xref: /openbmc/linux/arch/mips/kernel/traps.c (revision 79f08d9e)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  */
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/context_tracking.h>
17 #include <linux/kexec.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/mm.h>
22 #include <linux/sched.h>
23 #include <linux/smp.h>
24 #include <linux/spinlock.h>
25 #include <linux/kallsyms.h>
26 #include <linux/bootmem.h>
27 #include <linux/interrupt.h>
28 #include <linux/ptrace.h>
29 #include <linux/kgdb.h>
30 #include <linux/kdebug.h>
31 #include <linux/kprobes.h>
32 #include <linux/notifier.h>
33 #include <linux/kdb.h>
34 #include <linux/irq.h>
35 #include <linux/perf_event.h>
36 
37 #include <asm/bootinfo.h>
38 #include <asm/branch.h>
39 #include <asm/break.h>
40 #include <asm/cop2.h>
41 #include <asm/cpu.h>
42 #include <asm/cpu-type.h>
43 #include <asm/dsp.h>
44 #include <asm/fpu.h>
45 #include <asm/fpu_emulator.h>
46 #include <asm/idle.h>
47 #include <asm/mipsregs.h>
48 #include <asm/mipsmtregs.h>
49 #include <asm/module.h>
50 #include <asm/pgtable.h>
51 #include <asm/ptrace.h>
52 #include <asm/sections.h>
53 #include <asm/tlbdebug.h>
54 #include <asm/traps.h>
55 #include <asm/uaccess.h>
56 #include <asm/watch.h>
57 #include <asm/mmu_context.h>
58 #include <asm/types.h>
59 #include <asm/stacktrace.h>
60 #include <asm/uasm.h>
61 
62 extern void check_wait(void);
63 extern asmlinkage void rollback_handle_int(void);
64 extern asmlinkage void handle_int(void);
65 extern u32 handle_tlbl[];
66 extern u32 handle_tlbs[];
67 extern u32 handle_tlbm[];
68 extern asmlinkage void handle_adel(void);
69 extern asmlinkage void handle_ades(void);
70 extern asmlinkage void handle_ibe(void);
71 extern asmlinkage void handle_dbe(void);
72 extern asmlinkage void handle_sys(void);
73 extern asmlinkage void handle_bp(void);
74 extern asmlinkage void handle_ri(void);
75 extern asmlinkage void handle_ri_rdhwr_vivt(void);
76 extern asmlinkage void handle_ri_rdhwr(void);
77 extern asmlinkage void handle_cpu(void);
78 extern asmlinkage void handle_ov(void);
79 extern asmlinkage void handle_tr(void);
80 extern asmlinkage void handle_fpe(void);
81 extern asmlinkage void handle_mdmx(void);
82 extern asmlinkage void handle_watch(void);
83 extern asmlinkage void handle_mt(void);
84 extern asmlinkage void handle_dsp(void);
85 extern asmlinkage void handle_mcheck(void);
86 extern asmlinkage void handle_reserved(void);
87 
88 void (*board_be_init)(void);
89 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
90 void (*board_nmi_handler_setup)(void);
91 void (*board_ejtag_handler_setup)(void);
92 void (*board_bind_eic_interrupt)(int irq, int regset);
93 void (*board_ebase_setup)(void);
94 void(*board_cache_error_setup)(void);
95 
96 static void show_raw_backtrace(unsigned long reg29)
97 {
98 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
99 	unsigned long addr;
100 
101 	printk("Call Trace:");
102 #ifdef CONFIG_KALLSYMS
103 	printk("\n");
104 #endif
105 	while (!kstack_end(sp)) {
106 		unsigned long __user *p =
107 			(unsigned long __user *)(unsigned long)sp++;
108 		if (__get_user(addr, p)) {
109 			printk(" (Bad stack address)");
110 			break;
111 		}
112 		if (__kernel_text_address(addr))
113 			print_ip_sym(addr);
114 	}
115 	printk("\n");
116 }
117 
118 #ifdef CONFIG_KALLSYMS
119 int raw_show_trace;
120 static int __init set_raw_show_trace(char *str)
121 {
122 	raw_show_trace = 1;
123 	return 1;
124 }
125 __setup("raw_show_trace", set_raw_show_trace);
126 #endif
127 
128 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
129 {
130 	unsigned long sp = regs->regs[29];
131 	unsigned long ra = regs->regs[31];
132 	unsigned long pc = regs->cp0_epc;
133 
134 	if (!task)
135 		task = current;
136 
137 	if (raw_show_trace || !__kernel_text_address(pc)) {
138 		show_raw_backtrace(sp);
139 		return;
140 	}
141 	printk("Call Trace:\n");
142 	do {
143 		print_ip_sym(pc);
144 		pc = unwind_stack(task, &sp, pc, &ra);
145 	} while (pc);
146 	printk("\n");
147 }
148 
149 /*
150  * This routine abuses get_user()/put_user() to reference pointers
151  * with at least a bit of error checking ...
152  */
153 static void show_stacktrace(struct task_struct *task,
154 	const struct pt_regs *regs)
155 {
156 	const int field = 2 * sizeof(unsigned long);
157 	long stackdata;
158 	int i;
159 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
160 
161 	printk("Stack :");
162 	i = 0;
163 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
164 		if (i && ((i % (64 / field)) == 0))
165 			printk("\n	 ");
166 		if (i > 39) {
167 			printk(" ...");
168 			break;
169 		}
170 
171 		if (__get_user(stackdata, sp++)) {
172 			printk(" (Bad stack address)");
173 			break;
174 		}
175 
176 		printk(" %0*lx", field, stackdata);
177 		i++;
178 	}
179 	printk("\n");
180 	show_backtrace(task, regs);
181 }
182 
183 void show_stack(struct task_struct *task, unsigned long *sp)
184 {
185 	struct pt_regs regs;
186 	if (sp) {
187 		regs.regs[29] = (unsigned long)sp;
188 		regs.regs[31] = 0;
189 		regs.cp0_epc = 0;
190 	} else {
191 		if (task && task != current) {
192 			regs.regs[29] = task->thread.reg29;
193 			regs.regs[31] = 0;
194 			regs.cp0_epc = task->thread.reg31;
195 #ifdef CONFIG_KGDB_KDB
196 		} else if (atomic_read(&kgdb_active) != -1 &&
197 			   kdb_current_regs) {
198 			memcpy(&regs, kdb_current_regs, sizeof(regs));
199 #endif /* CONFIG_KGDB_KDB */
200 		} else {
201 			prepare_frametrace(&regs);
202 		}
203 	}
204 	show_stacktrace(task, &regs);
205 }
206 
207 static void show_code(unsigned int __user *pc)
208 {
209 	long i;
210 	unsigned short __user *pc16 = NULL;
211 
212 	printk("\nCode:");
213 
214 	if ((unsigned long)pc & 1)
215 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
216 	for(i = -3 ; i < 6 ; i++) {
217 		unsigned int insn;
218 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
219 			printk(" (Bad address in epc)\n");
220 			break;
221 		}
222 		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
223 	}
224 }
225 
226 static void __show_regs(const struct pt_regs *regs)
227 {
228 	const int field = 2 * sizeof(unsigned long);
229 	unsigned int cause = regs->cp0_cause;
230 	int i;
231 
232 	show_regs_print_info(KERN_DEFAULT);
233 
234 	/*
235 	 * Saved main processor registers
236 	 */
237 	for (i = 0; i < 32; ) {
238 		if ((i % 4) == 0)
239 			printk("$%2d   :", i);
240 		if (i == 0)
241 			printk(" %0*lx", field, 0UL);
242 		else if (i == 26 || i == 27)
243 			printk(" %*s", field, "");
244 		else
245 			printk(" %0*lx", field, regs->regs[i]);
246 
247 		i++;
248 		if ((i % 4) == 0)
249 			printk("\n");
250 	}
251 
252 #ifdef CONFIG_CPU_HAS_SMARTMIPS
253 	printk("Acx    : %0*lx\n", field, regs->acx);
254 #endif
255 	printk("Hi    : %0*lx\n", field, regs->hi);
256 	printk("Lo    : %0*lx\n", field, regs->lo);
257 
258 	/*
259 	 * Saved cp0 registers
260 	 */
261 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
262 	       (void *) regs->cp0_epc);
263 	printk("    %s\n", print_tainted());
264 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
265 	       (void *) regs->regs[31]);
266 
267 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
268 
269 	if (cpu_has_3kex) {
270 		if (regs->cp0_status & ST0_KUO)
271 			printk("KUo ");
272 		if (regs->cp0_status & ST0_IEO)
273 			printk("IEo ");
274 		if (regs->cp0_status & ST0_KUP)
275 			printk("KUp ");
276 		if (regs->cp0_status & ST0_IEP)
277 			printk("IEp ");
278 		if (regs->cp0_status & ST0_KUC)
279 			printk("KUc ");
280 		if (regs->cp0_status & ST0_IEC)
281 			printk("IEc ");
282 	} else if (cpu_has_4kex) {
283 		if (regs->cp0_status & ST0_KX)
284 			printk("KX ");
285 		if (regs->cp0_status & ST0_SX)
286 			printk("SX ");
287 		if (regs->cp0_status & ST0_UX)
288 			printk("UX ");
289 		switch (regs->cp0_status & ST0_KSU) {
290 		case KSU_USER:
291 			printk("USER ");
292 			break;
293 		case KSU_SUPERVISOR:
294 			printk("SUPERVISOR ");
295 			break;
296 		case KSU_KERNEL:
297 			printk("KERNEL ");
298 			break;
299 		default:
300 			printk("BAD_MODE ");
301 			break;
302 		}
303 		if (regs->cp0_status & ST0_ERL)
304 			printk("ERL ");
305 		if (regs->cp0_status & ST0_EXL)
306 			printk("EXL ");
307 		if (regs->cp0_status & ST0_IE)
308 			printk("IE ");
309 	}
310 	printk("\n");
311 
312 	printk("Cause : %08x\n", cause);
313 
314 	cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
315 	if (1 <= cause && cause <= 5)
316 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
317 
318 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
319 	       cpu_name_string());
320 }
321 
322 /*
323  * FIXME: really the generic show_regs should take a const pointer argument.
