xref: /openbmc/linux/arch/mips/kernel/traps.c (revision 8684014d)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bug.h>
16 #include <linux/compiler.h>
17 #include <linux/context_tracking.h>
18 #include <linux/cpu_pm.h>
19 #include <linux/kexec.h>
20 #include <linux/init.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/mm.h>
24 #include <linux/sched.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/kallsyms.h>
28 #include <linux/bootmem.h>
29 #include <linux/interrupt.h>
30 #include <linux/ptrace.h>
31 #include <linux/kgdb.h>
32 #include <linux/kdebug.h>
33 #include <linux/kprobes.h>
34 #include <linux/notifier.h>
35 #include <linux/kdb.h>
36 #include <linux/irq.h>
37 #include <linux/perf_event.h>
38 
39 #include <asm/bootinfo.h>
40 #include <asm/branch.h>
41 #include <asm/break.h>
42 #include <asm/cop2.h>
43 #include <asm/cpu.h>
44 #include <asm/cpu-type.h>
45 #include <asm/dsp.h>
46 #include <asm/fpu.h>
47 #include <asm/fpu_emulator.h>
48 #include <asm/idle.h>
49 #include <asm/mipsregs.h>
50 #include <asm/mipsmtregs.h>
51 #include <asm/module.h>
52 #include <asm/msa.h>
53 #include <asm/pgtable.h>
54 #include <asm/ptrace.h>
55 #include <asm/sections.h>
56 #include <asm/tlbdebug.h>
57 #include <asm/traps.h>
58 #include <asm/uaccess.h>
59 #include <asm/watch.h>
60 #include <asm/mmu_context.h>
61 #include <asm/types.h>
62 #include <asm/stacktrace.h>
63 #include <asm/uasm.h>
64 
65 extern void check_wait(void);
66 extern asmlinkage void rollback_handle_int(void);
67 extern asmlinkage void handle_int(void);
68 extern u32 handle_tlbl[];
69 extern u32 handle_tlbs[];
70 extern u32 handle_tlbm[];
71 extern asmlinkage void handle_adel(void);
72 extern asmlinkage void handle_ades(void);
73 extern asmlinkage void handle_ibe(void);
74 extern asmlinkage void handle_dbe(void);
75 extern asmlinkage void handle_sys(void);
76 extern asmlinkage void handle_bp(void);
77 extern asmlinkage void handle_ri(void);
78 extern asmlinkage void handle_ri_rdhwr_vivt(void);
79 extern asmlinkage void handle_ri_rdhwr(void);
80 extern asmlinkage void handle_cpu(void);
81 extern asmlinkage void handle_ov(void);
82 extern asmlinkage void handle_tr(void);
83 extern asmlinkage void handle_msa_fpe(void);
84 extern asmlinkage void handle_fpe(void);
85 extern asmlinkage void handle_ftlb(void);
86 extern asmlinkage void handle_msa(void);
87 extern asmlinkage void handle_mdmx(void);
88 extern asmlinkage void handle_watch(void);
89 extern asmlinkage void handle_mt(void);
90 extern asmlinkage void handle_dsp(void);
91 extern asmlinkage void handle_mcheck(void);
92 extern asmlinkage void handle_reserved(void);
93 extern void tlb_do_page_fault_0(void);
94 
95 void (*board_be_init)(void);
96 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
97 void (*board_nmi_handler_setup)(void);
98 void (*board_ejtag_handler_setup)(void);
99 void (*board_bind_eic_interrupt)(int irq, int regset);
100 void (*board_ebase_setup)(void);
101 void(*board_cache_error_setup)(void);
102 
103 static void show_raw_backtrace(unsigned long reg29)
104 {
105 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
106 	unsigned long addr;
107 
108 	printk("Call Trace:");
109 #ifdef CONFIG_KALLSYMS
110 	printk("\n");
111 #endif
112 	while (!kstack_end(sp)) {
113 		unsigned long __user *p =
114 			(unsigned long __user *)(unsigned long)sp++;
115 		if (__get_user(addr, p)) {
116 			printk(" (Bad stack address)");
117 			break;
118 		}
119 		if (__kernel_text_address(addr))
120 			print_ip_sym(addr);
121 	}
122 	printk("\n");
123 }
124 
125 #ifdef CONFIG_KALLSYMS
126 int raw_show_trace;
127 static int __init set_raw_show_trace(char *str)
128 {
129 	raw_show_trace = 1;
130 	return 1;
131 }
132 __setup("raw_show_trace", set_raw_show_trace);
133 #endif
134 
135 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
136 {
137 	unsigned long sp = regs->regs[29];
138 	unsigned long ra = regs->regs[31];
139 	unsigned long pc = regs->cp0_epc;
140 
141 	if (!task)
142 		task = current;
143 
144 	if (raw_show_trace || !__kernel_text_address(pc)) {
145 		show_raw_backtrace(sp);
146 		return;
147 	}
148 	printk("Call Trace:\n");
149 	do {
150 		print_ip_sym(pc);
151 		pc = unwind_stack(task, &sp, pc, &ra);
152 	} while (pc);
153 	printk("\n");
154 }
155 
156 /*
157  * This routine abuses get_user()/put_user() to reference pointers
158  * with at least a bit of error checking ...
159  */
160 static void show_stacktrace(struct task_struct *task,
161 	const struct pt_regs *regs)
162 {
163 	const int field = 2 * sizeof(unsigned long);
164 	long stackdata;
165 	int i;
166 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
167 
168 	printk("Stack :");
169 	i = 0;
170 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
171 		if (i && ((i % (64 / field)) == 0))
172 			printk("\n	 ");
173 		if (i > 39) {
174 			printk(" ...");
175 			break;
176 		}
177 
178 		if (__get_user(stackdata, sp++)) {
179 			printk(" (Bad stack address)");
180 			break;
181 		}
182 
183 		printk(" %0*lx", field, stackdata);
184 		i++;
185 	}
186 	printk("\n");
187 	show_backtrace(task, regs);
188 }
189 
190 void show_stack(struct task_struct *task, unsigned long *sp)
191 {
192 	struct pt_regs regs;
193 	if (sp) {
194 		regs.regs[29] = (unsigned long)sp;
195 		regs.regs[31] = 0;
196 		regs.cp0_epc = 0;
197 	} else {
198 		if (task && task != current) {
199 			regs.regs[29] = task->thread.reg29;
200 			regs.regs[31] = 0;
201 			regs.cp0_epc = task->thread.reg31;
202 #ifdef CONFIG_KGDB_KDB
203 		} else if (atomic_read(&kgdb_active) != -1 &&
204 			   kdb_current_regs) {
205 			memcpy(&regs, kdb_current_regs, sizeof(regs));
206 #endif /* CONFIG_KGDB_KDB */
207 		} else {
208 			prepare_frametrace(&regs);
209 		}
210 	}
211 	show_stacktrace(task, &regs);
212 }
213 
214 static void show_code(unsigned int __user *pc)
215 {
216 	long i;
217 	unsigned short __user *pc16 = NULL;
218 
219 	printk("\nCode:");
220 
221 	if ((unsigned long)pc & 1)
222 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
223 	for(i = -3 ; i < 6 ; i++) {
224 		unsigned int insn;
225 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
226 			printk(" (Bad address in epc)\n");
227 			break;
228 		}
229 		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
230 	}
231 }
232 
233 static void __show_regs(const struct pt_regs *regs)
234 {
235 	const int field = 2 * sizeof(unsigned long);
236 	unsigned int cause = regs->cp0_cause;
237 	int i;
238 
239 	show_regs_print_info(KERN_DEFAULT);
240 
241 	/*
242 	 * Saved main processor registers
243 	 */
244 	for (i = 0; i < 32; ) {
245 		if ((i % 4) == 0)
246 			printk("$%2d   :", i);
247 		if (i == 0)
248 			printk(" %0*lx", field, 0UL);
249 		else if (i == 26 || i == 27)
250 			printk(" %*s", field, "");
251 		else
252 			printk(" %0*lx", field, regs->regs[i]);
253 
254 		i++;
255 		if ((i % 4) == 0)
256 			printk("\n");
257 	}
258 
259 #ifdef CONFIG_CPU_HAS_SMARTMIPS
260 	printk("Acx    : %0*lx\n", field, regs->acx);
261 #endif
262 	printk("Hi    : %0*lx\n", field, regs->hi);
263 	printk("Lo    : %0*lx\n", field, regs->lo);
264 
265 	/*
266 	 * Saved cp0 registers
267 	 */
268 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
269 	       (void *) regs->cp0_epc);
270 	printk("    %s\n", print_tainted());
271 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
272 	       (void *) regs->regs[31]);
273 
274 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
275 
276 	if (cpu_has_3kex) {
277 		if (regs->cp0_status & ST0_KUO)
278 			printk("KUo ");
279 		if (regs->cp0_status & ST0_IEO)
280 			printk("IEo ");
281 		if (regs->cp0_status & ST0_KUP)
282 			printk("KUp ");
283 		if (regs->cp0_status & ST0_IEP)
284 			printk("IEp ");
285 		if (regs->cp0_status & ST0_KUC)
286 			printk("KUc ");
287 		if (regs->cp0_status & ST0_IEC)
288 			printk("IEc ");
289 	} else if (cpu_has_4kex) {
290 		if (regs->cp0_status & ST0_KX)
291 			printk("KX ");
292 		if (regs->cp0_status & ST0_SX)
293 			printk("SX ");
294 		if (regs->cp0_status & ST0_UX)
295 			printk("UX ");
296 		switch (regs->cp0_status & ST0_KSU) {
297 		case KSU_USER:
298 			printk("USER ");
299 			break;
300 		case KSU_SUPERVISOR:
301 			printk("SUPERVISOR ");
302 			break;
303 		case KSU_KERNEL:
304 			printk("KERNEL ");
305 			break;
306 		default:
307 			printk("BAD_MODE ");
308 			break;
309 		}
310 		if (regs->cp0_status & ST0_ERL)
311 			printk("ERL ");
312 		if (regs->cp0_status & ST0_EXL)
313 			printk("EXL ");
314 		if (regs->cp0_status & ST0_IE)
315 			printk("IE ");
316 	}
317 	printk("\n");
318 
319 	printk("Cause : %08x\n", cause);
320 
321 	cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
322 	if (1 <= cause && cause <= 5)
323 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
324 
325 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
326 	       cpu_name_string());
327 }
328 
329 /*
330  * FIXME: really the generic show_regs should take a const pointer argument.
