xref: /openbmc/linux/arch/mips/kernel/traps.c (revision 8730046c)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
25 #include <linux/mm.h>
26 #include <linux/sched.h>
27 #include <linux/smp.h>
28 #include <linux/spinlock.h>
29 #include <linux/kallsyms.h>
30 #include <linux/bootmem.h>
31 #include <linux/interrupt.h>
32 #include <linux/ptrace.h>
33 #include <linux/kgdb.h>
34 #include <linux/kdebug.h>
35 #include <linux/kprobes.h>
36 #include <linux/notifier.h>
37 #include <linux/kdb.h>
38 #include <linux/irq.h>
39 #include <linux/perf_event.h>
40 
41 #include <asm/addrspace.h>
42 #include <asm/bootinfo.h>
43 #include <asm/branch.h>
44 #include <asm/break.h>
45 #include <asm/cop2.h>
46 #include <asm/cpu.h>
47 #include <asm/cpu-type.h>
48 #include <asm/dsp.h>
49 #include <asm/fpu.h>
50 #include <asm/fpu_emulator.h>
51 #include <asm/idle.h>
52 #include <asm/mips-cm.h>
53 #include <asm/mips-r2-to-r6-emul.h>
54 #include <asm/mipsregs.h>
55 #include <asm/mipsmtregs.h>
56 #include <asm/module.h>
57 #include <asm/msa.h>
58 #include <asm/pgtable.h>
59 #include <asm/ptrace.h>
60 #include <asm/sections.h>
61 #include <asm/siginfo.h>
62 #include <asm/tlbdebug.h>
63 #include <asm/traps.h>
64 #include <linux/uaccess.h>
65 #include <asm/watch.h>
66 #include <asm/mmu_context.h>
67 #include <asm/types.h>
68 #include <asm/stacktrace.h>
69 #include <asm/uasm.h>
70 
71 extern void check_wait(void);
72 extern asmlinkage void rollback_handle_int(void);
73 extern asmlinkage void handle_int(void);
74 extern u32 handle_tlbl[];
75 extern u32 handle_tlbs[];
76 extern u32 handle_tlbm[];
77 extern asmlinkage void handle_adel(void);
78 extern asmlinkage void handle_ades(void);
79 extern asmlinkage void handle_ibe(void);
80 extern asmlinkage void handle_dbe(void);
81 extern asmlinkage void handle_sys(void);
82 extern asmlinkage void handle_bp(void);
83 extern asmlinkage void handle_ri(void);
84 extern asmlinkage void handle_ri_rdhwr_vivt(void);
85 extern asmlinkage void handle_ri_rdhwr(void);
86 extern asmlinkage void handle_cpu(void);
87 extern asmlinkage void handle_ov(void);
88 extern asmlinkage void handle_tr(void);
89 extern asmlinkage void handle_msa_fpe(void);
90 extern asmlinkage void handle_fpe(void);
91 extern asmlinkage void handle_ftlb(void);
92 extern asmlinkage void handle_msa(void);
93 extern asmlinkage void handle_mdmx(void);
94 extern asmlinkage void handle_watch(void);
95 extern asmlinkage void handle_mt(void);
96 extern asmlinkage void handle_dsp(void);
97 extern asmlinkage void handle_mcheck(void);
98 extern asmlinkage void handle_reserved(void);
99 extern void tlb_do_page_fault_0(void);
100 
101 void (*board_be_init)(void);
102 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
103 void (*board_nmi_handler_setup)(void);
104 void (*board_ejtag_handler_setup)(void);
105 void (*board_bind_eic_interrupt)(int irq, int regset);
106 void (*board_ebase_setup)(void);
107 void(*board_cache_error_setup)(void);
108 
109 static void show_raw_backtrace(unsigned long reg29)
110 {
111 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
112 	unsigned long addr;
113 
114 	printk("Call Trace:");
115 #ifdef CONFIG_KALLSYMS
116 	printk("\n");
117 #endif
118 	while (!kstack_end(sp)) {
119 		unsigned long __user *p =
120 			(unsigned long __user *)(unsigned long)sp++;
121 		if (__get_user(addr, p)) {
122 			printk(" (Bad stack address)");
123 			break;
124 		}
125 		if (__kernel_text_address(addr))
126 			print_ip_sym(addr);
127 	}
128 	printk("\n");
129 }
130 
131 #ifdef CONFIG_KALLSYMS
132 int raw_show_trace;
133 static int __init set_raw_show_trace(char *str)
134 {
135 	raw_show_trace = 1;
136 	return 1;
137 }
138 __setup("raw_show_trace", set_raw_show_trace);
139 #endif
140 
141 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
142 {
143 	unsigned long sp = regs->regs[29];
144 	unsigned long ra = regs->regs[31];
145 	unsigned long pc = regs->cp0_epc;
146 
147 	if (!task)
148 		task = current;
149 
150 	if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
151 		show_raw_backtrace(sp);
152 		return;
153 	}
154 	printk("Call Trace:\n");
155 	do {
156 		print_ip_sym(pc);
157 		pc = unwind_stack(task, &sp, pc, &ra);
158 	} while (pc);
159 	pr_cont("\n");
160 }
161 
162 /*
163  * This routine abuses get_user()/put_user() to reference pointers
164  * with at least a bit of error checking ...
165  */
166 static void show_stacktrace(struct task_struct *task,
167 	const struct pt_regs *regs)
168 {
169 	const int field = 2 * sizeof(unsigned long);
170 	long stackdata;
171 	int i;
172 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
173 
174 	printk("Stack :");
175 	i = 0;
176 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
177 		if (i && ((i % (64 / field)) == 0)) {
178 			pr_cont("\n");
179 			printk("       ");
180 		}
181 		if (i > 39) {
182 			pr_cont(" ...");
183 			break;
184 		}
185 
186 		if (__get_user(stackdata, sp++)) {
187 			pr_cont(" (Bad stack address)");
188 			break;
189 		}
190 
191 		pr_cont(" %0*lx", field, stackdata);
192 		i++;
193 	}
194 	pr_cont("\n");
195 	show_backtrace(task, regs);
196 }
197 
198 void show_stack(struct task_struct *task, unsigned long *sp)
199 {
200 	struct pt_regs regs;
201 	mm_segment_t old_fs = get_fs();
202 	if (sp) {
203 		regs.regs[29] = (unsigned long)sp;
204 		regs.regs[31] = 0;
205 		regs.cp0_epc = 0;
206 	} else {
207 		if (task && task != current) {
208 			regs.regs[29] = task->thread.reg29;
209 			regs.regs[31] = 0;
210 			regs.cp0_epc = task->thread.reg31;
211 #ifdef CONFIG_KGDB_KDB
212 		} else if (atomic_read(&kgdb_active) != -1 &&
213 			   kdb_current_regs) {
214 			memcpy(&regs, kdb_current_regs, sizeof(regs));
215 #endif /* CONFIG_KGDB_KDB */
216 		} else {
217 			prepare_frametrace(&regs);
218 		}
219 	}
220 	/*
221 	 * show_stack() deals exclusively with kernel mode, so be sure to access
222 	 * the stack in the kernel (not user) address space.
223 	 */
224 	set_fs(KERNEL_DS);
225 	show_stacktrace(task, &regs);
226 	set_fs(old_fs);
227 }
228 
229 static void show_code(unsigned int __user *pc)
230 {
231 	long i;
232 	unsigned short __user *pc16 = NULL;
233 
234 	printk("Code:");
235 
236 	if ((unsigned long)pc & 1)
237 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
238 	for(i = -3 ; i < 6 ; i++) {
239 		unsigned int insn;
240 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
241 			pr_cont(" (Bad address in epc)\n");
242 			break;
243 		}
244 		pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
245 	}
246 	pr_cont("\n");
247 }
248 
249 static void __show_regs(const struct pt_regs *regs)
250 {
251 	const int field = 2 * sizeof(unsigned long);
252 	unsigned int cause = regs->cp0_cause;
253 	unsigned int exccode;
254 	int i;
255 
256 	show_regs_print_info(KERN_DEFAULT);
257 
258 	/*
259 	 * Saved main processor registers
260 	 */
261 	for (i = 0; i < 32; ) {
262 		if ((i % 4) == 0)
263 			printk("$%2d   :", i);
264 		if (i == 0)
265 			pr_cont(" %0*lx", field, 0UL);
266 		else if (i == 26 || i == 27)
267 			pr_cont(" %*s", field, "");
268 		else
269 			pr_cont(" %0*lx", field, regs->regs[i]);
270 
271 		i++;
272 		if ((i % 4) == 0)
273 			pr_cont("\n");
274 	}
275 
276 #ifdef CONFIG_CPU_HAS_SMARTMIPS
277 	printk("Acx    : %0*lx\n", field, regs->acx);
278 #endif
279 	printk("Hi    : %0*lx\n", field, regs->hi);
280 	printk("Lo    : %0*lx\n", field, regs->lo);
281 
282 	/*
283 	 * Saved cp0 registers
284 	 */
285 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
286 	       (void *) regs->cp0_epc);
287 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
288 	       (void *) regs->regs[31]);
289 
290 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
291 
292 	if (cpu_has_3kex) {
293 		if (regs->cp0_status & ST0_KUO)
294 			pr_cont("KUo ");
295 		if (regs->cp0_status & ST0_IEO)
296 			pr_cont("IEo ");
297 		if (regs->cp0_status & ST0_KUP)
298 			pr_cont("KUp ");
299 		if (regs->cp0_status & ST0_IEP)
300 			pr_cont("IEp ");
301 		if (regs->cp0_status & ST0_KUC)
302 			pr_cont("KUc ");
303 		if (regs->cp0_status & ST0_IEC)
304 			pr_cont("IEc ");
305 	} else if (cpu_has_4kex) {
306 		if (regs->cp0_status & ST0_KX)
307 			pr_cont("KX ");
308 		if (regs->cp0_status & ST0_SX)
309 			pr_cont("SX ");
310 		if (regs->cp0_status & ST0_UX)
311 			pr_cont("UX ");
312 		switch (regs->cp0_status & ST0_KSU) {
313 		case KSU_USER:
314 			pr_cont("USER ");
315 			break;
316 		case KSU_SUPERVISOR:
317 			pr_cont("SUPERVISOR ");
318 			break;
319 		case KSU_KERNEL:
320 			pr_cont("KERNEL ");
321 			break;
322 		default:
323 			pr_cont("BAD_MODE ");
324 			break;
325 		}
326 		if (regs->cp0_status & ST0_ERL)
327 			pr_cont("ERL ");
328 		if (regs->cp0_status & ST0_EXL)
329 			pr_cont("EXL ");
330 		if (regs->cp0_status & ST0_IE)
331 			pr_cont("IE ");
332 	}
333 	pr_cont("\n");
334 
335 	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
336 	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
337 
338 	if (1 <= exccode && exccode <= 5)
339 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
340 
341 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
342 	       cpu_name_string());
343 }
344 
345 /*
346  * FIXME: really the generic show_regs should take a const pointer argument.