324  */
325 void show_regs(struct pt_regs *regs)
326 {
327 	__show_regs((struct pt_regs *)regs);
328 }
329 
330 void show_registers(struct pt_regs *regs)
331 {
332 	const int field = 2 * sizeof(unsigned long);
333 	mm_segment_t old_fs = get_fs();
334 
335 	__show_regs(regs);
336 	print_modules();
337 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
338 	       current->comm, current->pid, current_thread_info(), current,
339 	      field, current_thread_info()->tp_value);
340 	if (cpu_has_userlocal) {
341 		unsigned long tls;
342 
343 		tls = read_c0_userlocal();
344 		if (tls != current_thread_info()->tp_value)
345 			printk("*HwTLS: %0*lx\n", field, tls);
346 	}
347 
348 	if (!user_mode(regs))
349 		/* Necessary for getting the correct stack content */
350 		set_fs(KERNEL_DS);
351 	show_stacktrace(current, regs);
352 	show_code((unsigned int __user *) regs->cp0_epc);
353 	printk("\n");
354 	set_fs(old_fs);
355 }
356 
357 static int regs_to_trapnr(struct pt_regs *regs)
358 {
359 	return (regs->cp0_cause >> 2) & 0x1f;
360 }
361 
362 static DEFINE_RAW_SPINLOCK(die_lock);
363 
364 void __noreturn die(const char *str, struct pt_regs *regs)
365 {
366 	static int die_counter;
367 	int sig = SIGSEGV;
368 #ifdef CONFIG_MIPS_MT_SMTC
369 	unsigned long dvpret;
370 #endif /* CONFIG_MIPS_MT_SMTC */
371 
372 	oops_enter();
373 
374 	if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs),
375 		       SIGSEGV) == NOTIFY_STOP)
376 		sig = 0;
377 
378 	console_verbose();
379 	raw_spin_lock_irq(&die_lock);
380 #ifdef CONFIG_MIPS_MT_SMTC
381 	dvpret = dvpe();
382 #endif /* CONFIG_MIPS_MT_SMTC */
383 	bust_spinlocks(1);
384 #ifdef CONFIG_MIPS_MT_SMTC
385 	mips_mt_regdump(dvpret);
386 #endif /* CONFIG_MIPS_MT_SMTC */
387 
388 	printk("%s[#%d]:\n", str, ++die_counter);
389 	show_registers(regs);
390 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
391 	raw_spin_unlock_irq(&die_lock);
392 
393 	oops_exit();
394 
395 	if (in_interrupt())
396 		panic("Fatal exception in interrupt");
397 
398 	if (panic_on_oops) {
399 		printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
400 		ssleep(5);
401 		panic("Fatal exception");
402 	}
403 
404 	if (regs && kexec_should_crash(current))
405 		crash_kexec(regs);
406 
407 	do_exit(sig);
408 }
409 
410 extern struct exception_table_entry __start___dbe_table[];
411 extern struct exception_table_entry __stop___dbe_table[];
412 
413 __asm__(
414 "	.section	__dbe_table, \"a\"\n"
415 "	.previous			\n");
416 
417 /* Given an address, look for it in the exception tables. */
418 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
419 {
420 	const struct exception_table_entry *e;
421 
422 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
423 	if (!e)
424 		e = search_module_dbetables(addr);
425 	return e;
426 }
427 
428 asmlinkage void do_be(struct pt_regs *regs)
429 {
430 	const int field = 2 * sizeof(unsigned long);
431 	const struct exception_table_entry *fixup = NULL;
432 	int data = regs->cp0_cause & 4;
433 	int action = MIPS_BE_FATAL;
434 	enum ctx_state prev_state;
435 
436 	prev_state = exception_enter();
437 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
438 	if (data && !user_mode(regs))
439 		fixup = search_dbe_tables(exception_epc(regs));
440 
441 	if (fixup)
442 		action = MIPS_BE_FIXUP;
443 
444 	if (board_be_handler)
445 		action = board_be_handler(regs, fixup != NULL);
446 
447 	switch (action) {
448 	case MIPS_BE_DISCARD:
449 		goto out;
450 	case MIPS_BE_FIXUP:
451 		if (fixup) {
452 			regs->cp0_epc = fixup->nextinsn;
453 			goto out;
454 		}
455 		break;
456 	default:
457 		break;
458 	}
459 
460 	/*
461 	 * Assume it would be too dangerous to continue ...
462 	 */
463 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
464 	       data ? "Data" : "Instruction",
465 	       field, regs->cp0_epc, field, regs->regs[31]);
466 	if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs),
467 		       SIGBUS) == NOTIFY_STOP)
468 		goto out;
469 
470 	die_if_kernel("Oops", regs);
471 	force_sig(SIGBUS, current);
472 
473 out:
474 	exception_exit(prev_state);
475 }
476 
477 /*
478  * ll/sc, rdhwr, sync emulation
479  */
480 
481 #define OPCODE 0xfc000000
482 #define BASE   0x03e00000
483 #define RT     0x001f0000
484 #define OFFSET 0x0000ffff
485 #define LL     0xc0000000
486 #define SC     0xe0000000
487 #define SPEC0  0x00000000
488 #define SPEC3  0x7c000000
489 #define RD     0x0000f800
490 #define FUNC   0x0000003f
491 #define SYNC   0x0000000f
492 #define RDHWR  0x0000003b
493 
494 /*  microMIPS definitions   */
495 #define MM_POOL32A_FUNC 0xfc00ffff
496 #define MM_RDHWR        0x00006b3c
497 #define MM_RS           0x001f0000
498 #define MM_RT           0x03e00000
499 
500 /*
501  * The ll_bit is cleared by r*_switch.S
502  */
503 
504 unsigned int ll_bit;
505 struct task_struct *ll_task;
506 
507 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
508 {
509 	unsigned long value, __user *vaddr;
510 	long offset;
511 
512 	/*
513 	 * analyse the ll instruction that just caused a ri exception
514 	 * and put the referenced address to addr.
