xref: /openbmc/linux/arch/mips/kernel/traps.c (revision 8dda2eac)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
25 #include <linux/mm.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memblock.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
41 
42 #include <asm/addrspace.h>
43 #include <asm/bootinfo.h>
44 #include <asm/branch.h>
45 #include <asm/break.h>
46 #include <asm/cop2.h>
47 #include <asm/cpu.h>
48 #include <asm/cpu-type.h>
49 #include <asm/dsp.h>
50 #include <asm/fpu.h>
51 #include <asm/fpu_emulator.h>
52 #include <asm/idle.h>
53 #include <asm/isa-rev.h>
54 #include <asm/mips-cps.h>
55 #include <asm/mips-r2-to-r6-emul.h>
56 #include <asm/mipsregs.h>
57 #include <asm/mipsmtregs.h>
58 #include <asm/module.h>
59 #include <asm/msa.h>
60 #include <asm/ptrace.h>
61 #include <asm/sections.h>
62 #include <asm/siginfo.h>
63 #include <asm/tlbdebug.h>
64 #include <asm/traps.h>
65 #include <linux/uaccess.h>
66 #include <asm/watch.h>
67 #include <asm/mmu_context.h>
68 #include <asm/types.h>
69 #include <asm/stacktrace.h>
70 #include <asm/tlbex.h>
71 #include <asm/uasm.h>
72 
73 #include <asm/mach-loongson64/cpucfg-emul.h>
74 
75 #include "access-helper.h"
76 
77 extern void check_wait(void);
78 extern asmlinkage void rollback_handle_int(void);
79 extern asmlinkage void handle_int(void);
80 extern asmlinkage void handle_adel(void);
81 extern asmlinkage void handle_ades(void);
82 extern asmlinkage void handle_ibe(void);
83 extern asmlinkage void handle_dbe(void);
84 extern asmlinkage void handle_sys(void);
85 extern asmlinkage void handle_bp(void);
86 extern asmlinkage void handle_ri(void);
87 extern asmlinkage void handle_ri_rdhwr_tlbp(void);
88 extern asmlinkage void handle_ri_rdhwr(void);
89 extern asmlinkage void handle_cpu(void);
90 extern asmlinkage void handle_ov(void);
91 extern asmlinkage void handle_tr(void);
92 extern asmlinkage void handle_msa_fpe(void);
93 extern asmlinkage void handle_fpe(void);
94 extern asmlinkage void handle_ftlb(void);
95 extern asmlinkage void handle_gsexc(void);
96 extern asmlinkage void handle_msa(void);
97 extern asmlinkage void handle_mdmx(void);
98 extern asmlinkage void handle_watch(void);
99 extern asmlinkage void handle_mt(void);
100 extern asmlinkage void handle_dsp(void);
101 extern asmlinkage void handle_mcheck(void);
102 extern asmlinkage void handle_reserved(void);
103 extern void tlb_do_page_fault_0(void);
104 
105 void (*board_be_init)(void);
106 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
107 void (*board_nmi_handler_setup)(void);
108 void (*board_ejtag_handler_setup)(void);
109 void (*board_bind_eic_interrupt)(int irq, int regset);
110 void (*board_ebase_setup)(void);
111 void(*board_cache_error_setup)(void);
112 
113 static void show_raw_backtrace(unsigned long reg29, const char *loglvl,
114 			       bool user)
115 {
116 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
117 	unsigned long addr;
118 
119 	printk("%sCall Trace:", loglvl);
120 #ifdef CONFIG_KALLSYMS
121 	printk("%s\n", loglvl);
122 #endif
123 	while (!kstack_end(sp)) {
124 		if (__get_addr(&addr, sp++, user)) {
125 			printk("%s (Bad stack address)", loglvl);
126 			break;
127 		}
128 		if (__kernel_text_address(addr))
129 			print_ip_sym(loglvl, addr);
130 	}
131 	printk("%s\n", loglvl);
132 }
133 
134 #ifdef CONFIG_KALLSYMS
135 int raw_show_trace;
136 static int __init set_raw_show_trace(char *str)
137 {
138 	raw_show_trace = 1;
139 	return 1;
140 }
141 __setup("raw_show_trace", set_raw_show_trace);
142 #endif
143 
144 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs,
145 			   const char *loglvl, bool user)
146 {
147 	unsigned long sp = regs->regs[29];
148 	unsigned long ra = regs->regs[31];
149 	unsigned long pc = regs->cp0_epc;
150 
151 	if (!task)
152 		task = current;
153 
154 	if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
155 		show_raw_backtrace(sp, loglvl, user);
156 		return;
157 	}
158 	printk("%sCall Trace:\n", loglvl);
159 	do {
160 		print_ip_sym(loglvl, pc);
161 		pc = unwind_stack(task, &sp, pc, &ra);
162 	} while (pc);
163 	pr_cont("\n");
164 }
165 
166 /*
167  * This routine abuses get_user()/put_user() to reference pointers
168  * with at least a bit of error checking ...
169  */
170 static void show_stacktrace(struct task_struct *task,
171 	const struct pt_regs *regs, const char *loglvl, bool user)
172 {
173 	const int field = 2 * sizeof(unsigned long);
174 	unsigned long stackdata;
175 	int i;
176 	unsigned long *sp = (unsigned long *)regs->regs[29];
177 
178 	printk("%sStack :", loglvl);
179 	i = 0;
180 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
181 		if (i && ((i % (64 / field)) == 0)) {
182 			pr_cont("\n");
183 			printk("%s       ", loglvl);
184 		}
185 		if (i > 39) {
186 			pr_cont(" ...");
187 			break;
188 		}
189 
190 		if (__get_addr(&stackdata, sp++, user)) {
191 			pr_cont(" (Bad stack address)");
192 			break;
193 		}
194 
195 		pr_cont(" %0*lx", field, stackdata);
196 		i++;
197 	}
198 	pr_cont("\n");
199 	show_backtrace(task, regs, loglvl, user);
200 }
201 
202 void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
203 {
204 	struct pt_regs regs;
205 
206 	regs.cp0_status = KSU_KERNEL;
207 	if (sp) {
208 		regs.regs[29] = (unsigned long)sp;
209 		regs.regs[31] = 0;
210 		regs.cp0_epc = 0;
211 	} else {
212 		if (task && task != current) {
213 			regs.regs[29] = task->thread.reg29;
214 			regs.regs[31] = 0;
215 			regs.cp0_epc = task->thread.reg31;
216 		} else {
217 			prepare_frametrace(&regs);
218 		}
219 	}
220 	show_stacktrace(task, &regs, loglvl, false);
221 }
222 
223 static void show_code(void *pc, bool user)
224 {
225 	long i;
226 	unsigned short *pc16 = NULL;
227 
228 	printk("Code:");
229 
230 	if ((unsigned long)pc & 1)
231 		pc16 = (u16 *)((unsigned long)pc & ~1);
232 
233 	for(i = -3 ; i < 6 ; i++) {
234 		if (pc16) {
235 			u16 insn16;
236 
237 			if (__get_inst16(&insn16, pc16 + i, user))
238 				goto bad_address;
239 
240 			pr_cont("%c%04x%c", (i?' ':'<'), insn16, (i?' ':'>'));
241 		} else {
242 			u32 insn32;
243 
244 			if (__get_inst32(&insn32, (u32 *)pc + i, user))
245 				goto bad_address;
246 
247 			pr_cont("%c%08x%c", (i?' ':'<'), insn32, (i?' ':'>'));
248 		}
249 	}
250 	pr_cont("\n");
251 	return;
252 
253 bad_address:
254 	pr_cont(" (Bad address in epc)\n\n");
255 }
256 
257 static void __show_regs(const struct pt_regs *regs)
258 {
259 	const int field = 2 * sizeof(unsigned long);
260 	unsigned int cause = regs->cp0_cause;
261 	unsigned int exccode;
262 	int i;
263 
264 	show_regs_print_info(KERN_DEFAULT);
265 
266 	/*
267 	 * Saved main processor registers
268 	 */
269 	for (i = 0; i < 32; ) {
270 		if ((i % 4) == 0)
271 			printk("$%2d   :", i);
272 		if (i == 0)
273 			pr_cont(" %0*lx", field, 0UL);
274 		else if (i == 26 || i == 27)
275 			pr_cont(" %*s", field, "");
276 		else
277 			pr_cont(" %0*lx", field, regs->regs[i]);
278 
279 		i++;
280 		if ((i % 4) == 0)
281 			pr_cont("\n");
282 	}
283 
284 #ifdef CONFIG_CPU_HAS_SMARTMIPS
285 	printk("Acx    : %0*lx\n", field, regs->acx);
286 #endif
287 	if (MIPS_ISA_REV < 6) {
288 		printk("Hi    : %0*lx\n", field, regs->hi);
289 		printk("Lo    : %0*lx\n", field, regs->lo);
290 	}
291 
292 	/*
293 	 * Saved cp0 registers
294 	 */
295 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
296 	       (void *) regs->cp0_epc);
297 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
298 	       (void *) regs->regs[31]);
299 
300 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
301 
302 	if (cpu_has_3kex) {
303 		if (regs->cp0_status & ST0_KUO)
304 			pr_cont("KUo ");
305 		if (regs->cp0_status & ST0_IEO)
306 			pr_cont("IEo ");
307 		if (regs->cp0_status & ST0_KUP)
308 			pr_cont("KUp ");
309 		if (regs->cp0_status & ST0_IEP)
310 			pr_cont("IEp ");
311 		if (regs->cp0_status & ST0_KUC)
312 			pr_cont("KUc ");
313 		if (regs->cp0_status & ST0_IEC)
314 			pr_cont("IEc ");
315 	} else if (cpu_has_4kex) {
316 		if (regs->cp0_status & ST0_KX)
317 			pr_cont("KX ");
318 		if (regs->cp0_status & ST0_SX)
319 			pr_cont("SX ");
320 		if (regs->cp0_status & ST0_UX)
321 			pr_cont("UX ");
322 		switch (regs->cp0_status & ST0_KSU) {
323 		case KSU_USER:
324 			pr_cont("USER ");
325 			break;
326 		case KSU_SUPERVISOR:
327 			pr_cont("SUPERVISOR ");
328 			break;
329 		case KSU_KERNEL:
330 			pr_cont("KERNEL ");
331 			break;
332 		default:
333 			pr_cont("BAD_MODE ");
334 			break;
335 		}
336 		if (regs->cp0_status & ST0_ERL)
337 			pr_cont("ERL ");
338 		if (regs->cp0_status & ST0_EXL)
339 			pr_cont("EXL ");
340 		if (regs->cp0_status & ST0_IE)
341 			pr_cont("IE ");
342 	}
343 	pr_cont("\n");
344 
345 	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
346 	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
347 
348 	if (1 <= exccode && exccode <= 5)
349 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
350 
351 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
352 	       cpu_name_string());
353 }
354 
355 /*
356  * FIXME: really the generic show_regs should take a const pointer argument.