347  */
348 void show_regs(struct pt_regs *regs)
349 {
350 	__show_regs((struct pt_regs *)regs);
351 }
352 
353 void show_registers(struct pt_regs *regs)
354 {
355 	const int field = 2 * sizeof(unsigned long);
356 	mm_segment_t old_fs = get_fs();
357 
358 	__show_regs(regs);
359 	print_modules();
360 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
361 	       current->comm, current->pid, current_thread_info(), current,
362 	      field, current_thread_info()->tp_value);
363 	if (cpu_has_userlocal) {
364 		unsigned long tls;
365 
366 		tls = read_c0_userlocal();
367 		if (tls != current_thread_info()->tp_value)
368 			printk("*HwTLS: %0*lx\n", field, tls);
369 	}
370 
371 	if (!user_mode(regs))
372 		/* Necessary for getting the correct stack content */
373 		set_fs(KERNEL_DS);
374 	show_stacktrace(current, regs);
375 	show_code((unsigned int __user *) regs->cp0_epc);
376 	printk("\n");
377 	set_fs(old_fs);
378 }
379 
380 static DEFINE_RAW_SPINLOCK(die_lock);
381 
382 void __noreturn die(const char *str, struct pt_regs *regs)
383 {
384 	static int die_counter;
385 	int sig = SIGSEGV;
386 
387 	oops_enter();
388 
389 	if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
390 		       SIGSEGV) == NOTIFY_STOP)
391 		sig = 0;
392 
393 	console_verbose();
394 	raw_spin_lock_irq(&die_lock);
395 	bust_spinlocks(1);
396 
397 	printk("%s[#%d]:\n", str, ++die_counter);
398 	show_registers(regs);
399 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
400 	raw_spin_unlock_irq(&die_lock);
401 
402 	oops_exit();
403 
404 	if (in_interrupt())
405 		panic("Fatal exception in interrupt");
406 
407 	if (panic_on_oops)
408 		panic("Fatal exception");
409 
410 	if (regs && kexec_should_crash(current))
411 		crash_kexec(regs);
412 
413 	do_exit(sig);
414 }
415 
416 extern struct exception_table_entry __start___dbe_table[];
417 extern struct exception_table_entry __stop___dbe_table[];
418 
419 __asm__(
420 "	.section	__dbe_table, \"a\"\n"
421 "	.previous			\n");
422 
423 /* Given an address, look for it in the exception tables. */
424 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
425 {
426 	const struct exception_table_entry *e;
427 
428 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
429 	if (!e)
430 		e = search_module_dbetables(addr);
431 	return e;
432 }
433 
434 asmlinkage void do_be(struct pt_regs *regs)
435 {
436 	const int field = 2 * sizeof(unsigned long);
437 	const struct exception_table_entry *fixup = NULL;
438 	int data = regs->cp0_cause & 4;
439 	int action = MIPS_BE_FATAL;
440 	enum ctx_state prev_state;
441 
442 	prev_state = exception_enter();
443 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
444 	if (data && !user_mode(regs))
445 		fixup = search_dbe_tables(exception_epc(regs));
446 
447 	if (fixup)
448 		action = MIPS_BE_FIXUP;
449 
450 	if (board_be_handler)
451 		action = board_be_handler(regs, fixup != NULL);
452 	else
453 		mips_cm_error_report();
454 
455 	switch (action) {
456 	case MIPS_BE_DISCARD:
457 		goto out;
458 	case MIPS_BE_FIXUP:
459 		if (fixup) {
460 			regs->cp0_epc = fixup->nextinsn;
461 			goto out;
462 		}
463 		break;
464 	default:
465 		break;
466 	}
467 
468 	/*
469 	 * Assume it would be too dangerous to continue ...
470 	 */
471 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
472 	       data ? "Data" : "Instruction",
473 	       field, regs->cp0_epc, field, regs->regs[31]);
474 	if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
475 		       SIGBUS) == NOTIFY_STOP)
476 		goto out;
477 
478 	die_if_kernel("Oops", regs);
479 	force_sig(SIGBUS, current);
480 
481 out:
482 	exception_exit(prev_state);
483 }
484 
485 /*
486  * ll/sc, rdhwr, sync emulation
487  */
488 
489 #define OPCODE 0xfc000000
490 #define BASE   0x03e00000
491 #define RT     0x001f0000
492 #define OFFSET 0x0000ffff
493 #define LL     0xc0000000
494 #define SC     0xe0000000
495 #define SPEC0  0x00000000
496 #define SPEC3  0x7c000000
497 #define RD     0x0000f800
498 #define FUNC   0x0000003f
499 #define SYNC   0x0000000f
500 #define RDHWR  0x0000003b
501 
502 /*  microMIPS definitions   */
503 #define MM_POOL32A_FUNC 0xfc00ffff
504 #define MM_RDHWR        0x00006b3c
505 #define MM_RS           0x001f0000
506 #define MM_RT           0x03e00000
507 
508 /*
509  * The ll_bit is cleared by r*_switch.S
510  */
511 
512 unsigned int ll_bit;
513 struct task_struct *ll_task;
514 
515 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
516 {
517 	unsigned long value, __user *vaddr;
518 	long offset;
519 
520 	/*
521 	 * analyse the ll instruction that just caused a ri exception
522 	 * and put the referenced address to addr.
523 	 */
524 
525 	/* sign extend offset */
526 	offset = opcode & OFFSET;
527 	offset <<= 16;
528 	offset >>= 16;
529 
530 	vaddr = (unsigned long __user *)
531 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
532 
533 	if ((unsigned long)vaddr & 3)
534 		return SIGBUS;
535 	if (get_user(value, vaddr))
536 		return SIGSEGV;
537 
538 	preempt_disable();
539 
540 	if (ll_task == NULL || ll_task == current) {
541 		ll_bit = 1;
542 	} else {
543 		ll_bit = 0;
544 	}
545 	ll_task = current;
546 
547 	preempt_enable();
548 
549 	regs->regs[(opcode & RT) >> 16] = value;
550 
551 	return 0;
552 }
553 
554 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
555 {
556 	unsigned long __user *vaddr;
557 	unsigned long reg;
558 	long offset;
559 
560 	/*
561 	 * analyse the sc instruction that just caused a ri exception
562 	 * and put the referenced address to addr.
563 	 */
564 
565 	/* sign extend offset */
566 	offset = opcode & OFFSET;
567 	offset <<= 16;
568 	offset >>= 16;
569 
570 	vaddr = (unsigned long __user *)
571 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
572 	reg = (opcode & RT) >> 16;
573 
574 	if ((unsigned long)vaddr & 3)
575 		return SIGBUS;
576 
577 	preempt_disable();
578 
579 	if (ll_bit == 0 || ll_task != current) {
580 		regs->regs[reg] = 0;
581 		preempt_enable();
582 		return 0;
583 	}
584 
585 	preempt_enable();
586 
587 	if (put_user(regs->regs[reg], vaddr))
588 		return SIGSEGV;
589 
590 	regs->regs[reg] = 1;
591 
592 	return 0;
593 }
594 
595 /*
596  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
597  * opcodes are supposed to result in coprocessor unusable exceptions if
598  * executed on ll/sc-less processors.  That's the theory.  In practice a
599  * few processors such as NEC's VR4100 throw reserved instruction exceptions
600  * instead, so we're doing the emulation thing in both exception handlers.
601  */
602 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
603 {
604 	if ((opcode & OPCODE) == LL) {
605 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
606 				1, regs, 0);
607 		return simulate_ll(regs, opcode);
608 	}
609 	if ((opcode & OPCODE) == SC) {
610 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
611 				1, regs, 0);
612 		return simulate_sc(regs, opcode);
613 	}
614 
615 	return -1;			/* Must be something else ... */
616 }
617 
618 /*
619  * Simulate trapping 'rdhwr' instructions to provide user accessible
620  * registers not implemented in hardware.
