xref: /openbmc/linux/arch/mips/kernel/traps.c (revision 6aa7de05)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
25 #include <linux/mm.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/bootmem.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
41 
42 #include <asm/addrspace.h>
43 #include <asm/bootinfo.h>
44 #include <asm/branch.h>
45 #include <asm/break.h>
46 #include <asm/cop2.h>
47 #include <asm/cpu.h>
48 #include <asm/cpu-type.h>
49 #include <asm/dsp.h>
50 #include <asm/fpu.h>
51 #include <asm/fpu_emulator.h>
52 #include <asm/idle.h>
53 #include <asm/mips-cps.h>
54 #include <asm/mips-r2-to-r6-emul.h>
55 #include <asm/mipsregs.h>
56 #include <asm/mipsmtregs.h>
57 #include <asm/module.h>
58 #include <asm/msa.h>
59 #include <asm/pgtable.h>
60 #include <asm/ptrace.h>
61 #include <asm/sections.h>
62 #include <asm/siginfo.h>
63 #include <asm/tlbdebug.h>
64 #include <asm/traps.h>
65 #include <linux/uaccess.h>
66 #include <asm/watch.h>
67 #include <asm/mmu_context.h>
68 #include <asm/types.h>
69 #include <asm/stacktrace.h>
70 #include <asm/uasm.h>
71 
72 extern void check_wait(void);
73 extern asmlinkage void rollback_handle_int(void);
74 extern asmlinkage void handle_int(void);
75 extern u32 handle_tlbl[];
76 extern u32 handle_tlbs[];
77 extern u32 handle_tlbm[];
78 extern asmlinkage void handle_adel(void);
79 extern asmlinkage void handle_ades(void);
80 extern asmlinkage void handle_ibe(void);
81 extern asmlinkage void handle_dbe(void);
82 extern asmlinkage void handle_sys(void);
83 extern asmlinkage void handle_bp(void);
84 extern asmlinkage void handle_ri(void);
85 extern asmlinkage void handle_ri_rdhwr_tlbp(void);
86 extern asmlinkage void handle_ri_rdhwr(void);
87 extern asmlinkage void handle_cpu(void);
88 extern asmlinkage void handle_ov(void);
89 extern asmlinkage void handle_tr(void);
90 extern asmlinkage void handle_msa_fpe(void);
91 extern asmlinkage void handle_fpe(void);
92 extern asmlinkage void handle_ftlb(void);
93 extern asmlinkage void handle_msa(void);
94 extern asmlinkage void handle_mdmx(void);
95 extern asmlinkage void handle_watch(void);
96 extern asmlinkage void handle_mt(void);
97 extern asmlinkage void handle_dsp(void);
98 extern asmlinkage void handle_mcheck(void);
99 extern asmlinkage void handle_reserved(void);
100 extern void tlb_do_page_fault_0(void);
101 
102 void (*board_be_init)(void);
103 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
104 void (*board_nmi_handler_setup)(void);
105 void (*board_ejtag_handler_setup)(void);
106 void (*board_bind_eic_interrupt)(int irq, int regset);
107 void (*board_ebase_setup)(void);
108 void(*board_cache_error_setup)(void);
109 
110 static void show_raw_backtrace(unsigned long reg29)
111 {
112 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
113 	unsigned long addr;
114 
115 	printk("Call Trace:");
116 #ifdef CONFIG_KALLSYMS
117 	printk("\n");
118 #endif
119 	while (!kstack_end(sp)) {
120 		unsigned long __user *p =
121 			(unsigned long __user *)(unsigned long)sp++;
122 		if (__get_user(addr, p)) {
123 			printk(" (Bad stack address)");
124 			break;
125 		}
126 		if (__kernel_text_address(addr))
127 			print_ip_sym(addr);
128 	}
129 	printk("\n");
130 }
131 
132 #ifdef CONFIG_KALLSYMS
133 int raw_show_trace;
134 static int __init set_raw_show_trace(char *str)
135 {
136 	raw_show_trace = 1;
137 	return 1;
138 }
139 __setup("raw_show_trace", set_raw_show_trace);
140 #endif
141 
142 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
143 {
144 	unsigned long sp = regs->regs[29];
145 	unsigned long ra = regs->regs[31];
146 	unsigned long pc = regs->cp0_epc;
147 
148 	if (!task)
149 		task = current;
150 
151 	if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
152 		show_raw_backtrace(sp);
153 		return;
154 	}
155 	printk("Call Trace:\n");
156 	do {
157 		print_ip_sym(pc);
158 		pc = unwind_stack(task, &sp, pc, &ra);
159 	} while (pc);
160 	pr_cont("\n");
161 }
162 
163 /*
164  * This routine abuses get_user()/put_user() to reference pointers
165  * with at least a bit of error checking ...
166  */
167 static void show_stacktrace(struct task_struct *task,
168 	const struct pt_regs *regs)
169 {
170 	const int field = 2 * sizeof(unsigned long);
171 	long stackdata;
172 	int i;
173 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
174 
175 	printk("Stack :");
176 	i = 0;
177 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
178 		if (i && ((i % (64 / field)) == 0)) {
179 			pr_cont("\n");
180 			printk("       ");
181 		}
182 		if (i > 39) {
183 			pr_cont(" ...");
184 			break;
185 		}
186 
187 		if (__get_user(stackdata, sp++)) {
188 			pr_cont(" (Bad stack address)");
189 			break;
190 		}
191 
192 		pr_cont(" %0*lx", field, stackdata);
193 		i++;
194 	}
195 	pr_cont("\n");
196 	show_backtrace(task, regs);
197 }
198 
199 void show_stack(struct task_struct *task, unsigned long *sp)
200 {
201 	struct pt_regs regs;
202 	mm_segment_t old_fs = get_fs();
203 
204 	regs.cp0_status = KSU_KERNEL;
205 	if (sp) {
206 		regs.regs[29] = (unsigned long)sp;
207 		regs.regs[31] = 0;
208 		regs.cp0_epc = 0;
209 	} else {
210 		if (task && task != current) {
211 			regs.regs[29] = task->thread.reg29;
212 			regs.regs[31] = 0;
213 			regs.cp0_epc = task->thread.reg31;
214 #ifdef CONFIG_KGDB_KDB
215 		} else if (atomic_read(&kgdb_active) != -1 &&
216 			   kdb_current_regs) {
217 			memcpy(&regs, kdb_current_regs, sizeof(regs));
218 #endif /* CONFIG_KGDB_KDB */
219 		} else {
220 			prepare_frametrace(&regs);
221 		}
222 	}
223 	/*
224 	 * show_stack() deals exclusively with kernel mode, so be sure to access
225 	 * the stack in the kernel (not user) address space.
226 	 */
227 	set_fs(KERNEL_DS);
228 	show_stacktrace(task, &regs);
229 	set_fs(old_fs);
230 }
231 
232 static void show_code(unsigned int __user *pc)
233 {
234 	long i;
235 	unsigned short __user *pc16 = NULL;
236 
237 	printk("Code:");
238 
239 	if ((unsigned long)pc & 1)
240 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
241 	for(i = -3 ; i < 6 ; i++) {
242 		unsigned int insn;
243 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
244 			pr_cont(" (Bad address in epc)\n");
245 			break;
246 		}
247 		pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
248 	}
249 	pr_cont("\n");
250 }
251 
252 static void __show_regs(const struct pt_regs *regs)
253 {
254 	const int field = 2 * sizeof(unsigned long);
255 	unsigned int cause = regs->cp0_cause;
256 	unsigned int exccode;
257 	int i;
258 
259 	show_regs_print_info(KERN_DEFAULT);
260 
261 	/*
262 	 * Saved main processor registers
263 	 */
264 	for (i = 0; i < 32; ) {
265 		if ((i % 4) == 0)
266 			printk("$%2d   :", i);
267 		if (i == 0)
268 			pr_cont(" %0*lx", field, 0UL);
269 		else if (i == 26 || i == 27)
270 			pr_cont(" %*s", field, "");
271 		else
272 			pr_cont(" %0*lx", field, regs->regs[i]);
273 
274 		i++;
275 		if ((i % 4) == 0)
276 			pr_cont("\n");
277 	}
278 
279 #ifdef CONFIG_CPU_HAS_SMARTMIPS
280 	printk("Acx    : %0*lx\n", field, regs->acx);
281 #endif
282 	printk("Hi    : %0*lx\n", field, regs->hi);
283 	printk("Lo    : %0*lx\n", field, regs->lo);
284 
285 	/*
286 	 * Saved cp0 registers
287 	 */
288 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
289 	       (void *) regs->cp0_epc);
290 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
291 	       (void *) regs->regs[31]);
292 
293 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
294 
295 	if (cpu_has_3kex) {
296 		if (regs->cp0_status & ST0_KUO)
297 			pr_cont("KUo ");
298 		if (regs->cp0_status & ST0_IEO)
299 			pr_cont("IEo ");
300 		if (regs->cp0_status & ST0_KUP)
301 			pr_cont("KUp ");
302 		if (regs->cp0_status & ST0_IEP)
303 			pr_cont("IEp ");
304 		if (regs->cp0_status & ST0_KUC)
305 			pr_cont("KUc ");
306 		if (regs->cp0_status & ST0_IEC)
307 			pr_cont("IEc ");
308 	} else if (cpu_has_4kex) {
309 		if (regs->cp0_status & ST0_KX)
310 			pr_cont("KX ");
311 		if (regs->cp0_status & ST0_SX)
312 			pr_cont("SX ");
313 		if (regs->cp0_status & ST0_UX)
314 			pr_cont("UX ");
315 		switch (regs->cp0_status & ST0_KSU) {
316 		case KSU_USER:
317 			pr_cont("USER ");
318 			break;
319 		case KSU_SUPERVISOR:
320 			pr_cont("SUPERVISOR ");
321 			break;
322 		case KSU_KERNEL:
323 			pr_cont("KERNEL ");
324 			break;
325 		default:
326 			pr_cont("BAD_MODE ");
327 			break;
328 		}
329 		if (regs->cp0_status & ST0_ERL)
330 			pr_cont("ERL ");
331 		if (regs->cp0_status & ST0_EXL)
332 			pr_cont("EXL ");
333 		if (regs->cp0_status & ST0_IE)
334 			pr_cont("IE ");
335 	}
336 	pr_cont("\n");
337 
338 	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
339 	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
340 
341 	if (1 <= exccode && exccode <= 5)
342 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
343 
344 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
345 	       cpu_name_string());
346 }
347 
348 /*
349  * FIXME: really the generic show_regs should take a const pointer argument.