331  */
332 void show_regs(struct pt_regs *regs)
333 {
334 	__show_regs((struct pt_regs *)regs);
335 }
336 
337 void show_registers(struct pt_regs *regs)
338 {
339 	const int field = 2 * sizeof(unsigned long);
340 	mm_segment_t old_fs = get_fs();
341 
342 	__show_regs(regs);
343 	print_modules();
344 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
345 	       current->comm, current->pid, current_thread_info(), current,
346 	      field, current_thread_info()->tp_value);
347 	if (cpu_has_userlocal) {
348 		unsigned long tls;
349 
350 		tls = read_c0_userlocal();
351 		if (tls != current_thread_info()->tp_value)
352 			printk("*HwTLS: %0*lx\n", field, tls);
353 	}
354 
355 	if (!user_mode(regs))
356 		/* Necessary for getting the correct stack content */
357 		set_fs(KERNEL_DS);
358 	show_stacktrace(current, regs);
359 	show_code((unsigned int __user *) regs->cp0_epc);
360 	printk("\n");
361 	set_fs(old_fs);
362 }
363 
364 static int regs_to_trapnr(struct pt_regs *regs)
365 {
366 	return (regs->cp0_cause >> 2) & 0x1f;
367 }
368 
369 static DEFINE_RAW_SPINLOCK(die_lock);
370 
371 void __noreturn die(const char *str, struct pt_regs *regs)
372 {
373 	static int die_counter;
374 	int sig = SIGSEGV;
375 
376 	oops_enter();
377 
378 	if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs),
379 		       SIGSEGV) == NOTIFY_STOP)
380 		sig = 0;
381 
382 	console_verbose();
383 	raw_spin_lock_irq(&die_lock);
384 	bust_spinlocks(1);
385 
386 	printk("%s[#%d]:\n", str, ++die_counter);
387 	show_registers(regs);
388 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
389 	raw_spin_unlock_irq(&die_lock);
390 
391 	oops_exit();
392 
393 	if (in_interrupt())
394 		panic("Fatal exception in interrupt");
395 
396 	if (panic_on_oops) {
397 		printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
398 		ssleep(5);
399 		panic("Fatal exception");
400 	}
401 
402 	if (regs && kexec_should_crash(current))
403 		crash_kexec(regs);
404 
405 	do_exit(sig);
406 }
407 
408 extern struct exception_table_entry __start___dbe_table[];
409 extern struct exception_table_entry __stop___dbe_table[];
410 
411 __asm__(
412 "	.section	__dbe_table, \"a\"\n"
413 "	.previous			\n");
414 
415 /* Given an address, look for it in the exception tables. */
416 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
417 {
418 	const struct exception_table_entry *e;
419 
420 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
421 	if (!e)
422 		e = search_module_dbetables(addr);
423 	return e;
424 }
425 
426 asmlinkage void do_be(struct pt_regs *regs)
427 {
428 	const int field = 2 * sizeof(unsigned long);
429 	const struct exception_table_entry *fixup = NULL;
430 	int data = regs->cp0_cause & 4;
431 	int action = MIPS_BE_FATAL;
432 	enum ctx_state prev_state;
433 
434 	prev_state = exception_enter();
435 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
436 	if (data && !user_mode(regs))
437 		fixup = search_dbe_tables(exception_epc(regs));
438 
439 	if (fixup)
440 		action = MIPS_BE_FIXUP;
441 
442 	if (board_be_handler)
443 		action = board_be_handler(regs, fixup != NULL);
444 
445 	switch (action) {
446 	case MIPS_BE_DISCARD:
447 		goto out;
448 	case MIPS_BE_FIXUP:
449 		if (fixup) {
450 			regs->cp0_epc = fixup->nextinsn;
451 			goto out;
452 		}
453 		break;
454 	default:
455 		break;
456 	}
457 
458 	/*
459 	 * Assume it would be too dangerous to continue ...
460 	 */
461 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
462 	       data ? "Data" : "Instruction",
463 	       field, regs->cp0_epc, field, regs->regs[31]);
464 	if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs),
465 		       SIGBUS) == NOTIFY_STOP)
466 		goto out;
467 
468 	die_if_kernel("Oops", regs);
469 	force_sig(SIGBUS, current);
470 
471 out:
472 	exception_exit(prev_state);
473 }
474 
475 /*
476  * ll/sc, rdhwr, sync emulation
477  */
478 
479 #define OPCODE 0xfc000000
480 #define BASE   0x03e00000
481 #define RT     0x001f0000
482 #define OFFSET 0x0000ffff
483 #define LL     0xc0000000
484 #define SC     0xe0000000
485 #define SPEC0  0x00000000
486 #define SPEC3  0x7c000000
487 #define RD     0x0000f800
488 #define FUNC   0x0000003f
489 #define SYNC   0x0000000f
490 #define RDHWR  0x0000003b
491 
492 /*  microMIPS definitions   */
493 #define MM_POOL32A_FUNC 0xfc00ffff
494 #define MM_RDHWR        0x00006b3c
495 #define MM_RS           0x001f0000
496 #define MM_RT           0x03e00000
497 
498 /*
499  * The ll_bit is cleared by r*_switch.S
500  */
501 
502 unsigned int ll_bit;
503 struct task_struct *ll_task;
504 
505 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
506 {
507 	unsigned long value, __user *vaddr;
508 	long offset;
509 
510 	/*
511 	 * analyse the ll instruction that just caused a ri exception
512 	 * and put the referenced address to addr.
513 	 */
514 
515 	/* sign extend offset */
516 	offset = opcode & OFFSET;
517 	offset <<= 16;
518 	offset >>= 16;
519 
520 	vaddr = (unsigned long __user *)
521 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
522 
523 	if ((unsigned long)vaddr & 3)
524 		return SIGBUS;
525 	if (get_user(value, vaddr))
526 		return SIGSEGV;
527 
528 	preempt_disable();
529 
530 	if (ll_task == NULL || ll_task == current) {
531 		ll_bit = 1;
532 	} else {
533 		ll_bit = 0;
534 	}
535 	ll_task = current;
536 
537 	preempt_enable();
538 
539 	regs->regs[(opcode & RT) >> 16] = value;
540 
541 	return 0;
542 }
543 
544 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
545 {
546 	unsigned long __user *vaddr;
547 	unsigned long reg;
548 	long offset;
549 
550 	/*
551 	 * analyse the sc instruction that just caused a ri exception
552 	 * and put the referenced address to addr.
553 	 */
554 
555 	/* sign extend offset */
556 	offset = opcode & OFFSET;
557 	offset <<= 16;
558 	offset >>= 16;
559 
560 	vaddr = (unsigned long __user *)
561 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
562 	reg = (opcode & RT) >> 16;
563 
564 	if ((unsigned long)vaddr & 3)
565 		return SIGBUS;
566 
567 	preempt_disable();
568 
569 	if (ll_bit == 0 || ll_task != current) {
570 		regs->regs[reg] = 0;
571 		preempt_enable();
572 		return 0;
573 	}
574 
575 	preempt_enable();
576 
577 	if (put_user(regs->regs[reg], vaddr))
578 		return SIGSEGV;
579 
580 	regs->regs[reg] = 1;
581 
582 	return 0;
583 }
584 
585 /*
586  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
587  * opcodes are supposed to result in coprocessor unusable exceptions if
588  * executed on ll/sc-less processors.  That's the theory.  In practice a
589  * few processors such as NEC's VR4100 throw reserved instruction exceptions
590  * instead, so we're doing the emulation thing in both exception handlers.
591  */
592 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
593 {
594 	if ((opcode & OPCODE) == LL) {
595 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
596 				1, regs, 0);
597 		return simulate_ll(regs, opcode);
598 	}
599 	if ((opcode & OPCODE) == SC) {
600 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
601 				1, regs, 0);
602 		return simulate_sc(regs, opcode);
603 	}
604 
605 	return -1;			/* Must be something else ... */
606 }
607 
608 /*
609  * Simulate trapping 'rdhwr' instructions to provide user accessible
610  * registers not implemented in hardware.
