1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle 7 * Copyright (C) 1995, 1996 Paul M. Antoine 8 * Copyright (C) 1998 Ulf Carlsson 9 * Copyright (C) 1999 Silicon Graphics, Inc. 10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki 12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved. 13 * Copyright (C) 2014, Imagination Technologies Ltd. 14 */ 15 #include <linux/bug.h> 16 #include <linux/compiler.h> 17 #include <linux/context_tracking.h> 18 #include <linux/cpu_pm.h> 19 #include <linux/kexec.h> 20 #include <linux/init.h> 21 #include <linux/kernel.h> 22 #include <linux/module.h> 23 #include <linux/mm.h> 24 #include <linux/sched.h> 25 #include <linux/smp.h> 26 #include <linux/spinlock.h> 27 #include <linux/kallsyms.h> 28 #include <linux/bootmem.h> 29 #include <linux/interrupt.h> 30 #include <linux/ptrace.h> 31 #include <linux/kgdb.h> 32 #include <linux/kdebug.h> 33 #include <linux/kprobes.h> 34 #include <linux/notifier.h> 35 #include <linux/kdb.h> 36 #include <linux/irq.h> 37 #include <linux/perf_event.h> 38 39 #include <asm/bootinfo.h> 40 #include <asm/branch.h> 41 #include <asm/break.h> 42 #include <asm/cop2.h> 43 #include <asm/cpu.h> 44 #include <asm/cpu-type.h> 45 #include <asm/dsp.h> 46 #include <asm/fpu.h> 47 #include <asm/fpu_emulator.h> 48 #include <asm/idle.h> 49 #include <asm/mipsregs.h> 50 #include <asm/mipsmtregs.h> 51 #include <asm/module.h> 52 #include <asm/msa.h> 53 #include <asm/pgtable.h> 54 #include <asm/ptrace.h> 55 #include <asm/sections.h> 56 #include <asm/tlbdebug.h> 57 #include <asm/traps.h> 58 #include <asm/uaccess.h> 59 #include <asm/watch.h> 60 #include <asm/mmu_context.h> 61 #include <asm/types.h> 62 #include <asm/stacktrace.h> 63 #include <asm/uasm.h> 64 65 extern void check_wait(void); 66 extern asmlinkage void rollback_handle_int(void); 67 extern asmlinkage void handle_int(void); 68 extern u32 handle_tlbl[]; 69 extern u32 handle_tlbs[]; 70 extern u32 handle_tlbm[]; 71 extern asmlinkage void handle_adel(void); 72 extern asmlinkage void handle_ades(void); 73 extern asmlinkage void handle_ibe(void); 74 extern asmlinkage void handle_dbe(void); 75 extern asmlinkage void handle_sys(void); 76 extern asmlinkage void handle_bp(void); 77 extern asmlinkage void handle_ri(void); 78 extern asmlinkage void handle_ri_rdhwr_vivt(void); 79 extern asmlinkage void handle_ri_rdhwr(void); 80 extern asmlinkage void handle_cpu(void); 81 extern asmlinkage void handle_ov(void); 82 extern asmlinkage void handle_tr(void); 83 extern asmlinkage void handle_msa_fpe(void); 84 extern asmlinkage void handle_fpe(void); 85 extern asmlinkage void handle_ftlb(void); 86 extern asmlinkage void handle_msa(void); 87 extern asmlinkage void handle_mdmx(void); 88 extern asmlinkage void handle_watch(void); 89 extern asmlinkage void handle_mt(void); 90 extern asmlinkage void handle_dsp(void); 91 extern asmlinkage void handle_mcheck(void); 92 extern asmlinkage void handle_reserved(void); 93 extern void tlb_do_page_fault_0(void); 94 95 void (*board_be_init)(void); 96 int (*board_be_handler)(struct pt_regs *regs, int is_fixup); 97 void (*board_nmi_handler_setup)(void); 98 void (*board_ejtag_handler_setup)(void); 99 void (*board_bind_eic_interrupt)(int irq, int regset); 100 void (*board_ebase_setup)(void); 101 void(*board_cache_error_setup)(void); 102 103 static void show_raw_backtrace(unsigned long reg29) 104 { 105 unsigned long *sp = (unsigned long *)(reg29 & ~3); 106 unsigned long addr; 107 108 printk("Call Trace:"); 109 #ifdef CONFIG_KALLSYMS 110 printk("\n"); 111 #endif 112 while (!kstack_end(sp)) { 113 unsigned long __user *p = 114 (unsigned long __user *)(unsigned long)sp++; 115 if (__get_user(addr, p)) { 116 printk(" (Bad stack address)"); 117 break; 118 } 119 if (__kernel_text_address(addr)) 120 print_ip_sym(addr); 121 } 122 printk("\n"); 123 } 124 125 #ifdef CONFIG_KALLSYMS 126 int raw_show_trace; 127 static int __init set_raw_show_trace(char *str) 128 { 129 raw_show_trace = 1; 130 return 1; 131 } 132 __setup("raw_show_trace", set_raw_show_trace); 133 #endif 134 135 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs) 136 { 137 unsigned long sp = regs->regs[29]; 138 unsigned long ra = regs->regs[31]; 139 unsigned long pc = regs->cp0_epc; 140 141 if (!task) 142 task = current; 143 144 if (raw_show_trace || !__kernel_text_address(pc)) { 145 show_raw_backtrace(sp); 146 return; 147 } 148 printk("Call Trace:\n"); 149 do { 150 print_ip_sym(pc); 151 pc = unwind_stack(task, &sp, pc, &ra); 152 } while (pc); 153 printk("\n"); 154 } 155 156 /* 157 * This routine abuses get_user()/put_user() to reference pointers 158 * with at least a bit of error checking ... 159 */ 160 static void show_stacktrace(struct task_struct *task, 161 const struct pt_regs *regs) 162 { 163 const int field = 2 * sizeof(unsigned long); 164 long stackdata; 165 int i; 166 unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; 167 168 printk("Stack :"); 169 i = 0; 170 while ((unsigned long) sp & (PAGE_SIZE - 1)) { 171 if (i && ((i % (64 / field)) == 0)) 172 printk("\n "); 173 if (i > 39) { 174 printk(" ..."); 175 break; 176 } 177 178 if (__get_user(stackdata, sp++)) { 179 printk(" (Bad stack address)"); 180 break; 181 } 182 183 printk(" %0*lx", field, stackdata); 184 i++; 185 } 186 printk("\n"); 187 show_backtrace(task, regs); 188 } 189 190 void show_stack(struct task_struct *task, unsigned long *sp) 191 { 192 struct pt_regs regs; 193 if (sp) { 194 regs.regs[29] = (unsigned long)sp; 195 regs.regs[31] = 0; 196 regs.cp0_epc = 0; 197 } else { 198 if (task && task != current) { 199 regs.regs[29] = task->thread.reg29; 200 regs.regs[31] = 0; 201 regs.cp0_epc = task->thread.reg31; 202 #ifdef CONFIG_KGDB_KDB 203 } else if (atomic_read(&kgdb_active) != -1 && 204 kdb_current_regs) { 205 memcpy(®s, kdb_current_regs, sizeof(regs)); 206 #endif /* CONFIG_KGDB_KDB */ 207 } else { 208 prepare_frametrace(®s); 209 } 210 } 211 show_stacktrace(task, ®s); 212 } 213 214 static void show_code(unsigned int __user *pc) 215 { 216 long i; 217 unsigned short __user *pc16 = NULL; 218 219 printk("\nCode:"); 220 221 if ((unsigned long)pc & 1) 222 pc16 = (unsigned short __user *)((unsigned long)pc & ~1); 223 for(i = -3 ; i < 6 ; i++) { 224 unsigned int insn; 225 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { 226 printk(" (Bad address in epc)\n"); 227 break; 228 } 229 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); 230 } 231 } 232 233 static void __show_regs(const struct pt_regs *regs) 234 { 235 const int field = 2 * sizeof(unsigned long); 236 unsigned int cause = regs->cp0_cause; 237 int i; 238 239 show_regs_print_info(KERN_DEFAULT); 240 241 /* 242 * Saved main processor registers 243 */ 244 for (i = 0; i < 32; ) { 245 if ((i % 4) == 0) 246 printk("$%2d :", i); 247 if (i == 0) 248 printk(" %0*lx", field, 0UL); 249 else if (i == 26 || i == 27) 250 printk(" %*s", field, ""); 251 else 252 printk(" %0*lx", field, regs->regs[i]); 253 254 i++; 255 if ((i % 4) == 0) 256 printk("\n"); 257 } 258 259 #ifdef CONFIG_CPU_HAS_SMARTMIPS 260 printk("Acx : %0*lx\n", field, regs->acx); 261 #endif 262 printk("Hi : %0*lx\n", field, regs->hi); 263 printk("Lo : %0*lx\n", field, regs->lo); 264 265 /* 266 * Saved cp0 registers 267 */ 268 printk("epc : %0*lx %pS\n", field, regs->cp0_epc, 269 (void *) regs->cp0_epc); 270 printk(" %s\n", print_tainted()); 271 printk("ra : %0*lx %pS\n", field, regs->regs[31], 272 (void *) regs->regs[31]); 273 274 printk("Status: %08x ", (uint32_t) regs->cp0_status); 275 276 if (cpu_has_3kex) { 277 if (regs->cp0_status & ST0_KUO) 278 printk("KUo "); 279 if (regs->cp0_status & ST0_IEO) 280 printk("IEo "); 281 if (regs->cp0_status & ST0_KUP) 282 printk("KUp "); 283 if (regs->cp0_status & ST0_IEP) 284 printk("IEp "); 285 if (regs->cp0_status & ST0_KUC) 286 printk("KUc "); 287 if (regs->cp0_status & ST0_IEC) 288 printk("IEc "); 289 } else if (cpu_has_4kex) { 290 if (regs->cp0_status & ST0_KX) 291 printk("KX "); 292 if (regs->cp0_status & ST0_SX) 293 printk("SX "); 294 if (regs->cp0_status & ST0_UX) 295 printk("UX "); 296 switch (regs->cp0_status & ST0_KSU) { 297 case KSU_USER: 298 printk("USER "); 299 break; 300 case KSU_SUPERVISOR: 301 printk("SUPERVISOR "); 302 break; 303 case KSU_KERNEL: 304 printk("KERNEL "); 305 break; 306 default: 307 printk("BAD_MODE "); 308 break; 309 } 310 if (regs->cp0_status & ST0_ERL) 311 printk("ERL "); 312 if (regs->cp0_status & ST0_EXL) 313 printk("EXL "); 314 if (regs->cp0_status & ST0_IE) 315 printk("IE "); 316 } 317 printk("\n"); 318 319 printk("Cause : %08x\n", cause); 320 321 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; 322 if (1 <= cause && cause <= 5) 323 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); 324 325 printk("PrId : %08x (%s)\n", read_c0_prid(), 326 cpu_name_string()); 327 } 328 329 /* 330 * FIXME: really the generic show_regs should take a const pointer argument. 