350  */
351 void show_regs(struct pt_regs *regs)
352 {
353 	__show_regs((struct pt_regs *)regs);
354 }
355 
356 void show_registers(struct pt_regs *regs)
357 {
358 	const int field = 2 * sizeof(unsigned long);
359 	mm_segment_t old_fs = get_fs();
360 
361 	__show_regs(regs);
362 	print_modules();
363 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
364 	       current->comm, current->pid, current_thread_info(), current,
365 	      field, current_thread_info()->tp_value);
366 	if (cpu_has_userlocal) {
367 		unsigned long tls;
368 
369 		tls = read_c0_userlocal();
370 		if (tls != current_thread_info()->tp_value)
371 			printk("*HwTLS: %0*lx\n", field, tls);
372 	}
373 
374 	if (!user_mode(regs))
375 		/* Necessary for getting the correct stack content */
376 		set_fs(KERNEL_DS);
377 	show_stacktrace(current, regs);
378 	show_code((unsigned int __user *) regs->cp0_epc);
379 	printk("\n");
380 	set_fs(old_fs);
381 }
382 
383 static DEFINE_RAW_SPINLOCK(die_lock);
384 
385 void __noreturn die(const char *str, struct pt_regs *regs)
386 {
387 	static int die_counter;
388 	int sig = SIGSEGV;
389 
390 	oops_enter();
391 
392 	if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
393 		       SIGSEGV) == NOTIFY_STOP)
394 		sig = 0;
395 
396 	console_verbose();
397 	raw_spin_lock_irq(&die_lock);
398 	bust_spinlocks(1);
399 
400 	printk("%s[#%d]:\n", str, ++die_counter);
401 	show_registers(regs);
402 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
403 	raw_spin_unlock_irq(&die_lock);
404 
405 	oops_exit();
406 
407 	if (in_interrupt())
408 		panic("Fatal exception in interrupt");
409 
410 	if (panic_on_oops)
411 		panic("Fatal exception");
412 
413 	if (regs && kexec_should_crash(current))
414 		crash_kexec(regs);
415 
416 	do_exit(sig);
417 }
418 
419 extern struct exception_table_entry __start___dbe_table[];
420 extern struct exception_table_entry __stop___dbe_table[];
421 
422 __asm__(
423 "	.section	__dbe_table, \"a\"\n"
424 "	.previous			\n");
425 
426 /* Given an address, look for it in the exception tables. */
427 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
428 {
429 	const struct exception_table_entry *e;
430 
431 	e = search_extable(__start___dbe_table,
432 			   __stop___dbe_table - __start___dbe_table, addr);
433 	if (!e)
434 		e = search_module_dbetables(addr);
435 	return e;
436 }
437 
438 asmlinkage void do_be(struct pt_regs *regs)
439 {
440 	const int field = 2 * sizeof(unsigned long);
441 	const struct exception_table_entry *fixup = NULL;
442 	int data = regs->cp0_cause & 4;
443 	int action = MIPS_BE_FATAL;
444 	enum ctx_state prev_state;
445 
446 	prev_state = exception_enter();
447 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
448 	if (data && !user_mode(regs))
449 		fixup = search_dbe_tables(exception_epc(regs));
450 
451 	if (fixup)
452 		action = MIPS_BE_FIXUP;
453 
454 	if (board_be_handler)
455 		action = board_be_handler(regs, fixup != NULL);
456 	else
457 		mips_cm_error_report();
458 
459 	switch (action) {
460 	case MIPS_BE_DISCARD:
461 		goto out;
462 	case MIPS_BE_FIXUP:
463 		if (fixup) {
464 			regs->cp0_epc = fixup->nextinsn;
465 			goto out;
466 		}
467 		break;
468 	default:
469 		break;
470 	}
471 
472 	/*
473 	 * Assume it would be too dangerous to continue ...
474 	 */
475 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
476 	       data ? "Data" : "Instruction",
477 	       field, regs->cp0_epc, field, regs->regs[31]);
478 	if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
479 		       SIGBUS) == NOTIFY_STOP)
480 		goto out;
481 
482 	die_if_kernel("Oops", regs);
483 	force_sig(SIGBUS, current);
484 
485 out:
486 	exception_exit(prev_state);
487 }
488 
489 /*
490  * ll/sc, rdhwr, sync emulation
491  */
492 
493 #define OPCODE 0xfc000000
494 #define BASE   0x03e00000
495 #define RT     0x001f0000
496 #define OFFSET 0x0000ffff
497 #define LL     0xc0000000
498 #define SC     0xe0000000
499 #define SPEC0  0x00000000
500 #define SPEC3  0x7c000000
501 #define RD     0x0000f800
502 #define FUNC   0x0000003f
503 #define SYNC   0x0000000f
504 #define RDHWR  0x0000003b
505 
506 /*  microMIPS definitions   */
507 #define MM_POOL32A_FUNC 0xfc00ffff
508 #define MM_RDHWR        0x00006b3c
509 #define MM_RS           0x001f0000
510 #define MM_RT           0x03e00000
511 
512 /*
513  * The ll_bit is cleared by r*_switch.S
514  */
515 
516 unsigned int ll_bit;
517 struct task_struct *ll_task;
518 
519 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
520 {
521 	unsigned long value, __user *vaddr;
522 	long offset;
523 
524 	/*
525 	 * analyse the ll instruction that just caused a ri exception
526 	 * and put the referenced address to addr.
527 	 */
528 
529 	/* sign extend offset */
530 	offset = opcode & OFFSET;
531 	offset <<= 16;
532 	offset >>= 16;
533 
534 	vaddr = (unsigned long __user *)
535 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
536 
537 	if ((unsigned long)vaddr & 3)
538 		return SIGBUS;
539 	if (get_user(value, vaddr))
540 		return SIGSEGV;
541 
542 	preempt_disable();
543 
544 	if (ll_task == NULL || ll_task == current) {
545 		ll_bit = 1;
546 	} else {
547 		ll_bit = 0;
548 	}
549 	ll_task = current;
550 
551 	preempt_enable();
552 
553 	regs->regs[(opcode & RT) >> 16] = value;
554 
555 	return 0;
556 }
557 
558 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
559 {
560 	unsigned long __user *vaddr;
561 	unsigned long reg;
562 	long offset;
563 
564 	/*
565 	 * analyse the sc instruction that just caused a ri exception
566 	 * and put the referenced address to addr.
567 	 */
568 
569 	/* sign extend offset */
570 	offset = opcode & OFFSET;
571 	offset <<= 16;
572 	offset >>= 16;
573 
574 	vaddr = (unsigned long __user *)
575 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
576 	reg = (opcode & RT) >> 16;
577 
578 	if ((unsigned long)vaddr & 3)
579 		return SIGBUS;
580 
581 	preempt_disable();
582 
583 	if (ll_bit == 0 || ll_task != current) {
584 		regs->regs[reg] = 0;
585 		preempt_enable();
586 		return 0;
587 	}
588 
589 	preempt_enable();
590 
591 	if (put_user(regs->regs[reg], vaddr))
592 		return SIGSEGV;
593 
594 	regs->regs[reg] = 1;
595 
596 	return 0;
597 }
598 
599 /*
600  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
601  * opcodes are supposed to result in coprocessor unusable exceptions if
602  * executed on ll/sc-less processors.  That's the theory.  In practice a
603  * few processors such as NEC's VR4100 throw reserved instruction exceptions
604  * instead, so we're doing the emulation thing in both exception handlers.
605  */
606 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
607 {
608 	if ((opcode & OPCODE) == LL) {
609 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
610 				1, regs, 0);
611 		return simulate_ll(regs, opcode);
612 	}
613 	if ((opcode & OPCODE) == SC) {
614 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
615 				1, regs, 0);
616 		return simulate_sc(regs, opcode);
617 	}
618 
619 	return -1;			/* Must be something else ... */
620 }
621 
622 /*
623  * Simulate trapping 'rdhwr' instructions to provide user accessible
624  * registers not implemented in hardware.
625  */
626 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
627 {
628 	struct thread_info *ti = task_thread_info(current);
629 
630 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
631 			1, regs, 0);
632 	switch (rd) {
633 	case MIPS_HWR_CPUNUM:		/* CPU number */
634 		regs->regs[rt] = smp_processor_id();
635 		return 0;
636 	case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
637 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
638 				     current_cpu_data.icache.linesz);
639 		return 0;
640 	case MIPS_HWR_CC:		/* Read count register */
641 		regs->regs[rt] = read_c0_count();
642 		return 0;
643 	case MIPS_HWR_CCRES:		/* Count register resolution */
644 		switch (current_cpu_type()) {
645 		case CPU_20KC:
646 		case CPU_25KF:
647 			regs->regs[rt] = 1;
648 			break;
649 		default:
650 			regs->regs[rt] = 2;
651 		}
652 		return 0;
653 	case MIPS_HWR_ULR:		/* Read UserLocal register */
654 		regs->regs[rt] = ti->tp_value;
655 		return 0;
656 	default:
657 		return -1;
658 	}
659 }
660 
661 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
662 {
663 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
664 		int rd = (opcode & RD) >> 11;
665 		int rt = (opcode & RT) >> 16;
666 
667 		simulate_rdhwr(regs, rd, rt);
668 		return 0;
669 	}
670 
671 	/* Not ours.  */
672 	return -1;
673 }
674 
675 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
676 {
677 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
678 		int rd = (opcode & MM_RS) >> 16;
679 		int rt = (opcode & MM_RT) >> 21;
680 		simulate_rdhwr(regs, rd, rt);
681 		return 0;
682 	}
683 
684 	/* Not ours.  */
685 	return -1;
686 }
687 
688 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
689 {
690 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
691 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
692 				1, regs, 0);
693 		return 0;
694 	}
695 
696 	return -1;			/* Must be something else ... */
697 }
698 
699 asmlinkage void do_ov(struct pt_regs *regs)
700 {
701 	enum ctx_state prev_state;
702 	siginfo_t info = {
703 		.si_signo = SIGFPE,
704 		.si_code = FPE_INTOVF,
705 		.si_addr = (void __user *)regs->cp0_epc,
706 	};
707 
708 	prev_state = exception_enter();
709 	die_if_kernel("Integer overflow", regs);
710 
711 	force_sig_info(SIGFPE, &info, current);
712 	exception_exit(prev_state);
713 }
714 
715 /*
716  * Send SIGFPE according to FCSR Cause bits, which must have already
717  * been masked against Enable bits.  This is impotant as Inexact can
718  * happen together with Overflow or Underflow, and `ptrace' can set
719  * any bits.