357  */
358 void show_regs(struct pt_regs *regs)
359 {
360 	__show_regs(regs);
361 	dump_stack();
362 }
363 
364 void show_registers(struct pt_regs *regs)
365 {
366 	const int field = 2 * sizeof(unsigned long);
367 
368 	__show_regs(regs);
369 	print_modules();
370 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
371 	       current->comm, current->pid, current_thread_info(), current,
372 	      field, current_thread_info()->tp_value);
373 	if (cpu_has_userlocal) {
374 		unsigned long tls;
375 
376 		tls = read_c0_userlocal();
377 		if (tls != current_thread_info()->tp_value)
378 			printk("*HwTLS: %0*lx\n", field, tls);
379 	}
380 
381 	show_stacktrace(current, regs, KERN_DEFAULT, user_mode(regs));
382 	show_code((void *)regs->cp0_epc, user_mode(regs));
383 	printk("\n");
384 }
385 
386 static DEFINE_RAW_SPINLOCK(die_lock);
387 
388 void __noreturn die(const char *str, struct pt_regs *regs)
389 {
390 	static int die_counter;
391 	int sig = SIGSEGV;
392 
393 	oops_enter();
394 
395 	if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
396 		       SIGSEGV) == NOTIFY_STOP)
397 		sig = 0;
398 
399 	console_verbose();
400 	raw_spin_lock_irq(&die_lock);
401 	bust_spinlocks(1);
402 
403 	printk("%s[#%d]:\n", str, ++die_counter);
404 	show_registers(regs);
405 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
406 	raw_spin_unlock_irq(&die_lock);
407 
408 	oops_exit();
409 
410 	if (in_interrupt())
411 		panic("Fatal exception in interrupt");
412 
413 	if (panic_on_oops)
414 		panic("Fatal exception");
415 
416 	if (regs && kexec_should_crash(current))
417 		crash_kexec(regs);
418 
419 	do_exit(sig);
420 }
421 
422 extern struct exception_table_entry __start___dbe_table[];
423 extern struct exception_table_entry __stop___dbe_table[];
424 
425 __asm__(
426 "	.section	__dbe_table, \"a\"\n"
427 "	.previous			\n");
428 
429 /* Given an address, look for it in the exception tables. */
430 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
431 {
432 	const struct exception_table_entry *e;
433 
434 	e = search_extable(__start___dbe_table,
435 			   __stop___dbe_table - __start___dbe_table, addr);
436 	if (!e)
437 		e = search_module_dbetables(addr);
438 	return e;
439 }
440 
441 asmlinkage void do_be(struct pt_regs *regs)
442 {
443 	const int field = 2 * sizeof(unsigned long);
444 	const struct exception_table_entry *fixup = NULL;
445 	int data = regs->cp0_cause & 4;
446 	int action = MIPS_BE_FATAL;
447 	enum ctx_state prev_state;
448 
449 	prev_state = exception_enter();
450 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
451 	if (data && !user_mode(regs))
452 		fixup = search_dbe_tables(exception_epc(regs));
453 
454 	if (fixup)
455 		action = MIPS_BE_FIXUP;
456 
457 	if (board_be_handler)
458 		action = board_be_handler(regs, fixup != NULL);
459 	else
460 		mips_cm_error_report();
461 
462 	switch (action) {
463 	case MIPS_BE_DISCARD:
464 		goto out;
465 	case MIPS_BE_FIXUP:
466 		if (fixup) {
467 			regs->cp0_epc = fixup->nextinsn;
468 			goto out;
469 		}
470 		break;
471 	default:
472 		break;
473 	}
474 
475 	/*
476 	 * Assume it would be too dangerous to continue ...
477 	 */
478 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
479 	       data ? "Data" : "Instruction",
480 	       field, regs->cp0_epc, field, regs->regs[31]);
481 	if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
482 		       SIGBUS) == NOTIFY_STOP)
483 		goto out;
484 
485 	die_if_kernel("Oops", regs);
486 	force_sig(SIGBUS);
487 
488 out:
489 	exception_exit(prev_state);
490 }
491 
492 /*
493  * ll/sc, rdhwr, sync emulation
494  */
495 
496 #define OPCODE 0xfc000000
497 #define BASE   0x03e00000
498 #define RT     0x001f0000
499 #define OFFSET 0x0000ffff
500 #define LL     0xc0000000
501 #define SC     0xe0000000
502 #define SPEC0  0x00000000
503 #define SPEC3  0x7c000000
504 #define RD     0x0000f800
505 #define FUNC   0x0000003f
506 #define SYNC   0x0000000f
507 #define RDHWR  0x0000003b
508 
509 /*  microMIPS definitions   */
510 #define MM_POOL32A_FUNC 0xfc00ffff
511 #define MM_RDHWR        0x00006b3c
512 #define MM_RS           0x001f0000
513 #define MM_RT           0x03e00000
514 
515 /*
516  * The ll_bit is cleared by r*_switch.S
517  */
518 
519 unsigned int ll_bit;
520 struct task_struct *ll_task;
521 
522 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
523 {
524 	unsigned long value, __user *vaddr;
525 	long offset;
526 
527 	/*
528 	 * analyse the ll instruction that just caused a ri exception
529 	 * and put the referenced address to addr.
530 	 */
531 
532 	/* sign extend offset */
533 	offset = opcode & OFFSET;
534 	offset <<= 16;
535 	offset >>= 16;
536 
537 	vaddr = (unsigned long __user *)
538 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
539 
540 	if ((unsigned long)vaddr & 3)
541 		return SIGBUS;
542 	if (get_user(value, vaddr))
543 		return SIGSEGV;
544 
545 	preempt_disable();
546 
547 	if (ll_task == NULL || ll_task == current) {
548 		ll_bit = 1;
549 	} else {
550 		ll_bit = 0;
551 	}
552 	ll_task = current;
553 
554 	preempt_enable();
555 
556 	regs->regs[(opcode & RT) >> 16] = value;
557 
558 	return 0;
559 }
560 
561 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
562 {
563 	unsigned long __user *vaddr;
564 	unsigned long reg;
565 	long offset;
566 
567 	/*
568 	 * analyse the sc instruction that just caused a ri exception
569 	 * and put the referenced address to addr.
570 	 */
571 
572 	/* sign extend offset */
573 	offset = opcode & OFFSET;
574 	offset <<= 16;
575 	offset >>= 16;
576 
577 	vaddr = (unsigned long __user *)
578 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
579 	reg = (opcode & RT) >> 16;
580 
581 	if ((unsigned long)vaddr & 3)
582 		return SIGBUS;
583 
584 	preempt_disable();
585 
586 	if (ll_bit == 0 || ll_task != current) {
587 		regs->regs[reg] = 0;
588 		preempt_enable();
589 		return 0;
590 	}
591 
592 	preempt_enable();
593 
594 	if (put_user(regs->regs[reg], vaddr))
595 		return SIGSEGV;
596 
597 	regs->regs[reg] = 1;
598 
599 	return 0;
600 }
601 
602 /*
603  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
604  * opcodes are supposed to result in coprocessor unusable exceptions if
605  * executed on ll/sc-less processors.  That's the theory.  In practice a
606  * few processors such as NEC's VR4100 throw reserved instruction exceptions
607  * instead, so we're doing the emulation thing in both exception handlers.
608  */
609 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
610 {
611 	if ((opcode & OPCODE) == LL) {
612 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
613 				1, regs, 0);
614 		return simulate_ll(regs, opcode);
615 	}
616 	if ((opcode & OPCODE) == SC) {
617 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
618 				1, regs, 0);
619 		return simulate_sc(regs, opcode);
620 	}
621 
622 	return -1;			/* Must be something else ... */
623 }
624 
625 /*
626  * Simulate trapping 'rdhwr' instructions to provide user accessible
627  * registers not implemented in hardware.