611  */
612 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
613 {
614 	struct thread_info *ti = task_thread_info(current);
615 
616 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
617 			1, regs, 0);
618 	switch (rd) {
619 	case 0:		/* CPU number */
620 		regs->regs[rt] = smp_processor_id();
621 		return 0;
622 	case 1:		/* SYNCI length */
623 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
624 				     current_cpu_data.icache.linesz);
625 		return 0;
626 	case 2:		/* Read count register */
627 		regs->regs[rt] = read_c0_count();
628 		return 0;
629 	case 3:		/* Count register resolution */
630 		switch (current_cpu_type()) {
631 		case CPU_20KC:
632 		case CPU_25KF:
633 			regs->regs[rt] = 1;
634 			break;
635 		default:
636 			regs->regs[rt] = 2;
637 		}
638 		return 0;
639 	case 29:
640 		regs->regs[rt] = ti->tp_value;
641 		return 0;
642 	default:
643 		return -1;
644 	}
645 }
646 
647 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
648 {
649 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
650 		int rd = (opcode & RD) >> 11;
651 		int rt = (opcode & RT) >> 16;
652 
653 		simulate_rdhwr(regs, rd, rt);
654 		return 0;
655 	}
656 
657 	/* Not ours.  */
658 	return -1;
659 }
660 
661 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
662 {
663 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
664 		int rd = (opcode & MM_RS) >> 16;
665 		int rt = (opcode & MM_RT) >> 21;
666 		simulate_rdhwr(regs, rd, rt);
667 		return 0;
668 	}
669 
670 	/* Not ours.  */
671 	return -1;
672 }
673 
674 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
675 {
676 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
677 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
678 				1, regs, 0);
679 		return 0;
680 	}
681 
682 	return -1;			/* Must be something else ... */
683 }
684 
685 asmlinkage void do_ov(struct pt_regs *regs)
686 {
687 	enum ctx_state prev_state;
688 	siginfo_t info;
689 
690 	prev_state = exception_enter();
691 	die_if_kernel("Integer overflow", regs);
692 
693 	info.si_code = FPE_INTOVF;
694 	info.si_signo = SIGFPE;
695 	info.si_errno = 0;
696 	info.si_addr = (void __user *) regs->cp0_epc;
697 	force_sig_info(SIGFPE, &info, current);
698 	exception_exit(prev_state);
699 }
700 
701 int process_fpemu_return(int sig, void __user *fault_addr)
702 {
703 	if (sig == SIGSEGV || sig == SIGBUS) {
704 		struct siginfo si = {0};
705 		si.si_addr = fault_addr;
706 		si.si_signo = sig;
707 		if (sig == SIGSEGV) {
708 			down_read(&current->mm->mmap_sem);
709 			if (find_vma(current->mm, (unsigned long)fault_addr))
710 				si.si_code = SEGV_ACCERR;
711 			else
712 				si.si_code = SEGV_MAPERR;
713 			up_read(&current->mm->mmap_sem);
714 		} else {
715 			si.si_code = BUS_ADRERR;
716 		}
717 		force_sig_info(sig, &si, current);
718 		return 1;
719 	} else if (sig) {
720 		force_sig(sig, current);
721 		return 1;
722 	} else {
723 		return 0;
724 	}
725 }
726 
727 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
728 		       unsigned long old_epc, unsigned long old_ra)
729 {
730 	union mips_instruction inst = { .word = opcode };
731 	void __user *fault_addr = NULL;
732 	int sig;
733 
734 	/* If it's obviously not an FP instruction, skip it */
735 	switch (inst.i_format.opcode) {
736 	case cop1_op:
737 	case cop1x_op:
738 	case lwc1_op:
739 	case ldc1_op:
740 	case swc1_op:
741 	case sdc1_op:
742 		break;
743 
744 	default:
745 		return -1;
746 	}
747 
748 	/*
749 	 * do_ri skipped over the instruction via compute_return_epc, undo
750 	 * that for the FPU emulator.
751 	 */
752 	regs->cp0_epc = old_epc;
753 	regs->regs[31] = old_ra;
754 
755 	/* Save the FP context to struct thread_struct */
756 	lose_fpu(1);
757 
758 	/* Run the emulator */
759 	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
760 				       &fault_addr);
761 
762 	/* If something went wrong, signal */
763 	process_fpemu_return(sig, fault_addr);
764 
765 	/* Restore the hardware register state */
766 	own_fpu(1);
767 
768 	return 0;
769 }
770 
771 /*
772  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
773  */
774 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
775 {
776 	enum ctx_state prev_state;
777 	siginfo_t info = {0};
778 
779 	prev_state = exception_enter();
780 	if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs),
781 		       SIGFPE) == NOTIFY_STOP)
782 		goto out;
783 	die_if_kernel("FP exception in kernel code", regs);
784 
785 	if (fcr31 & FPU_CSR_UNI_X) {
786 		int sig;
787 		void __user *fault_addr = NULL;
788 
789 		/*
790 		 * Unimplemented operation exception.  If we've got the full
791 		 * software emulator on-board, let's use it...
792 		 *
793 		 * Force FPU to dump state into task/thread context.  We're
794 		 * moving a lot of data here for what is probably a single
795 		 * instruction, but the alternative is to pre-decode the FP
796 		 * register operands before invoking the emulator, which seems
797 		 * a bit extreme for what should be an infrequent event.
798 		 */
799 		/* Ensure 'resume' not overwrite saved fp context again. */
800 		lose_fpu(1);
801 
802 		/* Run the emulator */
803 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
804 					       &fault_addr);
805 
806 		/*
807 		 * We can't allow the emulated instruction to leave any of
808 		 * the cause bit set in $fcr31.
809 		 */
810 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
811 
812 		/* Restore the hardware register state */
813 		own_fpu(1);	/* Using the FPU again.	 */
814 
815 		/* If something went wrong, signal */
816 		process_fpemu_return(sig, fault_addr);
817 
818 		goto out;
819 	} else if (fcr31 & FPU_CSR_INV_X)
820 		info.si_code = FPE_FLTINV;
821 	else if (fcr31 & FPU_CSR_DIV_X)
822 		info.si_code = FPE_FLTDIV;
823 	else if (fcr31 & FPU_CSR_OVF_X)
824 		info.si_code = FPE_FLTOVF;
825 	else if (fcr31 & FPU_CSR_UDF_X)
826 		info.si_code = FPE_FLTUND;
827 	else if (fcr31 & FPU_CSR_INE_X)
828 		info.si_code = FPE_FLTRES;
829 	else
830 		info.si_code = __SI_FAULT;
831 	info.si_signo = SIGFPE;
832 	info.si_errno = 0;
833 	info.si_addr = (void __user *) regs->cp0_epc;
834 	force_sig_info(SIGFPE, &info, current);
835 
836 out:
837 	exception_exit(prev_state);
838 }
839 
840 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
841 	const char *str)
842 {
843 	siginfo_t info;
844 	char b[40];
845 
846 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
847 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
848 		return;
849 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
850 
851 	if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs),
852 		       SIGTRAP) == NOTIFY_STOP)
853 		return;
854 
855 	/*
856 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
857 	 * insns, even for trap and break codes that indicate arithmetic
858 	 * failures.  Weird ...
859 	 * But should we continue the brokenness???  --macro
860 	 */
861 	switch (code) {
862 	case BRK_OVERFLOW:
863 	case BRK_DIVZERO:
864 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
865 		die_if_kernel(b, regs);
866 		if (code == BRK_DIVZERO)
867 			info.si_code = FPE_INTDIV;
868 		else
869 			info.si_code = FPE_INTOVF;
870 		info.si_signo = SIGFPE;
871 		info.si_errno = 0;
872 		info.si_addr = (void __user *) regs->cp0_epc;
873 		force_sig_info(SIGFPE, &info, current);
874 		break;
875 	case BRK_BUG:
876 		die_if_kernel("Kernel bug detected", regs);
877 		force_sig(SIGTRAP, current);
878 		break;
879 	case BRK_MEMU:
880 		/*
881 		 * Address errors may be deliberately induced by the FPU
882 		 * emulator to retake control of the CPU after executing the
883 		 * instruction in the delay slot of an emulated branch.
884 		 *
885 		 * Terminate if exception was recognized as a delay slot return
886 		 * otherwise handle as normal.