515 	 */
516 
517 	/* sign extend offset */
518 	offset = opcode & OFFSET;
519 	offset <<= 16;
520 	offset >>= 16;
521 
522 	vaddr = (unsigned long __user *)
523 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
524 
525 	if ((unsigned long)vaddr & 3)
526 		return SIGBUS;
527 	if (get_user(value, vaddr))
528 		return SIGSEGV;
529 
530 	preempt_disable();
531 
532 	if (ll_task == NULL || ll_task == current) {
533 		ll_bit = 1;
534 	} else {
535 		ll_bit = 0;
536 	}
537 	ll_task = current;
538 
539 	preempt_enable();
540 
541 	regs->regs[(opcode & RT) >> 16] = value;
542 
543 	return 0;
544 }
545 
546 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
547 {
548 	unsigned long __user *vaddr;
549 	unsigned long reg;
550 	long offset;
551 
552 	/*
553 	 * analyse the sc instruction that just caused a ri exception
554 	 * and put the referenced address to addr.
555 	 */
556 
557 	/* sign extend offset */
558 	offset = opcode & OFFSET;
559 	offset <<= 16;
560 	offset >>= 16;
561 
562 	vaddr = (unsigned long __user *)
563 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
564 	reg = (opcode & RT) >> 16;
565 
566 	if ((unsigned long)vaddr & 3)
567 		return SIGBUS;
568 
569 	preempt_disable();
570 
571 	if (ll_bit == 0 || ll_task != current) {
572 		regs->regs[reg] = 0;
573 		preempt_enable();
574 		return 0;
575 	}
576 
577 	preempt_enable();
578 
579 	if (put_user(regs->regs[reg], vaddr))
580 		return SIGSEGV;
581 
582 	regs->regs[reg] = 1;
583 
584 	return 0;
585 }
586 
587 /*
588  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
589  * opcodes are supposed to result in coprocessor unusable exceptions if
590  * executed on ll/sc-less processors.  That's the theory.  In practice a
591  * few processors such as NEC's VR4100 throw reserved instruction exceptions
592  * instead, so we're doing the emulation thing in both exception handlers.
593  */
594 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
595 {
596 	if ((opcode & OPCODE) == LL) {
597 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
598 				1, regs, 0);
599 		return simulate_ll(regs, opcode);
600 	}
601 	if ((opcode & OPCODE) == SC) {
602 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
603 				1, regs, 0);
604 		return simulate_sc(regs, opcode);
605 	}
606 
607 	return -1;			/* Must be something else ... */
608 }
609 
610 /*
611  * Simulate trapping 'rdhwr' instructions to provide user accessible
612  * registers not implemented in hardware.
613  */
614 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
615 {
616 	struct thread_info *ti = task_thread_info(current);
617 
618 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
619 			1, regs, 0);
620 	switch (rd) {
621 	case 0:		/* CPU number */
622 		regs->regs[rt] = smp_processor_id();
623 		return 0;
624 	case 1:		/* SYNCI length */
625 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
626 				     current_cpu_data.icache.linesz);
627 		return 0;
628 	case 2:		/* Read count register */
629 		regs->regs[rt] = read_c0_count();
630 		return 0;
631 	case 3:		/* Count register resolution */
632 		switch (current_cpu_type()) {
633 		case CPU_20KC:
634 		case CPU_25KF:
635 			regs->regs[rt] = 1;
636 			break;
637 		default:
638 			regs->regs[rt] = 2;
639 		}
640 		return 0;
641 	case 29:
642 		regs->regs[rt] = ti->tp_value;
643 		return 0;
644 	default:
645 		return -1;
646 	}
647 }
648 
649 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
650 {
651 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
652 		int rd = (opcode & RD) >> 11;
653 		int rt = (opcode & RT) >> 16;
654 
655 		simulate_rdhwr(regs, rd, rt);
656 		return 0;
657 	}
658 
659 	/* Not ours.  */
660 	return -1;
661 }
662 
663 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
664 {
665 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
666 		int rd = (opcode & MM_RS) >> 16;
667 		int rt = (opcode & MM_RT) >> 21;
668 		simulate_rdhwr(regs, rd, rt);
669 		return 0;
670 	}
671 
672 	/* Not ours.  */
673 	return -1;
674 }
675 
676 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
677 {
678 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
679 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
680 				1, regs, 0);
681 		return 0;
682 	}
683 
684 	return -1;			/* Must be something else ... */
685 }
686 
687 asmlinkage void do_ov(struct pt_regs *regs)
688 {
689 	enum ctx_state prev_state;
690 	siginfo_t info;
691 
692 	prev_state = exception_enter();
693 	die_if_kernel("Integer overflow", regs);
694 
695 	info.si_code = FPE_INTOVF;
696 	info.si_signo = SIGFPE;
697 	info.si_errno = 0;
698 	info.si_addr = (void __user *) regs->cp0_epc;
699 	force_sig_info(SIGFPE, &info, current);
700 	exception_exit(prev_state);
701 }
702 
703 int process_fpemu_return(int sig, void __user *fault_addr)
704 {
705 	if (sig == SIGSEGV || sig == SIGBUS) {
706 		struct siginfo si = {0};
707 		si.si_addr = fault_addr;
708 		si.si_signo = sig;
709 		if (sig == SIGSEGV) {
710 			if (find_vma(current->mm, (unsigned long)fault_addr))
711 				si.si_code = SEGV_ACCERR;
712 			else
713 				si.si_code = SEGV_MAPERR;
714 		} else {
715 			si.si_code = BUS_ADRERR;
716 		}
717 		force_sig_info(sig, &si, current);
718 		return 1;
719 	} else if (sig) {
720 		force_sig(sig, current);
721 		return 1;
722 	} else {
723 		return 0;
724 	}
725 }
726 
727 /*
728  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
729  */
730 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
731 {
732 	enum ctx_state prev_state;
733 	siginfo_t info = {0};
734 
735 	prev_state = exception_enter();
736 	if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs),
737 		       SIGFPE) == NOTIFY_STOP)
738 		goto out;
739 	die_if_kernel("FP exception in kernel code", regs);
740 
741 	if (fcr31 & FPU_CSR_UNI_X) {
742 		int sig;
743 		void __user *fault_addr = NULL;
744 
745 		/*
746 		 * Unimplemented operation exception.  If we've got the full
747 		 * software emulator on-board, let's use it...
748 		 *
749 		 * Force FPU to dump state into task/thread context.  We're
750 		 * moving a lot of data here for what is probably a single
751 		 * instruction, but the alternative is to pre-decode the FP
752 		 * register operands before invoking the emulator, which seems
753 		 * a bit extreme for what should be an infrequent event.
754 		 */
755 		/* Ensure 'resume' not overwrite saved fp context again. */
756 		lose_fpu(1);
757 
758 		/* Run the emulator */
759 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
760 					       &fault_addr);
761 
762 		/*
763 		 * We can't allow the emulated instruction to leave any of
764 		 * the cause bit set in $fcr31.
765 		 */
766 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
767 
768 		/* Restore the hardware register state */
769 		own_fpu(1);	/* Using the FPU again.	 */
770 
771 		/* If something went wrong, signal */
772 		process_fpemu_return(sig, fault_addr);
773 
774 		goto out;
775 	} else if (fcr31 & FPU_CSR_INV_X)
776 		info.si_code = FPE_FLTINV;
777 	else if (fcr31 & FPU_CSR_DIV_X)
778 		info.si_code = FPE_FLTDIV;
779 	else if (fcr31 & FPU_CSR_OVF_X)
780 		info.si_code = FPE_FLTOVF;
781 	else if (fcr31 & FPU_CSR_UDF_X)
782 		info.si_code = FPE_FLTUND;
783 	else if (fcr31 & FPU_CSR_INE_X)
784 		info.si_code = FPE_FLTRES;
785 	else
786 		info.si_code = __SI_FAULT;
787 	info.si_signo = SIGFPE;
788 	info.si_errno = 0;
789 	info.si_addr = (void __user *) regs->cp0_epc;
790 	force_sig_info(SIGFPE, &info, current);
791 
792 out:
793 	exception_exit(prev_state);
794 }
795 
796 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
797 	const char *str)
798 {
799 	siginfo_t info;
800 	char b[40];
801 
802 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
803 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
804 		return;
805 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
806 
807 	if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs),
808 		       SIGTRAP) == NOTIFY_STOP)
809 		return;
810 
811 	/*
812 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
813 	 * insns, even for trap and break codes that indicate arithmetic
814 	 * failures.  Weird ...