628  */
629 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
630 {
631 	struct thread_info *ti = task_thread_info(current);
632 
633 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
634 			1, regs, 0);
635 	switch (rd) {
636 	case MIPS_HWR_CPUNUM:		/* CPU number */
637 		regs->regs[rt] = smp_processor_id();
638 		return 0;
639 	case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
640 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
641 				     current_cpu_data.icache.linesz);
642 		return 0;
643 	case MIPS_HWR_CC:		/* Read count register */
644 		regs->regs[rt] = read_c0_count();
645 		return 0;
646 	case MIPS_HWR_CCRES:		/* Count register resolution */
647 		switch (current_cpu_type()) {
648 		case CPU_20KC:
649 		case CPU_25KF:
650 			regs->regs[rt] = 1;
651 			break;
652 		default:
653 			regs->regs[rt] = 2;
654 		}
655 		return 0;
656 	case MIPS_HWR_ULR:		/* Read UserLocal register */
657 		regs->regs[rt] = ti->tp_value;
658 		return 0;
659 	default:
660 		return -1;
661 	}
662 }
663 
664 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
665 {
666 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
667 		int rd = (opcode & RD) >> 11;
668 		int rt = (opcode & RT) >> 16;
669 
670 		simulate_rdhwr(regs, rd, rt);
671 		return 0;
672 	}
673 
674 	/* Not ours.  */
675 	return -1;
676 }
677 
678 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
679 {
680 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
681 		int rd = (opcode & MM_RS) >> 16;
682 		int rt = (opcode & MM_RT) >> 21;
683 		simulate_rdhwr(regs, rd, rt);
684 		return 0;
685 	}
686 
687 	/* Not ours.  */
688 	return -1;
689 }
690 
691 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
692 {
693 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
694 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
695 				1, regs, 0);
696 		return 0;
697 	}
698 
699 	return -1;			/* Must be something else ... */
700 }
701 
702 /*
703  * Loongson-3 CSR instructions emulation
704  */
705 
706 #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
707 
708 #define LWC2             0xc8000000
709 #define RS               BASE
710 #define CSR_OPCODE2      0x00000118
711 #define CSR_OPCODE2_MASK 0x000007ff
712 #define CSR_FUNC_MASK    RT
713 #define CSR_FUNC_CPUCFG  0x8
714 
715 static int simulate_loongson3_cpucfg(struct pt_regs *regs,
716 				     unsigned int opcode)
717 {
718 	int op = opcode & OPCODE;
719 	int op2 = opcode & CSR_OPCODE2_MASK;
720 	int csr_func = (opcode & CSR_FUNC_MASK) >> 16;
721 
722 	if (op == LWC2 && op2 == CSR_OPCODE2 && csr_func == CSR_FUNC_CPUCFG) {
723 		int rd = (opcode & RD) >> 11;
724 		int rs = (opcode & RS) >> 21;
725 		__u64 sel = regs->regs[rs];
726 
727 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
728 
729 		/* Do not emulate on unsupported core models. */
730 		preempt_disable();
731 		if (!loongson3_cpucfg_emulation_enabled(&current_cpu_data)) {
732 			preempt_enable();
733 			return -1;
734 		}
735 		regs->regs[rd] = loongson3_cpucfg_read_synthesized(
736 			&current_cpu_data, sel);
737 		preempt_enable();
738 		return 0;
739 	}
740 
741 	/* Not ours.  */
742 	return -1;
743 }
744 #endif /* CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION */
745 
746 asmlinkage void do_ov(struct pt_regs *regs)
747 {
748 	enum ctx_state prev_state;
749 
750 	prev_state = exception_enter();
751 	die_if_kernel("Integer overflow", regs);
752 
753 	force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
754 	exception_exit(prev_state);
755 }
756 
757 #ifdef CONFIG_MIPS_FP_SUPPORT
758 
759 /*
760  * Send SIGFPE according to FCSR Cause bits, which must have already
761  * been masked against Enable bits.  This is impotant as Inexact can
762  * happen together with Overflow or Underflow, and `ptrace' can set
763  * any bits.
764  */
765 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
766 		     struct task_struct *tsk)
767 {
768 	int si_code = FPE_FLTUNK;
769 
770 	if (fcr31 & FPU_CSR_INV_X)
771 		si_code = FPE_FLTINV;
772 	else if (fcr31 & FPU_CSR_DIV_X)
773 		si_code = FPE_FLTDIV;
774 	else if (fcr31 & FPU_CSR_OVF_X)
775 		si_code = FPE_FLTOVF;
776 	else if (fcr31 & FPU_CSR_UDF_X)
777 		si_code = FPE_FLTUND;
778 	else if (fcr31 & FPU_CSR_INE_X)
779 		si_code = FPE_FLTRES;
780 
781 	force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
782 }
783 
784 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
785 {
786 	int si_code;
787 
788 	switch (sig) {
789 	case 0:
790 		return 0;
791 
792 	case SIGFPE:
793 		force_fcr31_sig(fcr31, fault_addr, current);
794 		return 1;
795 
796 	case SIGBUS:
797 		force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
798 		return 1;
799 
800 	case SIGSEGV:
801 		mmap_read_lock(current->mm);
802 		if (vma_lookup(current->mm, (unsigned long)fault_addr))
803 			si_code = SEGV_ACCERR;
804 		else
805 			si_code = SEGV_MAPERR;
806 		mmap_read_unlock(current->mm);
807 		force_sig_fault(SIGSEGV, si_code, fault_addr);
808 		return 1;
809 
810 	default:
811 		force_sig(sig);
812 		return 1;
813 	}
814 }
815 
816 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
817 		       unsigned long old_epc, unsigned long old_ra)
818 {
819 	union mips_instruction inst = { .word = opcode };
820 	void __user *fault_addr;
821 	unsigned long fcr31;
822 	int sig;
823 
824 	/* If it's obviously not an FP instruction, skip it */
825 	switch (inst.i_format.opcode) {
826 	case cop1_op:
827 	case cop1x_op:
828 	case lwc1_op:
829 	case ldc1_op:
830 	case swc1_op:
831 	case sdc1_op:
832 		break;
833 
834 	default:
835 		return -1;
836 	}
837 
838 	/*
839 	 * do_ri skipped over the instruction via compute_return_epc, undo
840 	 * that for the FPU emulator.
841 	 */
842 	regs->cp0_epc = old_epc;
843 	regs->regs[31] = old_ra;
844 
845 	/* Run the emulator */
846 	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
847 				       &fault_addr);
848 
849 	/*
850 	 * We can't allow the emulated instruction to leave any
851 	 * enabled Cause bits set in $fcr31.
852 	 */
853 	fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
854 	current->thread.fpu.fcr31 &= ~fcr31;
855 
856 	/* Restore the hardware register state */
857 	own_fpu(1);
858 
859 	/* Send a signal if required.  */
860 	process_fpemu_return(sig, fault_addr, fcr31);
861 
862 	return 0;
863 }
864 
865 /*
866  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
867  */
868 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
869 {
870 	enum ctx_state prev_state;
871 	void __user *fault_addr;
872 	int sig;
873 
874 	prev_state = exception_enter();
875 	if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
876 		       SIGFPE) == NOTIFY_STOP)
877 		goto out;
878 
879 	/* Clear FCSR.Cause before enabling interrupts */
880 	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
881 	local_irq_enable();
882 
883 	die_if_kernel("FP exception in kernel code", regs);
884 
885 	if (fcr31 & FPU_CSR_UNI_X) {
886 		/*
887 		 * Unimplemented operation exception.  If we've got the full
888 		 * software emulator on-board, let's use it...
889 		 *
890 		 * Force FPU to dump state into task/thread context.  We're
891 		 * moving a lot of data here for what is probably a single
892 		 * instruction, but the alternative is to pre-decode the FP
893 		 * register operands before invoking the emulator, which seems
894 		 * a bit extreme for what should be an infrequent event.
895 		 */
896 
897 		/* Run the emulator */
898 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
899 					       &fault_addr);
900 
901 		/*
902 		 * We can't allow the emulated instruction to leave any
903 		 * enabled Cause bits set in $fcr31.
904 		 */
905 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
906 		current->thread.fpu.fcr31 &= ~fcr31;
907 
908 		/* Restore the hardware register state */
909 		own_fpu(1);	/* Using the FPU again.	 */
910 	} else {
911 		sig = SIGFPE;
912 		fault_addr = (void __user *) regs->cp0_epc;
913 	}
914 
915 	/* Send a signal if required.  */
916 	process_fpemu_return(sig, fault_addr, fcr31);
917 
918 out:
919 	exception_exit(prev_state);
920 }
921 
922 /*
923  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
924  * emulated more than some threshold number of instructions, force migration to
925  * a "CPU" that has FP support.
926  */
927 static void mt_ase_fp_affinity(void)
928 {
929 #ifdef CONFIG_MIPS_MT_FPAFF
930 	if (mt_fpemul_threshold > 0 &&
931 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
932 		/*
933 		 * If there's no FPU present, or if the application has already
934 		 * restricted the allowed set to exclude any CPUs with FPUs,
935 		 * we'll skip the procedure.
936 		 */
937 		if (cpumask_intersects(&current->cpus_mask, &mt_fpu_cpumask)) {
938 			cpumask_t tmask;
939 
940 			current->thread.user_cpus_allowed
941 				= current->cpus_mask;
942 			cpumask_and(&tmask, &current->cpus_mask,
943 				    &mt_fpu_cpumask);
944 			set_cpus_allowed_ptr(current, &tmask);
945 			set_thread_flag(TIF_FPUBOUND);
946 		}
947 	}
948 #endif /* CONFIG_MIPS_MT_FPAFF */
949 }
950 
951 #else /* !CONFIG_MIPS_FP_SUPPORT */
952 
953 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
954 		       unsigned long old_epc, unsigned long old_ra)
955 {
956 	return -1;
957 }
958 
959 #endif /* !CONFIG_MIPS_FP_SUPPORT */
960 
961 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
962 	const char *str)
963 {
964 	char b[40];
965 
966 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
967 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
968 			 SIGTRAP) == NOTIFY_STOP)
969 		return;
970 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
971 
972 	if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
973 		       SIGTRAP) == NOTIFY_STOP)
974 		return;
975 
976 	/*
977 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
978 	 * insns, even for trap and break codes that indicate arithmetic
979 	 * failures.  Weird ...
980 	 * But should we continue the brokenness???  --macro
981 	 */
982 	switch (code) {
983 	case BRK_OVERFLOW:
984 	case BRK_DIVZERO:
985 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
986 		die_if_kernel(b, regs);
987 		force_sig_fault(SIGFPE,
988 				code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
989 				(void __user *) regs->cp0_epc);
990 		break;
991 	case BRK_BUG:
992 		die_if_kernel("Kernel bug detected", regs);
993 		force_sig(SIGTRAP);
994 		break;
995 	case BRK_MEMU:
996 		/*
997 		 * This breakpoint code is used by the FPU emulator to retake
998 		 * control of the CPU after executing the instruction from the
999 		 * delay slot of an emulated branch.
1000 		 *
1001 		 * Terminate if exception was recognized as a delay slot return
1002 		 * otherwise handle as normal.