887 		 */
888 		if (do_dsemulret(regs))
889 			return;
890 
891 		die_if_kernel("Math emu break/trap", regs);
892 		force_sig(SIGTRAP, current);
893 		break;
894 	default:
895 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
896 		die_if_kernel(b, regs);
897 		force_sig(SIGTRAP, current);
898 	}
899 }
900 
901 asmlinkage void do_bp(struct pt_regs *regs)
902 {
903 	unsigned int opcode, bcode;
904 	enum ctx_state prev_state;
905 	unsigned long epc;
906 	u16 instr[2];
907 	mm_segment_t seg;
908 
909 	seg = get_fs();
910 	if (!user_mode(regs))
911 		set_fs(KERNEL_DS);
912 
913 	prev_state = exception_enter();
914 	if (get_isa16_mode(regs->cp0_epc)) {
915 		/* Calculate EPC. */
916 		epc = exception_epc(regs);
917 		if (cpu_has_mmips) {
918 			if ((__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc)) ||
919 			    (__get_user(instr[1], (u16 __user *)msk_isa16_mode(epc + 2)))))
920 				goto out_sigsegv;
921 			opcode = (instr[0] << 16) | instr[1];
922 		} else {
923 			/* MIPS16e mode */
924 			if (__get_user(instr[0],
925 				       (u16 __user *)msk_isa16_mode(epc)))
926 				goto out_sigsegv;
927 			bcode = (instr[0] >> 6) & 0x3f;
928 			do_trap_or_bp(regs, bcode, "Break");
929 			goto out;
930 		}
931 	} else {
932 		if (__get_user(opcode,
933 			       (unsigned int __user *) exception_epc(regs)))
934 			goto out_sigsegv;
935 	}
936 
937 	/*
938 	 * There is the ancient bug in the MIPS assemblers that the break
939 	 * code starts left to bit 16 instead to bit 6 in the opcode.
940 	 * Gas is bug-compatible, but not always, grrr...
941 	 * We handle both cases with a simple heuristics.  --macro
942 	 */
943 	bcode = ((opcode >> 6) & ((1 << 20) - 1));
944 	if (bcode >= (1 << 10))
945 		bcode >>= 10;
946 
947 	/*
948 	 * notify the kprobe handlers, if instruction is likely to
949 	 * pertain to them.
950 	 */
951 	switch (bcode) {
952 	case BRK_KPROBE_BP:
953 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
954 			       regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
955 			goto out;
956 		else
957 			break;
958 	case BRK_KPROBE_SSTEPBP:
959 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
960 			       regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
961 			goto out;
962 		else
963 			break;
964 	default:
965 		break;
966 	}
967 
968 	do_trap_or_bp(regs, bcode, "Break");
969 
970 out:
971 	set_fs(seg);
972 	exception_exit(prev_state);
973 	return;
974 
975 out_sigsegv:
976 	force_sig(SIGSEGV, current);
977 	goto out;
978 }
979 
980 asmlinkage void do_tr(struct pt_regs *regs)
981 {
982 	u32 opcode, tcode = 0;
983 	enum ctx_state prev_state;
984 	u16 instr[2];
985 	mm_segment_t seg;
986 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
987 
988 	seg = get_fs();
989 	if (!user_mode(regs))
990 		set_fs(get_ds());
991 
992 	prev_state = exception_enter();
993 	if (get_isa16_mode(regs->cp0_epc)) {
994 		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
995 		    __get_user(instr[1], (u16 __user *)(epc + 2)))
996 			goto out_sigsegv;
997 		opcode = (instr[0] << 16) | instr[1];
998 		/* Immediate versions don't provide a code.  */
999 		if (!(opcode & OPCODE))
1000 			tcode = (opcode >> 12) & ((1 << 4) - 1);
1001 	} else {
1002 		if (__get_user(opcode, (u32 __user *)epc))
1003 			goto out_sigsegv;
1004 		/* Immediate versions don't provide a code.  */
1005 		if (!(opcode & OPCODE))
1006 			tcode = (opcode >> 6) & ((1 << 10) - 1);
1007 	}
1008 
1009 	do_trap_or_bp(regs, tcode, "Trap");
1010 
1011 out:
1012 	set_fs(seg);
1013 	exception_exit(prev_state);
1014 	return;
1015 
1016 out_sigsegv:
1017 	force_sig(SIGSEGV, current);
1018 	goto out;
1019 }
1020 
1021 asmlinkage void do_ri(struct pt_regs *regs)
1022 {
1023 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1024 	unsigned long old_epc = regs->cp0_epc;
1025 	unsigned long old31 = regs->regs[31];
1026 	enum ctx_state prev_state;
1027 	unsigned int opcode = 0;
1028 	int status = -1;
1029 
1030 	prev_state = exception_enter();
1031 	if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs),
1032 		       SIGILL) == NOTIFY_STOP)
1033 		goto out;
1034 
1035 	die_if_kernel("Reserved instruction in kernel code", regs);
1036 
1037 	if (unlikely(compute_return_epc(regs) < 0))
1038 		goto out;
1039 
1040 	if (get_isa16_mode(regs->cp0_epc)) {
1041 		unsigned short mmop[2] = { 0 };
1042 
1043 		if (unlikely(get_user(mmop[0], epc) < 0))
1044 			status = SIGSEGV;
1045 		if (unlikely(get_user(mmop[1], epc) < 0))
1046 			status = SIGSEGV;
1047 		opcode = (mmop[0] << 16) | mmop[1];
1048 
1049 		if (status < 0)
1050 			status = simulate_rdhwr_mm(regs, opcode);
1051 	} else {
1052 		if (unlikely(get_user(opcode, epc) < 0))
1053 			status = SIGSEGV;
1054 
1055 		if (!cpu_has_llsc && status < 0)
1056 			status = simulate_llsc(regs, opcode);
1057 
1058 		if (status < 0)
1059 			status = simulate_rdhwr_normal(regs, opcode);
1060 
1061 		if (status < 0)
1062 			status = simulate_sync(regs, opcode);
1063 
1064 		if (status < 0)
1065 			status = simulate_fp(regs, opcode, old_epc, old31);
1066 	}
1067 
1068 	if (status < 0)
1069 		status = SIGILL;
1070 
1071 	if (unlikely(status > 0)) {
1072 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1073 		regs->regs[31] = old31;
1074 		force_sig(status, current);
1075 	}
1076 
1077 out:
1078 	exception_exit(prev_state);
1079 }
1080 
1081 /*
1082  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1083  * emulated more than some threshold number of instructions, force migration to
1084  * a "CPU" that has FP support.
1085  */
1086 static void mt_ase_fp_affinity(void)
1087 {
1088 #ifdef CONFIG_MIPS_MT_FPAFF
1089 	if (mt_fpemul_threshold > 0 &&
1090 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1091 		/*
1092 		 * If there's no FPU present, or if the application has already
1093 		 * restricted the allowed set to exclude any CPUs with FPUs,
1094 		 * we'll skip the procedure.
1095 		 */
1096 		if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
1097 			cpumask_t tmask;
1098 
1099 			current->thread.user_cpus_allowed
1100 				= current->cpus_allowed;
1101 			cpus_and(tmask, current->cpus_allowed,
1102 				mt_fpu_cpumask);
1103 			set_cpus_allowed_ptr(current, &tmask);
1104 			set_thread_flag(TIF_FPUBOUND);
1105 		}
1106 	}
1107 #endif /* CONFIG_MIPS_MT_FPAFF */
1108 }
1109 
1110 /*
1111  * No lock; only written during early bootup by CPU 0.
1112  */
1113 static RAW_NOTIFIER_HEAD(cu2_chain);
1114 
1115 int __ref register_cu2_notifier(struct notifier_block *nb)
1116 {
1117 	return raw_notifier_chain_register(&cu2_chain, nb);
1118 }
1119 
1120 int cu2_notifier_call_chain(unsigned long val, void *v)
1121 {
1122 	return raw_notifier_call_chain(&cu2_chain, val, v);
1123 }
1124 
1125 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1126 	void *data)
1127 {
1128 	struct pt_regs *regs = data;
1129 
1130 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1131 			      "instruction", regs);
1132 	force_sig(SIGILL, current);
1133 
1134 	return NOTIFY_OK;
1135 }
1136 
1137 static int enable_restore_fp_context(int msa)
1138 {
1139 	int err, was_fpu_owner, prior_msa;
1140 
1141 	if (!used_math()) {
1142 		/* First time FP context user. */
1143 		preempt_disable();
1144 		err = init_fpu();
1145 		if (msa && !err) {
1146 			enable_msa();
1147 			_init_msa_upper();
1148 			set_thread_flag(TIF_USEDMSA);
1149 			set_thread_flag(TIF_MSA_CTX_LIVE);
1150 		}
1151 		preempt_enable();
1152 		if (!err)
1153 			set_used_math();
1154 		return err;
1155 	}
1156 
1157 	/*
1158 	 * This task has formerly used the FP context.
1159 	 *
1160 	 * If this thread has no live MSA vector context then we can simply
1161 	 * restore the scalar FP context. If it has live MSA vector context
1162 	 * (that is, it has or may have used MSA since last performing a
1163 	 * function call) then we'll need to restore the vector context. This
1164 	 * applies even if we're currently only executing a scalar FP
1165 	 * instruction. This is because if we were to later execute an MSA
1166 	 * instruction then we'd either have to:
1167 	 *
1168 	 *  - Restore the vector context & clobber any registers modified by
1169 	 *    scalar FP instructions between now & then.
1170 	 *
1171 	 * or
1172 	 *
1173 	 *  - Not restore the vector context & lose the most significant bits
1174 	 *    of all vector registers.
1175 	 *
1176 	 * Neither of those options is acceptable. We cannot restore the least
1177 	 * significant bits of the registers now & only restore the most
1178 	 * significant bits later because the most significant bits of any
1179 	 * vector registers whose aliased FP register is modified now will have
1180 	 * been zeroed. We'd have no way to know that when restoring the vector
1181 	 * context & thus may load an outdated value for the most significant
1182 	 * bits of a vector register.