720  */
721 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
722 		     struct task_struct *tsk)
723 {
724 	struct siginfo si = { .si_addr = fault_addr, .si_signo = SIGFPE };
725 
726 	if (fcr31 & FPU_CSR_INV_X)
727 		si.si_code = FPE_FLTINV;
728 	else if (fcr31 & FPU_CSR_DIV_X)
729 		si.si_code = FPE_FLTDIV;
730 	else if (fcr31 & FPU_CSR_OVF_X)
731 		si.si_code = FPE_FLTOVF;
732 	else if (fcr31 & FPU_CSR_UDF_X)
733 		si.si_code = FPE_FLTUND;
734 	else if (fcr31 & FPU_CSR_INE_X)
735 		si.si_code = FPE_FLTRES;
736 
737 	force_sig_info(SIGFPE, &si, tsk);
738 }
739 
740 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
741 {
742 	struct siginfo si = { 0 };
743 	struct vm_area_struct *vma;
744 
745 	switch (sig) {
746 	case 0:
747 		return 0;
748 
749 	case SIGFPE:
750 		force_fcr31_sig(fcr31, fault_addr, current);
751 		return 1;
752 
753 	case SIGBUS:
754 		si.si_addr = fault_addr;
755 		si.si_signo = sig;
756 		si.si_code = BUS_ADRERR;
757 		force_sig_info(sig, &si, current);
758 		return 1;
759 
760 	case SIGSEGV:
761 		si.si_addr = fault_addr;
762 		si.si_signo = sig;
763 		down_read(&current->mm->mmap_sem);
764 		vma = find_vma(current->mm, (unsigned long)fault_addr);
765 		if (vma && (vma->vm_start <= (unsigned long)fault_addr))
766 			si.si_code = SEGV_ACCERR;
767 		else
768 			si.si_code = SEGV_MAPERR;
769 		up_read(&current->mm->mmap_sem);
770 		force_sig_info(sig, &si, current);
771 		return 1;
772 
773 	default:
774 		force_sig(sig, current);
775 		return 1;
776 	}
777 }
778 
779 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
780 		       unsigned long old_epc, unsigned long old_ra)
781 {
782 	union mips_instruction inst = { .word = opcode };
783 	void __user *fault_addr;
784 	unsigned long fcr31;
785 	int sig;
786 
787 	/* If it's obviously not an FP instruction, skip it */
788 	switch (inst.i_format.opcode) {
789 	case cop1_op:
790 	case cop1x_op:
791 	case lwc1_op:
792 	case ldc1_op:
793 	case swc1_op:
794 	case sdc1_op:
795 		break;
796 
797 	default:
798 		return -1;
799 	}
800 
801 	/*
802 	 * do_ri skipped over the instruction via compute_return_epc, undo
803 	 * that for the FPU emulator.
804 	 */
805 	regs->cp0_epc = old_epc;
806 	regs->regs[31] = old_ra;
807 
808 	/* Save the FP context to struct thread_struct */
809 	lose_fpu(1);
810 
811 	/* Run the emulator */
812 	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
813 				       &fault_addr);
814 
815 	/*
816 	 * We can't allow the emulated instruction to leave any
817 	 * enabled Cause bits set in $fcr31.
818 	 */
819 	fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
820 	current->thread.fpu.fcr31 &= ~fcr31;
821 
822 	/* Restore the hardware register state */
823 	own_fpu(1);
824 
825 	/* Send a signal if required.  */
826 	process_fpemu_return(sig, fault_addr, fcr31);
827 
828 	return 0;
829 }
830 
831 /*
832  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
833  */
834 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
835 {
836 	enum ctx_state prev_state;
837 	void __user *fault_addr;
838 	int sig;
839 
840 	prev_state = exception_enter();
841 	if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
842 		       SIGFPE) == NOTIFY_STOP)
843 		goto out;
844 
845 	/* Clear FCSR.Cause before enabling interrupts */
846 	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
847 	local_irq_enable();
848 
849 	die_if_kernel("FP exception in kernel code", regs);
850 
851 	if (fcr31 & FPU_CSR_UNI_X) {
852 		/*
853 		 * Unimplemented operation exception.  If we've got the full
854 		 * software emulator on-board, let's use it...
855 		 *
856 		 * Force FPU to dump state into task/thread context.  We're
857 		 * moving a lot of data here for what is probably a single
858 		 * instruction, but the alternative is to pre-decode the FP
859 		 * register operands before invoking the emulator, which seems
860 		 * a bit extreme for what should be an infrequent event.
861 		 */
862 		/* Ensure 'resume' not overwrite saved fp context again. */
863 		lose_fpu(1);
864 
865 		/* Run the emulator */
866 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
867 					       &fault_addr);
868 
869 		/*
870 		 * We can't allow the emulated instruction to leave any
871 		 * enabled Cause bits set in $fcr31.
872 		 */
873 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
874 		current->thread.fpu.fcr31 &= ~fcr31;
875 
876 		/* Restore the hardware register state */
877 		own_fpu(1);	/* Using the FPU again.	 */
878 	} else {
879 		sig = SIGFPE;
880 		fault_addr = (void __user *) regs->cp0_epc;
881 	}
882 
883 	/* Send a signal if required.  */
884 	process_fpemu_return(sig, fault_addr, fcr31);
885 
886 out:
887 	exception_exit(prev_state);
888 }
889 
890 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
891 	const char *str)
892 {
893 	siginfo_t info = { 0 };
894 	char b[40];
895 
896 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
897 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
898 			 SIGTRAP) == NOTIFY_STOP)
899 		return;
900 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
901 
902 	if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
903 		       SIGTRAP) == NOTIFY_STOP)
904 		return;
905 
906 	/*
907 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
908 	 * insns, even for trap and break codes that indicate arithmetic
909 	 * failures.  Weird ...
910 	 * But should we continue the brokenness???  --macro
911 	 */
912 	switch (code) {
913 	case BRK_OVERFLOW:
914 	case BRK_DIVZERO:
915 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
916 		die_if_kernel(b, regs);
917 		if (code == BRK_DIVZERO)
918 			info.si_code = FPE_INTDIV;
919 		else
920 			info.si_code = FPE_INTOVF;
921 		info.si_signo = SIGFPE;
922 		info.si_addr = (void __user *) regs->cp0_epc;
923 		force_sig_info(SIGFPE, &info, current);
924 		break;
925 	case BRK_BUG:
926 		die_if_kernel("Kernel bug detected", regs);
927 		force_sig(SIGTRAP, current);
928 		break;
929 	case BRK_MEMU:
930 		/*
931 		 * This breakpoint code is used by the FPU emulator to retake
932 		 * control of the CPU after executing the instruction from the
933 		 * delay slot of an emulated branch.
934 		 *
935 		 * Terminate if exception was recognized as a delay slot return
936 		 * otherwise handle as normal.
937 		 */
938 		if (do_dsemulret(regs))
939 			return;
940 
941 		die_if_kernel("Math emu break/trap", regs);
942 		force_sig(SIGTRAP, current);
943 		break;
944 	default:
945 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
946 		die_if_kernel(b, regs);
947 		if (si_code) {
948 			info.si_signo = SIGTRAP;
949 			info.si_code = si_code;
950 			force_sig_info(SIGTRAP, &info, current);
951 		} else {
952 			force_sig(SIGTRAP, current);
953 		}
954 	}
955 }
956 
957 asmlinkage void do_bp(struct pt_regs *regs)
958 {
959 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
960 	unsigned int opcode, bcode;
961 	enum ctx_state prev_state;
962 	mm_segment_t seg;
963 
964 	seg = get_fs();
965 	if (!user_mode(regs))
966 		set_fs(KERNEL_DS);
967 
968 	prev_state = exception_enter();
969 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
970 	if (get_isa16_mode(regs->cp0_epc)) {
971 		u16 instr[2];
972 
973 		if (__get_user(instr[0], (u16 __user *)epc))
974 			goto out_sigsegv;
975 
976 		if (!cpu_has_mmips) {
977 			/* MIPS16e mode */
978 			bcode = (instr[0] >> 5) & 0x3f;
979 		} else if (mm_insn_16bit(instr[0])) {
980 			/* 16-bit microMIPS BREAK */
981 			bcode = instr[0] & 0xf;
982 		} else {
983 			/* 32-bit microMIPS BREAK */
984 			if (__get_user(instr[1], (u16 __user *)(epc + 2)))
985 				goto out_sigsegv;
986 			opcode = (instr[0] << 16) | instr[1];
987 			bcode = (opcode >> 6) & ((1 << 20) - 1);
988 		}
989 	} else {
990 		if (__get_user(opcode, (unsigned int __user *)epc))
991 			goto out_sigsegv;
992 		bcode = (opcode >> 6) & ((1 << 20) - 1);
993 	}
994 
995 	/*
996 	 * There is the ancient bug in the MIPS assemblers that the break
997 	 * code starts left to bit 16 instead to bit 6 in the opcode.