331 */ 332 void show_regs(struct pt_regs *regs) 333 { 334 __show_regs((struct pt_regs *)regs); 335 } 336 337 void show_registers(struct pt_regs *regs) 338 { 339 const int field = 2 * sizeof(unsigned long); 340 mm_segment_t old_fs = get_fs(); 341 342 __show_regs(regs); 343 print_modules(); 344 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", 345 current->comm, current->pid, current_thread_info(), current, 346 field, current_thread_info()->tp_value); 347 if (cpu_has_userlocal) { 348 unsigned long tls; 349 350 tls = read_c0_userlocal(); 351 if (tls != current_thread_info()->tp_value) 352 printk("*HwTLS: %0*lx\n", field, tls); 353 } 354 355 if (!user_mode(regs)) 356 /* Necessary for getting the correct stack content */ 357 set_fs(KERNEL_DS); 358 show_stacktrace(current, regs); 359 show_code((unsigned int __user *) regs->cp0_epc); 360 printk("\n"); 361 set_fs(old_fs); 362 } 363 364 static int regs_to_trapnr(struct pt_regs *regs) 365 { 366 return (regs->cp0_cause >> 2) & 0x1f; 367 } 368 369 static DEFINE_RAW_SPINLOCK(die_lock); 370 371 void __noreturn die(const char *str, struct pt_regs *regs) 372 { 373 static int die_counter; 374 int sig = SIGSEGV; 375 376 oops_enter(); 377 378 if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), 379 SIGSEGV) == NOTIFY_STOP) 380 sig = 0; 381 382 console_verbose(); 383 raw_spin_lock_irq(&die_lock); 384 bust_spinlocks(1); 385 386 printk("%s[#%d]:\n", str, ++die_counter); 387 show_registers(regs); 388 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 389 raw_spin_unlock_irq(&die_lock); 390 391 oops_exit(); 392 393 if (in_interrupt()) 394 panic("Fatal exception in interrupt"); 395 396 if (panic_on_oops) { 397 printk(KERN_EMERG "Fatal exception: panic in 5 seconds"); 398 ssleep(5); 399 panic("Fatal exception"); 400 } 401 402 if (regs && kexec_should_crash(current)) 403 crash_kexec(regs); 404 405 do_exit(sig); 406 } 407 408 extern struct exception_table_entry __start___dbe_table[]; 409 extern struct exception_table_entry __stop___dbe_table[]; 410 411 __asm__( 412 " .section __dbe_table, \"a\"\n" 413 " .previous \n"); 414 415 /* Given an address, look for it in the exception tables. */ 416 static const struct exception_table_entry *search_dbe_tables(unsigned long addr) 417 { 418 const struct exception_table_entry *e; 419 420 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr); 421 if (!e) 422 e = search_module_dbetables(addr); 423 return e; 424 } 425 426 asmlinkage void do_be(struct pt_regs *regs) 427 { 428 const int field = 2 * sizeof(unsigned long); 429 const struct exception_table_entry *fixup = NULL; 430 int data = regs->cp0_cause & 4; 431 int action = MIPS_BE_FATAL; 432 enum ctx_state prev_state; 433 434 prev_state = exception_enter(); 435 /* XXX For now. Fixme, this searches the wrong table ... */ 436 if (data && !user_mode(regs)) 437 fixup = search_dbe_tables(exception_epc(regs)); 438 439 if (fixup) 440 action = MIPS_BE_FIXUP; 441 442 if (board_be_handler) 443 action = board_be_handler(regs, fixup != NULL); 444 445 switch (action) { 446 case MIPS_BE_DISCARD: 447 goto out; 448 case MIPS_BE_FIXUP: 449 if (fixup) { 450 regs->cp0_epc = fixup->nextinsn; 451 goto out; 452 } 453 break; 454 default: 455 break; 456 } 457 458 /* 459 * Assume it would be too dangerous to continue ... 460 */ 461 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", 462 data ? "Data" : "Instruction", 463 field, regs->cp0_epc, field, regs->regs[31]); 464 if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), 465 SIGBUS) == NOTIFY_STOP) 466 goto out; 467 468 die_if_kernel("Oops", regs); 469 force_sig(SIGBUS, current); 470 471 out: 472 exception_exit(prev_state); 473 } 474 475 /* 476 * ll/sc, rdhwr, sync emulation 477 */ 478 479 #define OPCODE 0xfc000000 480 #define BASE 0x03e00000 481 #define RT 0x001f0000 482 #define OFFSET 0x0000ffff 483 #define LL 0xc0000000 484 #define SC 0xe0000000 485 #define SPEC0 0x00000000 486 #define SPEC3 0x7c000000 487 #define RD 0x0000f800 488 #define FUNC 0x0000003f 489 #define SYNC 0x0000000f 490 #define RDHWR 0x0000003b 491 492 /* microMIPS definitions */ 493 #define MM_POOL32A_FUNC 0xfc00ffff 494 #define MM_RDHWR 0x00006b3c 495 #define MM_RS 0x001f0000 496 #define MM_RT 0x03e00000 497 498 /* 499 * The ll_bit is cleared by r*_switch.S 500 */ 501 502 unsigned int ll_bit; 503 struct task_struct *ll_task; 504 505 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) 506 { 507 unsigned long value, __user *vaddr; 508 long offset; 509 510 /* 511 * analyse the ll instruction that just caused a ri exception 512 * and put the referenced address to addr. 513 */ 514 515 /* sign extend offset */ 516 offset = opcode & OFFSET; 517 offset <<= 16; 518 offset >>= 16; 519 520 vaddr = (unsigned long __user *) 521 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 522 523 if ((unsigned long)vaddr & 3) 524 return SIGBUS; 525 if (get_user(value, vaddr)) 526 return SIGSEGV; 527 528 preempt_disable(); 529 530 if (ll_task == NULL || ll_task == current) { 531 ll_bit = 1; 532 } else { 533 ll_bit = 0; 534 } 535 ll_task = current; 536 537 preempt_enable(); 538 539 regs->regs[(opcode & RT) >> 16] = value; 540 541 return 0; 542 } 543 544 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) 545 { 546 unsigned long __user *vaddr; 547 unsigned long reg; 548 long offset; 549 550 /* 551 * analyse the sc instruction that just caused a ri exception 552 * and put the referenced address to addr. 553 */ 554 555 /* sign extend offset */ 556 offset = opcode & OFFSET; 557 offset <<= 16; 558 offset >>= 16; 559 560 vaddr = (unsigned long __user *) 561 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 562 reg = (opcode & RT) >> 16; 563 564 if ((unsigned long)vaddr & 3) 565 return SIGBUS; 566 567 preempt_disable(); 568 569 if (ll_bit == 0 || ll_task != current) { 570 regs->regs[reg] = 0; 571 preempt_enable(); 572 return 0; 573 } 574 575 preempt_enable(); 576 577 if (put_user(regs->regs[reg], vaddr)) 578 return SIGSEGV; 579 580 regs->regs[reg] = 1; 581 582 return 0; 583 } 584 585 /* 586 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both 587 * opcodes are supposed to result in coprocessor unusable exceptions if 588 * executed on ll/sc-less processors. That's the theory. In practice a 589 * few processors such as NEC's VR4100 throw reserved instruction exceptions 590 * instead, so we're doing the emulation thing in both exception handlers. 591 */ 592 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) 593 { 594 if ((opcode & OPCODE) == LL) { 595 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 596 1, regs, 0); 597 return simulate_ll(regs, opcode); 598 } 599 if ((opcode & OPCODE) == SC) { 600 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 601 1, regs, 0); 602 return simulate_sc(regs, opcode); 603 } 604 605 return -1; /* Must be something else ... */ 606 } 607 608 /* 609 * Simulate trapping 'rdhwr' instructions to provide user accessible 610 * registers not implemented in hardware. 