1183 	 */
1184 	if (!msa && !thread_msa_context_live())
1185 		return own_fpu(1);
1186 
1187 	/*
1188 	 * This task is using or has previously used MSA. Thus we require
1189 	 * that Status.FR == 1.
1190 	 */
1191 	preempt_disable();
1192 	was_fpu_owner = is_fpu_owner();
1193 	err = own_fpu_inatomic(0);
1194 	if (err)
1195 		goto out;
1196 
1197 	enable_msa();
1198 	write_msa_csr(current->thread.fpu.msacsr);
1199 	set_thread_flag(TIF_USEDMSA);
1200 
1201 	/*
1202 	 * If this is the first time that the task is using MSA and it has
1203 	 * previously used scalar FP in this time slice then we already nave
1204 	 * FP context which we shouldn't clobber. We do however need to clear
1205 	 * the upper 64b of each vector register so that this task has no
1206 	 * opportunity to see data left behind by another.
1207 	 */
1208 	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1209 	if (!prior_msa && was_fpu_owner) {
1210 		_init_msa_upper();
1211 
1212 		goto out;
1213 	}
1214 
1215 	if (!prior_msa) {
1216 		/*
1217 		 * Restore the least significant 64b of each vector register
1218 		 * from the existing scalar FP context.
1219 		 */
1220 		_restore_fp(current);
1221 
1222 		/*
1223 		 * The task has not formerly used MSA, so clear the upper 64b
1224 		 * of each vector register such that it cannot see data left
1225 		 * behind by another task.
1226 		 */
1227 		_init_msa_upper();
1228 	} else {
1229 		/* We need to restore the vector context. */
1230 		restore_msa(current);
1231 
1232 		/* Restore the scalar FP control & status register */
1233 		if (!was_fpu_owner)
1234 			asm volatile("ctc1 %0, $31" : : "r"(current->thread.fpu.fcr31));
1235 	}
1236 
1237 out:
1238 	preempt_enable();
1239 
1240 	return 0;
1241 }
1242 
1243 asmlinkage void do_cpu(struct pt_regs *regs)
1244 {
1245 	enum ctx_state prev_state;
1246 	unsigned int __user *epc;
1247 	unsigned long old_epc, old31;
1248 	unsigned int opcode;
1249 	unsigned int cpid;
1250 	int status, err;
1251 	unsigned long __maybe_unused flags;
1252 
1253 	prev_state = exception_enter();
1254 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1255 
1256 	if (cpid != 2)
1257 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1258 
1259 	switch (cpid) {
1260 	case 0:
1261 		epc = (unsigned int __user *)exception_epc(regs);
1262 		old_epc = regs->cp0_epc;
1263 		old31 = regs->regs[31];
1264 		opcode = 0;
1265 		status = -1;
1266 
1267 		if (unlikely(compute_return_epc(regs) < 0))
1268 			goto out;
1269 
1270 		if (get_isa16_mode(regs->cp0_epc)) {
1271 			unsigned short mmop[2] = { 0 };
1272 
1273 			if (unlikely(get_user(mmop[0], epc) < 0))
1274 				status = SIGSEGV;
1275 			if (unlikely(get_user(mmop[1], epc) < 0))
1276 				status = SIGSEGV;
1277 			opcode = (mmop[0] << 16) | mmop[1];
1278 
1279 			if (status < 0)
1280 				status = simulate_rdhwr_mm(regs, opcode);
1281 		} else {
1282 			if (unlikely(get_user(opcode, epc) < 0))
1283 				status = SIGSEGV;
1284 
1285 			if (!cpu_has_llsc && status < 0)
1286 				status = simulate_llsc(regs, opcode);
1287 
1288 			if (status < 0)
1289 				status = simulate_rdhwr_normal(regs, opcode);
1290 		}
1291 
1292 		if (status < 0)
1293 			status = SIGILL;
1294 
1295 		if (unlikely(status > 0)) {
1296 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1297 			regs->regs[31] = old31;
1298 			force_sig(status, current);
1299 		}
1300 
1301 		goto out;
1302 
1303 	case 3:
1304 		/*
1305 		 * Old (MIPS I and MIPS II) processors will set this code
1306 		 * for COP1X opcode instructions that replaced the original
1307 		 * COP3 space.	We don't limit COP1 space instructions in
1308 		 * the emulator according to the CPU ISA, so we want to
1309 		 * treat COP1X instructions consistently regardless of which
1310 		 * code the CPU chose.	Therefore we redirect this trap to
1311 		 * the FP emulator too.
1312 		 *
1313 		 * Then some newer FPU-less processors use this code
1314 		 * erroneously too, so they are covered by this choice
1315 		 * as well.
1316 		 */
1317 		if (raw_cpu_has_fpu)
1318 			break;
1319 		/* Fall through.  */
1320 
1321 	case 1:
1322 		err = enable_restore_fp_context(0);
1323 
1324 		if (!raw_cpu_has_fpu || err) {
1325 			int sig;
1326 			void __user *fault_addr = NULL;
1327 			sig = fpu_emulator_cop1Handler(regs,
1328 						       &current->thread.fpu,
1329 						       0, &fault_addr);
1330 			if (!process_fpemu_return(sig, fault_addr) && !err)
1331 				mt_ase_fp_affinity();
1332 		}
1333 
1334 		goto out;
1335 
1336 	case 2:
1337 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1338 		goto out;
1339 	}
1340 
1341 	force_sig(SIGILL, current);
1342 
1343 out:
1344 	exception_exit(prev_state);
1345 }
1346 
1347 asmlinkage void do_msa_fpe(struct pt_regs *regs)
1348 {
1349 	enum ctx_state prev_state;
1350 
1351 	prev_state = exception_enter();
1352 	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1353 	force_sig(SIGFPE, current);
1354 	exception_exit(prev_state);
1355 }
1356 
1357 asmlinkage void do_msa(struct pt_regs *regs)
1358 {
1359 	enum ctx_state prev_state;
1360 	int err;
1361 
1362 	prev_state = exception_enter();
1363 
1364 	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1365 		force_sig(SIGILL, current);
1366 		goto out;
1367 	}
1368 
1369 	die_if_kernel("do_msa invoked from kernel context!", regs);
1370 
1371 	err = enable_restore_fp_context(1);
1372 	if (err)
1373 		force_sig(SIGILL, current);
1374 out:
1375 	exception_exit(prev_state);
1376 }
1377 
1378 asmlinkage void do_mdmx(struct pt_regs *regs)
1379 {
1380 	enum ctx_state prev_state;
1381 
1382 	prev_state = exception_enter();
1383 	force_sig(SIGILL, current);
1384 	exception_exit(prev_state);
1385 }
1386 
1387 /*
1388  * Called with interrupts disabled.
1389  */
1390 asmlinkage void do_watch(struct pt_regs *regs)
1391 {
1392 	enum ctx_state prev_state;
1393 	u32 cause;
1394 
1395 	prev_state = exception_enter();
1396 	/*
1397 	 * Clear WP (bit 22) bit of cause register so we don't loop
1398 	 * forever.
1399 	 */
1400 	cause = read_c0_cause();
1401 	cause &= ~(1 << 22);
1402 	write_c0_cause(cause);
1403 
1404 	/*
1405 	 * If the current thread has the watch registers loaded, save
1406 	 * their values and send SIGTRAP.  Otherwise another thread
1407 	 * left the registers set, clear them and continue.
1408 	 */
1409 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1410 		mips_read_watch_registers();
1411 		local_irq_enable();
1412 		force_sig(SIGTRAP, current);
1413 	} else {
1414 		mips_clear_watch_registers();
1415 		local_irq_enable();
1416 	}
1417 	exception_exit(prev_state);
1418 }
1419 
1420 asmlinkage void do_mcheck(struct pt_regs *regs)
1421 {
1422 	const int field = 2 * sizeof(unsigned long);
1423 	int multi_match = regs->cp0_status & ST0_TS;
1424 	enum ctx_state prev_state;
1425 
1426 	prev_state = exception_enter();
1427 	show_regs(regs);
1428 
1429 	if (multi_match) {
1430 		pr_err("Index	: %0x\n", read_c0_index());
1431 		pr_err("Pagemask: %0x\n", read_c0_pagemask());
1432 		pr_err("EntryHi : %0*lx\n", field, read_c0_entryhi());
1433 		pr_err("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1434 		pr_err("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1435 		pr_err("Wired   : %0x\n", read_c0_wired());
1436 		pr_err("Pagegrain: %0x\n", read_c0_pagegrain());
1437 		if (cpu_has_htw) {
1438 			pr_err("PWField : %0*lx\n", field, read_c0_pwfield());
1439 			pr_err("PWSize  : %0*lx\n", field, read_c0_pwsize());
1440 			pr_err("PWCtl   : %0x\n", read_c0_pwctl());
1441 		}
1442 		pr_err("\n");
1443 		dump_tlb_all();
1444 	}
1445 
1446 	show_code((unsigned int __user *) regs->cp0_epc);
1447 
1448 	/*
1449 	 * Some chips may have other causes of machine check (e.g. SB1
1450 	 * graduation timer)
1451 	 */
1452 	panic("Caught Machine Check exception - %scaused by multiple "
1453 	      "matching entries in the TLB.",
1454 	      (multi_match) ? "" : "not ");
1455 }
1456 
1457 asmlinkage void do_mt(struct pt_regs *regs)
1458 {
1459 	int subcode;
1460 
1461 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1462 			>> VPECONTROL_EXCPT_SHIFT;
1463 	switch (subcode) {
1464 	case 0:
1465 		printk(KERN_DEBUG "Thread Underflow\n");
1466 		break;
1467 	case 1:
1468 		printk(KERN_DEBUG "Thread Overflow\n");
1469 		break;
1470 	case 2:
1471 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1472 		break;
1473 	case 3:
1474 		printk(KERN_DEBUG "Gating Storage Exception\n");
1475 		break;
1476 	case 4:
1477 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1478 		break;
1479 	case 5:
1480 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1481 		break;
1482 	default:
1483 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1484 			subcode);
1485 		break;
1486 	}
1487 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1488 
1489 	force_sig(SIGILL, current);
1490 }
1491 
1492 
1493 asmlinkage void do_dsp(struct pt_regs *regs)
1494 {
1495 	if (cpu_has_dsp)
1496 		panic("Unexpected DSP exception");
1497 
1498 	force_sig(SIGILL, current);
1499 }
1500 
1501 asmlinkage void do_reserved(struct pt_regs *regs)
1502 {
1503 	/*
1504 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1505 	 * caused by a new unknown cpu type or after another deadly
1506 	 * hard/software error.