998 	 * Gas is bug-compatible, but not always, grrr...
999 	 * We handle both cases with a simple heuristics.  --macro
1000 	 */
1001 	if (bcode >= (1 << 10))
1002 		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1003 
1004 	/*
1005 	 * notify the kprobe handlers, if instruction is likely to
1006 	 * pertain to them.
1007 	 */
1008 	switch (bcode) {
1009 	case BRK_UPROBE:
1010 		if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1011 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1012 			goto out;
1013 		else
1014 			break;
1015 	case BRK_UPROBE_XOL:
1016 		if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1017 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1018 			goto out;
1019 		else
1020 			break;
1021 	case BRK_KPROBE_BP:
1022 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
1023 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1024 			goto out;
1025 		else
1026 			break;
1027 	case BRK_KPROBE_SSTEPBP:
1028 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1029 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1030 			goto out;
1031 		else
1032 			break;
1033 	default:
1034 		break;
1035 	}
1036 
1037 	do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1038 
1039 out:
1040 	set_fs(seg);
1041 	exception_exit(prev_state);
1042 	return;
1043 
1044 out_sigsegv:
1045 	force_sig(SIGSEGV, current);
1046 	goto out;
1047 }
1048 
1049 asmlinkage void do_tr(struct pt_regs *regs)
1050 {
1051 	u32 opcode, tcode = 0;
1052 	enum ctx_state prev_state;
1053 	u16 instr[2];
1054 	mm_segment_t seg;
1055 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1056 
1057 	seg = get_fs();
1058 	if (!user_mode(regs))
1059 		set_fs(get_ds());
1060 
1061 	prev_state = exception_enter();
1062 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1063 	if (get_isa16_mode(regs->cp0_epc)) {
1064 		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1065 		    __get_user(instr[1], (u16 __user *)(epc + 2)))
1066 			goto out_sigsegv;
1067 		opcode = (instr[0] << 16) | instr[1];
1068 		/* Immediate versions don't provide a code.  */
1069 		if (!(opcode & OPCODE))
1070 			tcode = (opcode >> 12) & ((1 << 4) - 1);
1071 	} else {
1072 		if (__get_user(opcode, (u32 __user *)epc))
1073 			goto out_sigsegv;
1074 		/* Immediate versions don't provide a code.  */
1075 		if (!(opcode & OPCODE))
1076 			tcode = (opcode >> 6) & ((1 << 10) - 1);
1077 	}
1078 
1079 	do_trap_or_bp(regs, tcode, 0, "Trap");
1080 
1081 out:
1082 	set_fs(seg);
1083 	exception_exit(prev_state);
1084 	return;
1085 
1086 out_sigsegv:
1087 	force_sig(SIGSEGV, current);
1088 	goto out;
1089 }
1090 
1091 asmlinkage void do_ri(struct pt_regs *regs)
1092 {
1093 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1094 	unsigned long old_epc = regs->cp0_epc;
1095 	unsigned long old31 = regs->regs[31];
1096 	enum ctx_state prev_state;
1097 	unsigned int opcode = 0;
1098 	int status = -1;
1099 
1100 	/*
1101 	 * Avoid any kernel code. Just emulate the R2 instruction
1102 	 * as quickly as possible.
1103 	 */
1104 	if (mipsr2_emulation && cpu_has_mips_r6 &&
1105 	    likely(user_mode(regs)) &&
1106 	    likely(get_user(opcode, epc) >= 0)) {
1107 		unsigned long fcr31 = 0;
1108 
1109 		status = mipsr2_decoder(regs, opcode, &fcr31);
1110 		switch (status) {
1111 		case 0:
1112 		case SIGEMT:
1113 			return;
1114 		case SIGILL:
1115 			goto no_r2_instr;
1116 		default:
1117 			process_fpemu_return(status,
1118 					     &current->thread.cp0_baduaddr,
1119 					     fcr31);
1120 			return;
1121 		}
1122 	}
1123 
1124 no_r2_instr:
1125 
1126 	prev_state = exception_enter();
1127 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1128 
1129 	if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1130 		       SIGILL) == NOTIFY_STOP)
1131 		goto out;
1132 
1133 	die_if_kernel("Reserved instruction in kernel code", regs);
1134 
1135 	if (unlikely(compute_return_epc(regs) < 0))
1136 		goto out;
1137 
1138 	if (!get_isa16_mode(regs->cp0_epc)) {
1139 		if (unlikely(get_user(opcode, epc) < 0))
1140 			status = SIGSEGV;
1141 
1142 		if (!cpu_has_llsc && status < 0)
1143 			status = simulate_llsc(regs, opcode);
1144 
1145 		if (status < 0)
1146 			status = simulate_rdhwr_normal(regs, opcode);
1147 
1148 		if (status < 0)
1149 			status = simulate_sync(regs, opcode);
1150 
1151 		if (status < 0)
1152 			status = simulate_fp(regs, opcode, old_epc, old31);
1153 	} else if (cpu_has_mmips) {
1154 		unsigned short mmop[2] = { 0 };
1155 
1156 		if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1157 			status = SIGSEGV;
1158 		if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1159 			status = SIGSEGV;
1160 		opcode = mmop[0];
1161 		opcode = (opcode << 16) | mmop[1];
1162 
1163 		if (status < 0)
1164 			status = simulate_rdhwr_mm(regs, opcode);
1165 	}
1166 
1167 	if (status < 0)
1168 		status = SIGILL;
1169 
1170 	if (unlikely(status > 0)) {
1171 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1172 		regs->regs[31] = old31;
1173 		force_sig(status, current);
1174 	}
1175 
1176 out:
1177 	exception_exit(prev_state);
1178 }
1179 
1180 /*
1181  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1182  * emulated more than some threshold number of instructions, force migration to
1183  * a "CPU" that has FP support.
1184  */
1185 static void mt_ase_fp_affinity(void)
1186 {
1187 #ifdef CONFIG_MIPS_MT_FPAFF
1188 	if (mt_fpemul_threshold > 0 &&
1189 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1190 		/*
1191 		 * If there's no FPU present, or if the application has already
1192 		 * restricted the allowed set to exclude any CPUs with FPUs,
1193 		 * we'll skip the procedure.
1194 		 */
1195 		if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1196 			cpumask_t tmask;
1197 
1198 			current->thread.user_cpus_allowed
1199 				= current->cpus_allowed;
1200 			cpumask_and(&tmask, &current->cpus_allowed,
1201 				    &mt_fpu_cpumask);
1202 			set_cpus_allowed_ptr(current, &tmask);
1203 			set_thread_flag(TIF_FPUBOUND);
1204 		}
1205 	}
1206 #endif /* CONFIG_MIPS_MT_FPAFF */
1207 }
1208 
1209 /*
1210  * No lock; only written during early bootup by CPU 0.
1211  */
1212 static RAW_NOTIFIER_HEAD(cu2_chain);
1213 
1214 int __ref register_cu2_notifier(struct notifier_block *nb)
1215 {
1216 	return raw_notifier_chain_register(&cu2_chain, nb);
1217 }
1218 
1219 int cu2_notifier_call_chain(unsigned long val, void *v)
1220 {
1221 	return raw_notifier_call_chain(&cu2_chain, val, v);
1222 }
1223 
1224 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1225 	void *data)
1226 {
1227 	struct pt_regs *regs = data;
1228 
1229 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1230 			      "instruction", regs);
1231 	force_sig(SIGILL, current);
1232 
1233 	return NOTIFY_OK;
1234 }
1235 
1236 static int wait_on_fp_mode_switch(atomic_t *p)
1237 {
1238 	/*
1239 	 * The FP mode for this task is currently being switched. That may
1240 	 * involve modifications to the format of this tasks FP context which
1241 	 * make it unsafe to proceed with execution for the moment. Instead,
1242 	 * schedule some other task.
1243 	 */
1244 	schedule();
1245 	return 0;
1246 }
1247 
1248 static int enable_restore_fp_context(int msa)
1249 {
1250 	int err, was_fpu_owner, prior_msa;
1251 
1252 	/*
1253 	 * If an FP mode switch is currently underway, wait for it to
1254 	 * complete before proceeding.
1255 	 */
1256 	wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1257 			 wait_on_fp_mode_switch, TASK_KILLABLE);
1258 
1259 	if (!used_math()) {
1260 		/* First time FP context user. */
1261 		preempt_disable();
1262 		err = init_fpu();
1263 		if (msa && !err) {
1264 			enable_msa();
1265 			init_msa_upper();
1266 			set_thread_flag(TIF_USEDMSA);
1267 			set_thread_flag(TIF_MSA_CTX_LIVE);
1268 		}
1269 		preempt_enable();
1270 		if (!err)
1271 			set_used_math();
1272 		return err;
1273 	}
1274 
1275 	/*
1276 	 * This task has formerly used the FP context.
1277 	 *
1278 	 * If this thread has no live MSA vector context then we can simply
1279 	 * restore the scalar FP context. If it has live MSA vector context
1280 	 * (that is, it has or may have used MSA since last performing a
1281 	 * function call) then we'll need to restore the vector context. This
1282 	 * applies even if we're currently only executing a scalar FP
1283 	 * instruction. This is because if we were to later execute an MSA
1284 	 * instruction then we'd either have to:
1285 	 *
1286 	 *  - Restore the vector context & clobber any registers modified by
1287 	 *    scalar FP instructions between now & then.
1288 	 *
1289 	 * or
1290 	 *
1291 	 *  - Not restore the vector context & lose the most significant bits
1292 	 *    of all vector registers.