611 */ 612 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt) 613 { 614 struct thread_info *ti = task_thread_info(current); 615 616 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 617 1, regs, 0); 618 switch (rd) { 619 case 0: /* CPU number */ 620 regs->regs[rt] = smp_processor_id(); 621 return 0; 622 case 1: /* SYNCI length */ 623 regs->regs[rt] = min(current_cpu_data.dcache.linesz, 624 current_cpu_data.icache.linesz); 625 return 0; 626 case 2: /* Read count register */ 627 regs->regs[rt] = read_c0_count(); 628 return 0; 629 case 3: /* Count register resolution */ 630 switch (current_cpu_type()) { 631 case CPU_20KC: 632 case CPU_25KF: 633 regs->regs[rt] = 1; 634 break; 635 default: 636 regs->regs[rt] = 2; 637 } 638 return 0; 639 case 29: 640 regs->regs[rt] = ti->tp_value; 641 return 0; 642 default: 643 return -1; 644 } 645 } 646 647 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode) 648 { 649 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { 650 int rd = (opcode & RD) >> 11; 651 int rt = (opcode & RT) >> 16; 652 653 simulate_rdhwr(regs, rd, rt); 654 return 0; 655 } 656 657 /* Not ours. */ 658 return -1; 659 } 660 661 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode) 662 { 663 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) { 664 int rd = (opcode & MM_RS) >> 16; 665 int rt = (opcode & MM_RT) >> 21; 666 simulate_rdhwr(regs, rd, rt); 667 return 0; 668 } 669 670 /* Not ours. */ 671 return -1; 672 } 673 674 static int simulate_sync(struct pt_regs *regs, unsigned int opcode) 675 { 676 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) { 677 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 678 1, regs, 0); 679 return 0; 680 } 681 682 return -1; /* Must be something else ... */ 683 } 684 685 asmlinkage void do_ov(struct pt_regs *regs) 686 { 687 enum ctx_state prev_state; 688 siginfo_t info; 689 690 prev_state = exception_enter(); 691 die_if_kernel("Integer overflow", regs); 692 693 info.si_code = FPE_INTOVF; 694 info.si_signo = SIGFPE; 695 info.si_errno = 0; 696 info.si_addr = (void __user *) regs->cp0_epc; 697 force_sig_info(SIGFPE, &info, current); 698 exception_exit(prev_state); 699 } 700 701 int process_fpemu_return(int sig, void __user *fault_addr) 702 { 703 if (sig == SIGSEGV || sig == SIGBUS) { 704 struct siginfo si = {0}; 705 si.si_addr = fault_addr; 706 si.si_signo = sig; 707 if (sig == SIGSEGV) { 708 down_read(¤t->mm->mmap_sem); 709 if (find_vma(current->mm, (unsigned long)fault_addr)) 710 si.si_code = SEGV_ACCERR; 711 else 712 si.si_code = SEGV_MAPERR; 713 up_read(¤t->mm->mmap_sem); 714 } else { 715 si.si_code = BUS_ADRERR; 716 } 717 force_sig_info(sig, &si, current); 718 return 1; 719 } else if (sig) { 720 force_sig(sig, current); 721 return 1; 722 } else { 723 return 0; 724 } 725 } 726 727 static int simulate_fp(struct pt_regs *regs, unsigned int opcode, 728 unsigned long old_epc, unsigned long old_ra) 729 { 730 union mips_instruction inst = { .word = opcode }; 731 void __user *fault_addr = NULL; 732 int sig; 733 734 /* If it's obviously not an FP instruction, skip it */ 735 switch (inst.i_format.opcode) { 736 case cop1_op: 737 case cop1x_op: 738 case lwc1_op: 739 case ldc1_op: 740 case swc1_op: 741 case sdc1_op: 742 break; 743 744 default: 745 return -1; 746 } 747 748 /* 749 * do_ri skipped over the instruction via compute_return_epc, undo 750 * that for the FPU emulator. 751 */ 752 regs->cp0_epc = old_epc; 753 regs->regs[31] = old_ra; 754 755 /* Save the FP context to struct thread_struct */ 756 lose_fpu(1); 757 758 /* Run the emulator */ 759 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 760 &fault_addr); 761 762 /* If something went wrong, signal */ 763 process_fpemu_return(sig, fault_addr); 764 765 /* Restore the hardware register state */ 766 own_fpu(1); 767 768 return 0; 769 } 770 771 /* 772 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX 773 */ 774 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) 775 { 776 enum ctx_state prev_state; 777 siginfo_t info = {0}; 778 779 prev_state = exception_enter(); 780 if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), 781 SIGFPE) == NOTIFY_STOP) 782 goto out; 783 die_if_kernel("FP exception in kernel code", regs); 784 785 if (fcr31 & FPU_CSR_UNI_X) { 786 int sig; 787 void __user *fault_addr = NULL; 788 789 /* 790 * Unimplemented operation exception. If we've got the full 791 * software emulator on-board, let's use it... 792 * 793 * Force FPU to dump state into task/thread context. We're 794 * moving a lot of data here for what is probably a single 795 * instruction, but the alternative is to pre-decode the FP 796 * register operands before invoking the emulator, which seems 797 * a bit extreme for what should be an infrequent event. 798 */ 799 /* Ensure 'resume' not overwrite saved fp context again. */ 800 lose_fpu(1); 801 802 /* Run the emulator */ 803 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 804 &fault_addr); 805 806 /* 807 * We can't allow the emulated instruction to leave any of 808 * the cause bit set in $fcr31. 809 */ 810 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 811 812 /* Restore the hardware register state */ 813 own_fpu(1); /* Using the FPU again. */ 814 815 /* If something went wrong, signal */ 816 process_fpemu_return(sig, fault_addr); 817 818 goto out; 819 } else if (fcr31 & FPU_CSR_INV_X) 820 info.si_code = FPE_FLTINV; 821 else if (fcr31 & FPU_CSR_DIV_X) 822 info.si_code = FPE_FLTDIV; 823 else if (fcr31 & FPU_CSR_OVF_X) 824 info.si_code = FPE_FLTOVF; 825 else if (fcr31 & FPU_CSR_UDF_X) 826 info.si_code = FPE_FLTUND; 827 else if (fcr31 & FPU_CSR_INE_X) 828 info.si_code = FPE_FLTRES; 829 else 830 info.si_code = __SI_FAULT; 831 info.si_signo = SIGFPE; 832 info.si_errno = 0; 833 info.si_addr = (void __user *) regs->cp0_epc; 834 force_sig_info(SIGFPE, &info, current); 835 836 out: 837 exception_exit(prev_state); 838 } 839 840 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code, 841 const char *str) 842 { 843 siginfo_t info; 844 char b[40]; 845 846 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 847 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 848 return; 849 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 850 851 if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), 852 SIGTRAP) == NOTIFY_STOP) 853 return; 854 855 /* 856 * A short test says that IRIX 5.3 sends SIGTRAP for all trap 857 * insns, even for trap and break codes that indicate arithmetic 858 * failures. Weird ... 859 * But should we continue the brokenness??? --macro 860 */ 861 switch (code) { 862 case BRK_OVERFLOW: 863 case BRK_DIVZERO: 864 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 865 die_if_kernel(b, regs); 866 if (code == BRK_DIVZERO) 867 info.si_code = FPE_INTDIV; 868 else 869 info.si_code = FPE_INTOVF; 870 info.si_signo = SIGFPE; 871 info.si_errno = 0; 872 info.si_addr = (void __user *) regs->cp0_epc; 873 force_sig_info(SIGFPE, &info, current); 874 break; 875 case BRK_BUG: 876 die_if_kernel("Kernel bug detected", regs); 877 force_sig(SIGTRAP, current); 878 break; 879 case BRK_MEMU: 880 /* 881 * Address errors may be deliberately induced by the FPU 882 * emulator to retake control of the CPU after executing the 883 * instruction in the delay slot of an emulated branch. 884 * 885 * Terminate if exception was recognized as a delay slot return 886 * otherwise handle as normal. 