1003 		 */
1004 		if (do_dsemulret(regs))
1005 			return;
1006 
1007 		die_if_kernel("Math emu break/trap", regs);
1008 		force_sig(SIGTRAP);
1009 		break;
1010 	default:
1011 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
1012 		die_if_kernel(b, regs);
1013 		if (si_code) {
1014 			force_sig_fault(SIGTRAP, si_code, NULL);
1015 		} else {
1016 			force_sig(SIGTRAP);
1017 		}
1018 	}
1019 }
1020 
1021 asmlinkage void do_bp(struct pt_regs *regs)
1022 {
1023 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1024 	unsigned int opcode, bcode;
1025 	enum ctx_state prev_state;
1026 	bool user = user_mode(regs);
1027 
1028 	prev_state = exception_enter();
1029 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1030 	if (get_isa16_mode(regs->cp0_epc)) {
1031 		u16 instr[2];
1032 
1033 		if (__get_inst16(&instr[0], (u16 *)epc, user))
1034 			goto out_sigsegv;
1035 
1036 		if (!cpu_has_mmips) {
1037 			/* MIPS16e mode */
1038 			bcode = (instr[0] >> 5) & 0x3f;
1039 		} else if (mm_insn_16bit(instr[0])) {
1040 			/* 16-bit microMIPS BREAK */
1041 			bcode = instr[0] & 0xf;
1042 		} else {
1043 			/* 32-bit microMIPS BREAK */
1044 			if (__get_inst16(&instr[1], (u16 *)(epc + 2), user))
1045 				goto out_sigsegv;
1046 			opcode = (instr[0] << 16) | instr[1];
1047 			bcode = (opcode >> 6) & ((1 << 20) - 1);
1048 		}
1049 	} else {
1050 		if (__get_inst32(&opcode, (u32 *)epc, user))
1051 			goto out_sigsegv;
1052 		bcode = (opcode >> 6) & ((1 << 20) - 1);
1053 	}
1054 
1055 	/*
1056 	 * There is the ancient bug in the MIPS assemblers that the break
1057 	 * code starts left to bit 16 instead to bit 6 in the opcode.
1058 	 * Gas is bug-compatible, but not always, grrr...
1059 	 * We handle both cases with a simple heuristics.  --macro
1060 	 */
1061 	if (bcode >= (1 << 10))
1062 		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1063 
1064 	/*
1065 	 * notify the kprobe handlers, if instruction is likely to
1066 	 * pertain to them.
1067 	 */
1068 	switch (bcode) {
1069 	case BRK_UPROBE:
1070 		if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1071 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1072 			goto out;
1073 		else
1074 			break;
1075 	case BRK_UPROBE_XOL:
1076 		if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1077 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1078 			goto out;
1079 		else
1080 			break;
1081 	case BRK_KPROBE_BP:
1082 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
1083 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1084 			goto out;
1085 		else
1086 			break;
1087 	case BRK_KPROBE_SSTEPBP:
1088 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1089 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1090 			goto out;
1091 		else
1092 			break;
1093 	default:
1094 		break;
1095 	}
1096 
1097 	do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1098 
1099 out:
1100 	exception_exit(prev_state);
1101 	return;
1102 
1103 out_sigsegv:
1104 	force_sig(SIGSEGV);
1105 	goto out;
1106 }
1107 
1108 asmlinkage void do_tr(struct pt_regs *regs)
1109 {
1110 	u32 opcode, tcode = 0;
1111 	enum ctx_state prev_state;
1112 	u16 instr[2];
1113 	bool user = user_mode(regs);
1114 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1115 
1116 	prev_state = exception_enter();
1117 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1118 	if (get_isa16_mode(regs->cp0_epc)) {
1119 		if (__get_inst16(&instr[0], (u16 *)(epc + 0), user) ||
1120 		    __get_inst16(&instr[1], (u16 *)(epc + 2), user))
1121 			goto out_sigsegv;
1122 		opcode = (instr[0] << 16) | instr[1];
1123 		/* Immediate versions don't provide a code.  */
1124 		if (!(opcode & OPCODE))
1125 			tcode = (opcode >> 12) & ((1 << 4) - 1);
1126 	} else {
1127 		if (__get_inst32(&opcode, (u32 *)epc, user))
1128 			goto out_sigsegv;
1129 		/* Immediate versions don't provide a code.  */
1130 		if (!(opcode & OPCODE))
1131 			tcode = (opcode >> 6) & ((1 << 10) - 1);
1132 	}
1133 
1134 	do_trap_or_bp(regs, tcode, 0, "Trap");
1135 
1136 out:
1137 	exception_exit(prev_state);
1138 	return;
1139 
1140 out_sigsegv:
1141 	force_sig(SIGSEGV);
1142 	goto out;
1143 }
1144 
1145 asmlinkage void do_ri(struct pt_regs *regs)
1146 {
1147 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1148 	unsigned long old_epc = regs->cp0_epc;
1149 	unsigned long old31 = regs->regs[31];
1150 	enum ctx_state prev_state;
1151 	unsigned int opcode = 0;
1152 	int status = -1;
1153 
1154 	/*
1155 	 * Avoid any kernel code. Just emulate the R2 instruction
1156 	 * as quickly as possible.
1157 	 */
1158 	if (mipsr2_emulation && cpu_has_mips_r6 &&
1159 	    likely(user_mode(regs)) &&
1160 	    likely(get_user(opcode, epc) >= 0)) {
1161 		unsigned long fcr31 = 0;
1162 
1163 		status = mipsr2_decoder(regs, opcode, &fcr31);
1164 		switch (status) {
1165 		case 0:
1166 		case SIGEMT:
1167 			return;
1168 		case SIGILL:
1169 			goto no_r2_instr;
1170 		default:
1171 			process_fpemu_return(status,
1172 					     &current->thread.cp0_baduaddr,
1173 					     fcr31);
1174 			return;
1175 		}
1176 	}
1177 
1178 no_r2_instr:
1179 
1180 	prev_state = exception_enter();
1181 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1182 
1183 	if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1184 		       SIGILL) == NOTIFY_STOP)
1185 		goto out;
1186 
1187 	die_if_kernel("Reserved instruction in kernel code", regs);
1188 
1189 	if (unlikely(compute_return_epc(regs) < 0))
1190 		goto out;
1191 
1192 	if (!get_isa16_mode(regs->cp0_epc)) {
1193 		if (unlikely(get_user(opcode, epc) < 0))
1194 			status = SIGSEGV;
1195 
1196 		if (!cpu_has_llsc && status < 0)
1197 			status = simulate_llsc(regs, opcode);
1198 
1199 		if (status < 0)
1200 			status = simulate_rdhwr_normal(regs, opcode);
1201 
1202 		if (status < 0)
1203 			status = simulate_sync(regs, opcode);
1204 
1205 		if (status < 0)
1206 			status = simulate_fp(regs, opcode, old_epc, old31);
1207 
1208 #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
1209 		if (status < 0)
1210 			status = simulate_loongson3_cpucfg(regs, opcode);
1211 #endif
1212 	} else if (cpu_has_mmips) {
1213 		unsigned short mmop[2] = { 0 };
1214 
1215 		if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1216 			status = SIGSEGV;
1217 		if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1218 			status = SIGSEGV;
1219 		opcode = mmop[0];
1220 		opcode = (opcode << 16) | mmop[1];
1221 
1222 		if (status < 0)
1223 			status = simulate_rdhwr_mm(regs, opcode);
1224 	}
1225 
1226 	if (status < 0)
1227 		status = SIGILL;
1228 
1229 	if (unlikely(status > 0)) {
1230 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1231 		regs->regs[31] = old31;
1232 		force_sig(status);
1233 	}
1234 
1235 out:
1236 	exception_exit(prev_state);
1237 }
1238 
1239 /*
1240  * No lock; only written during early bootup by CPU 0.
1241  */
1242 static RAW_NOTIFIER_HEAD(cu2_chain);
1243 
1244 int __ref register_cu2_notifier(struct notifier_block *nb)
1245 {
1246 	return raw_notifier_chain_register(&cu2_chain, nb);
1247 }
1248 
1249 int cu2_notifier_call_chain(unsigned long val, void *v)
1250 {
1251 	return raw_notifier_call_chain(&cu2_chain, val, v);
1252 }
1253 
1254 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1255 	void *data)
1256 {
1257 	struct pt_regs *regs = data;
1258 
1259 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1260 			      "instruction", regs);
1261 	force_sig(SIGILL);
1262 
1263 	return NOTIFY_OK;
1264 }
1265 
1266 #ifdef CONFIG_MIPS_FP_SUPPORT
1267 
1268 static int enable_restore_fp_context(int msa)
1269 {
1270 	int err, was_fpu_owner, prior_msa;
1271 	bool first_fp;
1272 
1273 	/* Initialize context if it hasn't been used already */
1274 	first_fp = init_fp_ctx(current);
1275 
1276 	if (first_fp) {
1277 		preempt_disable();
1278 		err = own_fpu_inatomic(1);
1279 		if (msa && !err) {
1280 			enable_msa();
1281 			/*
1282 			 * with MSA enabled, userspace can see MSACSR
1283 			 * and MSA regs, but the values in them are from
1284 			 * other task before current task, restore them
1285 			 * from saved fp/msa context
1286 			 */
1287 			write_msa_csr(current->thread.fpu.msacsr);
1288 			/*
1289 			 * own_fpu_inatomic(1) just restore low 64bit,
1290 			 * fix the high 64bit
1291 			 */
1292 			init_msa_upper();
1293 			set_thread_flag(TIF_USEDMSA);
1294 			set_thread_flag(TIF_MSA_CTX_LIVE);
1295 		}
1296 		preempt_enable();
1297 		return err;
1298 	}
1299 
1300 	/*
1301 	 * This task has formerly used the FP context.
1302 	 *
1303 	 * If this thread has no live MSA vector context then we can simply
1304 	 * restore the scalar FP context. If it has live MSA vector context
1305 	 * (that is, it has or may have used MSA since last performing a
1306 	 * function call) then we'll need to restore the vector context. This
1307 	 * applies even if we're currently only executing a scalar FP
1308 	 * instruction. This is because if we were to later execute an MSA
1309 	 * instruction then we'd either have to:
1310 	 *
1311 	 *  - Restore the vector context & clobber any registers modified by
1312 	 *    scalar FP instructions between now & then.
1313 	 *
1314 	 * or
1315 	 *
1316 	 *  - Not restore the vector context & lose the most significant bits
1317 	 *    of all vector registers.
1318 	 *
1319 	 * Neither of those options is acceptable. We cannot restore the least
1320 	 * significant bits of the registers now & only restore the most
1321 	 * significant bits later because the most significant bits of any
1322 	 * vector registers whose aliased FP register is modified now will have
1323 	 * been zeroed. We'd have no way to know that when restoring the vector
1324 	 * context & thus may load an outdated value for the most significant
1325 	 * bits of a vector register.