621  */
622 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
623 {
624 	struct thread_info *ti = task_thread_info(current);
625 
626 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
627 			1, regs, 0);
628 	switch (rd) {
629 	case MIPS_HWR_CPUNUM:		/* CPU number */
630 		regs->regs[rt] = smp_processor_id();
631 		return 0;
632 	case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
633 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
634 				     current_cpu_data.icache.linesz);
635 		return 0;
636 	case MIPS_HWR_CC:		/* Read count register */
637 		regs->regs[rt] = read_c0_count();
638 		return 0;
639 	case MIPS_HWR_CCRES:		/* Count register resolution */
640 		switch (current_cpu_type()) {
641 		case CPU_20KC:
642 		case CPU_25KF:
643 			regs->regs[rt] = 1;
644 			break;
645 		default:
646 			regs->regs[rt] = 2;
647 		}
648 		return 0;
649 	case MIPS_HWR_ULR:		/* Read UserLocal register */
650 		regs->regs[rt] = ti->tp_value;
651 		return 0;
652 	default:
653 		return -1;
654 	}
655 }
656 
657 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
658 {
659 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
660 		int rd = (opcode & RD) >> 11;
661 		int rt = (opcode & RT) >> 16;
662 
663 		simulate_rdhwr(regs, rd, rt);
664 		return 0;
665 	}
666 
667 	/* Not ours.  */
668 	return -1;
669 }
670 
671 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
672 {
673 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
674 		int rd = (opcode & MM_RS) >> 16;
675 		int rt = (opcode & MM_RT) >> 21;
676 		simulate_rdhwr(regs, rd, rt);
677 		return 0;
678 	}
679 
680 	/* Not ours.  */
681 	return -1;
682 }
683 
684 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
685 {
686 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
687 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
688 				1, regs, 0);
689 		return 0;
690 	}
691 
692 	return -1;			/* Must be something else ... */
693 }
694 
695 asmlinkage void do_ov(struct pt_regs *regs)
696 {
697 	enum ctx_state prev_state;
698 	siginfo_t info = {
699 		.si_signo = SIGFPE,
700 		.si_code = FPE_INTOVF,
701 		.si_addr = (void __user *)regs->cp0_epc,
702 	};
703 
704 	prev_state = exception_enter();
705 	die_if_kernel("Integer overflow", regs);
706 
707 	force_sig_info(SIGFPE, &info, current);
708 	exception_exit(prev_state);
709 }
710 
711 /*
712  * Send SIGFPE according to FCSR Cause bits, which must have already
713  * been masked against Enable bits.  This is impotant as Inexact can
714  * happen together with Overflow or Underflow, and `ptrace' can set
715  * any bits.
716  */
717 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
718 		     struct task_struct *tsk)
719 {
720 	struct siginfo si = { .si_addr = fault_addr, .si_signo = SIGFPE };
721 
722 	if (fcr31 & FPU_CSR_INV_X)
723 		si.si_code = FPE_FLTINV;
724 	else if (fcr31 & FPU_CSR_DIV_X)
725 		si.si_code = FPE_FLTDIV;
726 	else if (fcr31 & FPU_CSR_OVF_X)
727 		si.si_code = FPE_FLTOVF;
728 	else if (fcr31 & FPU_CSR_UDF_X)
729 		si.si_code = FPE_FLTUND;
730 	else if (fcr31 & FPU_CSR_INE_X)
731 		si.si_code = FPE_FLTRES;
732 	else
733 		si.si_code = __SI_FAULT;
734 	force_sig_info(SIGFPE, &si, tsk);
735 }
736 
737 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
738 {
739 	struct siginfo si = { 0 };
740 	struct vm_area_struct *vma;
741 
742 	switch (sig) {
743 	case 0:
744 		return 0;
745 
746 	case SIGFPE:
747 		force_fcr31_sig(fcr31, fault_addr, current);
748 		return 1;
749 
750 	case SIGBUS:
751 		si.si_addr = fault_addr;
752 		si.si_signo = sig;
753 		si.si_code = BUS_ADRERR;
754 		force_sig_info(sig, &si, current);
755 		return 1;
756 
757 	case SIGSEGV:
758 		si.si_addr = fault_addr;
759 		si.si_signo = sig;
760 		down_read(&current->mm->mmap_sem);
761 		vma = find_vma(current->mm, (unsigned long)fault_addr);
762 		if (vma && (vma->vm_start <= (unsigned long)fault_addr))
763 			si.si_code = SEGV_ACCERR;
764 		else
765 			si.si_code = SEGV_MAPERR;
766 		up_read(&current->mm->mmap_sem);
767 		force_sig_info(sig, &si, current);
768 		return 1;
769 
770 	default:
771 		force_sig(sig, current);
772 		return 1;
773 	}
774 }
775 
776 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
777 		       unsigned long old_epc, unsigned long old_ra)
778 {
779 	union mips_instruction inst = { .word = opcode };
780 	void __user *fault_addr;
781 	unsigned long fcr31;
782 	int sig;
783 
784 	/* If it's obviously not an FP instruction, skip it */
785 	switch (inst.i_format.opcode) {
786 	case cop1_op:
787 	case cop1x_op:
788 	case lwc1_op:
789 	case ldc1_op:
790 	case swc1_op:
791 	case sdc1_op:
792 		break;
793 
794 	default:
795 		return -1;
796 	}
797 
798 	/*
799 	 * do_ri skipped over the instruction via compute_return_epc, undo
800 	 * that for the FPU emulator.
801 	 */
802 	regs->cp0_epc = old_epc;
803 	regs->regs[31] = old_ra;
804 
805 	/* Save the FP context to struct thread_struct */
806 	lose_fpu(1);
807 
808 	/* Run the emulator */
809 	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
810 				       &fault_addr);
811 
812 	/*
813 	 * We can't allow the emulated instruction to leave any
814 	 * enabled Cause bits set in $fcr31.
815 	 */
816 	fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
817 	current->thread.fpu.fcr31 &= ~fcr31;
818 
819 	/* Restore the hardware register state */
820 	own_fpu(1);
821 
822 	/* Send a signal if required.  */
823 	process_fpemu_return(sig, fault_addr, fcr31);
824 
825 	return 0;
826 }
827 
828 /*
829  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
830  */
831 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
832 {
833 	enum ctx_state prev_state;
834 	void __user *fault_addr;
835 	int sig;
836 
837 	prev_state = exception_enter();
838 	if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
839 		       SIGFPE) == NOTIFY_STOP)
840 		goto out;
841 
842 	/* Clear FCSR.Cause before enabling interrupts */
843 	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
844 	local_irq_enable();
845 
846 	die_if_kernel("FP exception in kernel code", regs);
847 
848 	if (fcr31 & FPU_CSR_UNI_X) {
849 		/*
850 		 * Unimplemented operation exception.  If we've got the full
851 		 * software emulator on-board, let's use it...
852 		 *
853 		 * Force FPU to dump state into task/thread context.  We're
854 		 * moving a lot of data here for what is probably a single
855 		 * instruction, but the alternative is to pre-decode the FP
856 		 * register operands before invoking the emulator, which seems
857 		 * a bit extreme for what should be an infrequent event.
858 		 */
859 		/* Ensure 'resume' not overwrite saved fp context again. */
860 		lose_fpu(1);
861 
862 		/* Run the emulator */
863 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
864 					       &fault_addr);
865 
866 		/*
867 		 * We can't allow the emulated instruction to leave any
868 		 * enabled Cause bits set in $fcr31.
869 		 */
870 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
871 		current->thread.fpu.fcr31 &= ~fcr31;
872 
873 		/* Restore the hardware register state */
874 		own_fpu(1);	/* Using the FPU again.	 */
875 	} else {
876 		sig = SIGFPE;
877 		fault_addr = (void __user *) regs->cp0_epc;
878 	}
879 
880 	/* Send a signal if required.  */
881 	process_fpemu_return(sig, fault_addr, fcr31);
882 
883 out:
884 	exception_exit(prev_state);
885 }
886 
887 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
888 	const char *str)
889 {
890 	siginfo_t info = { 0 };
891 	char b[40];
892 
893 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
894 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
895 			 SIGTRAP) == NOTIFY_STOP)
896 		return;
897 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
898 
899 	if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
900 		       SIGTRAP) == NOTIFY_STOP)
901 		return;
902 
903 	/*
904 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
905 	 * insns, even for trap and break codes that indicate arithmetic
906 	 * failures.  Weird ...
907 	 * But should we continue the brokenness???  --macro
908 	 */
909 	switch (code) {
910 	case BRK_OVERFLOW:
911 	case BRK_DIVZERO:
912 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
913 		die_if_kernel(b, regs);
914 		if (code == BRK_DIVZERO)
915 			info.si_code = FPE_INTDIV;
916 		else
917 			info.si_code = FPE_INTOVF;
918 		info.si_signo = SIGFPE;
919 		info.si_addr = (void __user *) regs->cp0_epc;
920 		force_sig_info(SIGFPE, &info, current);
921 		break;
922 	case BRK_BUG:
923 		die_if_kernel("Kernel bug detected", regs);
924 		force_sig(SIGTRAP, current);
925 		break;
926 	case BRK_MEMU:
927 		/*
928 		 * This breakpoint code is used by the FPU emulator to retake
929 		 * control of the CPU after executing the instruction from the
930 		 * delay slot of an emulated branch.
931 		 *
932 		 * Terminate if exception was recognized as a delay slot return
933 		 * otherwise handle as normal.
