1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle 7 * Copyright (C) 1995, 1996 Paul M. Antoine 8 * Copyright (C) 1998 Ulf Carlsson 9 * Copyright (C) 1999 Silicon Graphics, Inc. 10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki 12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved. 13 * Copyright (C) 2014, Imagination Technologies Ltd. 14 */ 15 #include <linux/bitops.h> 16 #include <linux/bug.h> 17 #include <linux/compiler.h> 18 #include <linux/context_tracking.h> 19 #include <linux/cpu_pm.h> 20 #include <linux/kexec.h> 21 #include <linux/init.h> 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/extable.h> 25 #include <linux/mm.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/debug.h> 28 #include <linux/smp.h> 29 #include <linux/spinlock.h> 30 #include <linux/kallsyms.h> 31 #include <linux/bootmem.h> 32 #include <linux/interrupt.h> 33 #include <linux/ptrace.h> 34 #include <linux/kgdb.h> 35 #include <linux/kdebug.h> 36 #include <linux/kprobes.h> 37 #include <linux/notifier.h> 38 #include <linux/kdb.h> 39 #include <linux/irq.h> 40 #include <linux/perf_event.h> 41 42 #include <asm/addrspace.h> 43 #include <asm/bootinfo.h> 44 #include <asm/branch.h> 45 #include <asm/break.h> 46 #include <asm/cop2.h> 47 #include <asm/cpu.h> 48 #include <asm/cpu-type.h> 49 #include <asm/dsp.h> 50 #include <asm/fpu.h> 51 #include <asm/fpu_emulator.h> 52 #include <asm/idle.h> 53 #include <asm/mips-cps.h> 54 #include <asm/mips-r2-to-r6-emul.h> 55 #include <asm/mipsregs.h> 56 #include <asm/mipsmtregs.h> 57 #include <asm/module.h> 58 #include <asm/msa.h> 59 #include <asm/pgtable.h> 60 #include <asm/ptrace.h> 61 #include <asm/sections.h> 62 #include <asm/siginfo.h> 63 #include <asm/tlbdebug.h> 64 #include <asm/traps.h> 65 #include <linux/uaccess.h> 66 #include <asm/watch.h> 67 #include <asm/mmu_context.h> 68 #include <asm/types.h> 69 #include <asm/stacktrace.h> 70 #include <asm/uasm.h> 71 72 extern void check_wait(void); 73 extern asmlinkage void rollback_handle_int(void); 74 extern asmlinkage void handle_int(void); 75 extern u32 handle_tlbl[]; 76 extern u32 handle_tlbs[]; 77 extern u32 handle_tlbm[]; 78 extern asmlinkage void handle_adel(void); 79 extern asmlinkage void handle_ades(void); 80 extern asmlinkage void handle_ibe(void); 81 extern asmlinkage void handle_dbe(void); 82 extern asmlinkage void handle_sys(void); 83 extern asmlinkage void handle_bp(void); 84 extern asmlinkage void handle_ri(void); 85 extern asmlinkage void handle_ri_rdhwr_tlbp(void); 86 extern asmlinkage void handle_ri_rdhwr(void); 87 extern asmlinkage void handle_cpu(void); 88 extern asmlinkage void handle_ov(void); 89 extern asmlinkage void handle_tr(void); 90 extern asmlinkage void handle_msa_fpe(void); 91 extern asmlinkage void handle_fpe(void); 92 extern asmlinkage void handle_ftlb(void); 93 extern asmlinkage void handle_msa(void); 94 extern asmlinkage void handle_mdmx(void); 95 extern asmlinkage void handle_watch(void); 96 extern asmlinkage void handle_mt(void); 97 extern asmlinkage void handle_dsp(void); 98 extern asmlinkage void handle_mcheck(void); 99 extern asmlinkage void handle_reserved(void); 100 extern void tlb_do_page_fault_0(void); 101 102 void (*board_be_init)(void); 103 int (*board_be_handler)(struct pt_regs *regs, int is_fixup); 104 void (*board_nmi_handler_setup)(void); 105 void (*board_ejtag_handler_setup)(void); 106 void (*board_bind_eic_interrupt)(int irq, int regset); 107 void (*board_ebase_setup)(void); 108 void(*board_cache_error_setup)(void); 109 110 static void show_raw_backtrace(unsigned long reg29) 111 { 112 unsigned long *sp = (unsigned long *)(reg29 & ~3); 113 unsigned long addr; 114 115 printk("Call Trace:"); 116 #ifdef CONFIG_KALLSYMS 117 printk("\n"); 118 #endif 119 while (!kstack_end(sp)) { 120 unsigned long __user *p = 121 (unsigned long __user *)(unsigned long)sp++; 122 if (__get_user(addr, p)) { 123 printk(" (Bad stack address)"); 124 break; 125 } 126 if (__kernel_text_address(addr)) 127 print_ip_sym(addr); 128 } 129 printk("\n"); 130 } 131 132 #ifdef CONFIG_KALLSYMS 133 int raw_show_trace; 134 static int __init set_raw_show_trace(char *str) 135 { 136 raw_show_trace = 1; 137 return 1; 138 } 139 __setup("raw_show_trace", set_raw_show_trace); 140 #endif 141 142 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs) 143 { 144 unsigned long sp = regs->regs[29]; 145 unsigned long ra = regs->regs[31]; 146 unsigned long pc = regs->cp0_epc; 147 148 if (!task) 149 task = current; 150 151 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) { 152 show_raw_backtrace(sp); 153 return; 154 } 155 printk("Call Trace:\n"); 156 do { 157 print_ip_sym(pc); 158 pc = unwind_stack(task, &sp, pc, &ra); 159 } while (pc); 160 pr_cont("\n"); 161 } 162 163 /* 164 * This routine abuses get_user()/put_user() to reference pointers 165 * with at least a bit of error checking ... 166 */ 167 static void show_stacktrace(struct task_struct *task, 168 const struct pt_regs *regs) 169 { 170 const int field = 2 * sizeof(unsigned long); 171 long stackdata; 172 int i; 173 unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; 174 175 printk("Stack :"); 176 i = 0; 177 while ((unsigned long) sp & (PAGE_SIZE - 1)) { 178 if (i && ((i % (64 / field)) == 0)) { 179 pr_cont("\n"); 180 printk(" "); 181 } 182 if (i > 39) { 183 pr_cont(" ..."); 184 break; 185 } 186 187 if (__get_user(stackdata, sp++)) { 188 pr_cont(" (Bad stack address)"); 189 break; 190 } 191 192 pr_cont(" %0*lx", field, stackdata); 193 i++; 194 } 195 pr_cont("\n"); 196 show_backtrace(task, regs); 197 } 198 199 void show_stack(struct task_struct *task, unsigned long *sp) 200 { 201 struct pt_regs regs; 202 mm_segment_t old_fs = get_fs(); 203 204 regs.cp0_status = KSU_KERNEL; 205 if (sp) { 206 regs.regs[29] = (unsigned long)sp; 207 regs.regs[31] = 0; 208 regs.cp0_epc = 0; 209 } else { 210 if (task && task != current) { 211 regs.regs[29] = task->thread.reg29; 212 regs.regs[31] = 0; 213 regs.cp0_epc = task->thread.reg31; 214 #ifdef CONFIG_KGDB_KDB 215 } else if (atomic_read(&kgdb_active) != -1 && 216 kdb_current_regs) { 217 memcpy(®s, kdb_current_regs, sizeof(regs)); 218 #endif /* CONFIG_KGDB_KDB */ 219 } else { 220 prepare_frametrace(®s); 221 } 222 } 223 /* 224 * show_stack() deals exclusively with kernel mode, so be sure to access 225 * the stack in the kernel (not user) address space. 226 */ 227 set_fs(KERNEL_DS); 228 show_stacktrace(task, ®s); 229 set_fs(old_fs); 230 } 231 232 static void show_code(unsigned int __user *pc) 233 { 234 long i; 235 unsigned short __user *pc16 = NULL; 236 237 printk("Code:"); 238 239 if ((unsigned long)pc & 1) 240 pc16 = (unsigned short __user *)((unsigned long)pc & ~1); 241 for(i = -3 ; i < 6 ; i++) { 242 unsigned int insn; 243 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { 244 pr_cont(" (Bad address in epc)\n"); 245 break; 246 } 247 pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); 248 } 249 pr_cont("\n"); 250 } 251 252 static void __show_regs(const struct pt_regs *regs) 253 { 254 const int field = 2 * sizeof(unsigned long); 255 unsigned int cause = regs->cp0_cause; 256 unsigned int exccode; 257 int i; 258 259 show_regs_print_info(KERN_DEFAULT); 260 261 /* 262 * Saved main processor registers 263 */ 264 for (i = 0; i < 32; ) { 265 if ((i % 4) == 0) 266 printk("$%2d :", i); 267 if (i == 0) 268 pr_cont(" %0*lx", field, 0UL); 269 else if (i == 26 || i == 27) 270 pr_cont(" %*s", field, ""); 271 else 272 pr_cont(" %0*lx", field, regs->regs[i]); 273 274 i++; 275 if ((i % 4) == 0) 276 pr_cont("\n"); 277 } 278 279 #ifdef CONFIG_CPU_HAS_SMARTMIPS 280 printk("Acx : %0*lx\n", field, regs->acx); 281 #endif 282 printk("Hi : %0*lx\n", field, regs->hi); 283 printk("Lo : %0*lx\n", field, regs->lo); 284 285 /* 286 * Saved cp0 registers 287 */ 288 printk("epc : %0*lx %pS\n", field, regs->cp0_epc, 289 (void *) regs->cp0_epc); 290 printk("ra : %0*lx %pS\n", field, regs->regs[31], 291 (void *) regs->regs[31]); 292 293 printk("Status: %08x ", (uint32_t) regs->cp0_status); 294 295 if (cpu_has_3kex) { 296 if (regs->cp0_status & ST0_KUO) 297 pr_cont("KUo "); 298 if (regs->cp0_status & ST0_IEO) 299 pr_cont("IEo "); 300 if (regs->cp0_status & ST0_KUP) 301 pr_cont("KUp "); 302 if (regs->cp0_status & ST0_IEP) 303 pr_cont("IEp "); 304 if (regs->cp0_status & ST0_KUC) 305 pr_cont("KUc "); 306 if (regs->cp0_status & ST0_IEC) 307 pr_cont("IEc "); 308 } else if (cpu_has_4kex) { 309 if (regs->cp0_status & ST0_KX) 310 pr_cont("KX "); 311 if (regs->cp0_status & ST0_SX) 312 pr_cont("SX "); 313 if (regs->cp0_status & ST0_UX) 314 pr_cont("UX "); 315 switch (regs->cp0_status & ST0_KSU) { 316 case KSU_USER: 317 pr_cont("USER "); 318 break; 319 case KSU_SUPERVISOR: 320 pr_cont("SUPERVISOR "); 321 break; 322 case KSU_KERNEL: 323 pr_cont("KERNEL "); 324 break; 325 default: 326 pr_cont("BAD_MODE "); 327 break; 328 } 329 if (regs->cp0_status & ST0_ERL) 330 pr_cont("ERL "); 331 if (regs->cp0_status & ST0_EXL) 332 pr_cont("EXL "); 333 if (regs->cp0_status & ST0_IE) 334 pr_cont("IE "); 335 } 336 pr_cont("\n"); 337 338 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; 339 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode); 340 341 if (1 <= exccode && exccode <= 5) 342 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); 343 344 printk("PrId : %08x (%s)\n", read_c0_prid(), 345 cpu_name_string()); 346 } 347 348 /* 349 * FIXME: really the generic show_regs should take a const pointer argument. 