887 */ 888 if (do_dsemulret(regs)) 889 return; 890 891 die_if_kernel("Math emu break/trap", regs); 892 force_sig(SIGTRAP, current); 893 break; 894 default: 895 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 896 die_if_kernel(b, regs); 897 force_sig(SIGTRAP, current); 898 } 899 } 900 901 asmlinkage void do_bp(struct pt_regs *regs) 902 { 903 unsigned int opcode, bcode; 904 enum ctx_state prev_state; 905 unsigned long epc; 906 u16 instr[2]; 907 mm_segment_t seg; 908 909 seg = get_fs(); 910 if (!user_mode(regs)) 911 set_fs(KERNEL_DS); 912 913 prev_state = exception_enter(); 914 if (get_isa16_mode(regs->cp0_epc)) { 915 /* Calculate EPC. */ 916 epc = exception_epc(regs); 917 if (cpu_has_mmips) { 918 if ((__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc)) || 919 (__get_user(instr[1], (u16 __user *)msk_isa16_mode(epc + 2))))) 920 goto out_sigsegv; 921 opcode = (instr[0] << 16) | instr[1]; 922 } else { 923 /* MIPS16e mode */ 924 if (__get_user(instr[0], 925 (u16 __user *)msk_isa16_mode(epc))) 926 goto out_sigsegv; 927 bcode = (instr[0] >> 6) & 0x3f; 928 do_trap_or_bp(regs, bcode, "Break"); 929 goto out; 930 } 931 } else { 932 if (__get_user(opcode, 933 (unsigned int __user *) exception_epc(regs))) 934 goto out_sigsegv; 935 } 936 937 /* 938 * There is the ancient bug in the MIPS assemblers that the break 939 * code starts left to bit 16 instead to bit 6 in the opcode. 940 * Gas is bug-compatible, but not always, grrr... 941 * We handle both cases with a simple heuristics. --macro 942 */ 943 bcode = ((opcode >> 6) & ((1 << 20) - 1)); 944 if (bcode >= (1 << 10)) 945 bcode >>= 10; 946 947 /* 948 * notify the kprobe handlers, if instruction is likely to 949 * pertain to them. 950 */ 951 switch (bcode) { 952 case BRK_KPROBE_BP: 953 if (notify_die(DIE_BREAK, "debug", regs, bcode, 954 regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 955 goto out; 956 else 957 break; 958 case BRK_KPROBE_SSTEPBP: 959 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, 960 regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 961 goto out; 962 else 963 break; 964 default: 965 break; 966 } 967 968 do_trap_or_bp(regs, bcode, "Break"); 969 970 out: 971 set_fs(seg); 972 exception_exit(prev_state); 973 return; 974 975 out_sigsegv: 976 force_sig(SIGSEGV, current); 977 goto out; 978 } 979 980 asmlinkage void do_tr(struct pt_regs *regs) 981 { 982 u32 opcode, tcode = 0; 983 enum ctx_state prev_state; 984 u16 instr[2]; 985 mm_segment_t seg; 986 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 987 988 seg = get_fs(); 989 if (!user_mode(regs)) 990 set_fs(get_ds()); 991 992 prev_state = exception_enter(); 993 if (get_isa16_mode(regs->cp0_epc)) { 994 if (__get_user(instr[0], (u16 __user *)(epc + 0)) || 995 __get_user(instr[1], (u16 __user *)(epc + 2))) 996 goto out_sigsegv; 997 opcode = (instr[0] << 16) | instr[1]; 998 /* Immediate versions don't provide a code. */ 999 if (!(opcode & OPCODE)) 1000 tcode = (opcode >> 12) & ((1 << 4) - 1); 1001 } else { 1002 if (__get_user(opcode, (u32 __user *)epc)) 1003 goto out_sigsegv; 1004 /* Immediate versions don't provide a code. */ 1005 if (!(opcode & OPCODE)) 1006 tcode = (opcode >> 6) & ((1 << 10) - 1); 1007 } 1008 1009 do_trap_or_bp(regs, tcode, "Trap"); 1010 1011 out: 1012 set_fs(seg); 1013 exception_exit(prev_state); 1014 return; 1015 1016 out_sigsegv: 1017 force_sig(SIGSEGV, current); 1018 goto out; 1019 } 1020 1021 asmlinkage void do_ri(struct pt_regs *regs) 1022 { 1023 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); 1024 unsigned long old_epc = regs->cp0_epc; 1025 unsigned long old31 = regs->regs[31]; 1026 enum ctx_state prev_state; 1027 unsigned int opcode = 0; 1028 int status = -1; 1029 1030 prev_state = exception_enter(); 1031 if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), 1032 SIGILL) == NOTIFY_STOP) 1033 goto out; 1034 1035 die_if_kernel("Reserved instruction in kernel code", regs); 1036 1037 if (unlikely(compute_return_epc(regs) < 0)) 1038 goto out; 1039 1040 if (get_isa16_mode(regs->cp0_epc)) { 1041 unsigned short mmop[2] = { 0 }; 1042 1043 if (unlikely(get_user(mmop[0], epc) < 0)) 1044 status = SIGSEGV; 1045 if (unlikely(get_user(mmop[1], epc) < 0)) 1046 status = SIGSEGV; 1047 opcode = (mmop[0] << 16) | mmop[1]; 1048 1049 if (status < 0) 1050 status = simulate_rdhwr_mm(regs, opcode); 1051 } else { 1052 if (unlikely(get_user(opcode, epc) < 0)) 1053 status = SIGSEGV; 1054 1055 if (!cpu_has_llsc && status < 0) 1056 status = simulate_llsc(regs, opcode); 1057 1058 if (status < 0) 1059 status = simulate_rdhwr_normal(regs, opcode); 1060 1061 if (status < 0) 1062 status = simulate_sync(regs, opcode); 1063 1064 if (status < 0) 1065 status = simulate_fp(regs, opcode, old_epc, old31); 1066 } 1067 1068 if (status < 0) 1069 status = SIGILL; 1070 1071 if (unlikely(status > 0)) { 1072 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1073 regs->regs[31] = old31; 1074 force_sig(status, current); 1075 } 1076 1077 out: 1078 exception_exit(prev_state); 1079 } 1080 1081 /* 1082 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've 1083 * emulated more than some threshold number of instructions, force migration to 1084 * a "CPU" that has FP support. 1085 */ 1086 static void mt_ase_fp_affinity(void) 1087 { 1088 #ifdef CONFIG_MIPS_MT_FPAFF 1089 if (mt_fpemul_threshold > 0 && 1090 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { 1091 /* 1092 * If there's no FPU present, or if the application has already 1093 * restricted the allowed set to exclude any CPUs with FPUs, 1094 * we'll skip the procedure. 1095 */ 1096 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) { 1097 cpumask_t tmask; 1098 1099 current->thread.user_cpus_allowed 1100 = current->cpus_allowed; 1101 cpus_and(tmask, current->cpus_allowed, 1102 mt_fpu_cpumask); 1103 set_cpus_allowed_ptr(current, &tmask); 1104 set_thread_flag(TIF_FPUBOUND); 1105 } 1106 } 1107 #endif /* CONFIG_MIPS_MT_FPAFF */ 1108 } 1109 1110 /* 1111 * No lock; only written during early bootup by CPU 0. 1112 */ 1113 static RAW_NOTIFIER_HEAD(cu2_chain); 1114 1115 int __ref register_cu2_notifier(struct notifier_block *nb) 1116 { 1117 return raw_notifier_chain_register(&cu2_chain, nb); 1118 } 1119 1120 int cu2_notifier_call_chain(unsigned long val, void *v) 1121 { 1122 return raw_notifier_call_chain(&cu2_chain, val, v); 1123 } 1124 1125 static int default_cu2_call(struct notifier_block *nfb, unsigned long action, 1126 void *data) 1127 { 1128 struct pt_regs *regs = data; 1129 1130 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid " 1131 "instruction", regs); 1132 force_sig(SIGILL, current); 1133 1134 return NOTIFY_OK; 1135 } 1136 1137 static int enable_restore_fp_context(int msa) 1138 { 1139 int err, was_fpu_owner, prior_msa; 1140 1141 if (!used_math()) { 1142 /* First time FP context user. */ 1143 preempt_disable(); 1144 err = init_fpu(); 1145 if (msa && !err) { 1146 enable_msa(); 1147 _init_msa_upper(); 1148 set_thread_flag(TIF_USEDMSA); 1149 set_thread_flag(TIF_MSA_CTX_LIVE); 1150 } 1151 preempt_enable(); 1152 if (!err) 1153 set_used_math(); 1154 return err; 1155 } 1156 1157 /* 1158 * This task has formerly used the FP context. 1159 * 1160 * If this thread has no live MSA vector context then we can simply 1161 * restore the scalar FP context. If it has live MSA vector context 1162 * (that is, it has or may have used MSA since last performing a 1163 * function call) then we'll need to restore the vector context. This 1164 * applies even if we're currently only executing a scalar FP 1165 * instruction. This is because if we were to later execute an MSA 1166 * instruction then we'd either have to: 1167 * 1168 * - Restore the vector context & clobber any registers modified by 1169 * scalar FP instructions between now & then. 1170 * 1171 * or 1172 * 1173 * - Not restore the vector context & lose the most significant bits 1174 * of all vector registers. 