815 	 * But should we continue the brokenness???  --macro
816 	 */
817 	switch (code) {
818 	case BRK_OVERFLOW:
819 	case BRK_DIVZERO:
820 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
821 		die_if_kernel(b, regs);
822 		if (code == BRK_DIVZERO)
823 			info.si_code = FPE_INTDIV;
824 		else
825 			info.si_code = FPE_INTOVF;
826 		info.si_signo = SIGFPE;
827 		info.si_errno = 0;
828 		info.si_addr = (void __user *) regs->cp0_epc;
829 		force_sig_info(SIGFPE, &info, current);
830 		break;
831 	case BRK_BUG:
832 		die_if_kernel("Kernel bug detected", regs);
833 		force_sig(SIGTRAP, current);
834 		break;
835 	case BRK_MEMU:
836 		/*
837 		 * Address errors may be deliberately induced by the FPU
838 		 * emulator to retake control of the CPU after executing the
839 		 * instruction in the delay slot of an emulated branch.
840 		 *
841 		 * Terminate if exception was recognized as a delay slot return
842 		 * otherwise handle as normal.
843 		 */
844 		if (do_dsemulret(regs))
845 			return;
846 
847 		die_if_kernel("Math emu break/trap", regs);
848 		force_sig(SIGTRAP, current);
849 		break;
850 	default:
851 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
852 		die_if_kernel(b, regs);
853 		force_sig(SIGTRAP, current);
854 	}
855 }
856 
857 asmlinkage void do_bp(struct pt_regs *regs)
858 {
859 	unsigned int opcode, bcode;
860 	enum ctx_state prev_state;
861 	unsigned long epc;
862 	u16 instr[2];
863 
864 	prev_state = exception_enter();
865 	if (get_isa16_mode(regs->cp0_epc)) {
866 		/* Calculate EPC. */
867 		epc = exception_epc(regs);
868 		if (cpu_has_mmips) {
869 			if ((__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc)) ||
870 			    (__get_user(instr[1], (u16 __user *)msk_isa16_mode(epc + 2)))))
871 				goto out_sigsegv;
872 		    opcode = (instr[0] << 16) | instr[1];
873 		} else {
874 		    /* MIPS16e mode */
875 		    if (__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc)))
876 				goto out_sigsegv;
877 		    bcode = (instr[0] >> 6) & 0x3f;
878 		    do_trap_or_bp(regs, bcode, "Break");
879 		    goto out;
880 		}
881 	} else {
882 		if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
883 			goto out_sigsegv;
884 	}
885 
886 	/*
887 	 * There is the ancient bug in the MIPS assemblers that the break
888 	 * code starts left to bit 16 instead to bit 6 in the opcode.
889 	 * Gas is bug-compatible, but not always, grrr...
890 	 * We handle both cases with a simple heuristics.  --macro
891 	 */
892 	bcode = ((opcode >> 6) & ((1 << 20) - 1));
893 	if (bcode >= (1 << 10))
894 		bcode >>= 10;
895 
896 	/*
897 	 * notify the kprobe handlers, if instruction is likely to
898 	 * pertain to them.
899 	 */
900 	switch (bcode) {
901 	case BRK_KPROBE_BP:
902 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
903 			       regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
904 			goto out;
905 		else
906 			break;
907 	case BRK_KPROBE_SSTEPBP:
908 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
909 			       regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
910 			goto out;
911 		else
912 			break;
913 	default:
914 		break;
915 	}
916 
917 	do_trap_or_bp(regs, bcode, "Break");
918 
919 out:
920 	exception_exit(prev_state);
921 	return;
922 
923 out_sigsegv:
924 	force_sig(SIGSEGV, current);
925 	goto out;
926 }
927 
928 asmlinkage void do_tr(struct pt_regs *regs)
929 {
930 	u32 opcode, tcode = 0;
931 	enum ctx_state prev_state;
932 	u16 instr[2];
933 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
934 
935 	prev_state = exception_enter();
936 	if (get_isa16_mode(regs->cp0_epc)) {
937 		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
938 		    __get_user(instr[1], (u16 __user *)(epc + 2)))
939 			goto out_sigsegv;
940 		opcode = (instr[0] << 16) | instr[1];
941 		/* Immediate versions don't provide a code.  */
942 		if (!(opcode & OPCODE))
943 			tcode = (opcode >> 12) & ((1 << 4) - 1);
944 	} else {
945 		if (__get_user(opcode, (u32 __user *)epc))
946 			goto out_sigsegv;
947 		/* Immediate versions don't provide a code.  */
948 		if (!(opcode & OPCODE))
949 			tcode = (opcode >> 6) & ((1 << 10) - 1);
950 	}
951 
952 	do_trap_or_bp(regs, tcode, "Trap");
953 
954 out:
955 	exception_exit(prev_state);
956 	return;
957 
958 out_sigsegv:
959 	force_sig(SIGSEGV, current);
960 	goto out;
961 }
962 
963 asmlinkage void do_ri(struct pt_regs *regs)
964 {
965 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
966 	unsigned long old_epc = regs->cp0_epc;
967 	unsigned long old31 = regs->regs[31];
968 	enum ctx_state prev_state;
969 	unsigned int opcode = 0;
970 	int status = -1;
971 
972 	prev_state = exception_enter();
973 	if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs),
974 		       SIGILL) == NOTIFY_STOP)
975 		goto out;
976 
977 	die_if_kernel("Reserved instruction in kernel code", regs);
978 
979 	if (unlikely(compute_return_epc(regs) < 0))
980 		goto out;
981 
982 	if (get_isa16_mode(regs->cp0_epc)) {
983 		unsigned short mmop[2] = { 0 };
984 
985 		if (unlikely(get_user(mmop[0], epc) < 0))
986 			status = SIGSEGV;
987 		if (unlikely(get_user(mmop[1], epc) < 0))
988 			status = SIGSEGV;
989 		opcode = (mmop[0] << 16) | mmop[1];
990 
991 		if (status < 0)
992 			status = simulate_rdhwr_mm(regs, opcode);
993 	} else {
994 		if (unlikely(get_user(opcode, epc) < 0))
995 			status = SIGSEGV;
996 
997 		if (!cpu_has_llsc && status < 0)
998 			status = simulate_llsc(regs, opcode);
999 
1000 		if (status < 0)
1001 			status = simulate_rdhwr_normal(regs, opcode);
1002 
1003 		if (status < 0)
1004 			status = simulate_sync(regs, opcode);
1005 	}
1006 
1007 	if (status < 0)
1008 		status = SIGILL;
1009 
1010 	if (unlikely(status > 0)) {
1011 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1012 		regs->regs[31] = old31;
1013 		force_sig(status, current);
1014 	}
1015 
1016 out:
1017 	exception_exit(prev_state);
1018 }
1019 
1020 /*
1021  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1022  * emulated more than some threshold number of instructions, force migration to
1023  * a "CPU" that has FP support.
1024  */
1025 static void mt_ase_fp_affinity(void)
1026 {
1027 #ifdef CONFIG_MIPS_MT_FPAFF
1028 	if (mt_fpemul_threshold > 0 &&
1029 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1030 		/*
1031 		 * If there's no FPU present, or if the application has already
1032 		 * restricted the allowed set to exclude any CPUs with FPUs,
1033 		 * we'll skip the procedure.
1034 		 */
1035 		if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
1036 			cpumask_t tmask;
1037 
1038 			current->thread.user_cpus_allowed
1039 				= current->cpus_allowed;
1040 			cpus_and(tmask, current->cpus_allowed,
1041 				mt_fpu_cpumask);
1042 			set_cpus_allowed_ptr(current, &tmask);
1043 			set_thread_flag(TIF_FPUBOUND);
1044 		}
1045 	}
1046 #endif /* CONFIG_MIPS_MT_FPAFF */
1047 }
1048 
1049 /*
1050  * No lock; only written during early bootup by CPU 0.