350 */ 351 void show_regs(struct pt_regs *regs) 352 { 353 __show_regs((struct pt_regs *)regs); 354 dump_stack(); 355 } 356 357 void show_registers(struct pt_regs *regs) 358 { 359 const int field = 2 * sizeof(unsigned long); 360 mm_segment_t old_fs = get_fs(); 361 362 __show_regs(regs); 363 print_modules(); 364 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", 365 current->comm, current->pid, current_thread_info(), current, 366 field, current_thread_info()->tp_value); 367 if (cpu_has_userlocal) { 368 unsigned long tls; 369 370 tls = read_c0_userlocal(); 371 if (tls != current_thread_info()->tp_value) 372 printk("*HwTLS: %0*lx\n", field, tls); 373 } 374 375 if (!user_mode(regs)) 376 /* Necessary for getting the correct stack content */ 377 set_fs(KERNEL_DS); 378 show_stacktrace(current, regs); 379 show_code((unsigned int __user *) regs->cp0_epc); 380 printk("\n"); 381 set_fs(old_fs); 382 } 383 384 static DEFINE_RAW_SPINLOCK(die_lock); 385 386 void __noreturn die(const char *str, struct pt_regs *regs) 387 { 388 static int die_counter; 389 int sig = SIGSEGV; 390 391 oops_enter(); 392 393 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr, 394 SIGSEGV) == NOTIFY_STOP) 395 sig = 0; 396 397 console_verbose(); 398 raw_spin_lock_irq(&die_lock); 399 bust_spinlocks(1); 400 401 printk("%s[#%d]:\n", str, ++die_counter); 402 show_registers(regs); 403 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 404 raw_spin_unlock_irq(&die_lock); 405 406 oops_exit(); 407 408 if (in_interrupt()) 409 panic("Fatal exception in interrupt"); 410 411 if (panic_on_oops) 412 panic("Fatal exception"); 413 414 if (regs && kexec_should_crash(current)) 415 crash_kexec(regs); 416 417 do_exit(sig); 418 } 419 420 extern struct exception_table_entry __start___dbe_table[]; 421 extern struct exception_table_entry __stop___dbe_table[]; 422 423 __asm__( 424 " .section __dbe_table, \"a\"\n" 425 " .previous \n"); 426 427 /* Given an address, look for it in the exception tables. */ 428 static const struct exception_table_entry *search_dbe_tables(unsigned long addr) 429 { 430 const struct exception_table_entry *e; 431 432 e = search_extable(__start___dbe_table, 433 __stop___dbe_table - __start___dbe_table, addr); 434 if (!e) 435 e = search_module_dbetables(addr); 436 return e; 437 } 438 439 asmlinkage void do_be(struct pt_regs *regs) 440 { 441 const int field = 2 * sizeof(unsigned long); 442 const struct exception_table_entry *fixup = NULL; 443 int data = regs->cp0_cause & 4; 444 int action = MIPS_BE_FATAL; 445 enum ctx_state prev_state; 446 447 prev_state = exception_enter(); 448 /* XXX For now. Fixme, this searches the wrong table ... */ 449 if (data && !user_mode(regs)) 450 fixup = search_dbe_tables(exception_epc(regs)); 451 452 if (fixup) 453 action = MIPS_BE_FIXUP; 454 455 if (board_be_handler) 456 action = board_be_handler(regs, fixup != NULL); 457 else 458 mips_cm_error_report(); 459 460 switch (action) { 461 case MIPS_BE_DISCARD: 462 goto out; 463 case MIPS_BE_FIXUP: 464 if (fixup) { 465 regs->cp0_epc = fixup->nextinsn; 466 goto out; 467 } 468 break; 469 default: 470 break; 471 } 472 473 /* 474 * Assume it would be too dangerous to continue ... 475 */ 476 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", 477 data ? "Data" : "Instruction", 478 field, regs->cp0_epc, field, regs->regs[31]); 479 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr, 480 SIGBUS) == NOTIFY_STOP) 481 goto out; 482 483 die_if_kernel("Oops", regs); 484 force_sig(SIGBUS, current); 485 486 out: 487 exception_exit(prev_state); 488 } 489 490 /* 491 * ll/sc, rdhwr, sync emulation 492 */ 493 494 #define OPCODE 0xfc000000 495 #define BASE 0x03e00000 496 #define RT 0x001f0000 497 #define OFFSET 0x0000ffff 498 #define LL 0xc0000000 499 #define SC 0xe0000000 500 #define SPEC0 0x00000000 501 #define SPEC3 0x7c000000 502 #define RD 0x0000f800 503 #define FUNC 0x0000003f 504 #define SYNC 0x0000000f 505 #define RDHWR 0x0000003b 506 507 /* microMIPS definitions */ 508 #define MM_POOL32A_FUNC 0xfc00ffff 509 #define MM_RDHWR 0x00006b3c 510 #define MM_RS 0x001f0000 511 #define MM_RT 0x03e00000 512 513 /* 514 * The ll_bit is cleared by r*_switch.S 515 */ 516 517 unsigned int ll_bit; 518 struct task_struct *ll_task; 519 520 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) 521 { 522 unsigned long value, __user *vaddr; 523 long offset; 524 525 /* 526 * analyse the ll instruction that just caused a ri exception 527 * and put the referenced address to addr. 528 */ 529 530 /* sign extend offset */ 531 offset = opcode & OFFSET; 532 offset <<= 16; 533 offset >>= 16; 534 535 vaddr = (unsigned long __user *) 536 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 537 538 if ((unsigned long)vaddr & 3) 539 return SIGBUS; 540 if (get_user(value, vaddr)) 541 return SIGSEGV; 542 543 preempt_disable(); 544 545 if (ll_task == NULL || ll_task == current) { 546 ll_bit = 1; 547 } else { 548 ll_bit = 0; 549 } 550 ll_task = current; 551 552 preempt_enable(); 553 554 regs->regs[(opcode & RT) >> 16] = value; 555 556 return 0; 557 } 558 559 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) 560 { 561 unsigned long __user *vaddr; 562 unsigned long reg; 563 long offset; 564 565 /* 566 * analyse the sc instruction that just caused a ri exception 567 * and put the referenced address to addr. 568 */ 569 570 /* sign extend offset */ 571 offset = opcode & OFFSET; 572 offset <<= 16; 573 offset >>= 16; 574 575 vaddr = (unsigned long __user *) 576 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 577 reg = (opcode & RT) >> 16; 578 579 if ((unsigned long)vaddr & 3) 580 return SIGBUS; 581 582 preempt_disable(); 583 584 if (ll_bit == 0 || ll_task != current) { 585 regs->regs[reg] = 0; 586 preempt_enable(); 587 return 0; 588 } 589 590 preempt_enable(); 591 592 if (put_user(regs->regs[reg], vaddr)) 593 return SIGSEGV; 594 595 regs->regs[reg] = 1; 596 597 return 0; 598 } 599 600 /* 601 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both 602 * opcodes are supposed to result in coprocessor unusable exceptions if 603 * executed on ll/sc-less processors. That's the theory. In practice a 604 * few processors such as NEC's VR4100 throw reserved instruction exceptions 605 * instead, so we're doing the emulation thing in both exception handlers. 606 */ 607 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) 608 { 609 if ((opcode & OPCODE) == LL) { 610 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 611 1, regs, 0); 612 return simulate_ll(regs, opcode); 613 } 614 if ((opcode & OPCODE) == SC) { 615 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 616 1, regs, 0); 617 return simulate_sc(regs, opcode); 618 } 619 620 return -1; /* Must be something else ... */ 621 } 622 623 /* 624 * Simulate trapping 'rdhwr' instructions to provide user accessible 625 * registers not implemented in hardware. 