1175 * 1176 * Neither of those options is acceptable. We cannot restore the least 1177 * significant bits of the registers now & only restore the most 1178 * significant bits later because the most significant bits of any 1179 * vector registers whose aliased FP register is modified now will have 1180 * been zeroed. We'd have no way to know that when restoring the vector 1181 * context & thus may load an outdated value for the most significant 1182 * bits of a vector register. 1183 */ 1184 if (!msa && !thread_msa_context_live()) 1185 return own_fpu(1); 1186 1187 /* 1188 * This task is using or has previously used MSA. Thus we require 1189 * that Status.FR == 1. 1190 */ 1191 preempt_disable(); 1192 was_fpu_owner = is_fpu_owner(); 1193 err = own_fpu_inatomic(0); 1194 if (err) 1195 goto out; 1196 1197 enable_msa(); 1198 write_msa_csr(current->thread.fpu.msacsr); 1199 set_thread_flag(TIF_USEDMSA); 1200 1201 /* 1202 * If this is the first time that the task is using MSA and it has 1203 * previously used scalar FP in this time slice then we already nave 1204 * FP context which we shouldn't clobber. We do however need to clear 1205 * the upper 64b of each vector register so that this task has no 1206 * opportunity to see data left behind by another. 1207 */ 1208 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE); 1209 if (!prior_msa && was_fpu_owner) { 1210 _init_msa_upper(); 1211 1212 goto out; 1213 } 1214 1215 if (!prior_msa) { 1216 /* 1217 * Restore the least significant 64b of each vector register 1218 * from the existing scalar FP context. 1219 */ 1220 _restore_fp(current); 1221 1222 /* 1223 * The task has not formerly used MSA, so clear the upper 64b 1224 * of each vector register such that it cannot see data left 1225 * behind by another task. 1226 */ 1227 _init_msa_upper(); 1228 } else { 1229 /* We need to restore the vector context. */ 1230 restore_msa(current); 1231 1232 /* Restore the scalar FP control & status register */ 1233 if (!was_fpu_owner) 1234 asm volatile("ctc1 %0, $31" : : "r"(current->thread.fpu.fcr31)); 1235 } 1236 1237 out: 1238 preempt_enable(); 1239 1240 return 0; 1241 } 1242 1243 asmlinkage void do_cpu(struct pt_regs *regs) 1244 { 1245 enum ctx_state prev_state; 1246 unsigned int __user *epc; 1247 unsigned long old_epc, old31; 1248 unsigned int opcode; 1249 unsigned int cpid; 1250 int status, err; 1251 unsigned long __maybe_unused flags; 1252 1253 prev_state = exception_enter(); 1254 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; 1255 1256 if (cpid != 2) 1257 die_if_kernel("do_cpu invoked from kernel context!", regs); 1258 1259 switch (cpid) { 1260 case 0: 1261 epc = (unsigned int __user *)exception_epc(regs); 1262 old_epc = regs->cp0_epc; 1263 old31 = regs->regs[31]; 1264 opcode = 0; 1265 status = -1; 1266 1267 if (unlikely(compute_return_epc(regs) < 0)) 1268 goto out; 1269 1270 if (get_isa16_mode(regs->cp0_epc)) { 1271 unsigned short mmop[2] = { 0 }; 1272 1273 if (unlikely(get_user(mmop[0], epc) < 0)) 1274 status = SIGSEGV; 1275 if (unlikely(get_user(mmop[1], epc) < 0)) 1276 status = SIGSEGV; 1277 opcode = (mmop[0] << 16) | mmop[1]; 1278 1279 if (status < 0) 1280 status = simulate_rdhwr_mm(regs, opcode); 1281 } else { 1282 if (unlikely(get_user(opcode, epc) < 0)) 1283 status = SIGSEGV; 1284 1285 if (!cpu_has_llsc && status < 0) 1286 status = simulate_llsc(regs, opcode); 1287 1288 if (status < 0) 1289 status = simulate_rdhwr_normal(regs, opcode); 1290 } 1291 1292 if (status < 0) 1293 status = SIGILL; 1294 1295 if (unlikely(status > 0)) { 1296 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1297 regs->regs[31] = old31; 1298 force_sig(status, current); 1299 } 1300 1301 goto out; 1302 1303 case 3: 1304 /* 1305 * Old (MIPS I and MIPS II) processors will set this code 1306 * for COP1X opcode instructions that replaced the original 1307 * COP3 space. We don't limit COP1 space instructions in 1308 * the emulator according to the CPU ISA, so we want to 1309 * treat COP1X instructions consistently regardless of which 1310 * code the CPU chose. Therefore we redirect this trap to 1311 * the FP emulator too. 1312 * 1313 * Then some newer FPU-less processors use this code 1314 * erroneously too, so they are covered by this choice 1315 * as well. 1316 */ 1317 if (raw_cpu_has_fpu) 1318 break; 1319 /* Fall through. */ 1320 1321 case 1: 1322 err = enable_restore_fp_context(0); 1323 1324 if (!raw_cpu_has_fpu || err) { 1325 int sig; 1326 void __user *fault_addr = NULL; 1327 sig = fpu_emulator_cop1Handler(regs, 1328 ¤t->thread.fpu, 1329 0, &fault_addr); 1330 if (!process_fpemu_return(sig, fault_addr) && !err) 1331 mt_ase_fp_affinity(); 1332 } 1333 1334 goto out; 1335 1336 case 2: 1337 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); 1338 goto out; 1339 } 1340 1341 force_sig(SIGILL, current); 1342 1343 out: 1344 exception_exit(prev_state); 1345 } 1346 1347 asmlinkage void do_msa_fpe(struct pt_regs *regs) 1348 { 1349 enum ctx_state prev_state; 1350 1351 prev_state = exception_enter(); 1352 die_if_kernel("do_msa_fpe invoked from kernel context!", regs); 1353 force_sig(SIGFPE, current); 1354 exception_exit(prev_state); 1355 } 1356 1357 asmlinkage void do_msa(struct pt_regs *regs) 1358 { 1359 enum ctx_state prev_state; 1360 int err; 1361 1362 prev_state = exception_enter(); 1363 1364 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) { 1365 force_sig(SIGILL, current); 1366 goto out; 1367 } 1368 1369 die_if_kernel("do_msa invoked from kernel context!", regs); 1370 1371 err = enable_restore_fp_context(1); 1372 if (err) 1373 force_sig(SIGILL, current); 1374 out: 1375 exception_exit(prev_state); 1376 } 1377 1378 asmlinkage void do_mdmx(struct pt_regs *regs) 1379 { 1380 enum ctx_state prev_state; 1381 1382 prev_state = exception_enter(); 1383 force_sig(SIGILL, current); 1384 exception_exit(prev_state); 1385 } 1386 1387 /* 1388 * Called with interrupts disabled. 1389 */ 1390 asmlinkage void do_watch(struct pt_regs *regs) 1391 { 1392 enum ctx_state prev_state; 1393 u32 cause; 1394 1395 prev_state = exception_enter(); 1396 /* 1397 * Clear WP (bit 22) bit of cause register so we don't loop 1398 * forever. 1399 */ 1400 cause = read_c0_cause(); 1401 cause &= ~(1 << 22); 1402 write_c0_cause(cause); 1403 1404 /* 1405 * If the current thread has the watch registers loaded, save 1406 * their values and send SIGTRAP. Otherwise another thread 1407 * left the registers set, clear them and continue. 1408 */ 1409 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { 1410 mips_read_watch_registers(); 1411 local_irq_enable(); 1412 force_sig(SIGTRAP, current); 1413 } else { 1414 mips_clear_watch_registers(); 1415 local_irq_enable(); 1416 } 1417 exception_exit(prev_state); 1418 } 1419 1420 asmlinkage void do_mcheck(struct pt_regs *regs) 1421 { 1422 const int field = 2 * sizeof(unsigned long); 1423 int multi_match = regs->cp0_status & ST0_TS; 1424 enum ctx_state prev_state; 1425 1426 prev_state = exception_enter(); 1427 show_regs(regs); 1428 1429 if (multi_match) { 1430 pr_err("Index : %0x\n", read_c0_index()); 1431 pr_err("Pagemask: %0x\n", read_c0_pagemask()); 1432 pr_err("EntryHi : %0*lx\n", field, read_c0_entryhi()); 1433 pr_err("EntryLo0: %0*lx\n", field, read_c0_entrylo0()); 1434 pr_err("EntryLo1: %0*lx\n", field, read_c0_entrylo1()); 1435 pr_err("Wired : %0x\n", read_c0_wired()); 1436 pr_err("Pagegrain: %0x\n", read_c0_pagegrain()); 1437 if (cpu_has_htw) { 1438 pr_err("PWField : %0*lx\n", field, read_c0_pwfield()); 1439 pr_err("PWSize : %0*lx\n", field, read_c0_pwsize()); 1440 pr_err("PWCtl : %0x\n", read_c0_pwctl()); 1441 } 1442 pr_err("\n"); 1443 dump_tlb_all(); 1444 } 1445 1446 show_code((unsigned int __user *) regs->cp0_epc); 1447 1448 /* 1449 * Some chips may have other causes of machine check (e.g. SB1 1450 * graduation timer) 1451 */ 1452 panic("Caught Machine Check exception - %scaused by multiple " 1453 "matching entries in the TLB.", 