1326 	 */
1327 	if (!msa && !thread_msa_context_live())
1328 		return own_fpu(1);
1329 
1330 	/*
1331 	 * This task is using or has previously used MSA. Thus we require
1332 	 * that Status.FR == 1.
1333 	 */
1334 	preempt_disable();
1335 	was_fpu_owner = is_fpu_owner();
1336 	err = own_fpu_inatomic(0);
1337 	if (err)
1338 		goto out;
1339 
1340 	enable_msa();
1341 	write_msa_csr(current->thread.fpu.msacsr);
1342 	set_thread_flag(TIF_USEDMSA);
1343 
1344 	/*
1345 	 * If this is the first time that the task is using MSA and it has
1346 	 * previously used scalar FP in this time slice then we already nave
1347 	 * FP context which we shouldn't clobber. We do however need to clear
1348 	 * the upper 64b of each vector register so that this task has no
1349 	 * opportunity to see data left behind by another.
1350 	 */
1351 	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1352 	if (!prior_msa && was_fpu_owner) {
1353 		init_msa_upper();
1354 
1355 		goto out;
1356 	}
1357 
1358 	if (!prior_msa) {
1359 		/*
1360 		 * Restore the least significant 64b of each vector register
1361 		 * from the existing scalar FP context.
1362 		 */
1363 		_restore_fp(current);
1364 
1365 		/*
1366 		 * The task has not formerly used MSA, so clear the upper 64b
1367 		 * of each vector register such that it cannot see data left
1368 		 * behind by another task.
1369 		 */
1370 		init_msa_upper();
1371 	} else {
1372 		/* We need to restore the vector context. */
1373 		restore_msa(current);
1374 
1375 		/* Restore the scalar FP control & status register */
1376 		if (!was_fpu_owner)
1377 			write_32bit_cp1_register(CP1_STATUS,
1378 						 current->thread.fpu.fcr31);
1379 	}
1380 
1381 out:
1382 	preempt_enable();
1383 
1384 	return 0;
1385 }
1386 
1387 #else /* !CONFIG_MIPS_FP_SUPPORT */
1388 
1389 static int enable_restore_fp_context(int msa)
1390 {
1391 	return SIGILL;
1392 }
1393 
1394 #endif /* CONFIG_MIPS_FP_SUPPORT */
1395 
1396 asmlinkage void do_cpu(struct pt_regs *regs)
1397 {
1398 	enum ctx_state prev_state;
1399 	unsigned int __user *epc;
1400 	unsigned long old_epc, old31;
1401 	unsigned int opcode;
1402 	unsigned int cpid;
1403 	int status;
1404 
1405 	prev_state = exception_enter();
1406 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1407 
1408 	if (cpid != 2)
1409 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1410 
1411 	switch (cpid) {
1412 	case 0:
1413 		epc = (unsigned int __user *)exception_epc(regs);
1414 		old_epc = regs->cp0_epc;
1415 		old31 = regs->regs[31];
1416 		opcode = 0;
1417 		status = -1;
1418 
1419 		if (unlikely(compute_return_epc(regs) < 0))
1420 			break;
1421 
1422 		if (!get_isa16_mode(regs->cp0_epc)) {
1423 			if (unlikely(get_user(opcode, epc) < 0))
1424 				status = SIGSEGV;
1425 
1426 			if (!cpu_has_llsc && status < 0)
1427 				status = simulate_llsc(regs, opcode);
1428 		}
1429 
1430 		if (status < 0)
1431 			status = SIGILL;
1432 
1433 		if (unlikely(status > 0)) {
1434 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1435 			regs->regs[31] = old31;
1436 			force_sig(status);
1437 		}
1438 
1439 		break;
1440 
1441 #ifdef CONFIG_MIPS_FP_SUPPORT
1442 	case 3:
1443 		/*
1444 		 * The COP3 opcode space and consequently the CP0.Status.CU3
1445 		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1446 		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1447 		 * up the space has been reused for COP1X instructions, that
1448 		 * are enabled by the CP0.Status.CU1 bit and consequently
1449 		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1450 		 * exceptions.  Some FPU-less processors that implement one
1451 		 * of these ISAs however use this code erroneously for COP1X
1452 		 * instructions.  Therefore we redirect this trap to the FP
1453 		 * emulator too.
1454 		 */
1455 		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1456 			force_sig(SIGILL);
1457 			break;
1458 		}
1459 		fallthrough;
1460 	case 1: {
1461 		void __user *fault_addr;
1462 		unsigned long fcr31;
1463 		int err, sig;
1464 
1465 		err = enable_restore_fp_context(0);
1466 
1467 		if (raw_cpu_has_fpu && !err)
1468 			break;
1469 
1470 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1471 					       &fault_addr);
1472 
1473 		/*
1474 		 * We can't allow the emulated instruction to leave
1475 		 * any enabled Cause bits set in $fcr31.
1476 		 */
1477 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1478 		current->thread.fpu.fcr31 &= ~fcr31;
1479 
1480 		/* Send a signal if required.  */
1481 		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1482 			mt_ase_fp_affinity();
1483 
1484 		break;
1485 	}
1486 #else /* CONFIG_MIPS_FP_SUPPORT */
1487 	case 1:
1488 	case 3:
1489 		force_sig(SIGILL);
1490 		break;
1491 #endif /* CONFIG_MIPS_FP_SUPPORT */
1492 
1493 	case 2:
1494 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1495 		break;
1496 	}
1497 
1498 	exception_exit(prev_state);
1499 }
1500 
1501 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1502 {
1503 	enum ctx_state prev_state;
1504 
1505 	prev_state = exception_enter();
1506 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1507 	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1508 		       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1509 		goto out;
1510 
1511 	/* Clear MSACSR.Cause before enabling interrupts */
1512 	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1513 	local_irq_enable();
1514 
1515 	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1516 	force_sig(SIGFPE);
1517 out:
1518 	exception_exit(prev_state);
1519 }
1520 
1521 asmlinkage void do_msa(struct pt_regs *regs)
1522 {
1523 	enum ctx_state prev_state;
1524 	int err;
1525 
1526 	prev_state = exception_enter();
1527 
1528 	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1529 		force_sig(SIGILL);
1530 		goto out;
1531 	}
1532 
1533 	die_if_kernel("do_msa invoked from kernel context!", regs);
1534 
1535 	err = enable_restore_fp_context(1);
1536 	if (err)
1537 		force_sig(SIGILL);
1538 out:
1539 	exception_exit(prev_state);
1540 }
1541 
1542 asmlinkage void do_mdmx(struct pt_regs *regs)
1543 {
1544 	enum ctx_state prev_state;
1545 
1546 	prev_state = exception_enter();
1547 	force_sig(SIGILL);
1548 	exception_exit(prev_state);
1549 }
1550 
1551 /*
1552  * Called with interrupts disabled.
1553  */
1554 asmlinkage void do_watch(struct pt_regs *regs)
1555 {
1556 	enum ctx_state prev_state;
1557 
1558 	prev_state = exception_enter();
1559 	/*
1560 	 * Clear WP (bit 22) bit of cause register so we don't loop
1561 	 * forever.
1562 	 */
1563 	clear_c0_cause(CAUSEF_WP);
1564 
1565 	/*
1566 	 * If the current thread has the watch registers loaded, save
1567 	 * their values and send SIGTRAP.  Otherwise another thread
1568 	 * left the registers set, clear them and continue.
1569 	 */
1570 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1571 		mips_read_watch_registers();
1572 		local_irq_enable();
1573 		force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
1574 	} else {
1575 		mips_clear_watch_registers();
1576 		local_irq_enable();
1577 	}
1578 	exception_exit(prev_state);
1579 }
1580 
1581 asmlinkage void do_mcheck(struct pt_regs *regs)
1582 {
1583 	int multi_match = regs->cp0_status & ST0_TS;
1584 	enum ctx_state prev_state;
1585 
1586 	prev_state = exception_enter();
1587 	show_regs(regs);
1588 
1589 	if (multi_match) {
1590 		dump_tlb_regs();
1591 		pr_info("\n");
1592 		dump_tlb_all();
1593 	}
1594 
1595 	show_code((void *)regs->cp0_epc, user_mode(regs));
1596 
1597 	/*
1598 	 * Some chips may have other causes of machine check (e.g. SB1
1599 	 * graduation timer)
1600 	 */
1601 	panic("Caught Machine Check exception - %scaused by multiple "
1602 	      "matching entries in the TLB.",
1603 	      (multi_match) ? "" : "not ");
1604 }
1605 
1606 asmlinkage void do_mt(struct pt_regs *regs)
1607 {
1608 	int subcode;
1609 
1610 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1611 			>> VPECONTROL_EXCPT_SHIFT;
1612 	switch (subcode) {
1613 	case 0:
1614 		printk(KERN_DEBUG "Thread Underflow\n");
1615 		break;
1616 	case 1:
1617 		printk(KERN_DEBUG "Thread Overflow\n");
1618 		break;
1619 	case 2:
1620 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1621 		break;
1622 	case 3:
1623 		printk(KERN_DEBUG "Gating Storage Exception\n");
1624 		break;
1625 	case 4:
1626 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1627 		break;
1628 	case 5:
1629 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1630 		break;
1631 	default:
1632 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1633 			subcode);
1634 		break;
1635 	}
1636 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1637 
1638 	force_sig(SIGILL);
1639 }
1640 
1641 
1642 asmlinkage void do_dsp(struct pt_regs *regs)
1643 {
1644 	if (cpu_has_dsp)
1645 		panic("Unexpected DSP exception");
1646 
1647 	force_sig(SIGILL);
1648 }
1649 
1650 asmlinkage void do_reserved(struct pt_regs *regs)
1651 {
1652 	/*
1653 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1654 	 * caused by a new unknown cpu type or after another deadly
1655 	 * hard/software error.