1051  */
1052 static RAW_NOTIFIER_HEAD(cu2_chain);
1053 
1054 int __ref register_cu2_notifier(struct notifier_block *nb)
1055 {
1056 	return raw_notifier_chain_register(&cu2_chain, nb);
1057 }
1058 
1059 int cu2_notifier_call_chain(unsigned long val, void *v)
1060 {
1061 	return raw_notifier_call_chain(&cu2_chain, val, v);
1062 }
1063 
1064 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1065 	void *data)
1066 {
1067 	struct pt_regs *regs = data;
1068 
1069 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1070 			      "instruction", regs);
1071 	force_sig(SIGILL, current);
1072 
1073 	return NOTIFY_OK;
1074 }
1075 
1076 asmlinkage void do_cpu(struct pt_regs *regs)
1077 {
1078 	enum ctx_state prev_state;
1079 	unsigned int __user *epc;
1080 	unsigned long old_epc, old31;
1081 	unsigned int opcode;
1082 	unsigned int cpid;
1083 	int status;
1084 	unsigned long __maybe_unused flags;
1085 
1086 	prev_state = exception_enter();
1087 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1088 
1089 	if (cpid != 2)
1090 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1091 
1092 	switch (cpid) {
1093 	case 0:
1094 		epc = (unsigned int __user *)exception_epc(regs);
1095 		old_epc = regs->cp0_epc;
1096 		old31 = regs->regs[31];
1097 		opcode = 0;
1098 		status = -1;
1099 
1100 		if (unlikely(compute_return_epc(regs) < 0))
1101 			goto out;
1102 
1103 		if (get_isa16_mode(regs->cp0_epc)) {
1104 			unsigned short mmop[2] = { 0 };
1105 
1106 			if (unlikely(get_user(mmop[0], epc) < 0))
1107 				status = SIGSEGV;
1108 			if (unlikely(get_user(mmop[1], epc) < 0))
1109 				status = SIGSEGV;
1110 			opcode = (mmop[0] << 16) | mmop[1];
1111 
1112 			if (status < 0)
1113 				status = simulate_rdhwr_mm(regs, opcode);
1114 		} else {
1115 			if (unlikely(get_user(opcode, epc) < 0))
1116 				status = SIGSEGV;
1117 
1118 			if (!cpu_has_llsc && status < 0)
1119 				status = simulate_llsc(regs, opcode);
1120 
1121 			if (status < 0)
1122 				status = simulate_rdhwr_normal(regs, opcode);
1123 		}
1124 
1125 		if (status < 0)
1126 			status = SIGILL;
1127 
1128 		if (unlikely(status > 0)) {
1129 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1130 			regs->regs[31] = old31;
1131 			force_sig(status, current);
1132 		}
1133 
1134 		goto out;
1135 
1136 	case 3:
1137 		/*
1138 		 * Old (MIPS I and MIPS II) processors will set this code
1139 		 * for COP1X opcode instructions that replaced the original
1140 		 * COP3 space.	We don't limit COP1 space instructions in
1141 		 * the emulator according to the CPU ISA, so we want to
1142 		 * treat COP1X instructions consistently regardless of which
1143 		 * code the CPU chose.	Therefore we redirect this trap to
1144 		 * the FP emulator too.
1145 		 *
1146 		 * Then some newer FPU-less processors use this code
1147 		 * erroneously too, so they are covered by this choice
1148 		 * as well.
1149 		 */
1150 		if (raw_cpu_has_fpu)
1151 			break;
1152 		/* Fall through.  */
1153 
1154 	case 1:
1155 		if (used_math())	/* Using the FPU again.	 */
1156 			own_fpu(1);
1157 		else {			/* First time FPU user.	 */
1158 			init_fpu();
1159 			set_used_math();
1160 		}
1161 
1162 		if (!raw_cpu_has_fpu) {
1163 			int sig;
1164 			void __user *fault_addr = NULL;
1165 			sig = fpu_emulator_cop1Handler(regs,
1166 						       &current->thread.fpu,
1167 						       0, &fault_addr);
1168 			if (!process_fpemu_return(sig, fault_addr))
1169 				mt_ase_fp_affinity();
1170 		}
1171 
1172 		goto out;
1173 
1174 	case 2:
1175 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1176 		goto out;
1177 	}
1178 
1179 	force_sig(SIGILL, current);
1180 
1181 out:
1182 	exception_exit(prev_state);
1183 }
1184 
1185 asmlinkage void do_mdmx(struct pt_regs *regs)
1186 {
1187 	enum ctx_state prev_state;
1188 
1189 	prev_state = exception_enter();
1190 	force_sig(SIGILL, current);
1191 	exception_exit(prev_state);
1192 }
1193 
1194 /*
1195  * Called with interrupts disabled.
1196  */
1197 asmlinkage void do_watch(struct pt_regs *regs)
1198 {
1199 	enum ctx_state prev_state;
1200 	u32 cause;
1201 
1202 	prev_state = exception_enter();
1203 	/*
1204 	 * Clear WP (bit 22) bit of cause register so we don't loop
1205 	 * forever.
1206 	 */
1207 	cause = read_c0_cause();
1208 	cause &= ~(1 << 22);
1209 	write_c0_cause(cause);
1210 
1211 	/*
1212 	 * If the current thread has the watch registers loaded, save
1213 	 * their values and send SIGTRAP.  Otherwise another thread
1214 	 * left the registers set, clear them and continue.
1215 	 */
1216 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1217 		mips_read_watch_registers();
1218 		local_irq_enable();
1219 		force_sig(SIGTRAP, current);
1220 	} else {
1221 		mips_clear_watch_registers();
1222 		local_irq_enable();
1223 	}
1224 	exception_exit(prev_state);
1225 }
1226 
1227 asmlinkage void do_mcheck(struct pt_regs *regs)
1228 {
1229 	const int field = 2 * sizeof(unsigned long);
1230 	int multi_match = regs->cp0_status & ST0_TS;
1231 	enum ctx_state prev_state;
1232 
1233 	prev_state = exception_enter();
1234 	show_regs(regs);
1235 
1236 	if (multi_match) {
1237 		printk("Index	: %0x\n", read_c0_index());
1238 		printk("Pagemask: %0x\n", read_c0_pagemask());
1239 		printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1240 		printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1241 		printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1242 		printk("\n");
1243 		dump_tlb_all();
1244 	}
1245 
1246 	show_code((unsigned int __user *) regs->cp0_epc);
1247 
1248 	/*
1249 	 * Some chips may have other causes of machine check (e.g. SB1
1250 	 * graduation timer)
1251 	 */
1252 	panic("Caught Machine Check exception - %scaused by multiple "
1253 	      "matching entries in the TLB.",
1254 	      (multi_match) ? "" : "not ");
1255 }
1256 
1257 asmlinkage void do_mt(struct pt_regs *regs)
1258 {
1259 	int subcode;
1260 
1261 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1262 			>> VPECONTROL_EXCPT_SHIFT;
1263 	switch (subcode) {
1264 	case 0:
1265 		printk(KERN_DEBUG "Thread Underflow\n");
1266 		break;
1267 	case 1:
1268 		printk(KERN_DEBUG "Thread Overflow\n");
1269 		break;
1270 	case 2:
1271 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1272 		break;
1273 	case 3:
1274 		printk(KERN_DEBUG "Gating Storage Exception\n");
1275 		break;
1276 	case 4:
1277 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1278 		break;
1279 	case 5:
1280 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1281 		break;
1282 	default:
1283 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1284 			subcode);
1285 		break;
1286 	}
1287 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1288 
1289 	force_sig(SIGILL, current);
1290 }
1291 
1292 
1293 asmlinkage void do_dsp(struct pt_regs *regs)
1294 {
1295 	if (cpu_has_dsp)
1296 		panic("Unexpected DSP exception");
1297 
1298 	force_sig(SIGILL, current);
1299 }
1300 
1301 asmlinkage void do_reserved(struct pt_regs *regs)
1302 {
1303 	/*
1304 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1305 	 * caused by a new unknown cpu type or after another deadly
1306 	 * hard/software error.
1307 	 */
1308 	show_regs(regs);
1309 	panic("Caught reserved exception %ld - should not happen.",
1310 	      (regs->cp0_cause & 0x7f) >> 2);
1311 }
1312 
1313 static int __initdata l1parity = 1;
1314 static int __init nol1parity(char *s)
1315 {
1316 	l1parity = 0;
1317 	return 1;
1318 }
1319 __setup("nol1par", nol1parity);
1320 static int __initdata l2parity = 1;
1321 static int __init nol2parity(char *s)
1322 {
1323 	l2parity = 0;
1324 	return 1;
1325 }
1326 __setup("nol2par", nol2parity);
1327 
1328 /*
1329  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1330  * it different ways.