1454 (multi_match) ? "" : "not "); 1455 } 1456 1457 asmlinkage void do_mt(struct pt_regs *regs) 1458 { 1459 int subcode; 1460 1461 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) 1462 >> VPECONTROL_EXCPT_SHIFT; 1463 switch (subcode) { 1464 case 0: 1465 printk(KERN_DEBUG "Thread Underflow\n"); 1466 break; 1467 case 1: 1468 printk(KERN_DEBUG "Thread Overflow\n"); 1469 break; 1470 case 2: 1471 printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); 1472 break; 1473 case 3: 1474 printk(KERN_DEBUG "Gating Storage Exception\n"); 1475 break; 1476 case 4: 1477 printk(KERN_DEBUG "YIELD Scheduler Exception\n"); 1478 break; 1479 case 5: 1480 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n"); 1481 break; 1482 default: 1483 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", 1484 subcode); 1485 break; 1486 } 1487 die_if_kernel("MIPS MT Thread exception in kernel", regs); 1488 1489 force_sig(SIGILL, current); 1490 } 1491 1492 1493 asmlinkage void do_dsp(struct pt_regs *regs) 1494 { 1495 if (cpu_has_dsp) 1496 panic("Unexpected DSP exception"); 1497 1498 force_sig(SIGILL, current); 1499 } 1500 1501 asmlinkage void do_reserved(struct pt_regs *regs) 1502 { 1503 /* 1504 * Game over - no way to handle this if it ever occurs. Most probably 1505 * caused by a new unknown cpu type or after another deadly 1506 * hard/software error. 1507 */ 1508 show_regs(regs); 1509 panic("Caught reserved exception %ld - should not happen.", 1510 (regs->cp0_cause & 0x7f) >> 2); 1511 } 1512 1513 static int __initdata l1parity = 1; 1514 static int __init nol1parity(char *s) 1515 { 1516 l1parity = 0; 1517 return 1; 1518 } 1519 __setup("nol1par", nol1parity); 1520 static int __initdata l2parity = 1; 1521 static int __init nol2parity(char *s) 1522 { 1523 l2parity = 0; 1524 return 1; 1525 } 1526 __setup("nol2par", nol2parity); 1527 1528 /* 1529 * Some MIPS CPUs can enable/disable for cache parity detection, but do 1530 * it different ways. 1531 */ 1532 static inline void parity_protection_init(void) 1533 { 1534 switch (current_cpu_type()) { 1535 case CPU_24K: 1536 case CPU_34K: 1537 case CPU_74K: 1538 case CPU_1004K: 1539 case CPU_1074K: 1540 case CPU_INTERAPTIV: 1541 case CPU_PROAPTIV: 1542 case CPU_P5600: 1543 { 1544 #define ERRCTL_PE 0x80000000 1545 #define ERRCTL_L2P 0x00800000 1546 unsigned long errctl; 1547 unsigned int l1parity_present, l2parity_present; 1548 1549 errctl = read_c0_ecc(); 1550 errctl &= ~(ERRCTL_PE|ERRCTL_L2P); 1551 1552 /* probe L1 parity support */ 1553 write_c0_ecc(errctl | ERRCTL_PE); 1554 back_to_back_c0_hazard(); 1555 l1parity_present = (read_c0_ecc() & ERRCTL_PE); 1556 1557 /* probe L2 parity support */ 1558 write_c0_ecc(errctl|ERRCTL_L2P); 1559 back_to_back_c0_hazard(); 1560 l2parity_present = (read_c0_ecc() & ERRCTL_L2P); 1561 1562 if (l1parity_present && l2parity_present) { 1563 if (l1parity) 1564 errctl |= ERRCTL_PE; 1565 if (l1parity ^ l2parity) 1566 errctl |= ERRCTL_L2P; 1567 } else if (l1parity_present) { 1568 if (l1parity) 1569 errctl |= ERRCTL_PE; 1570 } else if (l2parity_present) { 1571 if (l2parity) 1572 errctl |= ERRCTL_L2P; 1573 } else { 1574 /* No parity available */ 1575 } 1576 1577 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); 1578 1579 write_c0_ecc(errctl); 1580 back_to_back_c0_hazard(); 1581 errctl = read_c0_ecc(); 1582 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); 1583 1584 if (l1parity_present) 1585 printk(KERN_INFO "Cache parity protection %sabled\n", 1586 (errctl & ERRCTL_PE) ? "en" : "dis"); 1587 1588 if (l2parity_present) { 1589 if (l1parity_present && l1parity) 1590 errctl ^= ERRCTL_L2P; 1591 printk(KERN_INFO "L2 cache parity protection %sabled\n", 1592 (errctl & ERRCTL_L2P) ? "en" : "dis"); 1593 } 1594 } 1595 break; 1596 1597 case CPU_5KC: 1598 case CPU_5KE: 1599 case CPU_LOONGSON1: 1600 write_c0_ecc(0x80000000); 1601 back_to_back_c0_hazard(); 1602 /* Set the PE bit (bit 31) in the c0_errctl register. */ 1603 printk(KERN_INFO "Cache parity protection %sabled\n", 1604 (read_c0_ecc() & 0x80000000) ? "en" : "dis"); 1605 break; 1606 case CPU_20KC: 1607 case CPU_25KF: 1608 /* Clear the DE bit (bit 16) in the c0_status register. */ 1609 printk(KERN_INFO "Enable cache parity protection for " 1610 "MIPS 20KC/25KF CPUs.\n"); 1611 clear_c0_status(ST0_DE); 1612 break; 1613 default: 1614 break; 1615 } 1616 } 1617 1618 asmlinkage void cache_parity_error(void) 1619 { 1620 const int field = 2 * sizeof(unsigned long); 1621 unsigned int reg_val; 1622 1623 /* For the moment, report the problem and hang. */ 1624 printk("Cache error exception:\n"); 1625 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1626 reg_val = read_c0_cacheerr(); 1627 printk("c0_cacheerr == %08x\n", reg_val); 1628 1629 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1630 reg_val & (1<<30) ? "secondary" : "primary", 1631 reg_val & (1<<31) ? "data" : "insn"); 1632 if (cpu_has_mips_r2 && 1633 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { 1634 pr_err("Error bits: %s%s%s%s%s%s%s%s\n", 1635 reg_val & (1<<29) ? "ED " : "", 1636 reg_val & (1<<28) ? "ET " : "", 1637 reg_val & (1<<27) ? "ES " : "", 1638 reg_val & (1<<26) ? "EE " : "", 1639 reg_val & (1<<25) ? "EB " : "", 1640 reg_val & (1<<24) ? "EI " : "", 1641 reg_val & (1<<23) ? "E1 " : "", 1642 reg_val & (1<<22) ? "E0 " : ""); 1643 } else { 1644 pr_err("Error bits: %s%s%s%s%s%s%s\n", 1645 reg_val & (1<<29) ? "ED " : "", 1646 reg_val & (1<<28) ? "ET " : "", 1647 reg_val & (1<<26) ? "EE " : "", 1648 reg_val & (1<<25) ? "EB " : "", 1649 reg_val & (1<<24) ? "EI " : "", 1650 reg_val & (1<<23) ? "E1 " : "", 1651 reg_val & (1<<22) ? "E0 " : ""); 1652 } 1653 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); 1654 1655 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) 1656 if (reg_val & (1<<22)) 1657 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); 1658 1659 if (reg_val & (1<<23)) 1660 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); 1661 #endif 1662 1663 panic("Can't handle the cache error!"); 1664 } 1665 1666 asmlinkage void do_ftlb(void) 1667 { 1668 const int field = 2 * sizeof(unsigned long); 1669 unsigned int reg_val; 1670 1671 /* For the moment, report the problem and hang. */ 1672 if (cpu_has_mips_r2 && 1673 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { 1674 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n", 1675 read_c0_ecc()); 1676 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1677 reg_val = read_c0_cacheerr(); 1678 pr_err("c0_cacheerr == %08x\n", reg_val); 1679 1680 if ((reg_val & 0xc0000000) == 0xc0000000) { 1681 pr_err("Decoded c0_cacheerr: FTLB parity error\n"); 1682 } else { 1683 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1684 reg_val & (1<<30) ? "secondary" : "primary", 1685 reg_val & (1<<31) ? "data" : "insn"); 1686 } 1687 } else { 1688 pr_err("FTLB error exception\n"); 1689 } 1690 /* Just print the cacheerr bits for now */ 1691 cache_parity_error(); 1692 } 1693 1694 /* 1695 * SDBBP EJTAG debug exception handler. 1696 * We skip the instruction and return to the next instruction. 1697 */ 1698 void ejtag_exception_handler(struct pt_regs *regs) 1699 { 1700 const int field = 2 * sizeof(unsigned long); 1701 unsigned long depc, old_epc, old_ra; 1702 unsigned int debug; 1703 1704 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); 1705 depc = read_c0_depc(); 1706 debug = read_c0_debug(); 1707 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); 1708 if (debug & 0x80000000) { 1709 /* 1710 * In branch delay slot. 1711 * We cheat a little bit here and use EPC to calculate the 1712 * debug return address (DEPC). EPC is restored after the 1713 * calculation. 