1656 	 */
1657 	show_regs(regs);
1658 	panic("Caught reserved exception %ld - should not happen.",
1659 	      (regs->cp0_cause & 0x7f) >> 2);
1660 }
1661 
1662 static int __initdata l1parity = 1;
1663 static int __init nol1parity(char *s)
1664 {
1665 	l1parity = 0;
1666 	return 1;
1667 }
1668 __setup("nol1par", nol1parity);
1669 static int __initdata l2parity = 1;
1670 static int __init nol2parity(char *s)
1671 {
1672 	l2parity = 0;
1673 	return 1;
1674 }
1675 __setup("nol2par", nol2parity);
1676 
1677 /*
1678  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1679  * it different ways.
1680  */
1681 static inline __init void parity_protection_init(void)
1682 {
1683 #define ERRCTL_PE	0x80000000
1684 #define ERRCTL_L2P	0x00800000
1685 
1686 	if (mips_cm_revision() >= CM_REV_CM3) {
1687 		ulong gcr_ectl, cp0_ectl;
1688 
1689 		/*
1690 		 * With CM3 systems we need to ensure that the L1 & L2
1691 		 * parity enables are set to the same value, since this
1692 		 * is presumed by the hardware engineers.
1693 		 *
1694 		 * If the user disabled either of L1 or L2 ECC checking,
1695 		 * disable both.
1696 		 */
1697 		l1parity &= l2parity;
1698 		l2parity &= l1parity;
1699 
1700 		/* Probe L1 ECC support */
1701 		cp0_ectl = read_c0_ecc();
1702 		write_c0_ecc(cp0_ectl | ERRCTL_PE);
1703 		back_to_back_c0_hazard();
1704 		cp0_ectl = read_c0_ecc();
1705 
1706 		/* Probe L2 ECC support */
1707 		gcr_ectl = read_gcr_err_control();
1708 
1709 		if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1710 		    !(cp0_ectl & ERRCTL_PE)) {
1711 			/*
1712 			 * One of L1 or L2 ECC checking isn't supported,
1713 			 * so we cannot enable either.
1714 			 */
1715 			l1parity = l2parity = 0;
1716 		}
1717 
1718 		/* Configure L1 ECC checking */
1719 		if (l1parity)
1720 			cp0_ectl |= ERRCTL_PE;
1721 		else
1722 			cp0_ectl &= ~ERRCTL_PE;
1723 		write_c0_ecc(cp0_ectl);
1724 		back_to_back_c0_hazard();
1725 		WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1726 
1727 		/* Configure L2 ECC checking */
1728 		if (l2parity)
1729 			gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1730 		else
1731 			gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1732 		write_gcr_err_control(gcr_ectl);
1733 		gcr_ectl = read_gcr_err_control();
1734 		gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1735 		WARN_ON(!!gcr_ectl != l2parity);
1736 
1737 		pr_info("Cache parity protection %sabled\n",
1738 			l1parity ? "en" : "dis");
1739 		return;
1740 	}
1741 
1742 	switch (current_cpu_type()) {
1743 	case CPU_24K:
1744 	case CPU_34K:
1745 	case CPU_74K:
1746 	case CPU_1004K:
1747 	case CPU_1074K:
1748 	case CPU_INTERAPTIV:
1749 	case CPU_PROAPTIV:
1750 	case CPU_P5600:
1751 	case CPU_QEMU_GENERIC:
1752 	case CPU_P6600:
1753 		{
1754 			unsigned long errctl;
1755 			unsigned int l1parity_present, l2parity_present;
1756 
1757 			errctl = read_c0_ecc();
1758 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1759 
1760 			/* probe L1 parity support */
1761 			write_c0_ecc(errctl | ERRCTL_PE);
1762 			back_to_back_c0_hazard();
1763 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1764 
1765 			/* probe L2 parity support */
1766 			write_c0_ecc(errctl|ERRCTL_L2P);
1767 			back_to_back_c0_hazard();
1768 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1769 
1770 			if (l1parity_present && l2parity_present) {
1771 				if (l1parity)
1772 					errctl |= ERRCTL_PE;
1773 				if (l1parity ^ l2parity)
1774 					errctl |= ERRCTL_L2P;
1775 			} else if (l1parity_present) {
1776 				if (l1parity)
1777 					errctl |= ERRCTL_PE;
1778 			} else if (l2parity_present) {
1779 				if (l2parity)
1780 					errctl |= ERRCTL_L2P;
1781 			} else {
1782 				/* No parity available */
1783 			}
1784 
1785 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1786 
1787 			write_c0_ecc(errctl);
1788 			back_to_back_c0_hazard();
1789 			errctl = read_c0_ecc();
1790 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1791 
1792 			if (l1parity_present)
1793 				printk(KERN_INFO "Cache parity protection %sabled\n",
1794 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1795 
1796 			if (l2parity_present) {
1797 				if (l1parity_present && l1parity)
1798 					errctl ^= ERRCTL_L2P;
1799 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1800 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1801 			}
1802 		}
1803 		break;
1804 
1805 	case CPU_5KC:
1806 	case CPU_5KE:
1807 	case CPU_LOONGSON32:
1808 		write_c0_ecc(0x80000000);
1809 		back_to_back_c0_hazard();
1810 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1811 		printk(KERN_INFO "Cache parity protection %sabled\n",
1812 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1813 		break;
1814 	case CPU_20KC:
1815 	case CPU_25KF:
1816 		/* Clear the DE bit (bit 16) in the c0_status register. */
1817 		printk(KERN_INFO "Enable cache parity protection for "
1818 		       "MIPS 20KC/25KF CPUs.\n");
1819 		clear_c0_status(ST0_DE);
1820 		break;
1821 	default:
1822 		break;
1823 	}
1824 }
1825 
1826 asmlinkage void cache_parity_error(void)
1827 {
1828 	const int field = 2 * sizeof(unsigned long);
1829 	unsigned int reg_val;
1830 
1831 	/* For the moment, report the problem and hang. */
1832 	printk("Cache error exception:\n");
1833 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1834 	reg_val = read_c0_cacheerr();
1835 	printk("c0_cacheerr == %08x\n", reg_val);
1836 
1837 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1838 	       reg_val & (1<<30) ? "secondary" : "primary",
1839 	       reg_val & (1<<31) ? "data" : "insn");
1840 	if ((cpu_has_mips_r2_r6) &&
1841 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1842 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1843 			reg_val & (1<<29) ? "ED " : "",
1844 			reg_val & (1<<28) ? "ET " : "",
1845 			reg_val & (1<<27) ? "ES " : "",
1846 			reg_val & (1<<26) ? "EE " : "",
1847 			reg_val & (1<<25) ? "EB " : "",
1848 			reg_val & (1<<24) ? "EI " : "",
1849 			reg_val & (1<<23) ? "E1 " : "",
1850 			reg_val & (1<<22) ? "E0 " : "");
1851 	} else {
1852 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1853 			reg_val & (1<<29) ? "ED " : "",
1854 			reg_val & (1<<28) ? "ET " : "",
1855 			reg_val & (1<<26) ? "EE " : "",
1856 			reg_val & (1<<25) ? "EB " : "",
1857 			reg_val & (1<<24) ? "EI " : "",
1858 			reg_val & (1<<23) ? "E1 " : "",
1859 			reg_val & (1<<22) ? "E0 " : "");
1860 	}
1861 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1862 
1863 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1864 	if (reg_val & (1<<22))
1865 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1866 
1867 	if (reg_val & (1<<23))
1868 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1869 #endif
1870 
1871 	panic("Can't handle the cache error!");
1872 }
1873 
1874 asmlinkage void do_ftlb(void)
1875 {
1876 	const int field = 2 * sizeof(unsigned long);
1877 	unsigned int reg_val;
1878 
1879 	/* For the moment, report the problem and hang. */
1880 	if ((cpu_has_mips_r2_r6) &&
1881 	    (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1882 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1883 		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1884 		       read_c0_ecc());
1885 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1886 		reg_val = read_c0_cacheerr();
1887 		pr_err("c0_cacheerr == %08x\n", reg_val);
1888 
1889 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1890 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1891 		} else {
1892 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1893 			       reg_val & (1<<30) ? "secondary" : "primary",
1894 			       reg_val & (1<<31) ? "data" : "insn");
1895 		}
1896 	} else {
1897 		pr_err("FTLB error exception\n");
1898 	}
1899 	/* Just print the cacheerr bits for now */
1900 	cache_parity_error();
1901 }
1902 
1903 asmlinkage void do_gsexc(struct pt_regs *regs, u32 diag1)
1904 {
1905 	u32 exccode = (diag1 & LOONGSON_DIAG1_EXCCODE) >>
1906 			LOONGSON_DIAG1_EXCCODE_SHIFT;
1907 	enum ctx_state prev_state;
1908 
1909 	prev_state = exception_enter();
1910 
1911 	switch (exccode) {
1912 	case 0x08:
1913 		/* Undocumented exception, will trigger on certain
1914 		 * also-undocumented instructions accessible from userspace.
1915 		 * Processor state is not otherwise corrupted, but currently
1916 		 * we don't know how to proceed. Maybe there is some
1917 		 * undocumented control flag to enable the instructions?
1918 		 */
1919 		force_sig(SIGILL);
1920 		break;
1921 
1922 	default:
1923 		/* None of the other exceptions, documented or not, have
1924 		 * further details given; none are encountered in the wild
1925 		 * either. Panic in case some of them turn out to be fatal.
1926 		 */
1927 		show_regs(regs);
1928 		panic("Unhandled Loongson exception - GSCause = %08x", diag1);
1929 	}
1930 
1931 	exception_exit(prev_state);
1932 }
1933 
1934 /*
1935  * SDBBP EJTAG debug exception handler.
1936  * We skip the instruction and return to the next instruction.
1937  */
1938 void ejtag_exception_handler(struct pt_regs *regs)
1939 {
1940 	const int field = 2 * sizeof(unsigned long);
1941 	unsigned long depc, old_epc, old_ra;
1942 	unsigned int debug;
1943 
1944 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1945 	depc = read_c0_depc();
1946 	debug = read_c0_debug();
1947 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1948 	if (debug & 0x80000000) {
1949 		/*
1950 		 * In branch delay slot.
1951 		 * We cheat a little bit here and use EPC to calculate the
1952 		 * debug return address (DEPC). EPC is restored after the
1953 		 * calculation.