626 */ 627 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt) 628 { 629 struct thread_info *ti = task_thread_info(current); 630 631 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 632 1, regs, 0); 633 switch (rd) { 634 case MIPS_HWR_CPUNUM: /* CPU number */ 635 regs->regs[rt] = smp_processor_id(); 636 return 0; 637 case MIPS_HWR_SYNCISTEP: /* SYNCI length */ 638 regs->regs[rt] = min(current_cpu_data.dcache.linesz, 639 current_cpu_data.icache.linesz); 640 return 0; 641 case MIPS_HWR_CC: /* Read count register */ 642 regs->regs[rt] = read_c0_count(); 643 return 0; 644 case MIPS_HWR_CCRES: /* Count register resolution */ 645 switch (current_cpu_type()) { 646 case CPU_20KC: 647 case CPU_25KF: 648 regs->regs[rt] = 1; 649 break; 650 default: 651 regs->regs[rt] = 2; 652 } 653 return 0; 654 case MIPS_HWR_ULR: /* Read UserLocal register */ 655 regs->regs[rt] = ti->tp_value; 656 return 0; 657 default: 658 return -1; 659 } 660 } 661 662 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode) 663 { 664 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { 665 int rd = (opcode & RD) >> 11; 666 int rt = (opcode & RT) >> 16; 667 668 simulate_rdhwr(regs, rd, rt); 669 return 0; 670 } 671 672 /* Not ours. */ 673 return -1; 674 } 675 676 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode) 677 { 678 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) { 679 int rd = (opcode & MM_RS) >> 16; 680 int rt = (opcode & MM_RT) >> 21; 681 simulate_rdhwr(regs, rd, rt); 682 return 0; 683 } 684 685 /* Not ours. */ 686 return -1; 687 } 688 689 static int simulate_sync(struct pt_regs *regs, unsigned int opcode) 690 { 691 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) { 692 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 693 1, regs, 0); 694 return 0; 695 } 696 697 return -1; /* Must be something else ... */ 698 } 699 700 asmlinkage void do_ov(struct pt_regs *regs) 701 { 702 enum ctx_state prev_state; 703 704 prev_state = exception_enter(); 705 die_if_kernel("Integer overflow", regs); 706 707 force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc, current); 708 exception_exit(prev_state); 709 } 710 711 /* 712 * Send SIGFPE according to FCSR Cause bits, which must have already 713 * been masked against Enable bits. This is impotant as Inexact can 714 * happen together with Overflow or Underflow, and `ptrace' can set 715 * any bits. 716 */ 717 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr, 718 struct task_struct *tsk) 719 { 720 int si_code = FPE_FLTUNK; 721 722 if (fcr31 & FPU_CSR_INV_X) 723 si_code = FPE_FLTINV; 724 else if (fcr31 & FPU_CSR_DIV_X) 725 si_code = FPE_FLTDIV; 726 else if (fcr31 & FPU_CSR_OVF_X) 727 si_code = FPE_FLTOVF; 728 else if (fcr31 & FPU_CSR_UDF_X) 729 si_code = FPE_FLTUND; 730 else if (fcr31 & FPU_CSR_INE_X) 731 si_code = FPE_FLTRES; 732 733 force_sig_fault(SIGFPE, si_code, fault_addr, tsk); 734 } 735 736 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31) 737 { 738 int si_code; 739 struct vm_area_struct *vma; 740 741 switch (sig) { 742 case 0: 743 return 0; 744 745 case SIGFPE: 746 force_fcr31_sig(fcr31, fault_addr, current); 747 return 1; 748 749 case SIGBUS: 750 force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr, current); 751 return 1; 752 753 case SIGSEGV: 754 down_read(¤t->mm->mmap_sem); 755 vma = find_vma(current->mm, (unsigned long)fault_addr); 756 if (vma && (vma->vm_start <= (unsigned long)fault_addr)) 757 si_code = SEGV_ACCERR; 758 else 759 si_code = SEGV_MAPERR; 760 up_read(¤t->mm->mmap_sem); 761 force_sig_fault(SIGSEGV, si_code, fault_addr, current); 762 return 1; 763 764 default: 765 force_sig(sig, current); 766 return 1; 767 } 768 } 769 770 static int simulate_fp(struct pt_regs *regs, unsigned int opcode, 771 unsigned long old_epc, unsigned long old_ra) 772 { 773 union mips_instruction inst = { .word = opcode }; 774 void __user *fault_addr; 775 unsigned long fcr31; 776 int sig; 777 778 /* If it's obviously not an FP instruction, skip it */ 779 switch (inst.i_format.opcode) { 780 case cop1_op: 781 case cop1x_op: 782 case lwc1_op: 783 case ldc1_op: 784 case swc1_op: 785 case sdc1_op: 786 break; 787 788 default: 789 return -1; 790 } 791 792 /* 793 * do_ri skipped over the instruction via compute_return_epc, undo 794 * that for the FPU emulator. 795 */ 796 regs->cp0_epc = old_epc; 797 regs->regs[31] = old_ra; 798 799 /* Save the FP context to struct thread_struct */ 800 lose_fpu(1); 801 802 /* Run the emulator */ 803 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 804 &fault_addr); 805 806 /* 807 * We can't allow the emulated instruction to leave any 808 * enabled Cause bits set in $fcr31. 809 */ 810 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); 811 current->thread.fpu.fcr31 &= ~fcr31; 812 813 /* Restore the hardware register state */ 814 own_fpu(1); 815 816 /* Send a signal if required. */ 817 process_fpemu_return(sig, fault_addr, fcr31); 818 819 return 0; 820 } 821 822 /* 823 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX 824 */ 825 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) 826 { 827 enum ctx_state prev_state; 828 void __user *fault_addr; 829 int sig; 830 831 prev_state = exception_enter(); 832 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr, 833 SIGFPE) == NOTIFY_STOP) 834 goto out; 835 836 /* Clear FCSR.Cause before enabling interrupts */ 837 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31)); 838 local_irq_enable(); 839 840 die_if_kernel("FP exception in kernel code", regs); 841 842 if (fcr31 & FPU_CSR_UNI_X) { 843 /* 844 * Unimplemented operation exception. If we've got the full 845 * software emulator on-board, let's use it... 846 * 847 * Force FPU to dump state into task/thread context. We're 848 * moving a lot of data here for what is probably a single 849 * instruction, but the alternative is to pre-decode the FP 850 * register operands before invoking the emulator, which seems 851 * a bit extreme for what should be an infrequent event. 852 */ 853 /* Ensure 'resume' not overwrite saved fp context again. */ 854 lose_fpu(1); 855 856 /* Run the emulator */ 857 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 858 &fault_addr); 859 860 /* 861 * We can't allow the emulated instruction to leave any 862 * enabled Cause bits set in $fcr31. 863 */ 864 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); 865 current->thread.fpu.fcr31 &= ~fcr31; 866 867 /* Restore the hardware register state */ 868 own_fpu(1); /* Using the FPU again. */ 869 } else { 870 sig = SIGFPE; 871 fault_addr = (void __user *) regs->cp0_epc; 872 } 873 874 /* Send a signal if required. */ 875 process_fpemu_return(sig, fault_addr, fcr31); 876 877 out: 878 exception_exit(prev_state); 879 } 880 881 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code, 882 const char *str) 883 { 884 char b[40]; 885 886 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 887 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr, 888 SIGTRAP) == NOTIFY_STOP) 889 return; 890 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 891 892 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr, 893 SIGTRAP) == NOTIFY_STOP) 894 return; 895 896 /* 897 * A short test says that IRIX 5.3 sends SIGTRAP for all trap 898 * insns, even for trap and break codes that indicate arithmetic 899 * failures. Weird ... 900 * But should we continue the brokenness??? --macro 901 */ 902 switch (code) { 903 case BRK_OVERFLOW: 904 case BRK_DIVZERO: 905 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 906 die_if_kernel(b, regs); 907 force_sig_fault(SIGFPE, 908 code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF, 909 (void __user *) regs->cp0_epc, current); 910 break; 911 case BRK_BUG: 912 die_if_kernel("Kernel bug detected", regs); 913 force_sig(SIGTRAP, current); 914 break; 915 case BRK_MEMU: 916 /* 917 * This breakpoint code is used by the FPU emulator to retake 918 * control of the CPU after executing the instruction from the 919 * delay slot of an emulated branch. 920 * 921 * Terminate if exception was recognized as a delay slot return 922 * otherwise handle as normal. 923 */ 924 if (do_dsemulret(regs)) 925 return; 926 927 die_if_kernel("Math emu break/trap", regs); 928 force_sig(SIGTRAP, current); 929 break; 930 default: 931 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 932 die_if_kernel(b, regs); 933 if (si_code) { 934 force_sig_fault(SIGTRAP, si_code, NULL, current); 935 } else { 936 force_sig(SIGTRAP, current); 937 } 938 } 939 } 940 941 asmlinkage void do_bp(struct pt_regs *regs) 942 { 943 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 944 unsigned int opcode, bcode; 945 enum ctx_state prev_state; 946 mm_segment_t seg; 947 948 seg = get_fs(); 949 if (!user_mode(regs)) 950 set_fs(KERNEL_DS); 951 952 prev_state = exception_enter(); 953 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 954 if (get_isa16_mode(regs->cp0_epc)) { 955 u16 instr[2]; 956 957 if (__get_user(instr[0], (u16 __user *)epc)) 958 goto out_sigsegv; 959 960 if (!cpu_has_mmips) { 961 /* MIPS16e mode */ 962 bcode = (instr[0] >> 5) & 0x3f; 963 } else if (mm_insn_16bit(instr[0])) { 964 /* 16-bit microMIPS BREAK */ 965 bcode = instr[0] & 0xf; 966 } else { 967 /* 32-bit microMIPS BREAK */ 968 if (__get_user(instr[1], (u16 __user *)(epc + 2))) 969 goto out_sigsegv; 970 opcode = (instr[0] << 16) | instr[1]; 971 bcode = (opcode >> 6) & ((1 << 20) - 1); 972 } 973 } else { 974 if (__get_user(opcode, (unsigned int __user *)epc)) 975 goto out_sigsegv; 976 bcode = (opcode >> 6) & ((1 << 20) - 1); 977 } 978 979 /* 980 * There is the ancient bug in the MIPS assemblers that the break 981 * code starts left to bit 16 instead to bit 6 in the opcode. 