1331  */
1332 static inline void parity_protection_init(void)
1333 {
1334 	switch (current_cpu_type()) {
1335 	case CPU_24K:
1336 	case CPU_34K:
1337 	case CPU_74K:
1338 	case CPU_1004K:
1339 		{
1340 #define ERRCTL_PE	0x80000000
1341 #define ERRCTL_L2P	0x00800000
1342 			unsigned long errctl;
1343 			unsigned int l1parity_present, l2parity_present;
1344 
1345 			errctl = read_c0_ecc();
1346 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1347 
1348 			/* probe L1 parity support */
1349 			write_c0_ecc(errctl | ERRCTL_PE);
1350 			back_to_back_c0_hazard();
1351 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1352 
1353 			/* probe L2 parity support */
1354 			write_c0_ecc(errctl|ERRCTL_L2P);
1355 			back_to_back_c0_hazard();
1356 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1357 
1358 			if (l1parity_present && l2parity_present) {
1359 				if (l1parity)
1360 					errctl |= ERRCTL_PE;
1361 				if (l1parity ^ l2parity)
1362 					errctl |= ERRCTL_L2P;
1363 			} else if (l1parity_present) {
1364 				if (l1parity)
1365 					errctl |= ERRCTL_PE;
1366 			} else if (l2parity_present) {
1367 				if (l2parity)
1368 					errctl |= ERRCTL_L2P;
1369 			} else {
1370 				/* No parity available */
1371 			}
1372 
1373 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1374 
1375 			write_c0_ecc(errctl);
1376 			back_to_back_c0_hazard();
1377 			errctl = read_c0_ecc();
1378 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1379 
1380 			if (l1parity_present)
1381 				printk(KERN_INFO "Cache parity protection %sabled\n",
1382 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1383 
1384 			if (l2parity_present) {
1385 				if (l1parity_present && l1parity)
1386 					errctl ^= ERRCTL_L2P;
1387 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1388 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1389 			}
1390 		}
1391 		break;
1392 
1393 	case CPU_5KC:
1394 	case CPU_5KE:
1395 	case CPU_LOONGSON1:
1396 		write_c0_ecc(0x80000000);
1397 		back_to_back_c0_hazard();
1398 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1399 		printk(KERN_INFO "Cache parity protection %sabled\n",
1400 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1401 		break;
1402 	case CPU_20KC:
1403 	case CPU_25KF:
1404 		/* Clear the DE bit (bit 16) in the c0_status register. */
1405 		printk(KERN_INFO "Enable cache parity protection for "
1406 		       "MIPS 20KC/25KF CPUs.\n");
1407 		clear_c0_status(ST0_DE);
1408 		break;
1409 	default:
1410 		break;
1411 	}
1412 }
1413 
1414 asmlinkage void cache_parity_error(void)
1415 {
1416 	const int field = 2 * sizeof(unsigned long);
1417 	unsigned int reg_val;
1418 
1419 	/* For the moment, report the problem and hang. */
1420 	printk("Cache error exception:\n");
1421 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1422 	reg_val = read_c0_cacheerr();
1423 	printk("c0_cacheerr == %08x\n", reg_val);
1424 
1425 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1426 	       reg_val & (1<<30) ? "secondary" : "primary",
1427 	       reg_val & (1<<31) ? "data" : "insn");
1428 	printk("Error bits: %s%s%s%s%s%s%s\n",
1429 	       reg_val & (1<<29) ? "ED " : "",
1430 	       reg_val & (1<<28) ? "ET " : "",
1431 	       reg_val & (1<<26) ? "EE " : "",
1432 	       reg_val & (1<<25) ? "EB " : "",
1433 	       reg_val & (1<<24) ? "EI " : "",
1434 	       reg_val & (1<<23) ? "E1 " : "",
1435 	       reg_val & (1<<22) ? "E0 " : "");
1436 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1437 
1438 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1439 	if (reg_val & (1<<22))
1440 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1441 
1442 	if (reg_val & (1<<23))
1443 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1444 #endif
1445 
1446 	panic("Can't handle the cache error!");
1447 }
1448 
1449 /*
1450  * SDBBP EJTAG debug exception handler.
1451  * We skip the instruction and return to the next instruction.
1452  */
1453 void ejtag_exception_handler(struct pt_regs *regs)
1454 {
1455 	const int field = 2 * sizeof(unsigned long);
1456 	unsigned long depc, old_epc, old_ra;
1457 	unsigned int debug;
1458 
1459 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1460 	depc = read_c0_depc();
1461 	debug = read_c0_debug();
1462 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1463 	if (debug & 0x80000000) {
1464 		/*
1465 		 * In branch delay slot.
1466 		 * We cheat a little bit here and use EPC to calculate the
1467 		 * debug return address (DEPC). EPC is restored after the
1468 		 * calculation.
1469 		 */
1470 		old_epc = regs->cp0_epc;
1471 		old_ra = regs->regs[31];
1472 		regs->cp0_epc = depc;
1473 		compute_return_epc(regs);
1474 		depc = regs->cp0_epc;
1475 		regs->cp0_epc = old_epc;
1476 		regs->regs[31] = old_ra;
1477 	} else
1478 		depc += 4;
1479 	write_c0_depc(depc);
1480 
1481 #if 0
1482 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1483 	write_c0_debug(debug | 0x100);
1484 #endif
1485 }
1486 
1487 /*
1488  * NMI exception handler.
1489  * No lock; only written during early bootup by CPU 0.
1490  */
1491 static RAW_NOTIFIER_HEAD(nmi_chain);
1492 
1493 int register_nmi_notifier(struct notifier_block *nb)
1494 {
1495 	return raw_notifier_chain_register(&nmi_chain, nb);
1496 }
1497 
1498 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1499 {
1500 	char str[100];
1501 
1502 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1503 	bust_spinlocks(1);
1504 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1505 		 smp_processor_id(), regs->cp0_epc);
1506 	regs->cp0_epc = read_c0_errorepc();
1507 	die(str, regs);
1508 }
1509 
1510 #define VECTORSPACING 0x100	/* for EI/VI mode */
1511 
1512 unsigned long ebase;
1513 unsigned long exception_handlers[32];
1514 unsigned long vi_handlers[64];
1515 
1516 void __init *set_except_vector(int n, void *addr)
1517 {
1518 	unsigned long handler = (unsigned long) addr;
1519 	unsigned long old_handler;
1520 
1521 #ifdef CONFIG_CPU_MICROMIPS
1522 	/*
1523 	 * Only the TLB handlers are cache aligned with an even
1524 	 * address. All other handlers are on an odd address and
1525 	 * require no modification. Otherwise, MIPS32 mode will
1526 	 * be entered when handling any TLB exceptions. That
1527 	 * would be bad...since we must stay in microMIPS mode.
1528 	 */
1529 	if (!(handler & 0x1))
1530 		handler |= 1;
1531 #endif
1532 	old_handler = xchg(&exception_handlers[n], handler);
1533 
1534 	if (n == 0 && cpu_has_divec) {
1535 #ifdef CONFIG_CPU_MICROMIPS
1536 		unsigned long jump_mask = ~((1 << 27) - 1);
1537 #else
1538 		unsigned long jump_mask = ~((1 << 28) - 1);
1539 #endif
1540 		u32 *buf = (u32 *)(ebase + 0x200);
1541 		unsigned int k0 = 26;
1542 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1543 			uasm_i_j(&buf, handler & ~jump_mask);
1544 			uasm_i_nop(&buf);
1545 		} else {
1546 			UASM_i_LA(&buf, k0, handler);
1547 			uasm_i_jr(&buf, k0);
1548 			uasm_i_nop(&buf);
1549 		}
1550 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1551 	}
1552 	return (void *)old_handler;
1553 }
1554 
1555 static void do_default_vi(void)
1556 {
1557 	show_regs(get_irq_regs());
1558 	panic("Caught unexpected vectored interrupt.");
1559 }
1560 
1561 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1562 {
1563 	unsigned long handler;
1564 	unsigned long old_handler = vi_handlers[n];
1565 	int srssets = current_cpu_data.srsets;
1566 	u16 *h;
1567 	unsigned char *b;
1568 
1569 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1570 
1571 	if (addr == NULL) {
1572 		handler = (unsigned long) do_default_vi;
1573 		srs = 0;
1574 	} else
1575 		handler = (unsigned long) addr;
1576 	vi_handlers[n] = handler;
1577 
1578 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1579 
1580 	if (srs >= srssets)
1581 		panic("Shadow register set %d not supported", srs);
1582 
1583 	if (cpu_has_veic) {
1584 		if (board_bind_eic_interrupt)
1585 			board_bind_eic_interrupt(n, srs);
1586 	} else if (cpu_has_vint) {
1587 		/* SRSMap is only defined if shadow sets are implemented */
1588 		if (srssets > 1)
1589 			change_c0_srsmap(0xf << n*4, srs << n*4);
1590 	}
1591 
1592 	if (srs == 0) {
1593 		/*
1594 		 * If no shadow set is selected then use the default handler
1595 		 * that does normal register saving and standard interrupt exit
1596 		 */
1597 		extern char except_vec_vi, except_vec_vi_lui;
1598 		extern char except_vec_vi_ori, except_vec_vi_end;
1599 		extern char rollback_except_vec_vi;
1600 		char *vec_start = using_rollback_handler() ?
