_info("Disabling ulri\n"); 2073 noulri = 1; 2074 2075 return 1; 2076 } 2077 __setup("noulri", ulri_disable); 2078 2079 /* configure STATUS register */ 2080 static void configure_status(void) 2081 { 2082 /* 2083 * Disable coprocessors and select 32-bit or 64-bit addressing 2084 * and the 16/32 or 32/32 FPR register model. Reset the BEV 2085 * flag that some firmware may have left set and the TS bit (for 2086 * IP27). Set XX for ISA IV code to work. 2087 */ 2088 unsigned int status_set = ST0_CU0; 2089 #ifdef CONFIG_64BIT 2090 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; 2091 #endif 2092 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV) 2093 status_set |= ST0_XX; 2094 if (cpu_has_dsp) 2095 status_set |= ST0_MX; 2096 2097 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, 2098 status_set); 2099 } 2100 2101 unsigned int hwrena; 2102 EXPORT_SYMBOL_GPL(hwrena); 2103 2104 /* configure HWRENA register */ 2105 static void configure_hwrena(void) 2106 { 2107 hwrena = cpu_hwrena_impl_bits; 2108 2109 if (cpu_has_mips_r2_r6) 2110 hwrena |= MIPS_HWRENA_CPUNUM | 2111 MIPS_HWRENA_SYNCISTEP | 2112 MIPS_HWRENA_CC | 2113 MIPS_HWRENA_CCRES; 2114 2115 if (!noulri && cpu_has_userlocal) 2116 hwrena |= MIPS_HWRENA_ULR; 2117 2118 if (hwrena) 2119 write_c0_hwrena(hwrena); 2120 } 2121 2122 static void configure_exception_vector(void) 2123 { 2124 if (cpu_has_veic || cpu_has_vint) { 2125 unsigned long sr = set_c0_status(ST0_BEV); 2126 /* If available, use WG to set top bits of EBASE */ 2127 if (cpu_has_ebase_wg) { 2128 #ifdef CONFIG_64BIT 2129 write_c0_ebase_64(ebase | MIPS_EBASE_WG); 2130 #else 2131 write_c0_ebase(ebase | MIPS_EBASE_WG); 2132 #endif 2133 } 2134 write_c0_ebase(ebase); 2135 write_c0_status(sr); 2136 /* Setting vector spacing enables EI/VI mode */ 2137 change_c0_intctl(0x3e0, VECTORSPACING); 2138 } 2139 if (cpu_has_divec) { 2140 if (cpu_has_mipsmt) { 2141 unsigned int vpflags = dvpe(); 2142 set_c0_cause(CAUSEF_IV); 2143 evpe(vpflags); 2144 } else 2145 set_c0_cause(CAUSEF_IV); 2146 } 2147 } 2148 2149 void per_cpu_trap_init(bool is_boot_cpu) 2150 { 2151 unsigned int cpu = smp_processor_id(); 2152 2153 configure_status(); 2154 configure_hwrena(); 2155 2156 configure_exception_vector(); 2157 2158 /* 2159 * Before R2 both interrupt numbers were fixed to 7, so on R2 only: 2160 * 2161 * o read IntCtl.IPTI to determine the timer interrupt 2162 * o read IntCtl.IPPCI to determine the performance counter interrupt 2163 * o read IntCtl.IPFDC to determine the fast debug channel interrupt 2164 */ 2165 if (cpu_has_mips_r2_r6) { 2166 /* 2167 * We shouldn't trust a secondary core has a sane EBASE register 2168 * so use the one calculated by the boot CPU. 2169 */ 2170 if (!is_boot_cpu) { 2171 /* If available, use WG to set top bits of EBASE */ 2172 if (cpu_has_ebase_wg) { 2173 #ifdef CONFIG_64BIT 2174 write_c0_ebase_64(ebase | MIPS_EBASE_WG); 2175 #else 2176 write_c0_ebase(ebase | MIPS_EBASE_WG); 2177 #endif 2178 } 2179 write_c0_ebase(ebase); 2180 } 2181 2182 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; 2183 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; 2184 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; 2185 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7; 2186 if (!cp0_fdc_irq) 2187 cp0_fdc_irq = -1; 2188 2189 } else { 2190 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; 2191 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ; 2192 cp0_perfcount_irq = -1; 2193 cp0_fdc_irq = -1; 2194 } 2195 2196 if (!cpu_data[cpu].asid_cache) 2197 cpu_data[cpu].asid_cache = asid_first_version(cpu); 2198 2199 mmgrab(&init_mm); 2200 current->active_mm = &init_mm; 2201 BUG_ON(current->mm); 2202 enter_lazy_tlb(&init_mm, current); 2203 2204 /* Boot CPU's cache setup in setup_arch(). */ 2205 if (!is_boot_cpu) 2206 cpu_cache_init(); 2207 tlb_init(); 2208 TLBMISS_HANDLER_SETUP(); 2209 } 2210 2211 /* Install CPU exception handler */ 2212 void set_handler(unsigned long offset, void *addr, unsigned long size) 2213 { 2214 #ifdef CONFIG_CPU_MICROMIPS 2215 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size); 2216 #else 2217 memcpy((void *)(ebase + offset), addr, size); 2218 #endif 2219 local_flush_icache_range(ebase + offset, ebase + offset + size); 2220 } 2221 2222 static const char panic_null_cerr[] = 2223 "Trying to set NULL cache error exception handler\n"; 2224 2225 /* 2226 * Install uncached CPU exception handler. 2227 * This is suitable only for the cache error exception which is the only 2228 * exception handler that is being run uncached. 2229 */ 2230 void set_uncached_handler(unsigned long offset, void *addr, 2231 unsigned long size) 2232 { 2233 unsigned long uncached_ebase = CKSEG1ADDR(ebase); 2234 2235 if (!addr) 2236 panic(panic_null_cerr); 2237 2238 memcpy((void *)(uncached_ebase + offset), addr, size); 2239 } 2240 2241 static int __initdata rdhwr_noopt; 2242 static int __init set_rdhwr_noopt(char *str) 2243 { 2244 rdhwr_noopt = 1; 2245 return 1; 2246 } 2247 2248 __setup("rdhwr_noopt", set_rdhwr_noopt); 2249 2250 void __init trap_init(void) 2251 { 2252 extern char except_vec3_generic; 2253 extern char except_vec4; 2254 extern char except_vec3_r4000; 2255 unsigned long i; 2256 2257 check_wait(); 2258 2259 if (cpu_has_veic || cpu_has_vint) { 2260 unsigned long size = 0x200 + VECTORSPACING*64; 2261 phys_addr_t ebase_pa; 2262 2263 ebase = (unsigned long) 2264 __alloc_bootmem(size, 1 << fls(size), 0); 2265 2266 /* 2267 * Try to ensure ebase resides in KSeg0 if possible. 2268 * 2269 * It shouldn't generally be in XKPhys on MIPS64 to avoid 2270 * hitting a poorly defined exception base for Cache Errors. 2271 * The allocation is likely to be in the low 512MB of physical, 2272 * in which case we should be able to convert to KSeg0. 2273 * 2274 * EVA is special though as it allows segments to be rearranged 2275 * and to become uncached during cache error handling. 2276 */ 2277 ebase_pa = __pa(ebase); 2278 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000)) 2279 ebase = CKSEG0ADDR(ebase_pa); 2280 } else { 2281 ebase = CAC_BASE; 2282 2283 if (cpu_has_mips_r2_r6) { 2284 if (cpu_has_ebase_wg) { 2285 #ifdef CONFIG_64BIT 2286 ebase = (read_c0_ebase_64() & ~0xfff); 2287 #else 2288 ebase = (read_c0_ebase() & ~0xfff); 2289 #endif 2290 } else { 2291 ebase += (read_c0_ebase() & 0x3ffff000); 2292 } 2293 } 2294 } 2295 2296 if (cpu_has_mmips) { 2297 unsigned int config3 = read_c0_config3(); 2298 2299 if (IS_ENABLED(CONFIG_CPU_MICROMIPS)) 2300 write_c0_config3(config3 | MIPS_CONF3_ISA_OE); 2301 else 2302 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE); 2303 } 2304 2305 if (board_ebase_setup) 2306 board_ebase_setup(); 2307 per_cpu_trap_init(true); 2308 2309 /* 2310 * Copy the generic exception handlers to their final destination. 2311 * This will be overridden later as suitable for a particular 2312 * configuration. 2313 */ 2314 set_handler(0x180, &except_vec3_generic, 0x80); 2315 2316 /* 2317 * Setup default vectors 2318 */ 2319 for (i = 0; i <= 31; i++) 2320 set_except_vector(i, handle_reserved); 2321 2322 /* 2323 * Copy the EJTAG debug exception vector handler code to it's final 2324 * destination. 2325 */ 2326 if (cpu_has_ejtag && board_ejtag_handler_setup) 2327 board_ejtag_handler_setup(); 2328 2329 /* 2330 * Only some CPUs have the watch exceptions. 2331 */ 2332 if (cpu_has_watch) 2333 set_except_vector(EXCCODE_WATCH, handle_watch); 2334 2335 /* 2336 * Initialise interrupt handlers 2337 */ 2338 if (cpu_has_veic || cpu_has_vint) { 2339 int nvec = cpu_has_veic ? 