982 * Gas is bug-compatible, but not always, grrr... 983 * We handle both cases with a simple heuristics. --macro 984 */ 985 if (bcode >= (1 << 10)) 986 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10); 987 988 /* 989 * notify the kprobe handlers, if instruction is likely to 990 * pertain to them. 991 */ 992 switch (bcode) { 993 case BRK_UPROBE: 994 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode, 995 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 996 goto out; 997 else 998 break; 999 case BRK_UPROBE_XOL: 1000 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode, 1001 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1002 goto out; 1003 else 1004 break; 1005 case BRK_KPROBE_BP: 1006 if (notify_die(DIE_BREAK, "debug", regs, bcode, 1007 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1008 goto out; 1009 else 1010 break; 1011 case BRK_KPROBE_SSTEPBP: 1012 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, 1013 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1014 goto out; 1015 else 1016 break; 1017 default: 1018 break; 1019 } 1020 1021 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break"); 1022 1023 out: 1024 set_fs(seg); 1025 exception_exit(prev_state); 1026 return; 1027 1028 out_sigsegv: 1029 force_sig(SIGSEGV, current); 1030 goto out; 1031 } 1032 1033 asmlinkage void do_tr(struct pt_regs *regs) 1034 { 1035 u32 opcode, tcode = 0; 1036 enum ctx_state prev_state; 1037 u16 instr[2]; 1038 mm_segment_t seg; 1039 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 1040 1041 seg = get_fs(); 1042 if (!user_mode(regs)) 1043 set_fs(get_ds()); 1044 1045 prev_state = exception_enter(); 1046 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1047 if (get_isa16_mode(regs->cp0_epc)) { 1048 if (__get_user(instr[0], (u16 __user *)(epc + 0)) || 1049 __get_user(instr[1], (u16 __user *)(epc + 2))) 1050 goto out_sigsegv; 1051 opcode = (instr[0] << 16) | instr[1]; 1052 /* Immediate versions don't provide a code. */ 1053 if (!(opcode & OPCODE)) 1054 tcode = (opcode >> 12) & ((1 << 4) - 1); 1055 } else { 1056 if (__get_user(opcode, (u32 __user *)epc)) 1057 goto out_sigsegv; 1058 /* Immediate versions don't provide a code. */ 1059 if (!(opcode & OPCODE)) 1060 tcode = (opcode >> 6) & ((1 << 10) - 1); 1061 } 1062 1063 do_trap_or_bp(regs, tcode, 0, "Trap"); 1064 1065 out: 1066 set_fs(seg); 1067 exception_exit(prev_state); 1068 return; 1069 1070 out_sigsegv: 1071 force_sig(SIGSEGV, current); 1072 goto out; 1073 } 1074 1075 asmlinkage void do_ri(struct pt_regs *regs) 1076 { 1077 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); 1078 unsigned long old_epc = regs->cp0_epc; 1079 unsigned long old31 = regs->regs[31]; 1080 enum ctx_state prev_state; 1081 unsigned int opcode = 0; 1082 int status = -1; 1083 1084 /* 1085 * Avoid any kernel code. Just emulate the R2 instruction 1086 * as quickly as possible. 1087 */ 1088 if (mipsr2_emulation && cpu_has_mips_r6 && 1089 likely(user_mode(regs)) && 1090 likely(get_user(opcode, epc) >= 0)) { 1091 unsigned long fcr31 = 0; 1092 1093 status = mipsr2_decoder(regs, opcode, &fcr31); 1094 switch (status) { 1095 case 0: 1096 case SIGEMT: 1097 return; 1098 case SIGILL: 1099 goto no_r2_instr; 1100 default: 1101 process_fpemu_return(status, 1102 ¤t->thread.cp0_baduaddr, 1103 fcr31); 1104 return; 1105 } 1106 } 1107 1108 no_r2_instr: 1109 1110 prev_state = exception_enter(); 1111 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1112 1113 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr, 1114 SIGILL) == NOTIFY_STOP) 1115 goto out; 1116 1117 die_if_kernel("Reserved instruction in kernel code", regs); 1118 1119 if (unlikely(compute_return_epc(regs) < 0)) 1120 goto out; 1121 1122 if (!get_isa16_mode(regs->cp0_epc)) { 1123 if (unlikely(get_user(opcode, epc) < 0)) 1124 status = SIGSEGV; 1125 1126 if (!cpu_has_llsc && status < 0) 1127 status = simulate_llsc(regs, opcode); 1128 1129 if (status < 0) 1130 status = simulate_rdhwr_normal(regs, opcode); 1131 1132 if (status < 0) 1133 status = simulate_sync(regs, opcode); 1134 1135 if (status < 0) 1136 status = simulate_fp(regs, opcode, old_epc, old31); 1137 } else if (cpu_has_mmips) { 1138 unsigned short mmop[2] = { 0 }; 1139 1140 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0)) 1141 status = SIGSEGV; 1142 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0)) 1143 status = SIGSEGV; 1144 opcode = mmop[0]; 1145 opcode = (opcode << 16) | mmop[1]; 1146 1147 if (status < 0) 1148 status = simulate_rdhwr_mm(regs, opcode); 1149 } 1150 1151 if (status < 0) 1152 status = SIGILL; 1153 1154 if (unlikely(status > 0)) { 1155 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1156 regs->regs[31] = old31; 1157 force_sig(status, current); 1158 } 1159 1160 out: 1161 exception_exit(prev_state); 1162 } 1163 1164 /* 1165 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've 1166 * emulated more than some threshold number of instructions, force migration to 1167 * a "CPU" that has FP support. 1168 */ 1169 static void mt_ase_fp_affinity(void) 1170 { 1171 #ifdef CONFIG_MIPS_MT_FPAFF 1172 if (mt_fpemul_threshold > 0 && 1173 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { 1174 /* 1175 * If there's no FPU present, or if the application has already 1176 * restricted the allowed set to exclude any CPUs with FPUs, 1177 * we'll skip the procedure. 1178 */ 1179 if (cpumask_intersects(¤t->cpus_allowed, &mt_fpu_cpumask)) { 1180 cpumask_t tmask; 1181 1182 current->thread.user_cpus_allowed 1183 = current->cpus_allowed; 1184 cpumask_and(&tmask, ¤t->cpus_allowed, 1185 &mt_fpu_cpumask); 1186 set_cpus_allowed_ptr(current, &tmask); 1187 set_thread_flag(TIF_FPUBOUND); 1188 } 1189 } 1190 #endif /* CONFIG_MIPS_MT_FPAFF */ 1191 } 1192 1193 /* 1194 * No lock; only written during early bootup by CPU 0. 1195 */ 1196 static RAW_NOTIFIER_HEAD(cu2_chain); 1197 1198 int __ref register_cu2_notifier(struct notifier_block *nb) 1199 { 1200 return raw_notifier_chain_register(&cu2_chain, nb); 1201 } 1202 1203 int cu2_notifier_call_chain(unsigned long val, void *v) 1204 { 1205 return raw_notifier_call_chain(&cu2_chain, val, v); 1206 } 1207 1208 static int default_cu2_call(struct notifier_block *nfb, unsigned long action, 1209 void *data) 1210 { 1211 struct pt_regs *regs = data; 1212 1213 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid " 1214 "instruction", regs); 1215 force_sig(SIGILL, current); 1216 1217 return NOTIFY_OK; 1218 } 1219 1220 static int enable_restore_fp_context(int msa) 1221 { 1222 int err, was_fpu_owner, prior_msa; 1223 1224 /* 1225 * If an FP mode switch is currently underway, wait for it to 1226 * complete before proceeding. 1227 */ 1228 wait_var_event(¤t->mm->context.fp_mode_switching, 1229 !atomic_read(¤t->mm->context.fp_mode_switching)); 1230 1231 if (!used_math()) { 1232 /* First time FP context user. */ 1233 preempt_disable(); 1234 err = init_fpu(); 1235 if (msa && !err) { 1236 enable_msa(); 1237 init_msa_upper(); 1238 set_thread_flag(TIF_USEDMSA); 1239 set_thread_flag(TIF_MSA_CTX_LIVE); 1240 } 1241 preempt_enable(); 1242 if (!err) 1243 set_used_math(); 1244 return err; 1245 } 1246 1247 /* 1248 * This task has formerly used the FP context. 1249 * 1250 * If this thread has no live MSA vector context then we can simply 1251 * restore the scalar FP context. If it has live MSA vector context 1252 * (that is, it has or may have used MSA since last performing a 1253 * function call) then we'll need to restore the vector context. This 1254 * applies even if we're currently only executing a scalar FP 1255 * instruction. This is because if we were to later execute an MSA 1256 * instruction then we'd either have to: 1257 * 1258 * - Restore the vector context & clobber any registers modified by 1259 * scalar FP instructions between now & then. 1260 * 1261 * or 1262 * 1263 * - Not restore the vector context & lose the most significant bits 1264 * of all vector registers. 1265 * 1266 * Neither of those options is acceptable. We cannot restore the least 1267 * significant bits of the registers now & only restore the most 1268 * significant bits later because the most significant bits of any 1269 * vector registers whose aliased FP register is modified now will have 1270 * been zeroed. We'd have no way to know that when restoring the vector 1271 * context & thus may load an outdated value for the most significant 1272 * bits of a vector register. 