1954 		 */
1955 		old_epc = regs->cp0_epc;
1956 		old_ra = regs->regs[31];
1957 		regs->cp0_epc = depc;
1958 		compute_return_epc(regs);
1959 		depc = regs->cp0_epc;
1960 		regs->cp0_epc = old_epc;
1961 		regs->regs[31] = old_ra;
1962 	} else
1963 		depc += 4;
1964 	write_c0_depc(depc);
1965 
1966 #if 0
1967 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1968 	write_c0_debug(debug | 0x100);
1969 #endif
1970 }
1971 
1972 /*
1973  * NMI exception handler.
1974  * No lock; only written during early bootup by CPU 0.
1975  */
1976 static RAW_NOTIFIER_HEAD(nmi_chain);
1977 
1978 int register_nmi_notifier(struct notifier_block *nb)
1979 {
1980 	return raw_notifier_chain_register(&nmi_chain, nb);
1981 }
1982 
1983 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1984 {
1985 	char str[100];
1986 
1987 	nmi_enter();
1988 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1989 	bust_spinlocks(1);
1990 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1991 		 smp_processor_id(), regs->cp0_epc);
1992 	regs->cp0_epc = read_c0_errorepc();
1993 	die(str, regs);
1994 	nmi_exit();
1995 }
1996 
1997 unsigned long ebase;
1998 EXPORT_SYMBOL_GPL(ebase);
1999 unsigned long exception_handlers[32];
2000 unsigned long vi_handlers[64];
2001 
2002 void reserve_exception_space(phys_addr_t addr, unsigned long size)
2003 {
2004 	memblock_reserve(addr, size);
2005 }
2006 
2007 void __init *set_except_vector(int n, void *addr)
2008 {
2009 	unsigned long handler = (unsigned long) addr;
2010 	unsigned long old_handler;
2011 
2012 #ifdef CONFIG_CPU_MICROMIPS
2013 	/*
2014 	 * Only the TLB handlers are cache aligned with an even
2015 	 * address. All other handlers are on an odd address and
2016 	 * require no modification. Otherwise, MIPS32 mode will
2017 	 * be entered when handling any TLB exceptions. That
2018 	 * would be bad...since we must stay in microMIPS mode.
2019 	 */
2020 	if (!(handler & 0x1))
2021 		handler |= 1;
2022 #endif
2023 	old_handler = xchg(&exception_handlers[n], handler);
2024 
2025 	if (n == 0 && cpu_has_divec) {
2026 #ifdef CONFIG_CPU_MICROMIPS
2027 		unsigned long jump_mask = ~((1 << 27) - 1);
2028 #else
2029 		unsigned long jump_mask = ~((1 << 28) - 1);
2030 #endif
2031 		u32 *buf = (u32 *)(ebase + 0x200);
2032 		unsigned int k0 = 26;
2033 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
2034 			uasm_i_j(&buf, handler & ~jump_mask);
2035 			uasm_i_nop(&buf);
2036 		} else {
2037 			UASM_i_LA(&buf, k0, handler);
2038 			uasm_i_jr(&buf, k0);
2039 			uasm_i_nop(&buf);
2040 		}
2041 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
2042 	}
2043 	return (void *)old_handler;
2044 }
2045 
2046 static void do_default_vi(void)
2047 {
2048 	show_regs(get_irq_regs());
2049 	panic("Caught unexpected vectored interrupt.");
2050 }
2051 
2052 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
2053 {
2054 	unsigned long handler;
2055 	unsigned long old_handler = vi_handlers[n];
2056 	int srssets = current_cpu_data.srsets;
2057 	u16 *h;
2058 	unsigned char *b;
2059 
2060 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
2061 
2062 	if (addr == NULL) {
2063 		handler = (unsigned long) do_default_vi;
2064 		srs = 0;
2065 	} else
2066 		handler = (unsigned long) addr;
2067 	vi_handlers[n] = handler;
2068 
2069 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2070 
2071 	if (srs >= srssets)
2072 		panic("Shadow register set %d not supported", srs);
2073 
2074 	if (cpu_has_veic) {
2075 		if (board_bind_eic_interrupt)
2076 			board_bind_eic_interrupt(n, srs);
2077 	} else if (cpu_has_vint) {
2078 		/* SRSMap is only defined if shadow sets are implemented */
2079 		if (srssets > 1)
2080 			change_c0_srsmap(0xf << n*4, srs << n*4);
2081 	}
2082 
2083 	if (srs == 0) {
2084 		/*
2085 		 * If no shadow set is selected then use the default handler
2086 		 * that does normal register saving and standard interrupt exit
2087 		 */
2088 		extern char except_vec_vi, except_vec_vi_lui;
2089 		extern char except_vec_vi_ori, except_vec_vi_end;
2090 		extern char rollback_except_vec_vi;
2091 		char *vec_start = using_rollback_handler() ?
2092 			&rollback_except_vec_vi : &except_vec_vi;
2093 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2094 		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2095 		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2096 #else
2097 		const int lui_offset = &except_vec_vi_lui - vec_start;
2098 		const int ori_offset = &except_vec_vi_ori - vec_start;
2099 #endif
2100 		const int handler_len = &except_vec_vi_end - vec_start;
2101 
2102 		if (handler_len > VECTORSPACING) {
2103 			/*
2104 			 * Sigh... panicing won't help as the console
2105 			 * is probably not configured :(
2106 			 */
2107 			panic("VECTORSPACING too small");
2108 		}
2109 
2110 		set_handler(((unsigned long)b - ebase), vec_start,
2111 #ifdef CONFIG_CPU_MICROMIPS
2112 				(handler_len - 1));
2113 #else
2114 				handler_len);
2115 #endif
2116 		h = (u16 *)(b + lui_offset);
2117 		*h = (handler >> 16) & 0xffff;
2118 		h = (u16 *)(b + ori_offset);
2119 		*h = (handler & 0xffff);
2120 		local_flush_icache_range((unsigned long)b,
2121 					 (unsigned long)(b+handler_len));
2122 	}
2123 	else {
2124 		/*
2125 		 * In other cases jump directly to the interrupt handler. It
2126 		 * is the handler's responsibility to save registers if required
2127 		 * (eg hi/lo) and return from the exception using "eret".
2128 		 */
2129 		u32 insn;
2130 
2131 		h = (u16 *)b;
2132 		/* j handler */
2133 #ifdef CONFIG_CPU_MICROMIPS
2134 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2135 #else
2136 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2137 #endif
2138 		h[0] = (insn >> 16) & 0xffff;
2139 		h[1] = insn & 0xffff;
2140 		h[2] = 0;
2141 		h[3] = 0;
2142 		local_flush_icache_range((unsigned long)b,
2143 					 (unsigned long)(b+8));
2144 	}
2145 
2146 	return (void *)old_handler;
2147 }
2148 
2149 void *set_vi_handler(int n, vi_handler_t addr)
2150 {
2151 	return set_vi_srs_handler(n, addr, 0);
2152 }
2153 
2154 extern void tlb_init(void);
2155 
2156 /*
2157  * Timer interrupt
2158  */
2159 int cp0_compare_irq;
2160 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2161 int cp0_compare_irq_shift;
2162 
2163 /*
2164  * Performance counter IRQ or -1 if shared with timer
2165  */
2166 int cp0_perfcount_irq;
2167 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2168 
2169 /*
2170  * Fast debug channel IRQ or -1 if not present
2171  */
2172 int cp0_fdc_irq;
2173 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2174 
2175 static int noulri;
2176 
2177 static int __init ulri_disable(char *s)
2178 {
2179 	pr_info("Disabling ulri\n");
2180 	noulri = 1;
2181 
2182 	return 1;
2183 }
2184 __setup("noulri", ulri_disable);
2185 
2186 /* configure STATUS register */
2187 static void configure_status(void)
2188 {
2189 	/*
2190 	 * Disable coprocessors and select 32-bit or 64-bit addressing
2191 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2192 	 * flag that some firmware may have left set and the TS bit (for
2193 	 * IP27).  Set XX for ISA IV code to work.
2194 	 */
2195 	unsigned int status_set = ST0_KERNEL_CUMASK;
2196 #ifdef CONFIG_64BIT
2197 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2198 #endif
2199 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2200 		status_set |= ST0_XX;
2201 	if (cpu_has_dsp)
2202 		status_set |= ST0_MX;
2203 
2204 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2205 			 status_set);
2206 	back_to_back_c0_hazard();
2207 }
2208 
2209 unsigned int hwrena;
2210 EXPORT_SYMBOL_GPL(hwrena);
2211 
2212 /* configure HWRENA register */
2213 static void configure_hwrena(void)
2214 {
2215 	hwrena = cpu_hwrena_impl_bits;
2216 
2217 	if (cpu_has_mips_r2_r6)
2218 		hwrena |= MIPS_HWRENA_CPUNUM |
2219 			  MIPS_HWRENA_SYNCISTEP |
2220 			  MIPS_HWRENA_CC |
2221 			  MIPS_HWRENA_CCRES;
2222 
2223 	if (!noulri && cpu_has_userlocal)
2224 		hwrena |= MIPS_HWRENA_ULR;
2225 
2226 	if (hwrena)
2227 		write_c0_hwrena(hwrena);
2228 }
2229 
2230 static void configure_exception_vector(void)
2231 {
2232 	if (cpu_has_mips_r2_r6) {
2233 		unsigned long sr = set_c0_status(ST0_BEV);
2234 		/* If available, use WG to set top bits of EBASE */
2235 		if (cpu_has_ebase_wg) {
2236 #ifdef CONFIG_64BIT
2237 			write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2238 #else
2239 			write_c0_ebase(ebase | MIPS_EBASE_WG);
2240 #endif
2241 		}
2242 		write_c0_ebase(ebase);
2243 		write_c0_status(sr);
2244 	}
2245 	if (cpu_has_veic || cpu_has_vint) {
2246 		/* Setting vector spacing enables EI/VI mode  */
2247 		change_c0_intctl(0x3e0, VECTORSPACING);
2248 	}
2249 	if (cpu_has_divec) {
2250 		if (cpu_has_mipsmt) {
2251 			unsigned int vpflags = dvpe();
2252 			set_c0_cause(CAUSEF_IV);
2253 			evpe(vpflags);
2254 		} else
2255 			set_c0_cause(CAUSEF_IV);
2256 	}
2257 }
2258 
2259 void per_cpu_trap_init(bool is_boot_cpu)
2260 {
2261 	unsigned int cpu = smp_processor_id();
2262 
2263 	configure_status();
2264 	configure_hwrena();
2265 
2266 	configure_exception_vector();
2267 
2268 	/*
2269 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2270 	 *
2271 	 *  o read IntCtl.IPTI to determine the timer interrupt
2272 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2273 	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2274 	 */
2275 	if (cpu_has_mips_r2_r6) {
2276 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2277 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2278 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2279 		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2280 		if (!cp0_fdc_irq)
2281 			cp0_fdc_irq = -1;
2282 
2283 	} else {
2284 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2285 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2286 		cp0_perfcount_irq = -1;
2287 		cp0_fdc_irq = -1;
2288 	}
2289 
2290 	if (cpu_has_mmid)
2291 		cpu_data[cpu].asid_cache = 0;
2292 	else if (!cpu_data[cpu].asid_cache)
2293 		cpu_data[cpu].asid_cache = asid_first_version(cpu);
2294 
2295 	mmgrab(&init_mm);
2296 	current->active_mm = &init_mm;
2297 	BUG_ON(current->mm);
2298 	enter_lazy_tlb(&init_mm, current);
2299 
2300 	/* Boot CPU's cache setup in setup_arch(). */
2301 	if (!is_boot_cpu)
2302 		cpu_cache_init();
2303 	tlb_init();
2304 	TLBMISS_HANDLER_SETUP();
2305 }
2306 
2307 /* Install CPU exception handler */
2308 void set_handler(unsigned long offset, void *addr, unsigned long size)
2309 {
2310 #ifdef CONFIG_CPU_MICROMIPS
2311 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2312 #else
2313 	memcpy((void *)(ebase + offset), addr, size);
2314 #endif
2315 	local_flush_icache_range(ebase + offset, ebase + offset + size);
2316 }
2317 
2318 static const char panic_null_cerr[] =
2319 	"Trying to set NULL cache error exception handler\n";
2320 
2321 /*
2322  * Install uncached CPU exception handler.