1293 	 *
1294 	 * Neither of those options is acceptable. We cannot restore the least
1295 	 * significant bits of the registers now & only restore the most
1296 	 * significant bits later because the most significant bits of any
1297 	 * vector registers whose aliased FP register is modified now will have
1298 	 * been zeroed. We'd have no way to know that when restoring the vector
1299 	 * context & thus may load an outdated value for the most significant
1300 	 * bits of a vector register.
1301 	 */
1302 	if (!msa && !thread_msa_context_live())
1303 		return own_fpu(1);
1304 
1305 	/*
1306 	 * This task is using or has previously used MSA. Thus we require
1307 	 * that Status.FR == 1.
1308 	 */
1309 	preempt_disable();
1310 	was_fpu_owner = is_fpu_owner();
1311 	err = own_fpu_inatomic(0);
1312 	if (err)
1313 		goto out;
1314 
1315 	enable_msa();
1316 	write_msa_csr(current->thread.fpu.msacsr);
1317 	set_thread_flag(TIF_USEDMSA);
1318 
1319 	/*
1320 	 * If this is the first time that the task is using MSA and it has
1321 	 * previously used scalar FP in this time slice then we already nave
1322 	 * FP context which we shouldn't clobber. We do however need to clear
1323 	 * the upper 64b of each vector register so that this task has no
1324 	 * opportunity to see data left behind by another.
1325 	 */
1326 	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1327 	if (!prior_msa && was_fpu_owner) {
1328 		init_msa_upper();
1329 
1330 		goto out;
1331 	}
1332 
1333 	if (!prior_msa) {
1334 		/*
1335 		 * Restore the least significant 64b of each vector register
1336 		 * from the existing scalar FP context.
1337 		 */
1338 		_restore_fp(current);
1339 
1340 		/*
1341 		 * The task has not formerly used MSA, so clear the upper 64b
1342 		 * of each vector register such that it cannot see data left
1343 		 * behind by another task.
1344 		 */
1345 		init_msa_upper();
1346 	} else {
1347 		/* We need to restore the vector context. */
1348 		restore_msa(current);
1349 
1350 		/* Restore the scalar FP control & status register */
1351 		if (!was_fpu_owner)
1352 			write_32bit_cp1_register(CP1_STATUS,
1353 						 current->thread.fpu.fcr31);
1354 	}
1355 
1356 out:
1357 	preempt_enable();
1358 
1359 	return 0;
1360 }
1361 
1362 asmlinkage void do_cpu(struct pt_regs *regs)
1363 {
1364 	enum ctx_state prev_state;
1365 	unsigned int __user *epc;
1366 	unsigned long old_epc, old31;
1367 	void __user *fault_addr;
1368 	unsigned int opcode;
1369 	unsigned long fcr31;
1370 	unsigned int cpid;
1371 	int status, err;
1372 	int sig;
1373 
1374 	prev_state = exception_enter();
1375 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1376 
1377 	if (cpid != 2)
1378 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1379 
1380 	switch (cpid) {
1381 	case 0:
1382 		epc = (unsigned int __user *)exception_epc(regs);
1383 		old_epc = regs->cp0_epc;
1384 		old31 = regs->regs[31];
1385 		opcode = 0;
1386 		status = -1;
1387 
1388 		if (unlikely(compute_return_epc(regs) < 0))
1389 			break;
1390 
1391 		if (!get_isa16_mode(regs->cp0_epc)) {
1392 			if (unlikely(get_user(opcode, epc) < 0))
1393 				status = SIGSEGV;
1394 
1395 			if (!cpu_has_llsc && status < 0)
1396 				status = simulate_llsc(regs, opcode);
1397 		}
1398 
1399 		if (status < 0)
1400 			status = SIGILL;
1401 
1402 		if (unlikely(status > 0)) {
1403 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1404 			regs->regs[31] = old31;
1405 			force_sig(status, current);
1406 		}
1407 
1408 		break;
1409 
1410 	case 3:
1411 		/*
1412 		 * The COP3 opcode space and consequently the CP0.Status.CU3
1413 		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1414 		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1415 		 * up the space has been reused for COP1X instructions, that
1416 		 * are enabled by the CP0.Status.CU1 bit and consequently
1417 		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1418 		 * exceptions.  Some FPU-less processors that implement one
1419 		 * of these ISAs however use this code erroneously for COP1X
1420 		 * instructions.  Therefore we redirect this trap to the FP
1421 		 * emulator too.
1422 		 */
1423 		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1424 			force_sig(SIGILL, current);
1425 			break;
1426 		}
1427 		/* Fall through.  */
1428 
1429 	case 1:
1430 		err = enable_restore_fp_context(0);
1431 
1432 		if (raw_cpu_has_fpu && !err)
1433 			break;
1434 
1435 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1436 					       &fault_addr);
1437 
1438 		/*
1439 		 * We can't allow the emulated instruction to leave
1440 		 * any enabled Cause bits set in $fcr31.
1441 		 */
1442 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1443 		current->thread.fpu.fcr31 &= ~fcr31;
1444 
1445 		/* Send a signal if required.  */
1446 		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1447 			mt_ase_fp_affinity();
1448 
1449 		break;
1450 
1451 	case 2:
1452 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1453 		break;
1454 	}
1455 
1456 	exception_exit(prev_state);
1457 }
1458 
1459 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1460 {
1461 	enum ctx_state prev_state;
1462 
1463 	prev_state = exception_enter();
1464 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1465 	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1466 		       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1467 		goto out;
1468 
1469 	/* Clear MSACSR.Cause before enabling interrupts */
1470 	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1471 	local_irq_enable();
1472 
1473 	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1474 	force_sig(SIGFPE, current);
1475 out:
1476 	exception_exit(prev_state);
1477 }
1478 
1479 asmlinkage void do_msa(struct pt_regs *regs)
1480 {
1481 	enum ctx_state prev_state;
1482 	int err;
1483 
1484 	prev_state = exception_enter();
1485 
1486 	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1487 		force_sig(SIGILL, current);
1488 		goto out;
1489 	}
1490 
1491 	die_if_kernel("do_msa invoked from kernel context!", regs);
1492 
1493 	err = enable_restore_fp_context(1);
1494 	if (err)
1495 		force_sig(SIGILL, current);
1496 out:
1497 	exception_exit(prev_state);
1498 }
1499 
1500 asmlinkage void do_mdmx(struct pt_regs *regs)
1501 {
1502 	enum ctx_state prev_state;
1503 
1504 	prev_state = exception_enter();
1505 	force_sig(SIGILL, current);
1506 	exception_exit(prev_state);
1507 }
1508 
1509 /*
1510  * Called with interrupts disabled.
1511  */
1512 asmlinkage void do_watch(struct pt_regs *regs)
1513 {
1514 	siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT };
1515 	enum ctx_state prev_state;
1516 
1517 	prev_state = exception_enter();
1518 	/*
1519 	 * Clear WP (bit 22) bit of cause register so we don't loop
1520 	 * forever.
1521 	 */
1522 	clear_c0_cause(CAUSEF_WP);
1523 
1524 	/*
1525 	 * If the current thread has the watch registers loaded, save
1526 	 * their values and send SIGTRAP.  Otherwise another thread
1527 	 * left the registers set, clear them and continue.
1528 	 */
1529 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1530 		mips_read_watch_registers();
1531 		local_irq_enable();
1532 		force_sig_info(SIGTRAP, &info, current);
1533 	} else {
1534 		mips_clear_watch_registers();
1535 		local_irq_enable();
1536 	}
1537 	exception_exit(prev_state);
1538 }
1539 
1540 asmlinkage void do_mcheck(struct pt_regs *regs)
1541 {
1542 	int multi_match = regs->cp0_status & ST0_TS;
1543 	enum ctx_state prev_state;
1544 	mm_segment_t old_fs = get_fs();
1545 
1546 	prev_state = exception_enter();
1547 	show_regs(regs);
1548 
1549 	if (multi_match) {
1550 		dump_tlb_regs();
1551 		pr_info("\n");
1552 		dump_tlb_all();
1553 	}
1554 
1555 	if (!user_mode(regs))
1556 		set_fs(KERNEL_DS);
1557 
1558 	show_code((unsigned int __user *) regs->cp0_epc);
1559 
1560 	set_fs(old_fs);
1561 
1562 	/*
1563 	 * Some chips may have other causes of machine check (e.g. SB1
1564 	 * graduation timer)
1565 	 */
1566 	panic("Caught Machine Check exception - %scaused by multiple "
1567 	      "matching entries in the TLB.",
1568 	      (multi_match) ? "" : "not ");
1569 }
1570 
1571 asmlinkage void do_mt(struct pt_regs *regs)
1572 {
1573 	int subcode;
1574 
1575 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1576 			>> VPECONTROL_EXCPT_SHIFT;
1577 	switch (subcode) {
1578 	case 0:
1579 		printk(KERN_DEBUG "Thread Underflow\n");
1580 		break;
1581 	case 1:
1582 		printk(KERN_DEBUG "Thread Overflow\n");
1583 		break;
1584 	case 2:
1585 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1586 		break;
1587 	case 3:
1588 		printk(KERN_DEBUG "Gating Storage Exception\n");
1589 		break;
1590 	case 4:
1591 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1592 		break;
1593 	case 5:
1594 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1595 		break;
1596 	default:
1597 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1598 			subcode);
1599 		break;
1600 	}
1601 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1602 
1603 	force_sig(SIGILL, current);
1604 }
1605 
1606 
1607 asmlinkage void do_dsp(struct pt_regs *regs)
1608 {
1609 	if (cpu_has_dsp)
1610 		panic("Unexpected DSP exception");
1611 
1612 	force_sig(SIGILL, current);
1613 }
1614 
1615 asmlinkage void do_reserved(struct pt_regs *regs)
1616 {
1617 	/*
1618 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1619 	 * caused by a new unknown cpu type or after another deadly
1620 	 * hard/software error.