1273 */ 1274 if (!msa && !thread_msa_context_live()) 1275 return own_fpu(1); 1276 1277 /* 1278 * This task is using or has previously used MSA. Thus we require 1279 * that Status.FR == 1. 1280 */ 1281 preempt_disable(); 1282 was_fpu_owner = is_fpu_owner(); 1283 err = own_fpu_inatomic(0); 1284 if (err) 1285 goto out; 1286 1287 enable_msa(); 1288 write_msa_csr(current->thread.fpu.msacsr); 1289 set_thread_flag(TIF_USEDMSA); 1290 1291 /* 1292 * If this is the first time that the task is using MSA and it has 1293 * previously used scalar FP in this time slice then we already nave 1294 * FP context which we shouldn't clobber. We do however need to clear 1295 * the upper 64b of each vector register so that this task has no 1296 * opportunity to see data left behind by another. 1297 */ 1298 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE); 1299 if (!prior_msa && was_fpu_owner) { 1300 init_msa_upper(); 1301 1302 goto out; 1303 } 1304 1305 if (!prior_msa) { 1306 /* 1307 * Restore the least significant 64b of each vector register 1308 * from the existing scalar FP context. 1309 */ 1310 _restore_fp(current); 1311 1312 /* 1313 * The task has not formerly used MSA, so clear the upper 64b 1314 * of each vector register such that it cannot see data left 1315 * behind by another task. 1316 */ 1317 init_msa_upper(); 1318 } else { 1319 /* We need to restore the vector context. */ 1320 restore_msa(current); 1321 1322 /* Restore the scalar FP control & status register */ 1323 if (!was_fpu_owner) 1324 write_32bit_cp1_register(CP1_STATUS, 1325 current->thread.fpu.fcr31); 1326 } 1327 1328 out: 1329 preempt_enable(); 1330 1331 return 0; 1332 } 1333 1334 asmlinkage void do_cpu(struct pt_regs *regs) 1335 { 1336 enum ctx_state prev_state; 1337 unsigned int __user *epc; 1338 unsigned long old_epc, old31; 1339 void __user *fault_addr; 1340 unsigned int opcode; 1341 unsigned long fcr31; 1342 unsigned int cpid; 1343 int status, err; 1344 int sig; 1345 1346 prev_state = exception_enter(); 1347 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; 1348 1349 if (cpid != 2) 1350 die_if_kernel("do_cpu invoked from kernel context!", regs); 1351 1352 switch (cpid) { 1353 case 0: 1354 epc = (unsigned int __user *)exception_epc(regs); 1355 old_epc = regs->cp0_epc; 1356 old31 = regs->regs[31]; 1357 opcode = 0; 1358 status = -1; 1359 1360 if (unlikely(compute_return_epc(regs) < 0)) 1361 break; 1362 1363 if (!get_isa16_mode(regs->cp0_epc)) { 1364 if (unlikely(get_user(opcode, epc) < 0)) 1365 status = SIGSEGV; 1366 1367 if (!cpu_has_llsc && status < 0) 1368 status = simulate_llsc(regs, opcode); 1369 } 1370 1371 if (status < 0) 1372 status = SIGILL; 1373 1374 if (unlikely(status > 0)) { 1375 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1376 regs->regs[31] = old31; 1377 force_sig(status, current); 1378 } 1379 1380 break; 1381 1382 case 3: 1383 /* 1384 * The COP3 opcode space and consequently the CP0.Status.CU3 1385 * bit and the CP0.Cause.CE=3 encoding have been removed as 1386 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs 1387 * up the space has been reused for COP1X instructions, that 1388 * are enabled by the CP0.Status.CU1 bit and consequently 1389 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable 1390 * exceptions. Some FPU-less processors that implement one 1391 * of these ISAs however use this code erroneously for COP1X 1392 * instructions. Therefore we redirect this trap to the FP 1393 * emulator too. 1394 */ 1395 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) { 1396 force_sig(SIGILL, current); 1397 break; 1398 } 1399 /* Fall through. */ 1400 1401 case 1: 1402 err = enable_restore_fp_context(0); 1403 1404 if (raw_cpu_has_fpu && !err) 1405 break; 1406 1407 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0, 1408 &fault_addr); 1409 1410 /* 1411 * We can't allow the emulated instruction to leave 1412 * any enabled Cause bits set in $fcr31. 1413 */ 1414 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); 1415 current->thread.fpu.fcr31 &= ~fcr31; 1416 1417 /* Send a signal if required. */ 1418 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err) 1419 mt_ase_fp_affinity(); 1420 1421 break; 1422 1423 case 2: 1424 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); 1425 break; 1426 } 1427 1428 exception_exit(prev_state); 1429 } 1430 1431 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr) 1432 { 1433 enum ctx_state prev_state; 1434 1435 prev_state = exception_enter(); 1436 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1437 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0, 1438 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP) 1439 goto out; 1440 1441 /* Clear MSACSR.Cause before enabling interrupts */ 1442 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF); 1443 local_irq_enable(); 1444 1445 die_if_kernel("do_msa_fpe invoked from kernel context!", regs); 1446 force_sig(SIGFPE, current); 1447 out: 1448 exception_exit(prev_state); 1449 } 1450 1451 asmlinkage void do_msa(struct pt_regs *regs) 1452 { 1453 enum ctx_state prev_state; 1454 int err; 1455 1456 prev_state = exception_enter(); 1457 1458 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) { 1459 force_sig(SIGILL, current); 1460 goto out; 1461 } 1462 1463 die_if_kernel("do_msa invoked from kernel context!", regs); 1464 1465 err = enable_restore_fp_context(1); 1466 if (err) 1467 force_sig(SIGILL, current); 1468 out: 1469 exception_exit(prev_state); 1470 } 1471 1472 asmlinkage void do_mdmx(struct pt_regs *regs) 1473 { 1474 enum ctx_state prev_state; 1475 1476 prev_state = exception_enter(); 1477 force_sig(SIGILL, current); 1478 exception_exit(prev_state); 1479 } 1480 1481 /* 1482 * Called with interrupts disabled. 1483 */ 1484 asmlinkage void do_watch(struct pt_regs *regs) 1485 { 1486 enum ctx_state prev_state; 1487 1488 prev_state = exception_enter(); 1489 /* 1490 * Clear WP (bit 22) bit of cause register so we don't loop 1491 * forever. 1492 */ 1493 clear_c0_cause(CAUSEF_WP); 1494 1495 /* 1496 * If the current thread has the watch registers loaded, save 1497 * their values and send SIGTRAP. Otherwise another thread 1498 * left the registers set, clear them and continue. 1499 */ 1500 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { 1501 mips_read_watch_registers(); 1502 local_irq_enable(); 1503 force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL, current); 1504 } else { 1505 mips_clear_watch_registers(); 1506 local_irq_enable(); 1507 } 1508 exception_exit(prev_state); 1509 } 1510 1511 asmlinkage void do_mcheck(struct pt_regs *regs) 1512 { 1513 int multi_match = regs->cp0_status & ST0_TS; 1514 enum ctx_state prev_state; 1515 mm_segment_t old_fs = get_fs(); 1516 1517 prev_state = exception_enter(); 1518 show_regs(regs); 1519 1520 if (multi_match) { 1521 dump_tlb_regs(); 1522 pr_info("\n"); 1523 dump_tlb_all(); 1524 } 1525 1526 if (!user_mode(regs)) 1527 set_fs(KERNEL_DS); 1528 1529 show_code((unsigned int __user *) regs->cp0_epc); 1530 1531 set_fs(old_fs); 1532 1533 /* 1534 * Some chips may have other causes of machine check (e.g. SB1 1535 * graduation timer) 1536 */ 1537 panic("Caught Machine Check exception - %scaused by multiple " 1538 "matching entries in the TLB.", 1539 (multi_match) ? "" : "not "); 1540 } 1541 1542 asmlinkage void do_mt(struct pt_regs *regs) 1543 { 1544 int subcode; 1545 1546 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) 1547 >> VPECONTROL_EXCPT_SHIFT; 1548 switch (subcode) { 1549 case 0: 1550 printk(KERN_DEBUG "Thread Underflow\n"); 1551 break; 1552 case 1: 1553 printk(KERN_DEBUG "Thread Overflow\n"); 1554 break; 1555 case 2: 1556 printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); 1557 break; 1558 case 3: 1559 printk(KERN_DEBUG "Gating Storage Exception\n"); 1560 break; 1561 case 4: 1562 printk(KERN_DEBUG "YIELD Scheduler Exception\n"); 1563 break; 1564 case 5: 1565 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n"); 1566 break; 1567 default: 1568 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", 1569 subcode); 1570 break; 1571 } 1572 die_if_kernel("MIPS MT Thread exception in kernel", regs); 1573 1574 force_sig(SIGILL, current); 1575 } 1576 1577 1578 asmlinkage void do_dsp(struct pt_regs *regs) 1579 { 1580 if (cpu_has_dsp) 1581 panic("Unexpected DSP exception"); 1582 1583 force_sig(SIGILL, current); 1584 } 1585 1586 asmlinkage void do_reserved(struct pt_regs *regs) 1587 { 1588 /* 1589 * Game over - no way to handle this if it ever occurs. Most probably 1590 * caused by a new unknown cpu type or after another deadly 1591 * hard/software error. 