64 : 8; 2340 for (i = 0; i < nvec; i++) 2341 set_vi_handler(i, NULL); 2342 } 2343 else if (cpu_has_divec) 2344 set_handler(0x200, &except_vec4, 0x8); 2345 2346 /* 2347 * Some CPUs can enable/disable for cache parity detection, but does 2348 * it different ways. 2349 */ 2350 parity_protection_init(); 2351 2352 /* 2353 * The Data Bus Errors / Instruction Bus Errors are signaled 2354 * by external hardware. Therefore these two exceptions 2355 * may have board specific handlers. 2356 */ 2357 if (board_be_init) 2358 board_be_init(); 2359 2360 set_except_vector(EXCCODE_INT, using_rollback_handler() ? 2361 rollback_handle_int : handle_int); 2362 set_except_vector(EXCCODE_MOD, handle_tlbm); 2363 set_except_vector(EXCCODE_TLBL, handle_tlbl); 2364 set_except_vector(EXCCODE_TLBS, handle_tlbs); 2365 2366 set_except_vector(EXCCODE_ADEL, handle_adel); 2367 set_except_vector(EXCCODE_ADES, handle_ades); 2368 2369 set_except_vector(EXCCODE_IBE, handle_ibe); 2370 set_except_vector(EXCCODE_DBE, handle_dbe); 2371 2372 set_except_vector(EXCCODE_SYS, handle_sys); 2373 set_except_vector(EXCCODE_BP, handle_bp); 2374 2375 if (rdhwr_noopt) 2376 set_except_vector(EXCCODE_RI, handle_ri); 2377 else { 2378 if (cpu_has_vtag_icache) 2379 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp); 2380 else if (current_cpu_type() == CPU_LOONGSON3) 2381 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp); 2382 else 2383 set_except_vector(EXCCODE_RI, handle_ri_rdhwr); 2384 } 2385 2386 set_except_vector(EXCCODE_CPU, handle_cpu); 2387 set_except_vector(EXCCODE_OV, handle_ov); 2388 set_except_vector(EXCCODE_TR, handle_tr); 2389 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe); 2390 2391 if (board_nmi_handler_setup) 2392 board_nmi_handler_setup(); 2393 2394 if (cpu_has_fpu && !cpu_has_nofpuex) 2395 set_except_vector(EXCCODE_FPE, handle_fpe); 2396 2397 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb); 2398 2399 if (cpu_has_rixiex) { 2400 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0); 2401 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0); 2402 } 2403 2404 set_except_vector(EXCCODE_MSADIS, handle_msa); 2405 set_except_vector(EXCCODE_MDMX, handle_mdmx); 2406 2407 if (cpu_has_mcheck) 2408 set_except_vector(EXCCODE_MCHECK, handle_mcheck); 2409 2410 if (cpu_has_mipsmt) 2411 set_except_vector(EXCCODE_THREAD, handle_mt); 2412 2413 set_except_vector(EXCCODE_DSPDIS, handle_dsp); 2414 2415 if (board_cache_error_setup) 2416 board_cache_error_setup(); 2417 2418 if (cpu_has_vce) 2419 /* Special exception: R4[04]00 uses also the divec space. */ 2420 set_handler(0x180, &except_vec3_r4000, 0x100); 2421 else if (cpu_has_4kex) 2422 set_handler(0x180, &except_vec3_generic, 0x80); 2423 else 2424 set_handler(0x080, &except_vec3_generic, 0x80); 2425 2426 local_flush_icache_range(ebase, ebase + 0x400); 2427 2428 sort_extable(__start___dbe_table, __stop___dbe_table); 2429 2430 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */ 2431 } 2432 2433 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd, 2434 void *v) 2435 { 2436 switch (cmd) { 2437 case CPU_PM_ENTER_FAILED: 2438 case CPU_PM_EXIT: 2439 configure_status(); 2440 configure_hwrena(); 2441 configure_exception_vector(); 2442 2443 /* Restore register with CPU number for TLB handlers */ 2444 TLBMISS_HANDLER_RESTORE(); 2445 2446 break; 2447 } 2448 2449 return NOTIFY_OK; 2450 } 2451 2452 static struct notifier_block trap_pm_notifier_block = { 2453 .notifier_call = trap_pm_notifier, 2454 }; 2455 2456 static int __init trap_pm_init(void) 2457 { 2458 return cpu_pm_register_notifier(&trap_pm_notifier_block); 2459 } 2460 arch_initcall(trap_pm_init); 2461