1601 			&rollback_except_vec_vi : &except_vec_vi;
1602 #ifdef CONFIG_MIPS_MT_SMTC
1603 		/*
1604 		 * We need to provide the SMTC vectored interrupt handler
1605 		 * not only with the address of the handler, but with the
1606 		 * Status.IM bit to be masked before going there.
1607 		 */
1608 		extern char except_vec_vi_mori;
1609 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1610 		const int mori_offset = &except_vec_vi_mori - vec_start + 2;
1611 #else
1612 		const int mori_offset = &except_vec_vi_mori - vec_start;
1613 #endif
1614 #endif /* CONFIG_MIPS_MT_SMTC */
1615 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1616 		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1617 		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1618 #else
1619 		const int lui_offset = &except_vec_vi_lui - vec_start;
1620 		const int ori_offset = &except_vec_vi_ori - vec_start;
1621 #endif
1622 		const int handler_len = &except_vec_vi_end - vec_start;
1623 
1624 		if (handler_len > VECTORSPACING) {
1625 			/*
1626 			 * Sigh... panicing won't help as the console
1627 			 * is probably not configured :(
1628 			 */
1629 			panic("VECTORSPACING too small");
1630 		}
1631 
1632 		set_handler(((unsigned long)b - ebase), vec_start,
1633 #ifdef CONFIG_CPU_MICROMIPS
1634 				(handler_len - 1));
1635 #else
1636 				handler_len);
1637 #endif
1638 #ifdef CONFIG_MIPS_MT_SMTC
1639 		BUG_ON(n > 7);	/* Vector index %d exceeds SMTC maximum. */
1640 
1641 		h = (u16 *)(b + mori_offset);
1642 		*h = (0x100 << n);
1643 #endif /* CONFIG_MIPS_MT_SMTC */
1644 		h = (u16 *)(b + lui_offset);
1645 		*h = (handler >> 16) & 0xffff;
1646 		h = (u16 *)(b + ori_offset);
1647 		*h = (handler & 0xffff);
1648 		local_flush_icache_range((unsigned long)b,
1649 					 (unsigned long)(b+handler_len));
1650 	}
1651 	else {
1652 		/*
1653 		 * In other cases jump directly to the interrupt handler. It
1654 		 * is the handler's responsibility to save registers if required
1655 		 * (eg hi/lo) and return from the exception using "eret".
1656 		 */
1657 		u32 insn;
1658 
1659 		h = (u16 *)b;
1660 		/* j handler */
1661 #ifdef CONFIG_CPU_MICROMIPS
1662 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
1663 #else
1664 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
1665 #endif
1666 		h[0] = (insn >> 16) & 0xffff;
1667 		h[1] = insn & 0xffff;
1668 		h[2] = 0;
1669 		h[3] = 0;
1670 		local_flush_icache_range((unsigned long)b,
1671 					 (unsigned long)(b+8));
1672 	}
1673 
1674 	return (void *)old_handler;
1675 }
1676 
1677 void *set_vi_handler(int n, vi_handler_t addr)
1678 {
1679 	return set_vi_srs_handler(n, addr, 0);
1680 }
1681 
1682 extern void tlb_init(void);
1683 
1684 /*
1685  * Timer interrupt
1686  */
1687 int cp0_compare_irq;
1688 EXPORT_SYMBOL_GPL(cp0_compare_irq);
1689 int cp0_compare_irq_shift;
1690 
1691 /*
1692  * Performance counter IRQ or -1 if shared with timer
1693  */
1694 int cp0_perfcount_irq;
1695 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1696 
1697 static int noulri;
1698 
1699 static int __init ulri_disable(char *s)
1700 {
1701 	pr_info("Disabling ulri\n");
1702 	noulri = 1;
1703 
1704 	return 1;
1705 }
1706 __setup("noulri", ulri_disable);
1707 
1708 void per_cpu_trap_init(bool is_boot_cpu)
1709 {
1710 	unsigned int cpu = smp_processor_id();
1711 	unsigned int status_set = ST0_CU0;
1712 	unsigned int hwrena = cpu_hwrena_impl_bits;
1713 #ifdef CONFIG_MIPS_MT_SMTC
1714 	int secondaryTC = 0;
1715 	int bootTC = (cpu == 0);
1716 
1717 	/*
1718 	 * Only do per_cpu_trap_init() for first TC of Each VPE.
1719 	 * Note that this hack assumes that the SMTC init code
1720 	 * assigns TCs consecutively and in ascending order.
1721 	 */
1722 
1723 	if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1724 	    ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1725 		secondaryTC = 1;
1726 #endif /* CONFIG_MIPS_MT_SMTC */
1727 
1728 	/*
1729 	 * Disable coprocessors and select 32-bit or 64-bit addressing
1730 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
1731 	 * flag that some firmware may have left set and the TS bit (for
1732 	 * IP27).  Set XX for ISA IV code to work.
1733 	 */
1734 #ifdef CONFIG_64BIT
1735 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1736 #endif
1737 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
1738 		status_set |= ST0_XX;
1739 	if (cpu_has_dsp)
1740 		status_set |= ST0_MX;
1741 
1742 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1743 			 status_set);
1744 
1745 	if (cpu_has_mips_r2)
1746 		hwrena |= 0x0000000f;
1747 
1748 	if (!noulri && cpu_has_userlocal)
1749 		hwrena |= (1 << 29);
1750 
1751 	if (hwrena)
1752 		write_c0_hwrena(hwrena);
1753 
1754 #ifdef CONFIG_MIPS_MT_SMTC
1755 	if (!secondaryTC) {
1756 #endif /* CONFIG_MIPS_MT_SMTC */
1757 
1758 	if (cpu_has_veic || cpu_has_vint) {
1759 		unsigned long sr = set_c0_status(ST0_BEV);
1760 		write_c0_ebase(ebase);
1761 		write_c0_status(sr);
1762 		/* Setting vector spacing enables EI/VI mode  */
1763 		change_c0_intctl(0x3e0, VECTORSPACING);
1764 	}
1765 	if (cpu_has_divec) {
1766 		if (cpu_has_mipsmt) {
1767 			unsigned int vpflags = dvpe();
1768 			set_c0_cause(CAUSEF_IV);
1769 			evpe(vpflags);
1770 		} else
1771 			set_c0_cause(CAUSEF_IV);
1772 	}
1773 
1774 	/*
1775 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1776 	 *
1777 	 *  o read IntCtl.IPTI to determine the timer interrupt
1778 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
1779 	 */
1780 	if (cpu_has_mips_r2) {
1781 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1782 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1783 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1784 		if (cp0_perfcount_irq == cp0_compare_irq)
1785 			cp0_perfcount_irq = -1;
1786 	} else {
1787 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1788 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
1789 		cp0_perfcount_irq = -1;
1790 	}
1791 
1792 #ifdef CONFIG_MIPS_MT_SMTC
1793 	}
1794 #endif /* CONFIG_MIPS_MT_SMTC */
1795 
1796 	if (!cpu_data[cpu].asid_cache)
1797 		cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1798 
1799 	atomic_inc(&init_mm.mm_count);
1800 	current->active_mm = &init_mm;
1801 	BUG_ON(current->mm);
1802 	enter_lazy_tlb(&init_mm, current);
1803 
1804 #ifdef CONFIG_MIPS_MT_SMTC
1805 	if (bootTC) {
1806 #endif /* CONFIG_MIPS_MT_SMTC */
1807 		/* Boot CPU's cache setup in setup_arch(). */
1808 		if (!is_boot_cpu)
1809 			cpu_cache_init();
1810 		tlb_init();
1811 #ifdef CONFIG_MIPS_MT_SMTC
1812 	} else if (!secondaryTC) {
1813 		/*
1814 		 * First TC in non-boot VPE must do subset of tlb_init()
1815 		 * for MMU countrol registers.