1621 	 */
1622 	show_regs(regs);
1623 	panic("Caught reserved exception %ld - should not happen.",
1624 	      (regs->cp0_cause & 0x7f) >> 2);
1625 }
1626 
1627 static int __initdata l1parity = 1;
1628 static int __init nol1parity(char *s)
1629 {
1630 	l1parity = 0;
1631 	return 1;
1632 }
1633 __setup("nol1par", nol1parity);
1634 static int __initdata l2parity = 1;
1635 static int __init nol2parity(char *s)
1636 {
1637 	l2parity = 0;
1638 	return 1;
1639 }
1640 __setup("nol2par", nol2parity);
1641 
1642 /*
1643  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1644  * it different ways.
1645  */
1646 static inline void parity_protection_init(void)
1647 {
1648 #define ERRCTL_PE	0x80000000
1649 #define ERRCTL_L2P	0x00800000
1650 
1651 	if (mips_cm_revision() >= CM_REV_CM3) {
1652 		ulong gcr_ectl, cp0_ectl;
1653 
1654 		/*
1655 		 * With CM3 systems we need to ensure that the L1 & L2
1656 		 * parity enables are set to the same value, since this
1657 		 * is presumed by the hardware engineers.
1658 		 *
1659 		 * If the user disabled either of L1 or L2 ECC checking,
1660 		 * disable both.
1661 		 */
1662 		l1parity &= l2parity;
1663 		l2parity &= l1parity;
1664 
1665 		/* Probe L1 ECC support */
1666 		cp0_ectl = read_c0_ecc();
1667 		write_c0_ecc(cp0_ectl | ERRCTL_PE);
1668 		back_to_back_c0_hazard();
1669 		cp0_ectl = read_c0_ecc();
1670 
1671 		/* Probe L2 ECC support */
1672 		gcr_ectl = read_gcr_err_control();
1673 
1674 		if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1675 		    !(cp0_ectl & ERRCTL_PE)) {
1676 			/*
1677 			 * One of L1 or L2 ECC checking isn't supported,
1678 			 * so we cannot enable either.
1679 			 */
1680 			l1parity = l2parity = 0;
1681 		}
1682 
1683 		/* Configure L1 ECC checking */
1684 		if (l1parity)
1685 			cp0_ectl |= ERRCTL_PE;
1686 		else
1687 			cp0_ectl &= ~ERRCTL_PE;
1688 		write_c0_ecc(cp0_ectl);
1689 		back_to_back_c0_hazard();
1690 		WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1691 
1692 		/* Configure L2 ECC checking */
1693 		if (l2parity)
1694 			gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1695 		else
1696 			gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1697 		write_gcr_err_control(gcr_ectl);
1698 		gcr_ectl = read_gcr_err_control();
1699 		gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1700 		WARN_ON(!!gcr_ectl != l2parity);
1701 
1702 		pr_info("Cache parity protection %sabled\n",
1703 			l1parity ? "en" : "dis");
1704 		return;
1705 	}
1706 
1707 	switch (current_cpu_type()) {
1708 	case CPU_24K:
1709 	case CPU_34K:
1710 	case CPU_74K:
1711 	case CPU_1004K:
1712 	case CPU_1074K:
1713 	case CPU_INTERAPTIV:
1714 	case CPU_PROAPTIV:
1715 	case CPU_P5600:
1716 	case CPU_QEMU_GENERIC:
1717 	case CPU_P6600:
1718 		{
1719 			unsigned long errctl;
1720 			unsigned int l1parity_present, l2parity_present;
1721 
1722 			errctl = read_c0_ecc();
1723 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1724 
1725 			/* probe L1 parity support */
1726 			write_c0_ecc(errctl | ERRCTL_PE);
1727 			back_to_back_c0_hazard();
1728 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1729 
1730 			/* probe L2 parity support */
1731 			write_c0_ecc(errctl|ERRCTL_L2P);
1732 			back_to_back_c0_hazard();
1733 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1734 
1735 			if (l1parity_present && l2parity_present) {
1736 				if (l1parity)
1737 					errctl |= ERRCTL_PE;
1738 				if (l1parity ^ l2parity)
1739 					errctl |= ERRCTL_L2P;
1740 			} else if (l1parity_present) {
1741 				if (l1parity)
1742 					errctl |= ERRCTL_PE;
1743 			} else if (l2parity_present) {
1744 				if (l2parity)
1745 					errctl |= ERRCTL_L2P;
1746 			} else {
1747 				/* No parity available */
1748 			}
1749 
1750 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1751 
1752 			write_c0_ecc(errctl);
1753 			back_to_back_c0_hazard();
1754 			errctl = read_c0_ecc();
1755 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1756 
1757 			if (l1parity_present)
1758 				printk(KERN_INFO "Cache parity protection %sabled\n",
1759 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1760 
1761 			if (l2parity_present) {
1762 				if (l1parity_present && l1parity)
1763 					errctl ^= ERRCTL_L2P;
1764 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1765 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1766 			}
1767 		}
1768 		break;
1769 
1770 	case CPU_5KC:
1771 	case CPU_5KE:
1772 	case CPU_LOONGSON1:
1773 		write_c0_ecc(0x80000000);
1774 		back_to_back_c0_hazard();
1775 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1776 		printk(KERN_INFO "Cache parity protection %sabled\n",
1777 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1778 		break;
1779 	case CPU_20KC:
1780 	case CPU_25KF:
1781 		/* Clear the DE bit (bit 16) in the c0_status register. */
1782 		printk(KERN_INFO "Enable cache parity protection for "
1783 		       "MIPS 20KC/25KF CPUs.\n");
1784 		clear_c0_status(ST0_DE);
1785 		break;
1786 	default:
1787 		break;
1788 	}
1789 }
1790 
1791 asmlinkage void cache_parity_error(void)
1792 {
1793 	const int field = 2 * sizeof(unsigned long);
1794 	unsigned int reg_val;
1795 
1796 	/* For the moment, report the problem and hang. */
1797 	printk("Cache error exception:\n");
1798 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1799 	reg_val = read_c0_cacheerr();
1800 	printk("c0_cacheerr == %08x\n", reg_val);
1801 
1802 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1803 	       reg_val & (1<<30) ? "secondary" : "primary",
1804 	       reg_val & (1<<31) ? "data" : "insn");
1805 	if ((cpu_has_mips_r2_r6) &&
1806 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1807 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1808 			reg_val & (1<<29) ? "ED " : "",
1809 			reg_val & (1<<28) ? "ET " : "",
1810 			reg_val & (1<<27) ? "ES " : "",
1811 			reg_val & (1<<26) ? "EE " : "",
1812 			reg_val & (1<<25) ? "EB " : "",
1813 			reg_val & (1<<24) ? "EI " : "",
1814 			reg_val & (1<<23) ? "E1 " : "",
1815 			reg_val & (1<<22) ? "E0 " : "");
1816 	} else {
1817 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1818 			reg_val & (1<<29) ? "ED " : "",
1819 			reg_val & (1<<28) ? "ET " : "",
1820 			reg_val & (1<<26) ? "EE " : "",
1821 			reg_val & (1<<25) ? "EB " : "",
1822 			reg_val & (1<<24) ? "EI " : "",
1823 			reg_val & (1<<23) ? "E1 " : "",
1824 			reg_val & (1<<22) ? "E0 " : "");
1825 	}
1826 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1827 
1828 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1829 	if (reg_val & (1<<22))
1830 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1831 
1832 	if (reg_val & (1<<23))
1833 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1834 #endif
1835 
1836 	panic("Can't handle the cache error!");
1837 }
1838 
1839 asmlinkage void do_ftlb(void)
1840 {
1841 	const int field = 2 * sizeof(unsigned long);
1842 	unsigned int reg_val;
1843 
1844 	/* For the moment, report the problem and hang. */
1845 	if ((cpu_has_mips_r2_r6) &&
1846 	    (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1847 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1848 		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1849 		       read_c0_ecc());
1850 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1851 		reg_val = read_c0_cacheerr();
1852 		pr_err("c0_cacheerr == %08x\n", reg_val);
1853 
1854 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1855 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1856 		} else {
1857 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1858 			       reg_val & (1<<30) ? "secondary" : "primary",
1859 			       reg_val & (1<<31) ? "data" : "insn");
1860 		}
1861 	} else {
1862 		pr_err("FTLB error exception\n");
1863 	}
1864 	/* Just print the cacheerr bits for now */
1865 	cache_parity_error();
1866 }
1867 
1868 /*
1869  * SDBBP EJTAG debug exception handler.
1870  * We skip the instruction and return to the next instruction.
1871  */
1872 void ejtag_exception_handler(struct pt_regs *regs)
1873 {
1874 	const int field = 2 * sizeof(unsigned long);
1875 	unsigned long depc, old_epc, old_ra;
1876 	unsigned int debug;
1877 
1878 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1879 	depc = read_c0_depc();
1880 	debug = read_c0_debug();
1881 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1882 	if (debug & 0x80000000) {
1883 		/*
1884 		 * In branch delay slot.
1885 		 * We cheat a little bit here and use EPC to calculate the
1886 		 * debug return address (DEPC). EPC is restored after the
1887 		 * calculation.
1888 		 */
1889 		old_epc = regs->cp0_epc;
1890 		old_ra = regs->regs[31];
1891 		regs->cp0_epc = depc;
1892 		compute_return_epc(regs);
1893 		depc = regs->cp0_epc;
1894 		regs->cp0_epc = old_epc;
1895 		regs->regs[31] = old_ra;
1896 	} else
1897 		depc += 4;
1898 	write_c0_depc(depc);
1899 
1900 #if 0
1901 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1902 	write_c0_debug(debug | 0x100);
1903 #endif
1904 }
1905 
1906 /*
1907  * NMI exception handler.
1908  * No lock; only written during early bootup by CPU 0.