934 		 */
935 		if (do_dsemulret(regs))
936 			return;
937 
938 		die_if_kernel("Math emu break/trap", regs);
939 		force_sig(SIGTRAP, current);
940 		break;
941 	default:
942 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
943 		die_if_kernel(b, regs);
944 		if (si_code) {
945 			info.si_signo = SIGTRAP;
946 			info.si_code = si_code;
947 			force_sig_info(SIGTRAP, &info, current);
948 		} else {
949 			force_sig(SIGTRAP, current);
950 		}
951 	}
952 }
953 
954 asmlinkage void do_bp(struct pt_regs *regs)
955 {
956 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
957 	unsigned int opcode, bcode;
958 	enum ctx_state prev_state;
959 	mm_segment_t seg;
960 
961 	seg = get_fs();
962 	if (!user_mode(regs))
963 		set_fs(KERNEL_DS);
964 
965 	prev_state = exception_enter();
966 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
967 	if (get_isa16_mode(regs->cp0_epc)) {
968 		u16 instr[2];
969 
970 		if (__get_user(instr[0], (u16 __user *)epc))
971 			goto out_sigsegv;
972 
973 		if (!cpu_has_mmips) {
974 			/* MIPS16e mode */
975 			bcode = (instr[0] >> 5) & 0x3f;
976 		} else if (mm_insn_16bit(instr[0])) {
977 			/* 16-bit microMIPS BREAK */
978 			bcode = instr[0] & 0xf;
979 		} else {
980 			/* 32-bit microMIPS BREAK */
981 			if (__get_user(instr[1], (u16 __user *)(epc + 2)))
982 				goto out_sigsegv;
983 			opcode = (instr[0] << 16) | instr[1];
984 			bcode = (opcode >> 6) & ((1 << 20) - 1);
985 		}
986 	} else {
987 		if (__get_user(opcode, (unsigned int __user *)epc))
988 			goto out_sigsegv;
989 		bcode = (opcode >> 6) & ((1 << 20) - 1);
990 	}
991 
992 	/*
993 	 * There is the ancient bug in the MIPS assemblers that the break
994 	 * code starts left to bit 16 instead to bit 6 in the opcode.
995 	 * Gas is bug-compatible, but not always, grrr...
996 	 * We handle both cases with a simple heuristics.  --macro
997 	 */
998 	if (bcode >= (1 << 10))
999 		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1000 
1001 	/*
1002 	 * notify the kprobe handlers, if instruction is likely to
1003 	 * pertain to them.
1004 	 */
1005 	switch (bcode) {
1006 	case BRK_UPROBE:
1007 		if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1008 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1009 			goto out;
1010 		else
1011 			break;
1012 	case BRK_UPROBE_XOL:
1013 		if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1014 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1015 			goto out;
1016 		else
1017 			break;
1018 	case BRK_KPROBE_BP:
1019 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
1020 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1021 			goto out;
1022 		else
1023 			break;
1024 	case BRK_KPROBE_SSTEPBP:
1025 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1026 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1027 			goto out;
1028 		else
1029 			break;
1030 	default:
1031 		break;
1032 	}
1033 
1034 	do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1035 
1036 out:
1037 	set_fs(seg);
1038 	exception_exit(prev_state);
1039 	return;
1040 
1041 out_sigsegv:
1042 	force_sig(SIGSEGV, current);
1043 	goto out;
1044 }
1045 
1046 asmlinkage void do_tr(struct pt_regs *regs)
1047 {
1048 	u32 opcode, tcode = 0;
1049 	enum ctx_state prev_state;
1050 	u16 instr[2];
1051 	mm_segment_t seg;
1052 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1053 
1054 	seg = get_fs();
1055 	if (!user_mode(regs))
1056 		set_fs(get_ds());
1057 
1058 	prev_state = exception_enter();
1059 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1060 	if (get_isa16_mode(regs->cp0_epc)) {
1061 		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1062 		    __get_user(instr[1], (u16 __user *)(epc + 2)))
1063 			goto out_sigsegv;
1064 		opcode = (instr[0] << 16) | instr[1];
1065 		/* Immediate versions don't provide a code.  */
1066 		if (!(opcode & OPCODE))
1067 			tcode = (opcode >> 12) & ((1 << 4) - 1);
1068 	} else {
1069 		if (__get_user(opcode, (u32 __user *)epc))
1070 			goto out_sigsegv;
1071 		/* Immediate versions don't provide a code.  */
1072 		if (!(opcode & OPCODE))
1073 			tcode = (opcode >> 6) & ((1 << 10) - 1);
1074 	}
1075 
1076 	do_trap_or_bp(regs, tcode, 0, "Trap");
1077 
1078 out:
1079 	set_fs(seg);
1080 	exception_exit(prev_state);
1081 	return;
1082 
1083 out_sigsegv:
1084 	force_sig(SIGSEGV, current);
1085 	goto out;
1086 }
1087 
1088 asmlinkage void do_ri(struct pt_regs *regs)
1089 {
1090 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1091 	unsigned long old_epc = regs->cp0_epc;
1092 	unsigned long old31 = regs->regs[31];
1093 	enum ctx_state prev_state;
1094 	unsigned int opcode = 0;
1095 	int status = -1;
1096 
1097 	/*
1098 	 * Avoid any kernel code. Just emulate the R2 instruction
1099 	 * as quickly as possible.
1100 	 */
1101 	if (mipsr2_emulation && cpu_has_mips_r6 &&
1102 	    likely(user_mode(regs)) &&
1103 	    likely(get_user(opcode, epc) >= 0)) {
1104 		unsigned long fcr31 = 0;
1105 
1106 		status = mipsr2_decoder(regs, opcode, &fcr31);
1107 		switch (status) {
1108 		case 0:
1109 		case SIGEMT:
1110 			task_thread_info(current)->r2_emul_return = 1;
1111 			return;
1112 		case SIGILL:
1113 			goto no_r2_instr;
1114 		default:
1115 			process_fpemu_return(status,
1116 					     &current->thread.cp0_baduaddr,
1117 					     fcr31);
1118 			task_thread_info(current)->r2_emul_return = 1;
1119 			return;
1120 		}
1121 	}
1122 
1123 no_r2_instr:
1124 
1125 	prev_state = exception_enter();
1126 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1127 
1128 	if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1129 		       SIGILL) == NOTIFY_STOP)
1130 		goto out;
1131 
1132 	die_if_kernel("Reserved instruction in kernel code", regs);
1133 
1134 	if (unlikely(compute_return_epc(regs) < 0))
1135 		goto out;
1136 
1137 	if (!get_isa16_mode(regs->cp0_epc)) {
1138 		if (unlikely(get_user(opcode, epc) < 0))
1139 			status = SIGSEGV;
1140 
1141 		if (!cpu_has_llsc && status < 0)
1142 			status = simulate_llsc(regs, opcode);
1143 
1144 		if (status < 0)
1145 			status = simulate_rdhwr_normal(regs, opcode);
1146 
1147 		if (status < 0)
1148 			status = simulate_sync(regs, opcode);
1149 
1150 		if (status < 0)
1151 			status = simulate_fp(regs, opcode, old_epc, old31);
1152 	} else if (cpu_has_mmips) {
1153 		unsigned short mmop[2] = { 0 };
1154 
1155 		if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1156 			status = SIGSEGV;
1157 		if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1158 			status = SIGSEGV;
1159 		opcode = mmop[0];
1160 		opcode = (opcode << 16) | mmop[1];
1161 
1162 		if (status < 0)
1163 			status = simulate_rdhwr_mm(regs, opcode);
1164 	}
1165 
1166 	if (status < 0)
1167 		status = SIGILL;
1168 
1169 	if (unlikely(status > 0)) {
1170 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1171 		regs->regs[31] = old31;
1172 		force_sig(status, current);
1173 	}
1174 
1175 out:
1176 	exception_exit(prev_state);
1177 }
1178 
1179 /*
1180  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1181  * emulated more than some threshold number of instructions, force migration to
1182  * a "CPU" that has FP support.
1183  */
1184 static void mt_ase_fp_affinity(void)
1185 {
1186 #ifdef CONFIG_MIPS_MT_FPAFF
1187 	if (mt_fpemul_threshold > 0 &&
1188 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1189 		/*
1190 		 * If there's no FPU present, or if the application has already
1191 		 * restricted the allowed set to exclude any CPUs with FPUs,
1192 		 * we'll skip the procedure.
1193 		 */
1194 		if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1195 			cpumask_t tmask;
1196 
1197 			current->thread.user_cpus_allowed
1198 				= current->cpus_allowed;
1199 			cpumask_and(&tmask, &current->cpus_allowed,
1200 				    &mt_fpu_cpumask);
1201 			set_cpus_allowed_ptr(current, &tmask);
1202 			set_thread_flag(TIF_FPUBOUND);
1203 		}
1204 	}
1205 #endif /* CONFIG_MIPS_MT_FPAFF */
1206 }
1207 
1208 /*
1209  * No lock; only written during early bootup by CPU 0.
1210  */
1211 static RAW_NOTIFIER_HEAD(cu2_chain);
1212 
1213 int __ref register_cu2_notifier(struct notifier_block *nb)
1214 {
1215 	return raw_notifier_chain_register(&cu2_chain, nb);
1216 }
1217 
1218 int cu2_notifier_call_chain(unsigned long val, void *v)
1219 {
1220 	return raw_notifier_call_chain(&cu2_chain, val, v);
1221 }
1222 
1223 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1224 	void *data)
1225 {
1226 	struct pt_regs *regs = data;
1227 
1228 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1229 			      "instruction", regs);
1230 	force_sig(SIGILL, current);
1231 
1232 	return NOTIFY_OK;
1233 }
1234 
1235 static int wait_on_fp_mode_switch(atomic_t *p)
1236 {
1237 	/*
1238 	 * The FP mode for this task is currently being switched. That may
1239 	 * involve modifications to the format of this tasks FP context which
1240 	 * make it unsafe to proceed with execution for the moment. Instead,
1241 	 * schedule some other task.
1242 	 */
1243 	schedule();
1244 	return 0;
1245 }
1246 
1247 static int enable_restore_fp_context(int msa)
1248 {
1249 	int err, was_fpu_owner, prior_msa;
1250 
1251 	/*
1252 	 * If an FP mode switch is currently underway, wait for it to
1253 	 * complete before proceeding.
1254 	 */
1255 	wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1256 			 wait_on_fp_mode_switch, TASK_KILLABLE);
1257 
1258 	if (!used_math()) {
1259 		/* First time FP context user. */
1260 		preempt_disable();
1261 		err = init_fpu();
1262 		if (msa && !err) {
1263 			enable_msa();
1264 			init_msa_upper();
1265 			set_thread_flag(TIF_USEDMSA);
1266 			set_thread_flag(TIF_MSA_CTX_LIVE);
1267 		}
1268 		preempt_enable();
1269 		if (!err)
1270 			set_used_math();
1271 		return err;
1272 	}
1273 
1274 	/*
1275 	 * This task has formerly used the FP context.