1592 */ 1593 show_regs(regs); 1594 panic("Caught reserved exception %ld - should not happen.", 1595 (regs->cp0_cause & 0x7f) >> 2); 1596 } 1597 1598 static int __initdata l1parity = 1; 1599 static int __init nol1parity(char *s) 1600 { 1601 l1parity = 0; 1602 return 1; 1603 } 1604 __setup("nol1par", nol1parity); 1605 static int __initdata l2parity = 1; 1606 static int __init nol2parity(char *s) 1607 { 1608 l2parity = 0; 1609 return 1; 1610 } 1611 __setup("nol2par", nol2parity); 1612 1613 /* 1614 * Some MIPS CPUs can enable/disable for cache parity detection, but do 1615 * it different ways. 1616 */ 1617 static inline void parity_protection_init(void) 1618 { 1619 #define ERRCTL_PE 0x80000000 1620 #define ERRCTL_L2P 0x00800000 1621 1622 if (mips_cm_revision() >= CM_REV_CM3) { 1623 ulong gcr_ectl, cp0_ectl; 1624 1625 /* 1626 * With CM3 systems we need to ensure that the L1 & L2 1627 * parity enables are set to the same value, since this 1628 * is presumed by the hardware engineers. 1629 * 1630 * If the user disabled either of L1 or L2 ECC checking, 1631 * disable both. 1632 */ 1633 l1parity &= l2parity; 1634 l2parity &= l1parity; 1635 1636 /* Probe L1 ECC support */ 1637 cp0_ectl = read_c0_ecc(); 1638 write_c0_ecc(cp0_ectl | ERRCTL_PE); 1639 back_to_back_c0_hazard(); 1640 cp0_ectl = read_c0_ecc(); 1641 1642 /* Probe L2 ECC support */ 1643 gcr_ectl = read_gcr_err_control(); 1644 1645 if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) || 1646 !(cp0_ectl & ERRCTL_PE)) { 1647 /* 1648 * One of L1 or L2 ECC checking isn't supported, 1649 * so we cannot enable either. 1650 */ 1651 l1parity = l2parity = 0; 1652 } 1653 1654 /* Configure L1 ECC checking */ 1655 if (l1parity) 1656 cp0_ectl |= ERRCTL_PE; 1657 else 1658 cp0_ectl &= ~ERRCTL_PE; 1659 write_c0_ecc(cp0_ectl); 1660 back_to_back_c0_hazard(); 1661 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity); 1662 1663 /* Configure L2 ECC checking */ 1664 if (l2parity) 1665 gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN; 1666 else 1667 gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN; 1668 write_gcr_err_control(gcr_ectl); 1669 gcr_ectl = read_gcr_err_control(); 1670 gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN; 1671 WARN_ON(!!gcr_ectl != l2parity); 1672 1673 pr_info("Cache parity protection %sabled\n", 1674 l1parity ? "en" : "dis"); 1675 return; 1676 } 1677 1678 switch (current_cpu_type()) { 1679 case CPU_24K: 1680 case CPU_34K: 1681 case CPU_74K: 1682 case CPU_1004K: 1683 case CPU_1074K: 1684 case CPU_INTERAPTIV: 1685 case CPU_PROAPTIV: 1686 case CPU_P5600: 1687 case CPU_QEMU_GENERIC: 1688 case CPU_P6600: 1689 { 1690 unsigned long errctl; 1691 unsigned int l1parity_present, l2parity_present; 1692 1693 errctl = read_c0_ecc(); 1694 errctl &= ~(ERRCTL_PE|ERRCTL_L2P); 1695 1696 /* probe L1 parity support */ 1697 write_c0_ecc(errctl | ERRCTL_PE); 1698 back_to_back_c0_hazard(); 1699 l1parity_present = (read_c0_ecc() & ERRCTL_PE); 1700 1701 /* probe L2 parity support */ 1702 write_c0_ecc(errctl|ERRCTL_L2P); 1703 back_to_back_c0_hazard(); 1704 l2parity_present = (read_c0_ecc() & ERRCTL_L2P); 1705 1706 if (l1parity_present && l2parity_present) { 1707 if (l1parity) 1708 errctl |= ERRCTL_PE; 1709 if (l1parity ^ l2parity) 1710 errctl |= ERRCTL_L2P; 1711 } else if (l1parity_present) { 1712 if (l1parity) 1713 errctl |= ERRCTL_PE; 1714 } else if (l2parity_present) { 1715 if (l2parity) 1716 errctl |= ERRCTL_L2P; 1717 } else { 1718 /* No parity available */ 1719 } 1720 1721 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); 1722 1723 write_c0_ecc(errctl); 1724 back_to_back_c0_hazard(); 1725 errctl = read_c0_ecc(); 1726 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); 1727 1728 if (l1parity_present) 1729 printk(KERN_INFO "Cache parity protection %sabled\n", 1730 (errctl & ERRCTL_PE) ? "en" : "dis"); 1731 1732 if (l2parity_present) { 1733 if (l1parity_present && l1parity) 1734 errctl ^= ERRCTL_L2P; 1735 printk(KERN_INFO "L2 cache parity protection %sabled\n", 1736 (errctl & ERRCTL_L2P) ? "en" : "dis"); 1737 } 1738 } 1739 break; 1740 1741 case CPU_5KC: 1742 case CPU_5KE: 1743 case CPU_LOONGSON1: 1744 write_c0_ecc(0x80000000); 1745 back_to_back_c0_hazard(); 1746 /* Set the PE bit (bit 31) in the c0_errctl register. */ 1747 printk(KERN_INFO "Cache parity protection %sabled\n", 1748 (read_c0_ecc() & 0x80000000) ? "en" : "dis"); 1749 break; 1750 case CPU_20KC: 1751 case CPU_25KF: 1752 /* Clear the DE bit (bit 16) in the c0_status register. */ 1753 printk(KERN_INFO "Enable cache parity protection for " 1754 "MIPS 20KC/25KF CPUs.\n"); 1755 clear_c0_status(ST0_DE); 1756 break; 1757 default: 1758 break; 1759 } 1760 } 1761 1762 asmlinkage void cache_parity_error(void) 1763 { 1764 const int field = 2 * sizeof(unsigned long); 1765 unsigned int reg_val; 1766 1767 /* For the moment, report the problem and hang. */ 1768 printk("Cache error exception:\n"); 1769 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1770 reg_val = read_c0_cacheerr(); 1771 printk("c0_cacheerr == %08x\n", reg_val); 1772 1773 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1774 reg_val & (1<<30) ? "secondary" : "primary", 1775 reg_val & (1<<31) ? "data" : "insn"); 1776 if ((cpu_has_mips_r2_r6) && 1777 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { 1778 pr_err("Error bits: %s%s%s%s%s%s%s%s\n", 1779 reg_val & (1<<29) ? "ED " : "", 1780 reg_val & (1<<28) ? "ET " : "", 1781 reg_val & (1<<27) ? "ES " : "", 1782 reg_val & (1<<26) ? "EE " : "", 1783 reg_val & (1<<25) ? "EB " : "", 1784 reg_val & (1<<24) ? "EI " : "", 1785 reg_val & (1<<23) ? "E1 " : "", 1786 reg_val & (1<<22) ? "E0 " : ""); 1787 } else { 1788 pr_err("Error bits: %s%s%s%s%s%s%s\n", 1789 reg_val & (1<<29) ? "ED " : "", 1790 reg_val & (1<<28) ? "ET " : "", 1791 reg_val & (1<<26) ? "EE " : "", 1792 reg_val & (1<<25) ? "EB " : "", 1793 reg_val & (1<<24) ? "EI " : "", 1794 reg_val & (1<<23) ? "E1 " : "", 1795 reg_val & (1<<22) ? "E0 " : ""); 1796 } 1797 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); 1798 1799 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) 1800 if (reg_val & (1<<22)) 1801 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); 1802 1803 if (reg_val & (1<<23)) 1804 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); 1805 #endif 1806 1807 panic("Can't handle the cache error!"); 1808 } 1809 1810 asmlinkage void do_ftlb(void) 1811 { 1812 const int field = 2 * sizeof(unsigned long); 1813 unsigned int reg_val; 1814 1815 /* For the moment, report the problem and hang. */ 1816 if ((cpu_has_mips_r2_r6) && 1817 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) || 1818 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) { 1819 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n", 1820 read_c0_ecc()); 1821 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1822 reg_val = read_c0_cacheerr(); 1823 pr_err("c0_cacheerr == %08x\n", reg_val); 1824 1825 if ((reg_val & 0xc0000000) == 0xc0000000) { 1826 pr_err("Decoded c0_cacheerr: FTLB parity error\n"); 1827 } else { 1828 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1829 reg_val & (1<<30) ? "secondary" : "primary", 1830 reg_val & (1<<31) ? "data" : "insn"); 1831 } 1832 } else { 1833 pr_err("FTLB error exception\n"); 1834 } 1835 /* Just print the cacheerr bits for now */ 1836 cache_parity_error(); 1837 } 1838 1839 /* 1840 * SDBBP EJTAG debug exception handler. 1841 * We skip the instruction and return to the next instruction. 1842 */ 1843 void ejtag_exception_handler(struct pt_regs *regs) 1844 { 1845 const int field = 2 * sizeof(unsigned long); 1846 unsigned long depc, old_epc, old_ra; 1847 unsigned int debug; 1848 1849 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); 1850 depc = read_c0_depc(); 1851 debug = read_c0_debug(); 1852 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); 1853 if (debug & 0x80000000) { 1854 /* 1855 * In branch delay slot. 1856 * We cheat a little bit here and use EPC to calculate the 1857 * debug return address (DEPC). EPC is restored after the 1858 * calculation. 1859 */ 1860 old_epc = regs->cp0_epc; 1861 old_ra = regs->regs[31]; 1862 regs->cp0_epc = depc; 1863 compute_return_epc(regs); 1864 depc = regs->cp0_epc; 1865 regs->cp0_epc = old_epc; 1866 regs->regs[31] = old_ra; 1867 } else 1868 depc += 4; 1869 write_c0_depc(depc); 1870 1871 #if 0 1872 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); 1873 write_c0_debug(debug | 0x100); 1874 #endif 1875 } 1876 1877 /* 1878 * NMI exception handler. 