1507 	 */
1508 	show_regs(regs);
1509 	panic("Caught reserved exception %ld - should not happen.",
1510 	      (regs->cp0_cause & 0x7f) >> 2);
1511 }
1512 
1513 static int __initdata l1parity = 1;
1514 static int __init nol1parity(char *s)
1515 {
1516 	l1parity = 0;
1517 	return 1;
1518 }
1519 __setup("nol1par", nol1parity);
1520 static int __initdata l2parity = 1;
1521 static int __init nol2parity(char *s)
1522 {
1523 	l2parity = 0;
1524 	return 1;
1525 }
1526 __setup("nol2par", nol2parity);
1527 
1528 /*
1529  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1530  * it different ways.
1531  */
1532 static inline void parity_protection_init(void)
1533 {
1534 	switch (current_cpu_type()) {
1535 	case CPU_24K:
1536 	case CPU_34K:
1537 	case CPU_74K:
1538 	case CPU_1004K:
1539 	case CPU_1074K:
1540 	case CPU_INTERAPTIV:
1541 	case CPU_PROAPTIV:
1542 	case CPU_P5600:
1543 		{
1544 #define ERRCTL_PE	0x80000000
1545 #define ERRCTL_L2P	0x00800000
1546 			unsigned long errctl;
1547 			unsigned int l1parity_present, l2parity_present;
1548 
1549 			errctl = read_c0_ecc();
1550 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1551 
1552 			/* probe L1 parity support */
1553 			write_c0_ecc(errctl | ERRCTL_PE);
1554 			back_to_back_c0_hazard();
1555 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1556 
1557 			/* probe L2 parity support */
1558 			write_c0_ecc(errctl|ERRCTL_L2P);
1559 			back_to_back_c0_hazard();
1560 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1561 
1562 			if (l1parity_present && l2parity_present) {
1563 				if (l1parity)
1564 					errctl |= ERRCTL_PE;
1565 				if (l1parity ^ l2parity)
1566 					errctl |= ERRCTL_L2P;
1567 			} else if (l1parity_present) {
1568 				if (l1parity)
1569 					errctl |= ERRCTL_PE;
1570 			} else if (l2parity_present) {
1571 				if (l2parity)
1572 					errctl |= ERRCTL_L2P;
1573 			} else {
1574 				/* No parity available */
1575 			}
1576 
1577 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1578 
1579 			write_c0_ecc(errctl);
1580 			back_to_back_c0_hazard();
1581 			errctl = read_c0_ecc();
1582 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1583 
1584 			if (l1parity_present)
1585 				printk(KERN_INFO "Cache parity protection %sabled\n",
1586 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1587 
1588 			if (l2parity_present) {
1589 				if (l1parity_present && l1parity)
1590 					errctl ^= ERRCTL_L2P;
1591 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1592 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1593 			}
1594 		}
1595 		break;
1596 
1597 	case CPU_5KC:
1598 	case CPU_5KE:
1599 	case CPU_LOONGSON1:
1600 		write_c0_ecc(0x80000000);
1601 		back_to_back_c0_hazard();
1602 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1603 		printk(KERN_INFO "Cache parity protection %sabled\n",
1604 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1605 		break;
1606 	case CPU_20KC:
1607 	case CPU_25KF:
1608 		/* Clear the DE bit (bit 16) in the c0_status register. */
1609 		printk(KERN_INFO "Enable cache parity protection for "
1610 		       "MIPS 20KC/25KF CPUs.\n");
1611 		clear_c0_status(ST0_DE);
1612 		break;
1613 	default:
1614 		break;
1615 	}
1616 }
1617 
1618 asmlinkage void cache_parity_error(void)
1619 {
1620 	const int field = 2 * sizeof(unsigned long);
1621 	unsigned int reg_val;
1622 
1623 	/* For the moment, report the problem and hang. */
1624 	printk("Cache error exception:\n");
1625 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1626 	reg_val = read_c0_cacheerr();
1627 	printk("c0_cacheerr == %08x\n", reg_val);
1628 
1629 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1630 	       reg_val & (1<<30) ? "secondary" : "primary",
1631 	       reg_val & (1<<31) ? "data" : "insn");
1632 	if (cpu_has_mips_r2 &&
1633 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1634 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1635 			reg_val & (1<<29) ? "ED " : "",
1636 			reg_val & (1<<28) ? "ET " : "",
1637 			reg_val & (1<<27) ? "ES " : "",
1638 			reg_val & (1<<26) ? "EE " : "",
1639 			reg_val & (1<<25) ? "EB " : "",
1640 			reg_val & (1<<24) ? "EI " : "",
1641 			reg_val & (1<<23) ? "E1 " : "",
1642 			reg_val & (1<<22) ? "E0 " : "");
1643 	} else {
1644 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1645 			reg_val & (1<<29) ? "ED " : "",
1646 			reg_val & (1<<28) ? "ET " : "",
1647 			reg_val & (1<<26) ? "EE " : "",
1648 			reg_val & (1<<25) ? "EB " : "",
1649 			reg_val & (1<<24) ? "EI " : "",
1650 			reg_val & (1<<23) ? "E1 " : "",
1651 			reg_val & (1<<22) ? "E0 " : "");
1652 	}
1653 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1654 
1655 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1656 	if (reg_val & (1<<22))
1657 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1658 
1659 	if (reg_val & (1<<23))
1660 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1661 #endif
1662 
1663 	panic("Can't handle the cache error!");
1664 }
1665 
1666 asmlinkage void do_ftlb(void)
1667 {
1668 	const int field = 2 * sizeof(unsigned long);
1669 	unsigned int reg_val;
1670 
1671 	/* For the moment, report the problem and hang. */
1672 	if (cpu_has_mips_r2 &&
1673 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1674 		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1675 		       read_c0_ecc());
1676 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1677 		reg_val = read_c0_cacheerr();
1678 		pr_err("c0_cacheerr == %08x\n", reg_val);
1679 
1680 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1681 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1682 		} else {
1683 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1684 			       reg_val & (1<<30) ? "secondary" : "primary",
1685 			       reg_val & (1<<31) ? "data" : "insn");
1686 		}
1687 	} else {
1688 		pr_err("FTLB error exception\n");
1689 	}
1690 	/* Just print the cacheerr bits for now */
1691 	cache_parity_error();
1692 }
1693 
1694 /*
1695  * SDBBP EJTAG debug exception handler.
1696  * We skip the instruction and return to the next instruction.
1697  */
1698 void ejtag_exception_handler(struct pt_regs *regs)
1699 {
1700 	const int field = 2 * sizeof(unsigned long);
1701 	unsigned long depc, old_epc, old_ra;
1702 	unsigned int debug;
1703 
1704 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1705 	depc = read_c0_depc();
1706 	debug = read_c0_debug();
1707 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1708 	if (debug & 0x80000000) {
1709 		/*
1710 		 * In branch delay slot.
1711 		 * We cheat a little bit here and use EPC to calculate the
1712 		 * debug return address (DEPC). EPC is restored after the
1713 		 * calculation.
1714 		 */
1715 		old_epc = regs->cp0_epc;
1716 		old_ra = regs->regs[31];
1717 		regs->cp0_epc = depc;
1718 		compute_return_epc(regs);
1719 		depc = regs->cp0_epc;
1720 		regs->cp0_epc = old_epc;
1721 		regs->regs[31] = old_ra;
1722 	} else
1723 		depc += 4;
1724 	write_c0_depc(depc);
1725 
1726 #if 0
1727 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1728 	write_c0_debug(debug | 0x100);
1729 #endif
1730 }
1731 
1732 /*
1733  * NMI exception handler.