1276 	 *
1277 	 * If this thread has no live MSA vector context then we can simply
1278 	 * restore the scalar FP context. If it has live MSA vector context
1279 	 * (that is, it has or may have used MSA since last performing a
1280 	 * function call) then we'll need to restore the vector context. This
1281 	 * applies even if we're currently only executing a scalar FP
1282 	 * instruction. This is because if we were to later execute an MSA
1283 	 * instruction then we'd either have to:
1284 	 *
1285 	 *  - Restore the vector context & clobber any registers modified by
1286 	 *    scalar FP instructions between now & then.
1287 	 *
1288 	 * or
1289 	 *
1290 	 *  - Not restore the vector context & lose the most significant bits
1291 	 *    of all vector registers.
1292 	 *
1293 	 * Neither of those options is acceptable. We cannot restore the least
1294 	 * significant bits of the registers now & only restore the most
1295 	 * significant bits later because the most significant bits of any
1296 	 * vector registers whose aliased FP register is modified now will have
1297 	 * been zeroed. We'd have no way to know that when restoring the vector
1298 	 * context & thus may load an outdated value for the most significant
1299 	 * bits of a vector register.
1300 	 */
1301 	if (!msa && !thread_msa_context_live())
1302 		return own_fpu(1);
1303 
1304 	/*
1305 	 * This task is using or has previously used MSA. Thus we require
1306 	 * that Status.FR == 1.
1307 	 */
1308 	preempt_disable();
1309 	was_fpu_owner = is_fpu_owner();
1310 	err = own_fpu_inatomic(0);
1311 	if (err)
1312 		goto out;
1313 
1314 	enable_msa();
1315 	write_msa_csr(current->thread.fpu.msacsr);
1316 	set_thread_flag(TIF_USEDMSA);
1317 
1318 	/*
1319 	 * If this is the first time that the task is using MSA and it has
1320 	 * previously used scalar FP in this time slice then we already nave
1321 	 * FP context which we shouldn't clobber. We do however need to clear
1322 	 * the upper 64b of each vector register so that this task has no
1323 	 * opportunity to see data left behind by another.
1324 	 */
1325 	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1326 	if (!prior_msa && was_fpu_owner) {
1327 		init_msa_upper();
1328 
1329 		goto out;
1330 	}
1331 
1332 	if (!prior_msa) {
1333 		/*
1334 		 * Restore the least significant 64b of each vector register
1335 		 * from the existing scalar FP context.
1336 		 */
1337 		_restore_fp(current);
1338 
1339 		/*
1340 		 * The task has not formerly used MSA, so clear the upper 64b
1341 		 * of each vector register such that it cannot see data left
1342 		 * behind by another task.
1343 		 */
1344 		init_msa_upper();
1345 	} else {
1346 		/* We need to restore the vector context. */
1347 		restore_msa(current);
1348 
1349 		/* Restore the scalar FP control & status register */
1350 		if (!was_fpu_owner)
1351 			write_32bit_cp1_register(CP1_STATUS,
1352 						 current->thread.fpu.fcr31);
1353 	}
1354 
1355 out:
1356 	preempt_enable();
1357 
1358 	return 0;
1359 }
1360 
1361 asmlinkage void do_cpu(struct pt_regs *regs)
1362 {
1363 	enum ctx_state prev_state;
1364 	unsigned int __user *epc;
1365 	unsigned long old_epc, old31;
1366 	void __user *fault_addr;
1367 	unsigned int opcode;
1368 	unsigned long fcr31;
1369 	unsigned int cpid;
1370 	int status, err;
1371 	int sig;
1372 
1373 	prev_state = exception_enter();
1374 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1375 
1376 	if (cpid != 2)
1377 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1378 
1379 	switch (cpid) {
1380 	case 0:
1381 		epc = (unsigned int __user *)exception_epc(regs);
1382 		old_epc = regs->cp0_epc;
1383 		old31 = regs->regs[31];
1384 		opcode = 0;
1385 		status = -1;
1386 
1387 		if (unlikely(compute_return_epc(regs) < 0))
1388 			break;
1389 
1390 		if (!get_isa16_mode(regs->cp0_epc)) {
1391 			if (unlikely(get_user(opcode, epc) < 0))
1392 				status = SIGSEGV;
1393 
1394 			if (!cpu_has_llsc && status < 0)
1395 				status = simulate_llsc(regs, opcode);
1396 		}
1397 
1398 		if (status < 0)
1399 			status = SIGILL;
1400 
1401 		if (unlikely(status > 0)) {
1402 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1403 			regs->regs[31] = old31;
1404 			force_sig(status, current);
1405 		}
1406 
1407 		break;
1408 
1409 	case 3:
1410 		/*
1411 		 * The COP3 opcode space and consequently the CP0.Status.CU3
1412 		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1413 		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1414 		 * up the space has been reused for COP1X instructions, that
1415 		 * are enabled by the CP0.Status.CU1 bit and consequently
1416 		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1417 		 * exceptions.  Some FPU-less processors that implement one
1418 		 * of these ISAs however use this code erroneously for COP1X
1419 		 * instructions.  Therefore we redirect this trap to the FP
1420 		 * emulator too.
1421 		 */
1422 		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1423 			force_sig(SIGILL, current);
1424 			break;
1425 		}
1426 		/* Fall through.  */
1427 
1428 	case 1:
1429 		err = enable_restore_fp_context(0);
1430 
1431 		if (raw_cpu_has_fpu && !err)
1432 			break;
1433 
1434 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1435 					       &fault_addr);
1436 
1437 		/*
1438 		 * We can't allow the emulated instruction to leave
1439 		 * any enabled Cause bits set in $fcr31.
1440 		 */
1441 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1442 		current->thread.fpu.fcr31 &= ~fcr31;
1443 
1444 		/* Send a signal if required.  */
1445 		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1446 			mt_ase_fp_affinity();
1447 
1448 		break;
1449 
1450 	case 2:
1451 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1452 		break;
1453 	}
1454 
1455 	exception_exit(prev_state);
1456 }
1457 
1458 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1459 {
1460 	enum ctx_state prev_state;
1461 
1462 	prev_state = exception_enter();
1463 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1464 	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1465 		       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1466 		goto out;
1467 
1468 	/* Clear MSACSR.Cause before enabling interrupts */
1469 	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1470 	local_irq_enable();
1471 
1472 	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1473 	force_sig(SIGFPE, current);
1474 out:
1475 	exception_exit(prev_state);
1476 }
1477 
1478 asmlinkage void do_msa(struct pt_regs *regs)
1479 {
1480 	enum ctx_state prev_state;
1481 	int err;
1482 
1483 	prev_state = exception_enter();
1484 
1485 	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1486 		force_sig(SIGILL, current);
1487 		goto out;
1488 	}
1489 
1490 	die_if_kernel("do_msa invoked from kernel context!", regs);
1491 
1492 	err = enable_restore_fp_context(1);
1493 	if (err)
1494 		force_sig(SIGILL, current);
1495 out:
1496 	exception_exit(prev_state);
1497 }
1498 
1499 asmlinkage void do_mdmx(struct pt_regs *regs)
1500 {
1501 	enum ctx_state prev_state;
1502 
1503 	prev_state = exception_enter();
1504 	force_sig(SIGILL, current);
1505 	exception_exit(prev_state);
1506 }
1507 
1508 /*
1509  * Called with interrupts disabled.
1510  */
1511 asmlinkage void do_watch(struct pt_regs *regs)
1512 {
1513 	siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT };
1514 	enum ctx_state prev_state;
1515 
1516 	prev_state = exception_enter();
1517 	/*
1518 	 * Clear WP (bit 22) bit of cause register so we don't loop
1519 	 * forever.
1520 	 */
1521 	clear_c0_cause(CAUSEF_WP);
1522 
1523 	/*
1524 	 * If the current thread has the watch registers loaded, save
1525 	 * their values and send SIGTRAP.  Otherwise another thread
1526 	 * left the registers set, clear them and continue.
1527 	 */
1528 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1529 		mips_read_watch_registers();
1530 		local_irq_enable();
1531 		force_sig_info(SIGTRAP, &info, current);
1532 	} else {
1533 		mips_clear_watch_registers();
1534 		local_irq_enable();
1535 	}
1536 	exception_exit(prev_state);
1537 }
1538 
1539 asmlinkage void do_mcheck(struct pt_regs *regs)
1540 {
1541 	int multi_match = regs->cp0_status & ST0_TS;
1542 	enum ctx_state prev_state;
1543 	mm_segment_t old_fs = get_fs();
1544 
1545 	prev_state = exception_enter();
1546 	show_regs(regs);
1547 
1548 	if (multi_match) {
1549 		dump_tlb_regs();
1550 		pr_info("\n");
1551 		dump_tlb_all();
1552 	}
1553 
1554 	if (!user_mode(regs))
1555 		set_fs(KERNEL_DS);
1556 
1557 	show_code((unsigned int __user *) regs->cp0_epc);
1558 
1559 	set_fs(old_fs);
1560 
1561 	/*
1562 	 * Some chips may have other causes of machine check (e.g. SB1
1563 	 * graduation timer)
1564 	 */
1565 	panic("Caught Machine Check exception - %scaused by multiple "
1566 	      "matching entries in the TLB.",
1567 	      (multi_match) ? "" : "not ");
1568 }
1569 
1570 asmlinkage void do_mt(struct pt_regs *regs)
1571 {
1572 	int subcode;
1573 
1574 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1575 			>> VPECONTROL_EXCPT_SHIFT;
1576 	switch (subcode) {
1577 	case 0:
1578 		printk(KERN_DEBUG "Thread Underflow\n");
1579 		break;
1580 	case 1:
1581 		printk(KERN_DEBUG "Thread Overflow\n");
1582 		break;
1583 	case 2:
1584 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1585 		break;
1586 	case 3:
1587 		printk(KERN_DEBUG "Gating Storage Exception\n");
1588 		break;
1589 	case 4:
1590 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1591 		break;
1592 	case 5:
1593 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1594 		break;
1595 	default:
1596 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1597 			subcode);
1598 		break;
1599 	}
1600 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1601 
1602 	force_sig(SIGILL, current);
1603 }
1604 
1605 
1606 asmlinkage void do_dsp(struct pt_regs *regs)
1607 {
1608 	if (cpu_has_dsp)
1609 		panic("Unexpected DSP exception");
1610 
1611 	force_sig(SIGILL, current);
1612 }
1613 
1614 asmlinkage void do_reserved(struct pt_regs *regs)
1615 {
1616 	/*
1617 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1618 	 * caused by a new unknown cpu type or after another deadly
1619 	 * hard/software error.