1816 		 */
1817 		write_c0_pagemask(PM_DEFAULT_MASK);
1818 		write_c0_wired(0);
1819 	}
1820 #endif /* CONFIG_MIPS_MT_SMTC */
1821 	TLBMISS_HANDLER_SETUP();
1822 }
1823 
1824 /* Install CPU exception handler */
1825 void set_handler(unsigned long offset, void *addr, unsigned long size)
1826 {
1827 #ifdef CONFIG_CPU_MICROMIPS
1828 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
1829 #else
1830 	memcpy((void *)(ebase + offset), addr, size);
1831 #endif
1832 	local_flush_icache_range(ebase + offset, ebase + offset + size);
1833 }
1834 
1835 static char panic_null_cerr[] =
1836 	"Trying to set NULL cache error exception handler";
1837 
1838 /*
1839  * Install uncached CPU exception handler.
1840  * This is suitable only for the cache error exception which is the only
1841  * exception handler that is being run uncached.
1842  */
1843 void set_uncached_handler(unsigned long offset, void *addr,
1844 	unsigned long size)
1845 {
1846 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
1847 
1848 	if (!addr)
1849 		panic(panic_null_cerr);
1850 
1851 	memcpy((void *)(uncached_ebase + offset), addr, size);
1852 }
1853 
1854 static int __initdata rdhwr_noopt;
1855 static int __init set_rdhwr_noopt(char *str)
1856 {
1857 	rdhwr_noopt = 1;
1858 	return 1;
1859 }
1860 
1861 __setup("rdhwr_noopt", set_rdhwr_noopt);
1862 
1863 void __init trap_init(void)
1864 {
1865 	extern char except_vec3_generic;
1866 	extern char except_vec4;
1867 	extern char except_vec3_r4000;
1868 	unsigned long i;
1869 
1870 	check_wait();
1871 
1872 #if defined(CONFIG_KGDB)
1873 	if (kgdb_early_setup)
1874 		return; /* Already done */
1875 #endif
1876 
1877 	if (cpu_has_veic || cpu_has_vint) {
1878 		unsigned long size = 0x200 + VECTORSPACING*64;
1879 		ebase = (unsigned long)
1880 			__alloc_bootmem(size, 1 << fls(size), 0);
1881 	} else {
1882 #ifdef CONFIG_KVM_GUEST
1883 #define KVM_GUEST_KSEG0     0x40000000
1884         ebase = KVM_GUEST_KSEG0;
1885 #else
1886         ebase = CKSEG0;
1887 #endif
1888 		if (cpu_has_mips_r2)
1889 			ebase += (read_c0_ebase() & 0x3ffff000);
1890 	}
1891 
1892 	if (cpu_has_mmips) {
1893 		unsigned int config3 = read_c0_config3();
1894 
1895 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
1896 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
1897 		else
1898 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
1899 	}
1900 
1901 	if (board_ebase_setup)
1902 		board_ebase_setup();
1903 	per_cpu_trap_init(true);
1904 
1905 	/*
1906 	 * Copy the generic exception handlers to their final destination.
1907 	 * This will be overriden later as suitable for a particular
1908 	 * configuration.
1909 	 */
1910 	set_handler(0x180, &except_vec3_generic, 0x80);
1911 
1912 	/*
1913 	 * Setup default vectors
1914 	 */
1915 	for (i = 0; i <= 31; i++)
1916 		set_except_vector(i, handle_reserved);
1917 
1918 	/*
1919 	 * Copy the EJTAG debug exception vector handler code to it's final
1920 	 * destination.
1921 	 */
1922 	if (cpu_has_ejtag && board_ejtag_handler_setup)
1923 		board_ejtag_handler_setup();
1924 
1925 	/*
1926 	 * Only some CPUs have the watch exceptions.
1927 	 */
1928 	if (cpu_has_watch)
1929 		set_except_vector(23, handle_watch);
1930 
1931 	/*
1932 	 * Initialise interrupt handlers
1933 	 */
1934 	if (cpu_has_veic || cpu_has_vint) {
1935 		int nvec = cpu_has_veic ? 64 : 8;
1936 		for (i = 0; i < nvec; i++)
1937 			set_vi_handler(i, NULL);
1938 	}
1939 	else if (cpu_has_divec)
1940 		set_handler(0x200, &except_vec4, 0x8);
1941 
1942 	/*
1943 	 * Some CPUs can enable/disable for cache parity detection, but does
1944 	 * it different ways.
1945 	 */
1946 	parity_protection_init();
1947 
1948 	/*
1949 	 * The Data Bus Errors / Instruction Bus Errors are signaled
1950 	 * by external hardware.  Therefore these two exceptions
1951 	 * may have board specific handlers.
1952 	 */
1953 	if (board_be_init)
1954 		board_be_init();
1955 
1956 	set_except_vector(0, using_rollback_handler() ? rollback_handle_int
1957 						      : handle_int);
1958 	set_except_vector(1, handle_tlbm);
1959 	set_except_vector(2, handle_tlbl);
1960 	set_except_vector(3, handle_tlbs);
1961 
1962 	set_except_vector(4, handle_adel);
1963 	set_except_vector(5, handle_ades);
1964 
1965 	set_except_vector(6, handle_ibe);
1966 	set_except_vector(7, handle_dbe);
1967 
1968 	set_except_vector(8, handle_sys);
1969 	set_except_vector(9, handle_bp);
1970 	set_except_vector(10, rdhwr_noopt ? handle_ri :
1971 			  (cpu_has_vtag_icache ?
1972 			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1973 	set_except_vector(11, handle_cpu);
1974 	set_except_vector(12, handle_ov);
1975 	set_except_vector(13, handle_tr);
1976 
1977 	if (current_cpu_type() == CPU_R6000 ||
1978 	    current_cpu_type() == CPU_R6000A) {
1979 		/*
1980 		 * The R6000 is the only R-series CPU that features a machine
1981 		 * check exception (similar to the R4000 cache error) and
1982 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
1983 		 * written yet.	 Well, anyway there is no R6000 machine on the
1984 		 * current list of targets for Linux/MIPS.
1985 		 * (Duh, crap, there is someone with a triple R6k machine)
1986 		 */
1987 		//set_except_vector(14, handle_mc);
1988 		//set_except_vector(15, handle_ndc);
1989 	}
1990 
1991 
1992 	if (board_nmi_handler_setup)
1993 		board_nmi_handler_setup();
1994 
1995 	if (cpu_has_fpu && !cpu_has_nofpuex)
1996 		set_except_vector(15, handle_fpe);
1997 
1998 	set_except_vector(22, handle_mdmx);
1999 
2000 	if (cpu_has_mcheck)
2001 		set_except_vector(24, handle_mcheck);
2002 
2003 	if (cpu_has_mipsmt)
2004 		set_except_vector(25, handle_mt);
2005 
2006 	set_except_vector(26, handle_dsp);
2007 
2008 	if (board_cache_error_setup)
2009 		board_cache_error_setup();
2010 
2011 	if (cpu_has_vce)
2012 		/* Special exception: R4[04]00 uses also the divec space. */
2013 		set_handler(0x180, &except_vec3_r4000, 0x100);
2014 	else if (cpu_has_4kex)
2015 		set_handler(0x180, &except_vec3_generic, 0x80);
2016 	else
2017 		set_handler(0x080, &except_vec3_generic, 0x80);
2018 
2019 	local_flush_icache_range(ebase, ebase + 0x400);
2020 
2021 	sort_extable(__start___dbe_table, __stop___dbe_table);
2022 
2023 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2024 }
2025