1879 * No lock; only written during early bootup by CPU 0. 1880 */ 1881 static RAW_NOTIFIER_HEAD(nmi_chain); 1882 1883 int register_nmi_notifier(struct notifier_block *nb) 1884 { 1885 return raw_notifier_chain_register(&nmi_chain, nb); 1886 } 1887 1888 void __noreturn nmi_exception_handler(struct pt_regs *regs) 1889 { 1890 char str[100]; 1891 1892 nmi_enter(); 1893 raw_notifier_call_chain(&nmi_chain, 0, regs); 1894 bust_spinlocks(1); 1895 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n", 1896 smp_processor_id(), regs->cp0_epc); 1897 regs->cp0_epc = read_c0_errorepc(); 1898 die(str, regs); 1899 nmi_exit(); 1900 } 1901 1902 #define VECTORSPACING 0x100 /* for EI/VI mode */ 1903 1904 unsigned long ebase; 1905 EXPORT_SYMBOL_GPL(ebase); 1906 unsigned long exception_handlers[32]; 1907 unsigned long vi_handlers[64]; 1908 1909 void __init *set_except_vector(int n, void *addr) 1910 { 1911 unsigned long handler = (unsigned long) addr; 1912 unsigned long old_handler; 1913 1914 #ifdef CONFIG_CPU_MICROMIPS 1915 /* 1916 * Only the TLB handlers are cache aligned with an even 1917 * address. All other handlers are on an odd address and 1918 * require no modification. Otherwise, MIPS32 mode will 1919 * be entered when handling any TLB exceptions. That 1920 * would be bad...since we must stay in microMIPS mode. 1921 */ 1922 if (!(handler & 0x1)) 1923 handler |= 1; 1924 #endif 1925 old_handler = xchg(&exception_handlers[n], handler); 1926 1927 if (n == 0 && cpu_has_divec) { 1928 #ifdef CONFIG_CPU_MICROMIPS 1929 unsigned long jump_mask = ~((1 << 27) - 1); 1930 #else 1931 unsigned long jump_mask = ~((1 << 28) - 1); 1932 #endif 1933 u32 *buf = (u32 *)(ebase + 0x200); 1934 unsigned int k0 = 26; 1935 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { 1936 uasm_i_j(&buf, handler & ~jump_mask); 1937 uasm_i_nop(&buf); 1938 } else { 1939 UASM_i_LA(&buf, k0, handler); 1940 uasm_i_jr(&buf, k0); 1941 uasm_i_nop(&buf); 1942 } 1943 local_flush_icache_range(ebase + 0x200, (unsigned long)buf); 1944 } 1945 return (void *)old_handler; 1946 } 1947 1948 static void do_default_vi(void) 1949 { 1950 show_regs(get_irq_regs()); 1951 panic("Caught unexpected vectored interrupt."); 1952 } 1953 1954 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) 1955 { 1956 unsigned long handler; 1957 unsigned long old_handler = vi_handlers[n]; 1958 int srssets = current_cpu_data.srsets; 1959 u16 *h; 1960 unsigned char *b; 1961 1962 BUG_ON(!cpu_has_veic && !cpu_has_vint); 1963 1964 if (addr == NULL) { 1965 handler = (unsigned long) do_default_vi; 1966 srs = 0; 1967 } else 1968 handler = (unsigned long) addr; 1969 vi_handlers[n] = handler; 1970 1971 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); 1972 1973 if (srs >= srssets) 1974 panic("Shadow register set %d not supported", srs); 1975 1976 if (cpu_has_veic) { 1977 if (board_bind_eic_interrupt) 1978 board_bind_eic_interrupt(n, srs); 1979 } else if (cpu_has_vint) { 1980 /* SRSMap is only defined if shadow sets are implemented */ 1981 if (srssets > 1) 1982 change_c0_srsmap(0xf << n*4, srs << n*4); 1983 } 1984 1985 if (srs == 0) { 1986 /* 1987 * If no shadow set is selected then use the default handler 1988 * that does normal register saving and standard interrupt exit 1989 */ 1990 extern char except_vec_vi, except_vec_vi_lui; 1991 extern char except_vec_vi_ori, except_vec_vi_end; 1992 extern char rollback_except_vec_vi; 1993 char *vec_start = using_rollback_handler() ? 1994 &rollback_except_vec_vi : &except_vec_vi; 1995 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN) 1996 const int lui_offset = &except_vec_vi_lui - vec_start + 2; 1997 const int ori_offset = &except_vec_vi_ori - vec_start + 2; 1998 #else 1999 const int lui_offset = &except_vec_vi_lui - vec_start; 2000 const int ori_offset = &except_vec_vi_ori - vec_start; 2001 #endif 2002 const int handler_len = &except_vec_vi_end - vec_start; 2003 2004 if (handler_len > VECTORSPACING) { 2005 /* 2006 * Sigh... panicing won't help as the console 2007 * is probably not configured :( 2008 */ 2009 panic("VECTORSPACING too small"); 2010 } 2011 2012 set_handler(((unsigned long)b - ebase), vec_start, 2013 #ifdef CONFIG_CPU_MICROMIPS 2014 (handler_len - 1)); 2015 #else 2016 handler_len); 2017 #endif 2018 h = (u16 *)(b + lui_offset); 2019 *h = (handler >> 16) & 0xffff; 2020 h = (u16 *)(b + ori_offset); 2021 *h = (handler & 0xffff); 2022 local_flush_icache_range((unsigned long)b, 2023 (unsigned long)(b+handler_len)); 2024 } 2025 else { 2026 /* 2027 * In other cases jump directly to the interrupt handler. It 2028 * is the handler's responsibility to save registers if required 2029 * (eg hi/lo) and return from the exception using "eret". 2030 */ 2031 u32 insn; 2032 2033 h = (u16 *)b; 2034 /* j handler */ 2035 #ifdef CONFIG_CPU_MICROMIPS 2036 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1); 2037 #else 2038 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2); 2039 #endif 2040 h[0] = (insn >> 16) & 0xffff; 2041 h[1] = insn & 0xffff; 2042 h[2] = 0; 2043 h[3] = 0; 2044 local_flush_icache_range((unsigned long)b, 2045 (unsigned long)(b+8)); 2046 } 2047 2048 return (void *)old_handler; 2049 } 2050 2051 void *set_vi_handler(int n, vi_handler_t addr) 2052 { 2053 return set_vi_srs_handler(n, addr, 0); 2054 } 2055 2056 extern void tlb_init(void); 2057 2058 /* 2059 * Timer interrupt 2060 */ 2061 int cp0_compare_irq; 2062 EXPORT_SYMBOL_GPL(cp0_compare_irq); 2063 int cp0_compare_irq_shift; 2064 2065 /* 2066 * Performance counter IRQ or -1 if shared with timer 2067 */ 2068 int cp0_perfcount_irq; 2069 EXPORT_SYMBOL_GPL(cp0_perfcount_irq); 2070 2071 /* 2072 * Fast debug channel IRQ or -1 if not present 2073 */ 2074 int cp0_fdc_irq; 2075 EXPORT_SYMBOL_GPL(cp0_fdc_irq); 2076 2077 static int noulri; 2078 2079 static int __init ulri_disable(char *s) 2080 { 2081 pr_info("Disabling ulri\n"); 2082 noulri = 1; 2083 2084 return 1; 2085 } 2086 __setup("noulri", ulri_disable); 2087 2088 /* configure STATUS register */ 2089 static void configure_status(void) 2090 { 2091 /* 2092 * Disable coprocessors and select 32-bit or 64-bit addressing 2093 * and the 16/32 or 32/32 FPR register model. Reset the BEV 2094 * flag that some firmware may have left set and the TS bit (for 2095 * IP27). Set XX for ISA IV code to work. 2096 */ 2097 unsigned int status_set = ST0_CU0; 2098 #ifdef CONFIG_64BIT 2099 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; 2100 #endif 2101 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV) 2102 status_set |= ST0_XX; 2103 if (cpu_has_dsp) 2104 status_set |= ST0_MX; 2105 2106 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, 2107 status_set); 2108 } 2109 2110 unsigned int hwrena; 2111 EXPORT_SYMBOL_GPL(hwrena); 2112 2113 /* configure HWRENA register */ 2114 static void configure_hwrena(void) 2115 { 2116 hwrena = cpu_hwrena_impl_bits; 2117 2118 if (cpu_has_mips_r2_r6) 2119 hwrena |= MIPS_HWRENA_CPUNUM | 2120 MIPS_HWRENA_SYNCISTEP | 2121 MIPS_HWRENA_CC | 2122 MIPS_HWRENA_CCRES; 2123 2124 if (!noulri && cpu_has_userlocal) 2125 hwrena |= MIPS_HWRENA_ULR; 2126 2127 if (hwrena) 2128 write_c0_hwrena(hwrena); 2129 } 2130 2131 static void configure_exception_vector(void) 2132 { 2133 if (cpu_has_veic || cpu_has_vint) { 2134 unsigned long sr = set_c0_status(ST0_BEV); 2135 /* If available, use WG to set top bits of EBASE */ 2136 if (cpu_has_ebase_wg) { 2137 #ifdef CONFIG_64BIT 2138 write_c0_ebase_64(ebase | MIPS_EBASE_WG); 2139 #else 2140 write_c0_ebase(ebase | MIPS_EBASE_WG); 2141 #endif 2142 } 2143 write_c0_ebase(ebase); 2144 write_c0_status(sr); 2145 /* Setting vector spacing enables EI/VI mode */ 2146 change_c0_intctl(0x3e0, VECTORSPACING); 2147 } 2148 if (cpu_has_divec) { 2149 if (cpu_has_mipsmt) { 2150 unsigned int vpflags = dvpe(); 2151 set_c0_cause(CAUSEF_IV); 2152 evpe(vpflags); 2153 } else 2154 set_c0_cause(CAUSEF_IV); 2155 } 2156 } 2157 2158 void per_cpu_trap_init(bool is_boot_cpu) 2159 { 2160 unsigned int cpu = smp_processor_id(); 2161 2162 configure_status(); 2163 configure_hwrena(); 2164 2165 configure_exception_vector(); 2166 2167 /* 2168 * Before R2 both interrupt numbers were fixed to 7, so on R2 only: 2169 * 2170 * o read IntCtl.IPTI to determine the timer interrupt 2171 * o read IntCtl.IPPCI to determine the performance counter interrupt 2172 * o read IntCtl.IPFDC to determine the fast debug channel interrupt 2173 */ 2174 if (cpu_has_mips_r2_r6) { 2175 /* 2176 * We shouldn't trust a secondary core has