2323  * This is suitable only for the cache error exception which is the only
2324  * exception handler that is being run uncached.
2325  */
2326 void set_uncached_handler(unsigned long offset, void *addr,
2327 	unsigned long size)
2328 {
2329 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2330 
2331 	if (!addr)
2332 		panic(panic_null_cerr);
2333 
2334 	memcpy((void *)(uncached_ebase + offset), addr, size);
2335 }
2336 
2337 static int __initdata rdhwr_noopt;
2338 static int __init set_rdhwr_noopt(char *str)
2339 {
2340 	rdhwr_noopt = 1;
2341 	return 1;
2342 }
2343 
2344 __setup("rdhwr_noopt", set_rdhwr_noopt);
2345 
2346 void __init trap_init(void)
2347 {
2348 	extern char except_vec3_generic;
2349 	extern char except_vec4;
2350 	extern char except_vec3_r4000;
2351 	unsigned long i, vec_size;
2352 	phys_addr_t ebase_pa;
2353 
2354 	check_wait();
2355 
2356 	if (!cpu_has_mips_r2_r6) {
2357 		ebase = CAC_BASE;
2358 		vec_size = 0x400;
2359 	} else {
2360 		if (cpu_has_veic || cpu_has_vint)
2361 			vec_size = 0x200 + VECTORSPACING*64;
2362 		else
2363 			vec_size = PAGE_SIZE;
2364 
2365 		ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
2366 		if (!ebase_pa)
2367 			panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2368 			      __func__, vec_size, 1 << fls(vec_size));
2369 
2370 		/*
2371 		 * Try to ensure ebase resides in KSeg0 if possible.
2372 		 *
2373 		 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2374 		 * hitting a poorly defined exception base for Cache Errors.
2375 		 * The allocation is likely to be in the low 512MB of physical,
2376 		 * in which case we should be able to convert to KSeg0.
2377 		 *
2378 		 * EVA is special though as it allows segments to be rearranged
2379 		 * and to become uncached during cache error handling.
2380 		 */
2381 		if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2382 			ebase = CKSEG0ADDR(ebase_pa);
2383 		else
2384 			ebase = (unsigned long)phys_to_virt(ebase_pa);
2385 	}
2386 
2387 	if (cpu_has_mmips) {
2388 		unsigned int config3 = read_c0_config3();
2389 
2390 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2391 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2392 		else
2393 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2394 	}
2395 
2396 	if (board_ebase_setup)
2397 		board_ebase_setup();
2398 	per_cpu_trap_init(true);
2399 	memblock_set_bottom_up(false);
2400 
2401 	/*
2402 	 * Copy the generic exception handlers to their final destination.
2403 	 * This will be overridden later as suitable for a particular
2404 	 * configuration.
2405 	 */
2406 	set_handler(0x180, &except_vec3_generic, 0x80);
2407 
2408 	/*
2409 	 * Setup default vectors
2410 	 */
2411 	for (i = 0; i <= 31; i++)
2412 		set_except_vector(i, handle_reserved);
2413 
2414 	/*
2415 	 * Copy the EJTAG debug exception vector handler code to it's final
2416 	 * destination.
2417 	 */
2418 	if (cpu_has_ejtag && board_ejtag_handler_setup)
2419 		board_ejtag_handler_setup();
2420 
2421 	/*
2422 	 * Only some CPUs have the watch exceptions.
2423 	 */
2424 	if (cpu_has_watch)
2425 		set_except_vector(EXCCODE_WATCH, handle_watch);
2426 
2427 	/*
2428 	 * Initialise interrupt handlers
2429 	 */
2430 	if (cpu_has_veic || cpu_has_vint) {
2431 		int nvec = cpu_has_veic ? 64 : 8;
2432 		for (i = 0; i < nvec; i++)
2433 			set_vi_handler(i, NULL);
2434 	}
2435 	else if (cpu_has_divec)
2436 		set_handler(0x200, &except_vec4, 0x8);
2437 
2438 	/*
2439 	 * Some CPUs can enable/disable for cache parity detection, but does
2440 	 * it different ways.
2441 	 */
2442 	parity_protection_init();
2443 
2444 	/*
2445 	 * The Data Bus Errors / Instruction Bus Errors are signaled
2446 	 * by external hardware.  Therefore these two exceptions
2447 	 * may have board specific handlers.
2448 	 */
2449 	if (board_be_init)
2450 		board_be_init();
2451 
2452 	set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2453 					rollback_handle_int : handle_int);
2454 	set_except_vector(EXCCODE_MOD, handle_tlbm);
2455 	set_except_vector(EXCCODE_TLBL, handle_tlbl);
2456 	set_except_vector(EXCCODE_TLBS, handle_tlbs);
2457 
2458 	set_except_vector(EXCCODE_ADEL, handle_adel);
2459 	set_except_vector(EXCCODE_ADES, handle_ades);
2460 
2461 	set_except_vector(EXCCODE_IBE, handle_ibe);
2462 	set_except_vector(EXCCODE_DBE, handle_dbe);
2463 
2464 	set_except_vector(EXCCODE_SYS, handle_sys);
2465 	set_except_vector(EXCCODE_BP, handle_bp);
2466 
2467 	if (rdhwr_noopt)
2468 		set_except_vector(EXCCODE_RI, handle_ri);
2469 	else {
2470 		if (cpu_has_vtag_icache)
2471 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2472 		else if (current_cpu_type() == CPU_LOONGSON64)
2473 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2474 		else
2475 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2476 	}
2477 
2478 	set_except_vector(EXCCODE_CPU, handle_cpu);
2479 	set_except_vector(EXCCODE_OV, handle_ov);
2480 	set_except_vector(EXCCODE_TR, handle_tr);
2481 	set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2482 
2483 	if (board_nmi_handler_setup)
2484 		board_nmi_handler_setup();
2485 
2486 	if (cpu_has_fpu && !cpu_has_nofpuex)
2487 		set_except_vector(EXCCODE_FPE, handle_fpe);
2488 
2489 	if (cpu_has_ftlbparex)
2490 		set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2491 
2492 	if (cpu_has_gsexcex)
2493 		set_except_vector(LOONGSON_EXCCODE_GSEXC, handle_gsexc);
2494 
2495 	if (cpu_has_rixiex) {
2496 		set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2497 		set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2498 	}
2499 
2500 	set_except_vector(EXCCODE_MSADIS, handle_msa);
2501 	set_except_vector(EXCCODE_MDMX, handle_mdmx);
2502 
2503 	if (cpu_has_mcheck)
2504 		set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2505 
2506 	if (cpu_has_mipsmt)
2507 		set_except_vector(EXCCODE_THREAD, handle_mt);
2508 
2509 	set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2510 
2511 	if (board_cache_error_setup)
2512 		board_cache_error_setup();
2513 
2514 	if (cpu_has_vce)
2515 		/* Special exception: R4[04]00 uses also the divec space. */
2516 		set_handler(0x180, &except_vec3_r4000, 0x100);
2517 	else if (cpu_has_4kex)
2518 		set_handler(0x180, &except_vec3_generic, 0x80);
2519 	else
2520 		set_handler(0x080, &except_vec3_generic, 0x80);
2521 
2522 	local_flush_icache_range(ebase, ebase + vec_size);
2523 
2524 	sort_extable(__start___dbe_table, __stop___dbe_table);
2525 
2526 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2527 }
2528 
2529 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2530 			    void *v)
2531 {
2532 	switch (cmd) {
2533 	case CPU_PM_ENTER_FAILED:
2534 	case CPU_PM_EXIT:
2535 		configure_status();
2536 		configure_hwrena();
2537 		configure_exception_vector();
2538 
2539 		/* Restore register with CPU number for TLB handlers */
2540 		TLBMISS_HANDLER_RESTORE();
2541 
2542 		break;
2543 	}
2544 
2545 	return NOTIFY_OK;
2546 }
2547 
2548 static struct notifier_block trap_pm_notifier_block = {
2549 	.notifier_call = trap_pm_notifier,
2550 };
2551 
2552 static int __init trap_pm_init(void)
2553 {
2554 	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2555 }
2556 arch_initcall(trap_pm_init);
2557