1909  */
1910 static RAW_NOTIFIER_HEAD(nmi_chain);
1911 
1912 int register_nmi_notifier(struct notifier_block *nb)
1913 {
1914 	return raw_notifier_chain_register(&nmi_chain, nb);
1915 }
1916 
1917 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1918 {
1919 	char str[100];
1920 
1921 	nmi_enter();
1922 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1923 	bust_spinlocks(1);
1924 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1925 		 smp_processor_id(), regs->cp0_epc);
1926 	regs->cp0_epc = read_c0_errorepc();
1927 	die(str, regs);
1928 	nmi_exit();
1929 }
1930 
1931 #define VECTORSPACING 0x100	/* for EI/VI mode */
1932 
1933 unsigned long ebase;
1934 EXPORT_SYMBOL_GPL(ebase);
1935 unsigned long exception_handlers[32];
1936 unsigned long vi_handlers[64];
1937 
1938 void __init *set_except_vector(int n, void *addr)
1939 {
1940 	unsigned long handler = (unsigned long) addr;
1941 	unsigned long old_handler;
1942 
1943 #ifdef CONFIG_CPU_MICROMIPS
1944 	/*
1945 	 * Only the TLB handlers are cache aligned with an even
1946 	 * address. All other handlers are on an odd address and
1947 	 * require no modification. Otherwise, MIPS32 mode will
1948 	 * be entered when handling any TLB exceptions. That
1949 	 * would be bad...since we must stay in microMIPS mode.
1950 	 */
1951 	if (!(handler & 0x1))
1952 		handler |= 1;
1953 #endif
1954 	old_handler = xchg(&exception_handlers[n], handler);
1955 
1956 	if (n == 0 && cpu_has_divec) {
1957 #ifdef CONFIG_CPU_MICROMIPS
1958 		unsigned long jump_mask = ~((1 << 27) - 1);
1959 #else
1960 		unsigned long jump_mask = ~((1 << 28) - 1);
1961 #endif
1962 		u32 *buf = (u32 *)(ebase + 0x200);
1963 		unsigned int k0 = 26;
1964 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1965 			uasm_i_j(&buf, handler & ~jump_mask);
1966 			uasm_i_nop(&buf);
1967 		} else {
1968 			UASM_i_LA(&buf, k0, handler);
1969 			uasm_i_jr(&buf, k0);
1970 			uasm_i_nop(&buf);
1971 		}
1972 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1973 	}
1974 	return (void *)old_handler;
1975 }
1976 
1977 static void do_default_vi(void)
1978 {
1979 	show_regs(get_irq_regs());
1980 	panic("Caught unexpected vectored interrupt.");
1981 }
1982 
1983 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1984 {
1985 	unsigned long handler;
1986 	unsigned long old_handler = vi_handlers[n];
1987 	int srssets = current_cpu_data.srsets;
1988 	u16 *h;
1989 	unsigned char *b;
1990 
1991 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1992 
1993 	if (addr == NULL) {
1994 		handler = (unsigned long) do_default_vi;
1995 		srs = 0;
1996 	} else
1997 		handler = (unsigned long) addr;
1998 	vi_handlers[n] = handler;
1999 
2000 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2001 
2002 	if (srs >= srssets)
2003 		panic("Shadow register set %d not supported", srs);
2004 
2005 	if (cpu_has_veic) {
2006 		if (board_bind_eic_interrupt)
2007 			board_bind_eic_interrupt(n, srs);
2008 	} else if (cpu_has_vint) {
2009 		/* SRSMap is only defined if shadow sets are implemented */
2010 		if (srssets > 1)
2011 			change_c0_srsmap(0xf << n*4, srs << n*4);
2012 	}
2013 
2014 	if (srs == 0) {
2015 		/*
2016 		 * If no shadow set is selected then use the default handler
2017 		 * that does normal register saving and standard interrupt exit
2018 		 */
2019 		extern char except_vec_vi, except_vec_vi_lui;
2020 		extern char except_vec_vi_ori, except_vec_vi_end;
2021 		extern char rollback_except_vec_vi;
2022 		char *vec_start = using_rollback_handler() ?
2023 			&rollback_except_vec_vi : &except_vec_vi;
2024 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2025 		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2026 		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2027 #else
2028 		const int lui_offset = &except_vec_vi_lui - vec_start;
2029 		const int ori_offset = &except_vec_vi_ori - vec_start;
2030 #endif
2031 		const int handler_len = &except_vec_vi_end - vec_start;
2032 
2033 		if (handler_len > VECTORSPACING) {
2034 			/*
2035 			 * Sigh... panicing won't help as the console
2036 			 * is probably not configured :(
2037 			 */
2038 			panic("VECTORSPACING too small");
2039 		}
2040 
2041 		set_handler(((unsigned long)b - ebase), vec_start,
2042 #ifdef CONFIG_CPU_MICROMIPS
2043 				(handler_len - 1));
2044 #else
2045 				handler_len);
2046 #endif
2047 		h = (u16 *)(b + lui_offset);
2048 		*h = (handler >> 16) & 0xffff;
2049 		h = (u16 *)(b + ori_offset);
2050 		*h = (handler & 0xffff);
2051 		local_flush_icache_range((unsigned long)b,
2052 					 (unsigned long)(b+handler_len));
2053 	}
2054 	else {
2055 		/*
2056 		 * In other cases jump directly to the interrupt handler. It
2057 		 * is the handler's responsibility to save registers if required
2058 		 * (eg hi/lo) and return from the exception using "eret".
2059 		 */
2060 		u32 insn;
2061 
2062 		h = (u16 *)b;
2063 		/* j handler */
2064 #ifdef CONFIG_CPU_MICROMIPS
2065 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2066 #else
2067 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2068 #endif
2069 		h[0] = (insn >> 16) & 0xffff;
2070 		h[1] = insn & 0xffff;
2071 		h[2] = 0;
2072 		h[3] = 0;
2073 		local_flush_icache_range((unsigned long)b,
2074 					 (unsigned long)(b+8));
2075 	}
2076 
2077 	return (void *)old_handler;
2078 }
2079 
2080 void *set_vi_handler(int n, vi_handler_t addr)
2081 {
2082 	return set_vi_srs_handler(n, addr, 0);
2083 }
2084 
2085 extern void tlb_init(void);
2086 
2087 /*
2088  * Timer interrupt
2089  */
2090 int cp0_compare_irq;
2091 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2092 int cp0_compare_irq_shift;
2093 
2094 /*
2095  * Performance counter IRQ or -1 if shared with timer
2096  */
2097 int cp0_perfcount_irq;
2098 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2099 
2100 /*
2101  * Fast debug channel IRQ or -1 if not present
2102  */
2103 int cp0_fdc_irq;
2104 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2105 
2106 static int noulri;
2107 
2108 static int __init ulri_disable(char *s)
2109 {
2110 	pr_info("Disabling ulri\n");
2111 	noulri = 1;
2112 
2113 	return 1;
2114 }
2115 __setup("noulri", ulri_disable);
2116 
2117 /* configure STATUS register */
2118 static void configure_status(void)
2119 {
2120 	/*
2121 	 * Disable coprocessors and select 32-bit or 64-bit addressing
2122 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2123 	 * flag that some firmware may have left set and the TS bit (for
2124 	 * IP27).  Set XX for ISA IV code to work.
2125 	 */
2126 	unsigned int status_set = ST0_CU0;
2127 #ifdef CONFIG_64BIT
2128 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2129 #endif
2130 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2131 		status_set |= ST0_XX;
2132 	if (cpu_has_dsp)
2133 		status_set |= ST0_MX;
2134 
2135 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2136 			 status_set);
2137 }
2138 
2139 unsigned int hwrena;
2140 EXPORT_SYMBOL_GPL(hwrena);
2141 
2142 /* configure HWRENA register */
2143 static void configure_hwrena(void)
2144 {
2145 	hwrena = cpu_hwrena_impl_bits;
2146 
2147 	if (cpu_has_mips_r2_r6)
2148 		hwrena |= MIPS_HWRENA_CPUNUM |
2149 			  MIPS_HWRENA_SYNCISTEP |
2150 			  MIPS_HWRENA_CC |
2151 			  MIPS_HWRENA_CCRES;
2152 
2153 	if (!noulri && cpu_has_userlocal)
2154 		hwrena |= MIPS_HWRENA_ULR;
2155 
2156 	if (hwrena)
2157 		write_c0_hwrena(hwrena);
2158 }
2159 
2160 static void configure_exception_vector(void)
2161 {
2162 	if (cpu_has_veic || cpu_has_vint) {
2163 		unsigned long sr = set_c0_status(ST0_BEV);
2164 		/* If available, use WG to set top bits of EBASE */
2165 		if (cpu_has_ebase_wg) {
2166 #ifdef CONFIG_64BIT
2167 			write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2168 #else
2169 			write_c0_ebase(ebase | MIPS_EBASE_WG);
2170 #endif
2171 		}
2172 		write_c0_ebase(ebase);
2173 		write_c0_status(sr);
2174 		/* Setting vector spacing enables EI/VI mode  */
2175 		change_c0_intctl(0x3e0, VECTORSPACING);
2176 	}
2177 	if (cpu_has_divec) {
2178 		if (cpu_has_mipsmt) {
2179 			unsigned int vpflags = dvpe();
2180 			set_c0_cause(CAUSEF_IV);
2181 			evpe(vpflags);
2182 		} else
2183 			set_c0_cause(CAUSEF_IV);
2184 	}
2185 }
2186 
2187 void per_cpu_trap_init(bool is_boot_cpu)
2188 {
2189 	unsigned int cpu = smp_processor_id();
2190 
2191 	configure_status();
2192 	configure_hwrena();
2193 
2194 	configure_exception_vector();
2195 
2196 	/*
2197 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2198 	 *
2199 	 *  o read IntCtl.IPTI to determine the timer interrupt
2200 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2201 	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2202 	 */
2203 	if (cpu_has_mips_r2_r6) {
2204 		/*
2205 		 * We shouldn't trust a secondary core has a sane EBASE register
2206 		 * so use the one calculated by the boot CPU.