a sane EBASE register 2177 * so use the one calculated by the boot CPU. 2178 */ 2179 if (!is_boot_cpu) { 2180 /* If available, use WG to set top bits of EBASE */ 2181 if (cpu_has_ebase_wg) { 2182 #ifdef CONFIG_64BIT 2183 write_c0_ebase_64(ebase | MIPS_EBASE_WG); 2184 #else 2185 write_c0_ebase(ebase | MIPS_EBASE_WG); 2186 #endif 2187 } 2188 write_c0_ebase(ebase); 2189 } 2190 2191 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; 2192 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; 2193 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; 2194 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7; 2195 if (!cp0_fdc_irq) 2196 cp0_fdc_irq = -1; 2197 2198 } else { 2199 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; 2200 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ; 2201 cp0_perfcount_irq = -1; 2202 cp0_fdc_irq = -1; 2203 } 2204 2205 if (!cpu_data[cpu].asid_cache) 2206 cpu_data[cpu].asid_cache = asid_first_version(cpu); 2207 2208 mmgrab(&init_mm); 2209 current->active_mm = &init_mm; 2210 BUG_ON(current->mm); 2211 enter_lazy_tlb(&init_mm, current); 2212 2213 /* Boot CPU's cache setup in setup_arch(). */ 2214 if (!is_boot_cpu) 2215 cpu_cache_init(); 2216 tlb_init(); 2217 TLBMISS_HANDLER_SETUP(); 2218 } 2219 2220 /* Install CPU exception handler */ 2221 void set_handler(unsigned long offset, void *addr, unsigned long size) 2222 { 2223 #ifdef CONFIG_CPU_MICROMIPS 2224 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size); 2225 #else 2226 memcpy((void *)(ebase + offset), addr, size); 2227 #endif 2228 local_flush_icache_range(ebase + offset, ebase + offset + size); 2229 } 2230 2231 static const char panic_null_cerr[] = 2232 "Trying to set NULL cache error exception handler\n"; 2233 2234 /* 2235 * Install uncached CPU exception handler. 2236 * This is suitable only for the cache error exception which is the only 2237 * exception handler that is being run uncached. 2238 */ 2239 void set_uncached_handler(unsigned long offset, void *addr, 2240 unsigned long size) 2241 { 2242 unsigned long uncached_ebase = CKSEG1ADDR(ebase); 2243 2244 if (!addr) 2245 panic(panic_null_cerr); 2246 2247 memcpy((void *)(uncached_ebase + offset), addr, size); 2248 } 2249 2250 static int __initdata rdhwr_noopt; 2251 static int __init set_rdhwr_noopt(char *str) 2252 { 2253 rdhwr_noopt = 1; 2254 return 1; 2255 } 2256 2257 __setup("rdhwr_noopt", set_rdhwr_noopt); 2258 2259 void __init trap_init(void) 2260 { 2261 extern char except_vec3_generic; 2262 extern char except_vec4; 2263 extern char except_vec3_r4000; 2264 unsigned long i; 2265 2266 check_wait(); 2267 2268 if (cpu_has_veic || cpu_has_vint) { 2269 unsigned long size = 0x200 + VECTORSPACING*64; 2270 phys_addr_t ebase_pa; 2271 2272 ebase = (unsigned long) 2273 __alloc_bootmem(size, 1 << fls(size), 0); 2274 2275 /* 2276 * Try to ensure ebase resides in KSeg0 if possible. 2277 * 2278 * It shouldn't generally be in XKPhys on MIPS64 to avoid 2279 * hitting a poorly defined exception base for Cache Errors. 2280 * The allocation is likely to be in the low 512MB of physical, 2281 * in which case we should be able to convert to KSeg0. 2282 * 2283 * EVA is special though as it allows segments to be rearranged 2284 * and to become uncached during cache error handling. 2285 */ 2286 ebase_pa = __pa(ebase); 2287 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000)) 2288 ebase = CKSEG0ADDR(ebase_pa); 2289 } else { 2290 ebase = CAC_BASE; 2291 2292 if (cpu_has_mips_r2_r6) { 2293 if (cpu_has_ebase_wg) { 2294 #ifdef CONFIG_64BIT 2295 ebase = (read_c0_ebase_64() & ~0xfff); 2296 #else 2297 ebase = (read_c0_ebase() & ~0xfff); 2298 #endif 2299 } else { 2300 ebase += (read_c0_ebase() & 0x3ffff000); 2301 } 2302 } 2303 } 2304 2305 if (cpu_has_mmips) { 2306 unsigned int config3 = read_c0_config3(); 2307 2308 if (IS_ENABLED(CONFIG_CPU_MICROMIPS)) 2309 write_c0_config3(config3 | MIPS_CONF3_ISA_OE); 2310 else 2311 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE); 2312 } 2313 2314 if (board_ebase_setup) 2315 board_ebase_setup(); 2316 per_cpu_trap_init(true); 2317 2318 /* 2319 * Copy the generic exception handlers to their final destination. 2320 * This will be overridden later as suitable for a particular 2321 * configuration. 2322 */ 2323 set_handler(0x180, &except_vec3_generic, 0x80); 2324 2325 /* 2326 * Setup default vectors 2327 */ 2328 for (i = 0; i <= 31; i++) 2329 set_except_vector(i, handle_reserved); 2330 2331 /* 2332 * Copy the EJTAG debug exception vector handler code to it's final 2333 * destination. 2334 */ 2335 if (cpu_has_ejtag && board_ejtag_handler_setup) 2336 board_ejtag_handler_setup(); 2337 2338 /* 2339 * Only some CPUs have the watch exceptions. 2340 */ 2341 if (cpu_has_watch) 2342 set_except_vector(EXCCODE_WATCH, handle_watch); 2343 2344 /* 2345 * Initialise interrupt handlers 2346 */ 2347 if (cpu_has_veic || cpu_has_vint) { 2348 int nvec = cpu_has_veic ? 64 : 8; 2349 for (i = 0; i < nvec; i++) 2350 set_vi_handler(i, NULL); 2351 } 2352 else if (cpu_has_divec) 2353 set_handler(0x200, &except_vec4, 0x8); 2354 2355 /* 2356 * Some CPUs can enable/disable for cache parity detection, but does 2357 * it different ways. 2358 */ 2359 parity_protection_init(); 2360 2361 /* 2362 * The Data Bus Errors / Instruction Bus Errors are signaled 2363 * by external hardware. Therefore these two exceptions 2364 * may have board specific handlers. 2365 */ 2366 if (board_be_init) 2367 board_be_init(); 2368 2369 set_except_vector(EXCCODE_INT, using_rollback_handler() ? 2370 rollback_handle_int : handle_int); 2371 set_except_vector(EXCCODE_MOD, handle_tlbm); 2372 set_except_vector(EXCCODE_TLBL, handle_tlbl); 2373 set_except_vector(EXCCODE_TLBS, handle_tlbs); 2374 2375 set_except_vector(EXCCODE_ADEL, handle_adel); 2376 set_except_vector(EXCCODE_ADES, handle_ades); 2377 2378 set_except_vector(EXCCODE_IBE, handle_ibe); 2379 set_except_vector(EXCCODE_DBE, handle_dbe); 2380 2381 set_except_vector(EXCCODE_SYS, handle_sys); 2382 set_except_vector(EXCCODE_BP, handle_bp); 2383 2384 if (rdhwr_noopt) 2385 set_except_vector(EXCCODE_RI, handle_ri); 2386 else { 2387 if (cpu_has_vtag_icache) 2388 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp); 2389 else if (current_cpu_type() == CPU_LOONGSON3) 2390 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp); 2391 else 2392 set_except_vector(EXCCODE_RI, handle_ri_rdhwr); 2393 } 2394 2395 set_except_vector(EXCCODE_CPU, handle_cpu); 2396 set_except_vector(EXCCODE_OV, handle_ov); 2397 set_except_vector(EXCCODE_TR, handle_tr); 2398 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe); 2399 2400 if (board_nmi_handler_setup) 2401 board_nmi_handler_setup(); 2402 2403 if (cpu_has_fpu && !cpu_has_nofpuex) 2404 set_except_vector(EXCCODE_FPE, handle_fpe); 2405 2406 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb); 2407 2408 if (cpu_has_rixiex) { 2409 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0); 2410 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0); 2411 } 2412 2413 set_except_vector(EXCCODE_MSADIS, handle_msa); 2414 set_except_vector(EXCCODE_MDMX, handle_mdmx); 2415 2416 if (cpu_has_mcheck) 2417 set_except_vector(EXCCODE_MCHECK, handle_mcheck); 2418 2419 if (cpu_has_mipsmt) 2420 set_except_vector(EXCCODE_THREAD, handle_mt); 2421 2422 set_except_vector(EXCCODE_DSPDIS, handle_dsp); 2423 2424 if (board_cache_error_setup) 2425 board_cache_error_setup(); 2426 2427 if (cpu_has_vce) 2428 /* Special exception: R4[04]00 uses also the divec space. */ 2429 set_handler(0x180, &except_vec3_r4000, 0x100); 2430 else if (cpu_has_4kex) 2431 set_handler(0x180, &except_vec3_generic, 0x80); 2432 else 2433 set_handler(0x080, &except_vec3_generic, 0x80); 2434 2435 local_flush_icache_range(ebase, ebase + 0x400); 2436 2437 sort_extable(__start___dbe_table, __stop___dbe_table); 2438 2439 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */ 2440 } 2441 2442 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd, 2443 void *v) 2444 { 2445 switch (cmd) { 2446 case CPU_PM_ENTER_FAILED: 2447 case CPU_PM_EXIT: 2448 configure_status(); 2449 configure_hwrena(); 2450 configure_exception_vector(); 2451 2452 /* Restore register with CPU number for TLB handlers */ 2453 TLBMISS_HANDLER_RESTORE(); 2454 2455 break; 2456 } 2457 2458 return NOTIFY_OK; 2459 } 2460 2461 static struct notifier_block trap_pm_notifier_block = { 2462 .notifier_call = trap_pm_notifier, 2463 }; 2464 2465 static int __init trap_pm_init(void) 2466 { 2467 return cpu_pm_register_notifier(&trap_pm_notifier_block); 2468 } 2469 arch_initcall(trap_pm_init); 2470