1734  * No lock; only written during early bootup by CPU 0.
1735  */
1736 static RAW_NOTIFIER_HEAD(nmi_chain);
1737 
1738 int register_nmi_notifier(struct notifier_block *nb)
1739 {
1740 	return raw_notifier_chain_register(&nmi_chain, nb);
1741 }
1742 
1743 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1744 {
1745 	char str[100];
1746 
1747 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1748 	bust_spinlocks(1);
1749 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1750 		 smp_processor_id(), regs->cp0_epc);
1751 	regs->cp0_epc = read_c0_errorepc();
1752 	die(str, regs);
1753 }
1754 
1755 #define VECTORSPACING 0x100	/* for EI/VI mode */
1756 
1757 unsigned long ebase;
1758 unsigned long exception_handlers[32];
1759 unsigned long vi_handlers[64];
1760 
1761 void __init *set_except_vector(int n, void *addr)
1762 {
1763 	unsigned long handler = (unsigned long) addr;
1764 	unsigned long old_handler;
1765 
1766 #ifdef CONFIG_CPU_MICROMIPS
1767 	/*
1768 	 * Only the TLB handlers are cache aligned with an even
1769 	 * address. All other handlers are on an odd address and
1770 	 * require no modification. Otherwise, MIPS32 mode will
1771 	 * be entered when handling any TLB exceptions. That
1772 	 * would be bad...since we must stay in microMIPS mode.
1773 	 */
1774 	if (!(handler & 0x1))
1775 		handler |= 1;
1776 #endif
1777 	old_handler = xchg(&exception_handlers[n], handler);
1778 
1779 	if (n == 0 && cpu_has_divec) {
1780 #ifdef CONFIG_CPU_MICROMIPS
1781 		unsigned long jump_mask = ~((1 << 27) - 1);
1782 #else
1783 		unsigned long jump_mask = ~((1 << 28) - 1);
1784 #endif
1785 		u32 *buf = (u32 *)(ebase + 0x200);
1786 		unsigned int k0 = 26;
1787 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1788 			uasm_i_j(&buf, handler & ~jump_mask);
1789 			uasm_i_nop(&buf);
1790 		} else {
1791 			UASM_i_LA(&buf, k0, handler);
1792 			uasm_i_jr(&buf, k0);
1793 			uasm_i_nop(&buf);
1794 		}
1795 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1796 	}
1797 	return (void *)old_handler;
1798 }
1799 
1800 static void do_default_vi(void)
1801 {
1802 	show_regs(get_irq_regs());
1803 	panic("Caught unexpected vectored interrupt.");
1804 }
1805 
1806 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1807 {
1808 	unsigned long handler;
1809 	unsigned long old_handler = vi_handlers[n];
1810 	int srssets = current_cpu_data.srsets;
1811 	u16 *h;
1812 	unsigned char *b;
1813 
1814 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1815 
1816 	if (addr == NULL) {
1817 		handler = (unsigned long) do_default_vi;
1818 		srs = 0;
1819 	} else
1820 		handler = (unsigned long) addr;
1821 	vi_handlers[n] = handler;
1822 
1823 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1824 
1825 	if (srs >= srssets)
1826 		panic("Shadow register set %d not supported", srs);
1827 
1828 	if (cpu_has_veic) {
1829 		if (board_bind_eic_interrupt)
1830 			board_bind_eic_interrupt(n, srs);
1831 	} else if (cpu_has_vint) {
1832 		/* SRSMap is only defined if shadow sets are implemented */
1833 		if (srssets > 1)
1834 			change_c0_srsmap(0xf << n*4, srs << n*4);
1835 	}
1836 
1837 	if (srs == 0) {
1838 		/*
1839 		 * If no shadow set is selected then use the default handler
1840 		 * that does normal register saving and standard interrupt exit
1841 		 */
1842 		extern char except_vec_vi, except_vec_vi_lui;
1843 		extern char except_vec_vi_ori, except_vec_vi_end;
1844 		extern char rollback_except_vec_vi;
1845 		char *vec_start = using_rollback_handler() ?
1846 			&rollback_except_vec_vi : &except_vec_vi;
1847 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1848 		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1849 		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1850 #else
1851 		const int lui_offset = &except_vec_vi_lui - vec_start;
1852 		const int ori_offset = &except_vec_vi_ori - vec_start;
1853 #endif
1854 		const int handler_len = &except_vec_vi_end - vec_start;
1855 
1856 		if (handler_len > VECTORSPACING) {
1857 			/*
1858 			 * Sigh... panicing won't help as the console
1859 			 * is probably not configured :(
1860 			 */
1861 			panic("VECTORSPACING too small");
1862 		}
1863 
1864 		set_handler(((unsigned long)b - ebase), vec_start,
1865 #ifdef CONFIG_CPU_MICROMIPS
1866 				(handler_len - 1));
1867 #else
1868 				handler_len);
1869 #endif
1870 		h = (u16 *)(b + lui_offset);
1871 		*h = (handler >> 16) & 0xffff;
1872 		h = (u16 *)(b + ori_offset);
1873 		*h = (handler & 0xffff);
1874 		local_flush_icache_range((unsigned long)b,
1875 					 (unsigned long)(b+handler_len));
1876 	}
1877 	else {
1878 		/*
1879 		 * In other cases jump directly to the interrupt handler. It
1880 		 * is the handler's responsibility to save registers if required
1881 		 * (eg hi/lo) and return from the exception using "eret".
1882 		 */
1883 		u32 insn;
1884 
1885 		h = (u16 *)b;
1886 		/* j handler */
1887 #ifdef CONFIG_CPU_MICROMIPS
1888 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
1889 #else
1890 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
1891 #endif
1892 		h[0] = (insn >> 16) & 0xffff;
1893 		h[1] = insn & 0xffff;
1894 		h[2] = 0;
1895 		h[3] = 0;
1896 		local_flush_icache_range((unsigned long)b,
1897 					 (unsigned long)(b+8));
1898 	}
1899 
1900 	return (void *)old_handler;
1901 }
1902 
1903 void *set_vi_handler(int n, vi_handler_t addr)
1904 {
1905 	return set_vi_srs_handler(n, addr, 0);
1906 }
1907 
1908 extern void tlb_init(void);
1909 
1910 /*
1911  * Timer interrupt
1912  */
1913 int cp0_compare_irq;
1914 EXPORT_SYMBOL_GPL(cp0_compare_irq);
1915 int cp0_compare_irq_shift;
1916 
1917 /*
1918  * Performance counter IRQ or -1 if shared with timer
1919  */
1920 int cp0_perfcount_irq;
1921 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1922 
1923 static int noulri;
1924 
1925 static int __init ulri_disable(char *s)
1926 {
1927 	pr_info("Disabling ulri\n");
1928 	noulri = 1;
1929 
1930 	return 1;
1931 }
1932 __setup("noulri", ulri_disable);
1933 
1934 /* configure STATUS register */
1935 static void configure_status(void)
1936 {
1937 	/*
1938 	 * Disable coprocessors and select 32-bit or 64-bit addressing
1939 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
1940 	 * flag that some firmware may have left set and the TS bit (for
1941 	 * IP27).  Set XX for ISA IV code to work.
1942 	 */
1943 	unsigned int status_set = ST0_CU0;
1944 #ifdef CONFIG_64BIT
1945 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1946 #endif
1947 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
1948 		status_set |= ST0_XX;
1949 	if (cpu_has_dsp)
1950 		status_set |= ST0_MX;
1951 
1952 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1953 			 status_set);
1954 }
1955 
1956 /* configure HWRENA register */
1957 static void configure_hwrena(void)
1958 {
1959 	unsigned int hwrena = cpu_hwrena_impl_bits;
1960 
1961 	if (cpu_has_mips_r2)
1962 		hwrena |= 0x0000000f;
1963 
1964 	if (!noulri && cpu_has_userlocal)
1965 		hwrena |= (1 << 29);
1966 
1967 	if (hwrena)
1968 		write_c0_hwrena(hwrena);
1969 }
1970 
1971 static void configure_exception_vector(void)
1972 {
1973 	if (cpu_has_veic || cpu_has_vint) {
1974 		unsigned long sr = set_c0_status(ST0_BEV);
1975 		write_c0_ebase(ebase);
1976 		write_c0_status(sr);
1977 		/* Setting vector spacing enables EI/VI mode  */
1978 		change_c0_intctl(0x3e0, VECTORSPACING);
1979 	}
1980 	if (cpu_has_divec) {
1981 		if (cpu_has_mipsmt) {
1982 			unsigned int vpflags = dvpe();
1983 			set_c0_cause(CAUSEF_IV);
1984 			evpe(vpflags);
1985 		} else
1986 			set_c0_cause(CAUSEF_IV);
1987 	}
1988 }
1989 
1990 void per_cpu_trap_init(bool is_boot_cpu)
1991 {
1992 	unsigned int cpu = smp_processor_id();
1993 
1994 	configure_status();
1995 	configure_hwrena();
1996 
1997 	configure_exception_vector();
1998 
1999 	/*
2000 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2001 	 *
2002 	 *  o read IntCtl.IPTI to determine the timer interrupt
2003 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2004 	 */
2005 	if (cpu_has_mips_r2) {
2006 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2007 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2008 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2009 		if (cp0_perfcount_irq == cp0_compare_irq)
2010 			cp0_perfcount_irq = -1;
2011 	} else {
2012 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2013 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2014 		cp0_perfcount_irq = -1;
2015 	}
2016 
2017 	if (!cpu_data[cpu].asid_cache)
2018 		cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
2019 
2020 	atomic_inc(&init_mm.mm_count);
2021 	current->active_mm = &init_mm;
2022 	BUG_ON(current->mm);
2023 	enter_lazy_tlb(&init_mm, current);
2024 
2025 		/* Boot CPU's cache setup in setup_arch(). */
2026 		if (!is_boot_cpu)
2027 			cpu_cache_init();
2028 		tlb_init();
2029 	TLBMISS_HANDLER_SETUP();
2030 }
2031 
2032 /* Install CPU exception handler */
2033 void set_handler(unsigned long offset, void *addr, unsigned long size)
2034 {
2035 #ifdef CONFIG_CPU_MICROMIPS
2036 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2037 #else
2038 	memcpy((void *)(ebase + offset), addr, size);
2039 #endif
2040 	local_flush_icache_range(ebase + offset, ebase + offset + size);
2041 }
2042 
2043 static char panic_null_cerr[] =
2044 	"Trying to set NULL cache error exception handler";
2045 
2046 /*
2047  * Install uncached CPU exception handler.