1714 */ 1715 old_epc = regs->cp0_epc; 1716 old_ra = regs->regs[31]; 1717 regs->cp0_epc = depc; 1718 compute_return_epc(regs); 1719 depc = regs->cp0_epc; 1720 regs->cp0_epc = old_epc; 1721 regs->regs[31] = old_ra; 1722 } else 1723 depc += 4; 1724 write_c0_depc(depc); 1725 1726 #if 0 1727 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); 1728 write_c0_debug(debug | 0x100); 1729 #endif 1730 } 1731 1732 /* 1733 * NMI exception handler. 1734 * No lock; only written during early bootup by CPU 0. 1735 */ 1736 static RAW_NOTIFIER_HEAD(nmi_chain); 1737 1738 int register_nmi_notifier(struct notifier_block *nb) 1739 { 1740 return raw_notifier_chain_register(&nmi_chain, nb); 1741 } 1742 1743 void __noreturn nmi_exception_handler(struct pt_regs *regs) 1744 { 1745 char str[100]; 1746 1747 raw_notifier_call_chain(&nmi_chain, 0, regs); 1748 bust_spinlocks(1); 1749 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n", 1750 smp_processor_id(), regs->cp0_epc); 1751 regs->cp0_epc = read_c0_errorepc(); 1752 die(str, regs); 1753 } 1754 1755 #define VECTORSPACING 0x100 /* for EI/VI mode */ 1756 1757 unsigned long ebase; 1758 unsigned long exception_handlers[32]; 1759 unsigned long vi_handlers[64]; 1760 1761 void __init *set_except_vector(int n, void *addr) 1762 { 1763 unsigned long handler = (unsigned long) addr; 1764 unsigned long old_handler; 1765 1766 #ifdef CONFIG_CPU_MICROMIPS 1767 /* 1768 * Only the TLB handlers are cache aligned with an even 1769 * address. All other handlers are on an odd address and 1770 * require no modification. Otherwise, MIPS32 mode will 1771 * be entered when handling any TLB exceptions. That 1772 * would be bad...since we must stay in microMIPS mode. 1773 */ 1774 if (!(handler & 0x1)) 1775 handler |= 1; 1776 #endif 1777 old_handler = xchg(&exception_handlers[n], handler); 1778 1779 if (n == 0 && cpu_has_divec) { 1780 #ifdef CONFIG_CPU_MICROMIPS 1781 unsigned long jump_mask = ~((1 << 27) - 1); 1782 #else 1783 unsigned long jump_mask = ~((1 << 28) - 1); 1784 #endif 1785 u32 *buf = (u32 *)(ebase + 0x200); 1786 unsigned int k0 = 26; 1787 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { 1788 uasm_i_j(&buf, handler & ~jump_mask); 1789 uasm_i_nop(&buf); 1790 } else { 1791 UASM_i_LA(&buf, k0, handler); 1792 uasm_i_jr(&buf, k0); 1793 uasm_i_nop(&buf); 1794 } 1795 local_flush_icache_range(ebase + 0x200, (unsigned long)buf); 1796 } 1797 return (void *)old_handler; 1798 } 1799 1800 static void do_default_vi(void) 1801 { 1802 show_regs(get_irq_regs()); 1803 panic("Caught unexpected vectored interrupt."); 1804 } 1805 1806 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) 1807 { 1808 unsigned long handler; 1809 unsigned long old_handler = vi_handlers[n]; 1810 int srssets = current_cpu_data.srsets; 1811 u16 *h; 1812 unsigned char *b; 1813 1814 BUG_ON(!cpu_has_veic && !cpu_has_vint); 1815 1816 if (addr == NULL) { 1817 handler = (unsigned long) do_default_vi; 1818 srs = 0; 1819 } else 1820 handler = (unsigned long) addr; 1821 vi_handlers[n] = handler; 1822 1823 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); 1824 1825 if (srs >= srssets) 1826 panic("Shadow register set %d not supported", srs); 1827 1828 if (cpu_has_veic) { 1829 if (board_bind_eic_interrupt) 1830 board_bind_eic_interrupt(n, srs); 1831 } else if (cpu_has_vint) { 1832 /* SRSMap is only defined if shadow sets are implemented */ 1833 if (srssets > 1) 1834 change_c0_srsmap(0xf << n*4, srs << n*4); 1835 } 1836 1837 if (srs == 0) { 1838 /* 1839 * If no shadow set is selected then use the default handler 1840 * that does normal register saving and standard interrupt exit 1841 */ 1842 extern char except_vec_vi, except_vec_vi_lui; 1843 extern char except_vec_vi_ori, except_vec_vi_end; 1844 extern char rollback_except_vec_vi; 1845 char *vec_start = using_rollback_handler() ? 1846 &rollback_except_vec_vi : &except_vec_vi; 1847 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN) 1848 const int lui_offset = &except_vec_vi_lui - vec_start + 2; 1849 const int ori_offset = &except_vec_vi_ori - vec_start + 2; 1850 #else 1851 const int lui_offset = &except_vec_vi_lui - vec_start; 1852 const int ori_offset = &except_vec_vi_ori - vec_start; 1853 #endif 1854 const int handler_len = &except_vec_vi_end - vec_start; 1855 1856 if (handler_len > VECTORSPACING) { 1857 /* 1858 * Sigh... panicing won't help as the console 1859 * is probably not configured :( 1860 */ 1861 panic("VECTORSPACING too small"); 1862 } 1863 1864 set_handler(((unsigned long)b - ebase), vec_start, 1865 #ifdef CONFIG_CPU_MICROMIPS 1866 (handler_len - 1)); 1867 #else 1868 handler_len); 1869 #endif 1870 h = (u16 *)(b + lui_offset); 1871 *h = (handler >> 16) & 0xffff; 1872 h = (u16 *)(b + ori_offset); 1873 *h = (handler & 0xffff); 1874 local_flush_icache_range((unsigned long)b, 1875 (unsigned long)(b+handler_len)); 1876 } 1877 else { 1878 /* 1879 * In other cases jump directly to the interrupt handler. It 1880 * is the handler's responsibility to save registers if required 1881 * (eg hi/lo) and return from the exception using "eret". 1882 */ 1883 u32 insn; 1884 1885 h = (u16 *)b; 1886 /* j handler */ 1887 #ifdef CONFIG_CPU_MICROMIPS 1888 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1); 1889 #else 1890 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2); 1891 #endif 1892 h[0] = (insn >> 16) & 0xffff; 1893 h[1] = insn & 0xffff; 1894 h[2] = 0; 1895 h[3] = 0; 1896 local_flush_icache_range((unsigned long)b, 1897 (unsigned long)(b+8)); 1898 } 1899 1900 return (void *)old_handler; 1901 } 1902 1903 void *set_vi_handler(int n, vi_handler_t addr) 1904 { 1905 return set_vi_srs_handler(n, addr, 0); 1906 } 1907 1908 extern void tlb_init(void); 1909 1910 /* 1911 * Timer interrupt 1912 */ 1913 int cp0_compare_irq; 1914 EXPORT_SYMBOL_GPL(cp0_compare_irq); 1915 int cp0_compare_irq_shift; 1916 1917 /* 1918 * Performance counter IRQ or -1 if shared with timer 1919 */ 1920 int cp0_perfcount_irq; 1921 EXPORT_SYMBOL_GPL(cp0_perfcount_irq); 1922 1923 static int noulri; 1924 1925 static int __init ulri_disable(char *s) 1926 { 1927 pr_info("Disabling ulri\n"); 1928 noulri = 1; 1929 1930 return 1; 1931 } 1932 __setup("noulri", ulri_disable); 1933 1934 /* configure STATUS register */ 1935 static void configure_status(void) 1936 { 1937 /* 1938 * Disable coprocessors and select 32-bit or 64-bit addressing 1939 * and the 16/32 or 32/32 FPR register model. Reset the BEV 1940 * flag that some firmware may have left set and the TS bit (for 1941 * IP27). Set XX for ISA IV code to work. 1942 */ 1943 unsigned int status_set = ST0_CU0; 1944 #ifdef CONFIG_64BIT 1945 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; 1946 #endif 1947 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV) 1948 status_set |= ST0_XX; 1949 if (cpu_has_dsp) 1950 status_set |= ST0_MX; 1951 1952 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, 1953 status_set); 1954 } 1955 1956 /* configure HWRENA register */ 1957 static void configure_hwrena(void) 1958 { 1959 unsigned int hwrena = cpu_hwrena_impl_bits; 1960 1961 if (cpu_has_mips_r2) 1962 hwrena |= 0x0000000f; 1963 1964 if (!noulri && cpu_has_userlocal) 1965 hwrena |= (1 << 29); 1966 1967 if (hwrena) 1968 write_c0_hwrena(hwrena); 1969 } 1970 1971 static void configure_exception_vector(void) 1972 { 1973 if (cpu_has_veic || cpu_has_vint) { 1974 unsigned long sr = set_c0_status(ST0_BEV); 1975 write_c0_ebase(ebase); 1976 write_c0_status(sr); 1977 /* Setting vector spacing enables EI/VI mode */ 1978 change_c0_intctl(0x3e0, VECTORSPACING); 1979 } 1980 if (cpu_has_divec) { 1981 if (cpu_has_mipsmt) { 1982 unsigned int vpflags = dvpe(); 1983 set_c0_cause(CAUSEF_IV); 1984 evpe(vpflags); 1985 } else 1986 set_c0_cause(CAUSEF_IV); 1987 } 1988 } 1989 1990 void per_cpu_trap_init(bool is_boot_cpu) 1991 { 1992 unsigned int cpu = smp_processor_id(); 1993 1994 configure_status(); 1995 configure_hwrena(); 1996 1997 configure_exception_vector(); 1998 1999 /* 2000 * Before R2 both