1620 	 */
1621 	show_regs(regs);
1622 	panic("Caught reserved exception %ld - should not happen.",
1623 	      (regs->cp0_cause & 0x7f) >> 2);
1624 }
1625 
1626 static int __initdata l1parity = 1;
1627 static int __init nol1parity(char *s)
1628 {
1629 	l1parity = 0;
1630 	return 1;
1631 }
1632 __setup("nol1par", nol1parity);
1633 static int __initdata l2parity = 1;
1634 static int __init nol2parity(char *s)
1635 {
1636 	l2parity = 0;
1637 	return 1;
1638 }
1639 __setup("nol2par", nol2parity);
1640 
1641 /*
1642  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1643  * it different ways.
1644  */
1645 static inline void parity_protection_init(void)
1646 {
1647 	switch (current_cpu_type()) {
1648 	case CPU_24K:
1649 	case CPU_34K:
1650 	case CPU_74K:
1651 	case CPU_1004K:
1652 	case CPU_1074K:
1653 	case CPU_INTERAPTIV:
1654 	case CPU_PROAPTIV:
1655 	case CPU_P5600:
1656 	case CPU_QEMU_GENERIC:
1657 	case CPU_I6400:
1658 	case CPU_P6600:
1659 		{
1660 #define ERRCTL_PE	0x80000000
1661 #define ERRCTL_L2P	0x00800000
1662 			unsigned long errctl;
1663 			unsigned int l1parity_present, l2parity_present;
1664 
1665 			errctl = read_c0_ecc();
1666 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1667 
1668 			/* probe L1 parity support */
1669 			write_c0_ecc(errctl | ERRCTL_PE);
1670 			back_to_back_c0_hazard();
1671 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1672 
1673 			/* probe L2 parity support */
1674 			write_c0_ecc(errctl|ERRCTL_L2P);
1675 			back_to_back_c0_hazard();
1676 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1677 
1678 			if (l1parity_present && l2parity_present) {
1679 				if (l1parity)
1680 					errctl |= ERRCTL_PE;
1681 				if (l1parity ^ l2parity)
1682 					errctl |= ERRCTL_L2P;
1683 			} else if (l1parity_present) {
1684 				if (l1parity)
1685 					errctl |= ERRCTL_PE;
1686 			} else if (l2parity_present) {
1687 				if (l2parity)
1688 					errctl |= ERRCTL_L2P;
1689 			} else {
1690 				/* No parity available */
1691 			}
1692 
1693 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1694 
1695 			write_c0_ecc(errctl);
1696 			back_to_back_c0_hazard();
1697 			errctl = read_c0_ecc();
1698 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1699 
1700 			if (l1parity_present)
1701 				printk(KERN_INFO "Cache parity protection %sabled\n",
1702 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1703 
1704 			if (l2parity_present) {
1705 				if (l1parity_present && l1parity)
1706 					errctl ^= ERRCTL_L2P;
1707 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1708 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1709 			}
1710 		}
1711 		break;
1712 
1713 	case CPU_5KC:
1714 	case CPU_5KE:
1715 	case CPU_LOONGSON1:
1716 		write_c0_ecc(0x80000000);
1717 		back_to_back_c0_hazard();
1718 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1719 		printk(KERN_INFO "Cache parity protection %sabled\n",
1720 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1721 		break;
1722 	case CPU_20KC:
1723 	case CPU_25KF:
1724 		/* Clear the DE bit (bit 16) in the c0_status register. */
1725 		printk(KERN_INFO "Enable cache parity protection for "
1726 		       "MIPS 20KC/25KF CPUs.\n");
1727 		clear_c0_status(ST0_DE);
1728 		break;
1729 	default:
1730 		break;
1731 	}
1732 }
1733 
1734 asmlinkage void cache_parity_error(void)
1735 {
1736 	const int field = 2 * sizeof(unsigned long);
1737 	unsigned int reg_val;
1738 
1739 	/* For the moment, report the problem and hang. */
1740 	printk("Cache error exception:\n");
1741 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1742 	reg_val = read_c0_cacheerr();
1743 	printk("c0_cacheerr == %08x\n", reg_val);
1744 
1745 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1746 	       reg_val & (1<<30) ? "secondary" : "primary",
1747 	       reg_val & (1<<31) ? "data" : "insn");
1748 	if ((cpu_has_mips_r2_r6) &&
1749 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1750 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1751 			reg_val & (1<<29) ? "ED " : "",
1752 			reg_val & (1<<28) ? "ET " : "",
1753 			reg_val & (1<<27) ? "ES " : "",
1754 			reg_val & (1<<26) ? "EE " : "",
1755 			reg_val & (1<<25) ? "EB " : "",
1756 			reg_val & (1<<24) ? "EI " : "",
1757 			reg_val & (1<<23) ? "E1 " : "",
1758 			reg_val & (1<<22) ? "E0 " : "");
1759 	} else {
1760 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1761 			reg_val & (1<<29) ? "ED " : "",
1762 			reg_val & (1<<28) ? "ET " : "",
1763 			reg_val & (1<<26) ? "EE " : "",
1764 			reg_val & (1<<25) ? "EB " : "",
1765 			reg_val & (1<<24) ? "EI " : "",
1766 			reg_val & (1<<23) ? "E1 " : "",
1767 			reg_val & (1<<22) ? "E0 " : "");
1768 	}
1769 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1770 
1771 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1772 	if (reg_val & (1<<22))
1773 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1774 
1775 	if (reg_val & (1<<23))
1776 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1777 #endif
1778 
1779 	panic("Can't handle the cache error!");
1780 }
1781 
1782 asmlinkage void do_ftlb(void)
1783 {
1784 	const int field = 2 * sizeof(unsigned long);
1785 	unsigned int reg_val;
1786 
1787 	/* For the moment, report the problem and hang. */
1788 	if ((cpu_has_mips_r2_r6) &&
1789 	    (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1790 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1791 		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1792 		       read_c0_ecc());
1793 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1794 		reg_val = read_c0_cacheerr();
1795 		pr_err("c0_cacheerr == %08x\n", reg_val);
1796 
1797 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1798 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1799 		} else {
1800 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1801 			       reg_val & (1<<30) ? "secondary" : "primary",
1802 			       reg_val & (1<<31) ? "data" : "insn");
1803 		}
1804 	} else {
1805 		pr_err("FTLB error exception\n");
1806 	}
1807 	/* Just print the cacheerr bits for now */
1808 	cache_parity_error();
1809 }
1810 
1811 /*
1812  * SDBBP EJTAG debug exception handler.
1813  * We skip the instruction and return to the next instruction.
1814  */
1815 void ejtag_exception_handler(struct pt_regs *regs)
1816 {
1817 	const int field = 2 * sizeof(unsigned long);
1818 	unsigned long depc, old_epc, old_ra;
1819 	unsigned int debug;
1820 
1821 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1822 	depc = read_c0_depc();
1823 	debug = read_c0_debug();
1824 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1825 	if (debug & 0x80000000) {
1826 		/*
1827 		 * In branch delay slot.
1828 		 * We cheat a little bit here and use EPC to calculate the
1829 		 * debug return address (DEPC). EPC is restored after the
1830 		 * calculation.
1831 		 */
1832 		old_epc = regs->cp0_epc;
1833 		old_ra = regs->regs[31];
1834 		regs->cp0_epc = depc;
1835 		compute_return_epc(regs);
1836 		depc = regs->cp0_epc;
1837 		regs->cp0_epc = old_epc;
1838 		regs->regs[31] = old_ra;
1839 	} else
1840 		depc += 4;
1841 	write_c0_depc(depc);
1842 
1843 #if 0
1844 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1845 	write_c0_debug(debug | 0x100);
1846 #endif
1847 }
1848 
1849 /*
1850  * NMI exception handler.
1851  * No lock; only written during early bootup by CPU 0.
1852  */
1853 static RAW_NOTIFIER_HEAD(nmi_chain);
1854 
1855 int register_nmi_notifier(struct notifier_block *nb)
1856 {
1857 	return raw_notifier_chain_register(&nmi_chain, nb);
1858 }
1859 
1860 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1861 {
1862 	char str[100];
1863 
1864 	nmi_enter();
1865 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1866 	bust_spinlocks(1);
1867 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1868 		 smp_processor_id(), regs->cp0_epc);
1869 	regs->cp0_epc = read_c0_errorepc();
1870 	die(str, regs);
1871 	nmi_exit();
1872 }
1873 
1874 #define VECTORSPACING 0x100	/* for EI/VI mode */
1875 
1876 unsigned long ebase;
1877 EXPORT_SYMBOL_GPL(ebase);
1878 unsigned long exception_handlers[32];
1879 unsigned long vi_handlers[64];
1880 
1881 void __init *set_except_vector(int n, void *addr)
1882 {
1883 	unsigned long handler = (unsigned long) addr;
1884 	unsigned long old_handler;
1885 
1886 #ifdef CONFIG_CPU_MICROMIPS
1887 	/*
1888 	 * Only the TLB handlers are cache aligned with an even
1889 	 * address. All other handlers are on an odd address and
1890 	 * require no modification. Otherwise, MIPS32 mode will
1891 	 * be entered when handling any TLB exceptions. That
1892 	 * would be bad...since we must stay in microMIPS mode.