2048  * This is suitable only for the cache error exception which is the only
2049  * exception handler that is being run uncached.
2050  */
2051 void set_uncached_handler(unsigned long offset, void *addr,
2052 	unsigned long size)
2053 {
2054 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2055 
2056 	if (!addr)
2057 		panic(panic_null_cerr);
2058 
2059 	memcpy((void *)(uncached_ebase + offset), addr, size);
2060 }
2061 
2062 static int __initdata rdhwr_noopt;
2063 static int __init set_rdhwr_noopt(char *str)
2064 {
2065 	rdhwr_noopt = 1;
2066 	return 1;
2067 }
2068 
2069 __setup("rdhwr_noopt", set_rdhwr_noopt);
2070 
2071 void __init trap_init(void)
2072 {
2073 	extern char except_vec3_generic;
2074 	extern char except_vec4;
2075 	extern char except_vec3_r4000;
2076 	unsigned long i;
2077 
2078 	check_wait();
2079 
2080 #if defined(CONFIG_KGDB)
2081 	if (kgdb_early_setup)
2082 		return; /* Already done */
2083 #endif
2084 
2085 	if (cpu_has_veic || cpu_has_vint) {
2086 		unsigned long size = 0x200 + VECTORSPACING*64;
2087 		ebase = (unsigned long)
2088 			__alloc_bootmem(size, 1 << fls(size), 0);
2089 	} else {
2090 #ifdef CONFIG_KVM_GUEST
2091 #define KVM_GUEST_KSEG0     0x40000000
2092         ebase = KVM_GUEST_KSEG0;
2093 #else
2094         ebase = CKSEG0;
2095 #endif
2096 		if (cpu_has_mips_r2)
2097 			ebase += (read_c0_ebase() & 0x3ffff000);
2098 	}
2099 
2100 	if (cpu_has_mmips) {
2101 		unsigned int config3 = read_c0_config3();
2102 
2103 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2104 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2105 		else
2106 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2107 	}
2108 
2109 	if (board_ebase_setup)
2110 		board_ebase_setup();
2111 	per_cpu_trap_init(true);
2112 
2113 	/*
2114 	 * Copy the generic exception handlers to their final destination.
2115 	 * This will be overriden later as suitable for a particular
2116 	 * configuration.
2117 	 */
2118 	set_handler(0x180, &except_vec3_generic, 0x80);
2119 
2120 	/*
2121 	 * Setup default vectors
2122 	 */
2123 	for (i = 0; i <= 31; i++)
2124 		set_except_vector(i, handle_reserved);
2125 
2126 	/*
2127 	 * Copy the EJTAG debug exception vector handler code to it's final
2128 	 * destination.
2129 	 */
2130 	if (cpu_has_ejtag && board_ejtag_handler_setup)
2131 		board_ejtag_handler_setup();
2132 
2133 	/*
2134 	 * Only some CPUs have the watch exceptions.
2135 	 */
2136 	if (cpu_has_watch)
2137 		set_except_vector(23, handle_watch);
2138 
2139 	/*
2140 	 * Initialise interrupt handlers
2141 	 */
2142 	if (cpu_has_veic || cpu_has_vint) {
2143 		int nvec = cpu_has_veic ? 64 : 8;
2144 		for (i = 0; i < nvec; i++)
2145 			set_vi_handler(i, NULL);
2146 	}
2147 	else if (cpu_has_divec)
2148 		set_handler(0x200, &except_vec4, 0x8);
2149 
2150 	/*
2151 	 * Some CPUs can enable/disable for cache parity detection, but does
2152 	 * it different ways.
2153 	 */
2154 	parity_protection_init();
2155 
2156 	/*
2157 	 * The Data Bus Errors / Instruction Bus Errors are signaled
2158 	 * by external hardware.  Therefore these two exceptions
2159 	 * may have board specific handlers.
2160 	 */
2161 	if (board_be_init)
2162 		board_be_init();
2163 
2164 	set_except_vector(0, using_rollback_handler() ? rollback_handle_int
2165 						      : handle_int);
2166 	set_except_vector(1, handle_tlbm);
2167 	set_except_vector(2, handle_tlbl);
2168 	set_except_vector(3, handle_tlbs);
2169 
2170 	set_except_vector(4, handle_adel);
2171 	set_except_vector(5, handle_ades);
2172 
2173 	set_except_vector(6, handle_ibe);
2174 	set_except_vector(7, handle_dbe);
2175 
2176 	set_except_vector(8, handle_sys);
2177 	set_except_vector(9, handle_bp);
2178 	set_except_vector(10, rdhwr_noopt ? handle_ri :
2179 			  (cpu_has_vtag_icache ?
2180 			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2181 	set_except_vector(11, handle_cpu);
2182 	set_except_vector(12, handle_ov);
2183 	set_except_vector(13, handle_tr);
2184 	set_except_vector(14, handle_msa_fpe);
2185 
2186 	if (current_cpu_type() == CPU_R6000 ||
2187 	    current_cpu_type() == CPU_R6000A) {
2188 		/*
2189 		 * The R6000 is the only R-series CPU that features a machine
2190 		 * check exception (similar to the R4000 cache error) and
2191 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
2192 		 * written yet.	 Well, anyway there is no R6000 machine on the
2193 		 * current list of targets for Linux/MIPS.
2194 		 * (Duh, crap, there is someone with a triple R6k machine)
2195 		 */
2196 		//set_except_vector(14, handle_mc);
2197 		//set_except_vector(15, handle_ndc);
2198 	}
2199 
2200 
2201 	if (board_nmi_handler_setup)
2202 		board_nmi_handler_setup();
2203 
2204 	if (cpu_has_fpu && !cpu_has_nofpuex)
2205 		set_except_vector(15, handle_fpe);
2206 
2207 	set_except_vector(16, handle_ftlb);
2208 
2209 	if (cpu_has_rixiex) {
2210 		set_except_vector(19, tlb_do_page_fault_0);
2211 		set_except_vector(20, tlb_do_page_fault_0);
2212 	}
2213 
2214 	set_except_vector(21, handle_msa);
2215 	set_except_vector(22, handle_mdmx);
2216 
2217 	if (cpu_has_mcheck)
2218 		set_except_vector(24, handle_mcheck);
2219 
2220 	if (cpu_has_mipsmt)
2221 		set_except_vector(25, handle_mt);
2222 
2223 	set_except_vector(26, handle_dsp);
2224 
2225 	if (board_cache_error_setup)
2226 		board_cache_error_setup();
2227 
2228 	if (cpu_has_vce)
2229 		/* Special exception: R4[04]00 uses also the divec space. */
2230 		set_handler(0x180, &except_vec3_r4000, 0x100);
2231 	else if (cpu_has_4kex)
2232 		set_handler(0x180, &except_vec3_generic, 0x80);
2233 	else
2234 		set_handler(0x080, &except_vec3_generic, 0x80);
2235 
2236 	local_flush_icache_range(ebase, ebase + 0x400);
2237 
2238 	sort_extable(__start___dbe_table, __stop___dbe_table);
2239 
2240 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2241 }
2242 
2243 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2244 			    void *v)
2245 {
2246 	switch (cmd) {
2247 	case CPU_PM_ENTER_FAILED:
2248 	case CPU_PM_EXIT:
2249 		configure_status();
2250 		configure_hwrena();
2251 		configure_exception_vector();
2252 
2253 		/* Restore register with CPU number for TLB handlers */
2254 		TLBMISS_HANDLER_RESTORE();
2255 
2256 		break;
2257 	}
2258 
2259 	return NOTIFY_OK;
2260 }
2261 
2262 static struct notifier_block trap_pm_notifier_block = {
2263 	.notifier_call = trap_pm_notifier,
2264 };
2265 
2266 static int __init trap_pm_init(void)
2267 {
2268 	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2269 }
2270 arch_initcall(trap_pm_init);
2271