2207 		 */
2208 		if (!is_boot_cpu) {
2209 			/* If available, use WG to set top bits of EBASE */
2210 			if (cpu_has_ebase_wg) {
2211 #ifdef CONFIG_64BIT
2212 				write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2213 #else
2214 				write_c0_ebase(ebase | MIPS_EBASE_WG);
2215 #endif
2216 			}
2217 			write_c0_ebase(ebase);
2218 		}
2219 
2220 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2221 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2222 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2223 		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2224 		if (!cp0_fdc_irq)
2225 			cp0_fdc_irq = -1;
2226 
2227 	} else {
2228 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2229 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2230 		cp0_perfcount_irq = -1;
2231 		cp0_fdc_irq = -1;
2232 	}
2233 
2234 	if (!cpu_data[cpu].asid_cache)
2235 		cpu_data[cpu].asid_cache = asid_first_version(cpu);
2236 
2237 	mmgrab(&init_mm);
2238 	current->active_mm = &init_mm;
2239 	BUG_ON(current->mm);
2240 	enter_lazy_tlb(&init_mm, current);
2241 
2242 	/* Boot CPU's cache setup in setup_arch(). */
2243 	if (!is_boot_cpu)
2244 		cpu_cache_init();
2245 	tlb_init();
2246 	TLBMISS_HANDLER_SETUP();
2247 }
2248 
2249 /* Install CPU exception handler */
2250 void set_handler(unsigned long offset, void *addr, unsigned long size)
2251 {
2252 #ifdef CONFIG_CPU_MICROMIPS
2253 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2254 #else
2255 	memcpy((void *)(ebase + offset), addr, size);
2256 #endif
2257 	local_flush_icache_range(ebase + offset, ebase + offset + size);
2258 }
2259 
2260 static const char panic_null_cerr[] =
2261 	"Trying to set NULL cache error exception handler\n";
2262 
2263 /*
2264  * Install uncached CPU exception handler.
2265  * This is suitable only for the cache error exception which is the only
2266  * exception handler that is being run uncached.
2267  */
2268 void set_uncached_handler(unsigned long offset, void *addr,
2269 	unsigned long size)
2270 {
2271 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2272 
2273 	if (!addr)
2274 		panic(panic_null_cerr);
2275 
2276 	memcpy((void *)(uncached_ebase + offset), addr, size);
2277 }
2278 
2279 static int __initdata rdhwr_noopt;
2280 static int __init set_rdhwr_noopt(char *str)
2281 {
2282 	rdhwr_noopt = 1;
2283 	return 1;
2284 }
2285 
2286 __setup("rdhwr_noopt", set_rdhwr_noopt);
2287 
2288 void __init trap_init(void)
2289 {
2290 	extern char except_vec3_generic;
2291 	extern char except_vec4;
2292 	extern char except_vec3_r4000;
2293 	unsigned long i;
2294 
2295 	check_wait();
2296 
2297 	if (cpu_has_veic || cpu_has_vint) {
2298 		unsigned long size = 0x200 + VECTORSPACING*64;
2299 		phys_addr_t ebase_pa;
2300 
2301 		ebase = (unsigned long)
2302 			__alloc_bootmem(size, 1 << fls(size), 0);
2303 
2304 		/*
2305 		 * Try to ensure ebase resides in KSeg0 if possible.
2306 		 *
2307 		 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2308 		 * hitting a poorly defined exception base for Cache Errors.
2309 		 * The allocation is likely to be in the low 512MB of physical,
2310 		 * in which case we should be able to convert to KSeg0.
2311 		 *
2312 		 * EVA is special though as it allows segments to be rearranged
2313 		 * and to become uncached during cache error handling.
2314 		 */
2315 		ebase_pa = __pa(ebase);
2316 		if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2317 			ebase = CKSEG0ADDR(ebase_pa);
2318 	} else {
2319 		ebase = CAC_BASE;
2320 
2321 		if (cpu_has_mips_r2_r6) {
2322 			if (cpu_has_ebase_wg) {
2323 #ifdef CONFIG_64BIT
2324 				ebase = (read_c0_ebase_64() & ~0xfff);
2325 #else
2326 				ebase = (read_c0_ebase() & ~0xfff);
2327 #endif
2328 			} else {
2329 				ebase += (read_c0_ebase() & 0x3ffff000);
2330 			}
2331 		}
2332 	}
2333 
2334 	if (cpu_has_mmips) {
2335 		unsigned int config3 = read_c0_config3();
2336 
2337 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2338 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2339 		else
2340 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2341 	}
2342 
2343 	if (board_ebase_setup)
2344 		board_ebase_setup();
2345 	per_cpu_trap_init(true);
2346 
2347 	/*
2348 	 * Copy the generic exception handlers to their final destination.
2349 	 * This will be overridden later as suitable for a particular
2350 	 * configuration.
2351 	 */
2352 	set_handler(0x180, &except_vec3_generic, 0x80);
2353 
2354 	/*
2355 	 * Setup default vectors
2356 	 */
2357 	for (i = 0; i <= 31; i++)
2358 		set_except_vector(i, handle_reserved);
2359 
2360 	/*
2361 	 * Copy the EJTAG debug exception vector handler code to it's final
2362 	 * destination.
2363 	 */
2364 	if (cpu_has_ejtag && board_ejtag_handler_setup)
2365 		board_ejtag_handler_setup();
2366 
2367 	/*
2368 	 * Only some CPUs have the watch exceptions.
2369 	 */
2370 	if (cpu_has_watch)
2371 		set_except_vector(EXCCODE_WATCH, handle_watch);
2372 
2373 	/*
2374 	 * Initialise interrupt handlers
2375 	 */
2376 	if (cpu_has_veic || cpu_has_vint) {
2377 		int nvec = cpu_has_veic ? 64 : 8;
2378 		for (i = 0; i < nvec; i++)
2379 			set_vi_handler(i, NULL);
2380 	}
2381 	else if (cpu_has_divec)
2382 		set_handler(0x200, &except_vec4, 0x8);
2383 
2384 	/*
2385 	 * Some CPUs can enable/disable for cache parity detection, but does
2386 	 * it different ways.
2387 	 */
2388 	parity_protection_init();
2389 
2390 	/*
2391 	 * The Data Bus Errors / Instruction Bus Errors are signaled
2392 	 * by external hardware.  Therefore these two exceptions
2393 	 * may have board specific handlers.
2394 	 */
2395 	if (board_be_init)
2396 		board_be_init();
2397 
2398 	set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2399 					rollback_handle_int : handle_int);
2400 	set_except_vector(EXCCODE_MOD, handle_tlbm);
2401 	set_except_vector(EXCCODE_TLBL, handle_tlbl);
2402 	set_except_vector(EXCCODE_TLBS, handle_tlbs);
2403 
2404 	set_except_vector(EXCCODE_ADEL, handle_adel);
2405 	set_except_vector(EXCCODE_ADES, handle_ades);
2406 
2407 	set_except_vector(EXCCODE_IBE, handle_ibe);
2408 	set_except_vector(EXCCODE_DBE, handle_dbe);
2409 
2410 	set_except_vector(EXCCODE_SYS, handle_sys);
2411 	set_except_vector(EXCCODE_BP, handle_bp);
2412 
2413 	if (rdhwr_noopt)
2414 		set_except_vector(EXCCODE_RI, handle_ri);
2415 	else {
2416 		if (cpu_has_vtag_icache)
2417 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2418 		else if (current_cpu_type() == CPU_LOONGSON3)
2419 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2420 		else
2421 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2422 	}
2423 
2424 	set_except_vector(EXCCODE_CPU, handle_cpu);
2425 	set_except_vector(EXCCODE_OV, handle_ov);
2426 	set_except_vector(EXCCODE_TR, handle_tr);
2427 	set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2428 
2429 	if (board_nmi_handler_setup)
2430 		board_nmi_handler_setup();
2431 
2432 	if (cpu_has_fpu && !cpu_has_nofpuex)
2433 		set_except_vector(EXCCODE_FPE, handle_fpe);
2434 
2435 	set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2436 
2437 	if (cpu_has_rixiex) {
2438 		set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2439 		set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2440 	}
2441 
2442 	set_except_vector(EXCCODE_MSADIS, handle_msa);
2443 	set_except_vector(EXCCODE_MDMX, handle_mdmx);
2444 
2445 	if (cpu_has_mcheck)
2446 		set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2447 
2448 	if (cpu_has_mipsmt)
2449 		set_except_vector(EXCCODE_THREAD, handle_mt);
2450 
2451 	set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2452 
2453 	if (board_cache_error_setup)
2454 		board_cache_error_setup();
2455 
2456 	if (cpu_has_vce)
2457 		/* Special exception: R4[04]00 uses also the divec space. */
2458 		set_handler(0x180, &except_vec3_r4000, 0x100);
2459 	else if (cpu_has_4kex)
2460 		set_handler(0x180, &except_vec3_generic, 0x80);
2461 	else
2462 		set_handler(0x080, &except_vec3_generic, 0x80);
2463 
2464 	local_flush_icache_range(ebase, ebase + 0x400);
2465 
2466 	sort_extable(__start___dbe_table, __stop___dbe_table);
2467 
2468 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2469 }
2470 
2471 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2472 			    void *v)
2473 {
2474 	switch (cmd) {
2475 	case CPU_PM_ENTER_FAILED:
2476 	case CPU_PM_EXIT:
2477 		configure_status();
2478 		configure_hwrena();
2479 		configure_exception_vector();
2480 
2481 		/* Restore register with CPU number for TLB handlers */
2482 		TLBMISS_HANDLER_RESTORE();
2483 
2484 		break;
2485 	}
2486 
2487 	return NOTIFY_OK;
2488 }
2489 
2490 static struct notifier_block trap_pm_notifier_block = {
2491 	.notifier_call = trap_pm_notifier,
2492 };
2493 
2494 static int __init trap_pm_init(void)
2495 {
2496 	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2497 }
2498 arch_initcall(trap_pm_init);
2499