1893 	 */
1894 	if (!(handler & 0x1))
1895 		handler |= 1;
1896 #endif
1897 	old_handler = xchg(&exception_handlers[n], handler);
1898 
1899 	if (n == 0 && cpu_has_divec) {
1900 #ifdef CONFIG_CPU_MICROMIPS
1901 		unsigned long jump_mask = ~((1 << 27) - 1);
1902 #else
1903 		unsigned long jump_mask = ~((1 << 28) - 1);
1904 #endif
1905 		u32 *buf = (u32 *)(ebase + 0x200);
1906 		unsigned int k0 = 26;
1907 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1908 			uasm_i_j(&buf, handler & ~jump_mask);
1909 			uasm_i_nop(&buf);
1910 		} else {
1911 			UASM_i_LA(&buf, k0, handler);
1912 			uasm_i_jr(&buf, k0);
1913 			uasm_i_nop(&buf);
1914 		}
1915 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1916 	}
1917 	return (void *)old_handler;
1918 }
1919 
1920 static void do_default_vi(void)
1921 {
1922 	show_regs(get_irq_regs());
1923 	panic("Caught unexpected vectored interrupt.");
1924 }
1925 
1926 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1927 {
1928 	unsigned long handler;
1929 	unsigned long old_handler = vi_handlers[n];
1930 	int srssets = current_cpu_data.srsets;
1931 	u16 *h;
1932 	unsigned char *b;
1933 
1934 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1935 
1936 	if (addr == NULL) {
1937 		handler = (unsigned long) do_default_vi;
1938 		srs = 0;
1939 	} else
1940 		handler = (unsigned long) addr;
1941 	vi_handlers[n] = handler;
1942 
1943 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1944 
1945 	if (srs >= srssets)
1946 		panic("Shadow register set %d not supported", srs);
1947 
1948 	if (cpu_has_veic) {
1949 		if (board_bind_eic_interrupt)
1950 			board_bind_eic_interrupt(n, srs);
1951 	} else if (cpu_has_vint) {
1952 		/* SRSMap is only defined if shadow sets are implemented */
1953 		if (srssets > 1)
1954 			change_c0_srsmap(0xf << n*4, srs << n*4);
1955 	}
1956 
1957 	if (srs == 0) {
1958 		/*
1959 		 * If no shadow set is selected then use the default handler
1960 		 * that does normal register saving and standard interrupt exit
1961 		 */
1962 		extern char except_vec_vi, except_vec_vi_lui;
1963 		extern char except_vec_vi_ori, except_vec_vi_end;
1964 		extern char rollback_except_vec_vi;
1965 		char *vec_start = using_rollback_handler() ?
1966 			&rollback_except_vec_vi : &except_vec_vi;
1967 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1968 		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1969 		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1970 #else
1971 		const int lui_offset = &except_vec_vi_lui - vec_start;
1972 		const int ori_offset = &except_vec_vi_ori - vec_start;
1973 #endif
1974 		const int handler_len = &except_vec_vi_end - vec_start;
1975 
1976 		if (handler_len > VECTORSPACING) {
1977 			/*
1978 			 * Sigh... panicing won't help as the console
1979 			 * is probably not configured :(
1980 			 */
1981 			panic("VECTORSPACING too small");
1982 		}
1983 
1984 		set_handler(((unsigned long)b - ebase), vec_start,
1985 #ifdef CONFIG_CPU_MICROMIPS
1986 				(handler_len - 1));
1987 #else
1988 				handler_len);
1989 #endif
1990 		h = (u16 *)(b + lui_offset);
1991 		*h = (handler >> 16) & 0xffff;
1992 		h = (u16 *)(b + ori_offset);
1993 		*h = (handler & 0xffff);
1994 		local_flush_icache_range((unsigned long)b,
1995 					 (unsigned long)(b+handler_len));
1996 	}
1997 	else {
1998 		/*
1999 		 * In other cases jump directly to the interrupt handler. It
2000 		 * is the handler's responsibility to save registers if required
2001 		 * (eg hi/lo) and return from the exception using "eret".
2002 		 */
2003 		u32 insn;
2004 
2005 		h = (u16 *)b;
2006 		/* j handler */
2007 #ifdef CONFIG_CPU_MICROMIPS
2008 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2009 #else
2010 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2011 #endif
2012 		h[0] = (insn >> 16) & 0xffff;
2013 		h[1] = insn & 0xffff;
2014 		h[2] = 0;
2015 		h[3] = 0;
2016 		local_flush_icache_range((unsigned long)b,
2017 					 (unsigned long)(b+8));
2018 	}
2019 
2020 	return (void *)old_handler;
2021 }
2022 
2023 void *set_vi_handler(int n, vi_handler_t addr)
2024 {
2025 	return set_vi_srs_handler(n, addr, 0);
2026 }
2027 
2028 extern void tlb_init(void);
2029 
2030 /*
2031  * Timer interrupt
2032  */
2033 int cp0_compare_irq;
2034 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2035 int cp0_compare_irq_shift;
2036 
2037 /*
2038  * Performance counter IRQ or -1 if shared with timer
2039  */
2040 int cp0_perfcount_irq;
2041 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2042 
2043 /*
2044  * Fast debug channel IRQ or -1 if not present
2045  */
2046 int cp0_fdc_irq;
2047 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2048 
2049 static int noulri;
2050 
2051 static int __init ulri_disable(char *s)
2052 {
2053 	pr_info("Disabling ulri\n");
2054 	noulri = 1;
2055 
2056 	return 1;
2057 }
2058 __setup("noulri", ulri_disable);
2059 
2060 /* configure STATUS register */
2061 static void configure_status(void)
2062 {
2063 	/*
2064 	 * Disable coprocessors and select 32-bit or 64-bit addressing
2065 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2066 	 * flag that some firmware may have left set and the TS bit (for
2067 	 * IP27).  Set XX for ISA IV code to work.
2068 	 */
2069 	unsigned int status_set = ST0_CU0;
2070 #ifdef CONFIG_64BIT
2071 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2072 #endif
2073 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2074 		status_set |= ST0_XX;
2075 	if (cpu_has_dsp)
2076 		status_set |= ST0_MX;
2077 
2078 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2079 			 status_set);
2080 }
2081 
2082 unsigned int hwrena;
2083 EXPORT_SYMBOL_GPL(hwrena);
2084 
2085 /* configure HWRENA register */
2086 static void configure_hwrena(void)
2087 {
2088 	hwrena = cpu_hwrena_impl_bits;
2089 
2090 	if (cpu_has_mips_r2_r6)
2091 		hwrena |= MIPS_HWRENA_CPUNUM |
2092 			  MIPS_HWRENA_SYNCISTEP |
2093 			  MIPS_HWRENA_CC |
2094 			  MIPS_HWRENA_CCRES;
2095 
2096 	if (!noulri && cpu_has_userlocal)
2097 		hwrena |= MIPS_HWRENA_ULR;
2098 
2099 	if (hwrena)
2100 		write_c0_hwrena(hwrena);
2101 }
2102 
2103 static void configure_exception_vector(void)
2104 {
2105 	if (cpu_has_veic || cpu_has_vint) {
2106 		unsigned long sr = set_c0_status(ST0_BEV);
2107 		/* If available, use WG to set top bits of EBASE */
2108 		if (cpu_has_ebase_wg) {
2109 #ifdef CONFIG_64BIT
2110 			write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2111 #else
2112 			write_c0_ebase(ebase | MIPS_EBASE_WG);
2113 #endif
2114 		}
2115 		write_c0_ebase(ebase);
2116 		write_c0_status(sr);
2117 		/* Setting vector spacing enables EI/VI mode  */
2118 		change_c0_intctl(0x3e0, VECTORSPACING);
2119 	}
2120 	if (cpu_has_divec) {
2121 		if (cpu_has_mipsmt) {
2122 			unsigned int vpflags = dvpe();
2123 			set_c0_cause(CAUSEF_IV);
2124 			evpe(vpflags);
2125 		} else
2126 			set_c0_cause(CAUSEF_IV);
2127 	}
2128 }
2129 
2130 void per_cpu_trap_init(bool is_boot_cpu)
2131 {
2132 	unsigned int cpu = smp_processor_id();
2133 
2134 	configure_status();
2135 	configure_hwrena();
2136 
2137 	configure_exception_vector();
2138 
2139 	/*
2140 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2141 	 *
2142 	 *  o read IntCtl.IPTI to determine the timer interrupt
2143 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2144 	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2145 	 */
2146 	if (cpu_has_mips_r2_r6) {
2147 		/*
2148 		 * We shouldn't trust a secondary core has a sane EBASE register
2149 		 * so use the one calculated by the boot CPU.