interrupt numbers were fixed to 7, so on R2 only: 2001 * 2002 * o read IntCtl.IPTI to determine the timer interrupt 2003 * o read IntCtl.IPPCI to determine the performance counter interrupt 2004 */ 2005 if (cpu_has_mips_r2) { 2006 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; 2007 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; 2008 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; 2009 if (cp0_perfcount_irq == cp0_compare_irq) 2010 cp0_perfcount_irq = -1; 2011 } else { 2012 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; 2013 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ; 2014 cp0_perfcount_irq = -1; 2015 } 2016 2017 if (!cpu_data[cpu].asid_cache) 2018 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION; 2019 2020 atomic_inc(&init_mm.mm_count); 2021 current->active_mm = &init_mm; 2022 BUG_ON(current->mm); 2023 enter_lazy_tlb(&init_mm, current); 2024 2025 /* Boot CPU's cache setup in setup_arch(). */ 2026 if (!is_boot_cpu) 2027 cpu_cache_init(); 2028 tlb_init(); 2029 TLBMISS_HANDLER_SETUP(); 2030 } 2031 2032 /* Install CPU exception handler */ 2033 void set_handler(unsigned long offset, void *addr, unsigned long size) 2034 { 2035 #ifdef CONFIG_CPU_MICROMIPS 2036 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size); 2037 #else 2038 memcpy((void *)(ebase + offset), addr, size); 2039 #endif 2040 local_flush_icache_range(ebase + offset, ebase + offset + size); 2041 } 2042 2043 static char panic_null_cerr[] = 2044 "Trying to set NULL cache error exception handler"; 2045 2046 /* 2047 * Install uncached CPU exception handler. 2048 * This is suitable only for the cache error exception which is the only 2049 * exception handler that is being run uncached. 2050 */ 2051 void set_uncached_handler(unsigned long offset, void *addr, 2052 unsigned long size) 2053 { 2054 unsigned long uncached_ebase = CKSEG1ADDR(ebase); 2055 2056 if (!addr) 2057 panic(panic_null_cerr); 2058 2059 memcpy((void *)(uncached_ebase + offset), addr, size); 2060 } 2061 2062 static int __initdata rdhwr_noopt; 2063 static int __init set_rdhwr_noopt(char *str) 2064 { 2065 rdhwr_noopt = 1; 2066 return 1; 2067 } 2068 2069 __setup("rdhwr_noopt", set_rdhwr_noopt); 2070 2071 void __init trap_init(void) 2072 { 2073 extern char except_vec3_generic; 2074 extern char except_vec4; 2075 extern char except_vec3_r4000; 2076 unsigned long i; 2077 2078 check_wait(); 2079 2080 #if defined(CONFIG_KGDB) 2081 if (kgdb_early_setup) 2082 return; /* Already done */ 2083 #endif 2084 2085 if (cpu_has_veic || cpu_has_vint) { 2086 unsigned long size = 0x200 + VECTORSPACING*64; 2087 ebase = (unsigned long) 2088 __alloc_bootmem(size, 1 << fls(size), 0); 2089 } else { 2090 #ifdef CONFIG_KVM_GUEST 2091 #define KVM_GUEST_KSEG0 0x40000000 2092 ebase = KVM_GUEST_KSEG0; 2093 #else 2094 ebase = CKSEG0; 2095 #endif 2096 if (cpu_has_mips_r2) 2097 ebase += (read_c0_ebase() & 0x3ffff000); 2098 } 2099 2100 if (cpu_has_mmips) { 2101 unsigned int config3 = read_c0_config3(); 2102 2103 if (IS_ENABLED(CONFIG_CPU_MICROMIPS)) 2104 write_c0_config3(config3 | MIPS_CONF3_ISA_OE); 2105 else 2106 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE); 2107 } 2108 2109 if (board_ebase_setup) 2110 board_ebase_setup(); 2111 per_cpu_trap_init(true); 2112 2113 /* 2114 * Copy the generic exception handlers to their final destination. 2115 * This will be overriden later as suitable for a particular 2116 * configuration. 2117 */ 2118 set_handler(0x180, &except_vec3_generic, 0x80); 2119 2120 /* 2121 * Setup default vectors 2122 */ 2123 for (i = 0; i <= 31; i++) 2124 set_except_vector(i, handle_reserved); 2125 2126 /* 2127 * Copy the EJTAG debug exception vector handler code to it's final 2128 * destination. 2129 */ 2130 if (cpu_has_ejtag && board_ejtag_handler_setup) 2131 board_ejtag_handler_setup(); 2132 2133 /* 2134 * Only some CPUs have the watch exceptions. 2135 */ 2136 if (cpu_has_watch) 2137 set_except_vector(23, handle_watch); 2138 2139 /* 2140 * Initialise interrupt handlers 2141 */ 2142 if (cpu_has_veic || cpu_has_vint) { 2143 int nvec = cpu_has_veic ? 64 : 8; 2144 for (i = 0; i < nvec; i++) 2145 set_vi_handler(i, NULL); 2146 } 2147 else if (cpu_has_divec) 2148 set_handler(0x200, &except_vec4, 0x8); 2149 2150 /* 2151 * Some CPUs can enable/disable for cache parity detection, but does 2152 * it different ways. 2153 */ 2154 parity_protection_init(); 2155 2156 /* 2157 * The Data Bus Errors / Instruction Bus Errors are signaled 2158 * by external hardware. Therefore these two exceptions 2159 * may have board specific handlers. 2160 */ 2161 if (board_be_init) 2162 board_be_init(); 2163 2164 set_except_vector(0, using_rollback_handler() ? rollback_handle_int 2165 : handle_int); 2166 set_except_vector(1, handle_tlbm); 2167 set_except_vector(2, handle_tlbl); 2168 set_except_vector(3, handle_tlbs); 2169 2170 set_except_vector(4, handle_adel); 2171 set_except_vector(5, handle_ades); 2172 2173 set_except_vector(6, handle_ibe); 2174 set_except_vector(7, handle_dbe); 2175 2176 set_except_vector(8, handle_sys); 2177 set_except_vector(9, handle_bp); 2178 set_except_vector(10, rdhwr_noopt ? handle_ri : 2179 (cpu_has_vtag_icache ? 2180 handle_ri_rdhwr_vivt : handle_ri_rdhwr)); 2181 set_except_vector(11, handle_cpu); 2182 set_except_vector(12, handle_ov); 2183 set_except_vector(13, handle_tr); 2184 set_except_vector(14, handle_msa_fpe); 2185 2186 if (current_cpu_type() == CPU_R6000 || 2187 current_cpu_type() == CPU_R6000A) { 2188 /* 2189 * The R6000 is the only R-series CPU that features a machine 2190 * check exception (similar to the R4000 cache error) and 2191 * unaligned ldc1/sdc1 exception. The handlers have not been 2192 * written yet. Well, anyway there is no R6000 machine on the 2193 * current list of targets for Linux/MIPS. 2194 * (Duh, crap, there is someone with a triple R6k machine) 2195 */ 2196 //set_except_vector(14, handle_mc); 2197 //set_except_vector(15, handle_ndc); 2198 } 2199 2200 2201 if (board_nmi_handler_setup) 2202 board_nmi_handler_setup(); 2203 2204 if (cpu_has_fpu && !cpu_has_nofpuex) 2205 set_except_vector(15, handle_fpe); 2206 2207 set_except_vector(16, handle_ftlb); 2208 2209 if (cpu_has_rixiex) { 2210 set_except_vector(19, tlb_do_page_fault_0); 2211 set_except_vector(20, tlb_do_page_fault_0); 2212 } 2213 2214 set_except_vector(21, handle_msa); 2215 set_except_vector(22, handle_mdmx); 2216 2217 if (cpu_has_mcheck) 2218 set_except_vector(24, handle_mcheck); 2219 2220 if (cpu_has_mipsmt) 2221 set_except_vector(25, handle_mt); 2222 2223 set_except_vector(26, handle_dsp); 2224 2225 if (board_cache_error_setup) 2226 board_cache_error_setup(); 2227 2228 if (cpu_has_vce) 2229 /* Special exception: R4[04]00 uses also the divec space. */ 2230 set_handler(0x180, &except_vec3_r4000, 0x100); 2231 else if (cpu_has_4kex) 2232 set_handler(0x180, &except_vec3_generic, 0x80); 2233 else 2234 set_handler(0x080, &except_vec3_generic, 0x80); 2235 2236 local_flush_icache_range(ebase, ebase + 0x400); 2237 2238 sort_extable(__start___dbe_table, __stop___dbe_table); 2239 2240 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */ 2241 } 2242 2243 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd, 2244 void *v) 2245 { 2246 switch (cmd) { 2247 case CPU_PM_ENTER_FAILED: 2248 case CPU_PM_EXIT: 2249 configure_status(); 2250 configure_hwrena(); 2251 configure_exception_vector(); 2252 2253 /* Restore register with CPU number for TLB handlers */ 2254 TLBMISS_HANDLER_RESTORE(); 2255 2256 break; 2257 } 2258 2259 return NOTIFY_OK; 2260 } 2261 2262 static struct notifier_block trap_pm_notifier_block = { 2263 .notifier_call = trap_pm_notifier, 2264 }; 2265 2266 static int __init trap_pm_init(void) 2267 { 2268 return cpu_pm_register_notifier(&trap_pm_notifier_block); 2269 } 2270 arch_initcall(trap_pm_init); 2271