2150 		 */
2151 		if (!is_boot_cpu) {
2152 			/* If available, use WG to set top bits of EBASE */
2153 			if (cpu_has_ebase_wg) {
2154 #ifdef CONFIG_64BIT
2155 				write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2156 #else
2157 				write_c0_ebase(ebase | MIPS_EBASE_WG);
2158 #endif
2159 			}
2160 			write_c0_ebase(ebase);
2161 		}
2162 
2163 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2164 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2165 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2166 		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2167 		if (!cp0_fdc_irq)
2168 			cp0_fdc_irq = -1;
2169 
2170 	} else {
2171 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2172 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2173 		cp0_perfcount_irq = -1;
2174 		cp0_fdc_irq = -1;
2175 	}
2176 
2177 	if (!cpu_data[cpu].asid_cache)
2178 		cpu_data[cpu].asid_cache = asid_first_version(cpu);
2179 
2180 	atomic_inc(&init_mm.mm_count);
2181 	current->active_mm = &init_mm;
2182 	BUG_ON(current->mm);
2183 	enter_lazy_tlb(&init_mm, current);
2184 
2185 	/* Boot CPU's cache setup in setup_arch(). */
2186 	if (!is_boot_cpu)
2187 		cpu_cache_init();
2188 	tlb_init();
2189 	TLBMISS_HANDLER_SETUP();
2190 }
2191 
2192 /* Install CPU exception handler */
2193 void set_handler(unsigned long offset, void *addr, unsigned long size)
2194 {
2195 #ifdef CONFIG_CPU_MICROMIPS
2196 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2197 #else
2198 	memcpy((void *)(ebase + offset), addr, size);
2199 #endif
2200 	local_flush_icache_range(ebase + offset, ebase + offset + size);
2201 }
2202 
2203 static char panic_null_cerr[] =
2204 	"Trying to set NULL cache error exception handler";
2205 
2206 /*
2207  * Install uncached CPU exception handler.
2208  * This is suitable only for the cache error exception which is the only
2209  * exception handler that is being run uncached.
2210  */
2211 void set_uncached_handler(unsigned long offset, void *addr,
2212 	unsigned long size)
2213 {
2214 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2215 
2216 	if (!addr)
2217 		panic(panic_null_cerr);
2218 
2219 	memcpy((void *)(uncached_ebase + offset), addr, size);
2220 }
2221 
2222 static int __initdata rdhwr_noopt;
2223 static int __init set_rdhwr_noopt(char *str)
2224 {
2225 	rdhwr_noopt = 1;
2226 	return 1;
2227 }
2228 
2229 __setup("rdhwr_noopt", set_rdhwr_noopt);
2230 
2231 void __init trap_init(void)
2232 {
2233 	extern char except_vec3_generic;
2234 	extern char except_vec4;
2235 	extern char except_vec3_r4000;
2236 	unsigned long i;
2237 
2238 	check_wait();
2239 
2240 	if (cpu_has_veic || cpu_has_vint) {
2241 		unsigned long size = 0x200 + VECTORSPACING*64;
2242 		phys_addr_t ebase_pa;
2243 
2244 		ebase = (unsigned long)
2245 			__alloc_bootmem(size, 1 << fls(size), 0);
2246 
2247 		/*
2248 		 * Try to ensure ebase resides in KSeg0 if possible.
2249 		 *
2250 		 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2251 		 * hitting a poorly defined exception base for Cache Errors.
2252 		 * The allocation is likely to be in the low 512MB of physical,
2253 		 * in which case we should be able to convert to KSeg0.
2254 		 *
2255 		 * EVA is special though as it allows segments to be rearranged
2256 		 * and to become uncached during cache error handling.
2257 		 */
2258 		ebase_pa = __pa(ebase);
2259 		if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2260 			ebase = CKSEG0ADDR(ebase_pa);
2261 	} else {
2262 		ebase = CAC_BASE;
2263 
2264 		if (cpu_has_mips_r2_r6) {
2265 			if (cpu_has_ebase_wg) {
2266 #ifdef CONFIG_64BIT
2267 				ebase = (read_c0_ebase_64() & ~0xfff);
2268 #else
2269 				ebase = (read_c0_ebase() & ~0xfff);
2270 #endif
2271 			} else {
2272 				ebase += (read_c0_ebase() & 0x3ffff000);
2273 			}
2274 		}
2275 	}
2276 
2277 	if (cpu_has_mmips) {
2278 		unsigned int config3 = read_c0_config3();
2279 
2280 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2281 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2282 		else
2283 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2284 	}
2285 
2286 	if (board_ebase_setup)
2287 		board_ebase_setup();
2288 	per_cpu_trap_init(true);
2289 
2290 	/*
2291 	 * Copy the generic exception handlers to their final destination.
2292 	 * This will be overridden later as suitable for a particular
2293 	 * configuration.
2294 	 */
2295 	set_handler(0x180, &except_vec3_generic, 0x80);
2296 
2297 	/*
2298 	 * Setup default vectors
2299 	 */
2300 	for (i = 0; i <= 31; i++)
2301 		set_except_vector(i, handle_reserved);
2302 
2303 	/*
2304 	 * Copy the EJTAG debug exception vector handler code to it's final
2305 	 * destination.
2306 	 */
2307 	if (cpu_has_ejtag && board_ejtag_handler_setup)
2308 		board_ejtag_handler_setup();
2309 
2310 	/*
2311 	 * Only some CPUs have the watch exceptions.
2312 	 */
2313 	if (cpu_has_watch)
2314 		set_except_vector(EXCCODE_WATCH, handle_watch);
2315 
2316 	/*
2317 	 * Initialise interrupt handlers
2318 	 */
2319 	if (cpu_has_veic || cpu_has_vint) {
2320 		int nvec = cpu_has_veic ? 64 : 8;
2321 		for (i = 0; i < nvec; i++)
2322 			set_vi_handler(i, NULL);
2323 	}
2324 	else if (cpu_has_divec)
2325 		set_handler(0x200, &except_vec4, 0x8);
2326 
2327 	/*
2328 	 * Some CPUs can enable/disable for cache parity detection, but does
2329 	 * it different ways.
2330 	 */
2331 	parity_protection_init();
2332 
2333 	/*
2334 	 * The Data Bus Errors / Instruction Bus Errors are signaled
2335 	 * by external hardware.  Therefore these two exceptions
2336 	 * may have board specific handlers.
2337 	 */
2338 	if (board_be_init)
2339 		board_be_init();
2340 
2341 	set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2342 					rollback_handle_int : handle_int);
2343 	set_except_vector(EXCCODE_MOD, handle_tlbm);
2344 	set_except_vector(EXCCODE_TLBL, handle_tlbl);
2345 	set_except_vector(EXCCODE_TLBS, handle_tlbs);
2346 
2347 	set_except_vector(EXCCODE_ADEL, handle_adel);
2348 	set_except_vector(EXCCODE_ADES, handle_ades);
2349 
2350 	set_except_vector(EXCCODE_IBE, handle_ibe);
2351 	set_except_vector(EXCCODE_DBE, handle_dbe);
2352 
2353 	set_except_vector(EXCCODE_SYS, handle_sys);
2354 	set_except_vector(EXCCODE_BP, handle_bp);
2355 	set_except_vector(EXCCODE_RI, rdhwr_noopt ? handle_ri :
2356 			  (cpu_has_vtag_icache ?
2357 			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2358 	set_except_vector(EXCCODE_CPU, handle_cpu);
2359 	set_except_vector(EXCCODE_OV, handle_ov);
2360 	set_except_vector(EXCCODE_TR, handle_tr);
2361 	set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2362 
2363 	if (current_cpu_type() == CPU_R6000 ||
2364 	    current_cpu_type() == CPU_R6000A) {
2365 		/*
2366 		 * The R6000 is the only R-series CPU that features a machine
2367 		 * check exception (similar to the R4000 cache error) and
2368 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
2369 		 * written yet.	 Well, anyway there is no R6000 machine on the
2370 		 * current list of targets for Linux/MIPS.
2371 		 * (Duh, crap, there is someone with a triple R6k machine)
2372 		 */
2373 		//set_except_vector(14, handle_mc);
2374 		//set_except_vector(15, handle_ndc);
2375 	}
2376 
2377 
2378 	if (board_nmi_handler_setup)
2379 		board_nmi_handler_setup();
2380 
2381 	if (cpu_has_fpu && !cpu_has_nofpuex)
2382 		set_except_vector(EXCCODE_FPE, handle_fpe);
2383 
2384 	set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2385 
2386 	if (cpu_has_rixiex) {
2387 		set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2388 		set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2389 	}
2390 
2391 	set_except_vector(EXCCODE_MSADIS, handle_msa);
2392 	set_except_vector(EXCCODE_MDMX, handle_mdmx);
2393 
2394 	if (cpu_has_mcheck)
2395 		set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2396 
2397 	if (cpu_has_mipsmt)
2398 		set_except_vector(EXCCODE_THREAD, handle_mt);
2399 
2400 	set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2401 
2402 	if (board_cache_error_setup)
2403 		board_cache_error_setup();
2404 
2405 	if (cpu_has_vce)
2406 		/* Special exception: R4[04]00 uses also the divec space. */
2407 		set_handler(0x180, &except_vec3_r4000, 0x100);
2408 	else if (cpu_has_4kex)
2409 		set_handler(0x180, &except_vec3_generic, 0x80);
2410 	else
2411 		set_handler(0x080, &except_vec3_generic, 0x80);
2412 
2413 	local_flush_icache_range(ebase, ebase + 0x400);
2414 
2415 	sort_extable(__start___dbe_table, __stop___dbe_table);
2416 
2417 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2418 }
2419 
2420 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2421 			    void *v)
2422 {
2423 	switch (cmd) {
2424 	case CPU_PM_ENTER_FAILED:
2425 	case CPU_PM_EXIT:
2426 		configure_status();
2427 		configure_hwrena();
2428 		configure_exception_vector();
2429 
2430 		/* Restore register with CPU number for TLB handlers */
2431 		TLBMISS_HANDLER_RESTORE();
2432 
2433 		break;
2434 	}
2435 
2436 	return NOTIFY_OK;
2437 }
2438 
2439 static struct notifier_block trap_pm_notifier_block = {
2440 	.notifier_call = trap_pm_notifier,
2441 };
2442 
2443 static int __init trap_pm_init(void)
2444 {
2445 	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2446 }
2447 arch_initcall(trap_pm_init);
2448