1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle 7 * Copyright (C) 1995, 1996 Paul M. Antoine 8 * Copyright (C) 1998 Ulf Carlsson 9 * Copyright (C) 1999 Silicon Graphics, Inc. 10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki 12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved. 13 */ 14 #include <linux/bug.h> 15 #include <linux/compiler.h> 16 #include <linux/context_tracking.h> 17 #include <linux/kexec.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/mm.h> 22 #include <linux/sched.h> 23 #include <linux/smp.h> 24 #include <linux/spinlock.h> 25 #include <linux/kallsyms.h> 26 #include <linux/bootmem.h> 27 #include <linux/interrupt.h> 28 #include <linux/ptrace.h> 29 #include <linux/kgdb.h> 30 #include <linux/kdebug.h> 31 #include <linux/kprobes.h> 32 #include <linux/notifier.h> 33 #include <linux/kdb.h> 34 #include <linux/irq.h> 35 #include <linux/perf_event.h> 36 37 #include <asm/bootinfo.h> 38 #include <asm/branch.h> 39 #include <asm/break.h> 40 #include <asm/cop2.h> 41 #include <asm/cpu.h> 42 #include <asm/cpu-type.h> 43 #include <asm/dsp.h> 44 #include <asm/fpu.h> 45 #include <asm/fpu_emulator.h> 46 #include <asm/idle.h> 47 #include <asm/mipsregs.h> 48 #include <asm/mipsmtregs.h> 49 #include <asm/module.h> 50 #include <asm/pgtable.h> 51 #include <asm/ptrace.h> 52 #include <asm/sections.h> 53 #include <asm/tlbdebug.h> 54 #include <asm/traps.h> 55 #include <asm/uaccess.h> 56 #include <asm/watch.h> 57 #include <asm/mmu_context.h> 58 #include <asm/types.h> 59 #include <asm/stacktrace.h> 60 #include <asm/uasm.h> 61 62 extern void check_wait(void); 63 extern asmlinkage void rollback_handle_int(void); 64 extern asmlinkage void handle_int(void); 65 extern u32 handle_tlbl[]; 66 extern u32 handle_tlbs[]; 67 extern u32 handle_tlbm[]; 68 extern asmlinkage void handle_adel(void); 69 extern asmlinkage void handle_ades(void); 70 extern asmlinkage void handle_ibe(void); 71 extern asmlinkage void handle_dbe(void); 72 extern asmlinkage void handle_sys(void); 73 extern asmlinkage void handle_bp(void); 74 extern asmlinkage void handle_ri(void); 75 extern asmlinkage void handle_ri_rdhwr_vivt(void); 76 extern asmlinkage void handle_ri_rdhwr(void); 77 extern asmlinkage void handle_cpu(void); 78 extern asmlinkage void handle_ov(void); 79 extern asmlinkage void handle_tr(void); 80 extern asmlinkage void handle_fpe(void); 81 extern asmlinkage void handle_mdmx(void); 82 extern asmlinkage void handle_watch(void); 83 extern asmlinkage void handle_mt(void); 84 extern asmlinkage void handle_dsp(void); 85 extern asmlinkage void handle_mcheck(void); 86 extern asmlinkage void handle_reserved(void); 87 88 void (*board_be_init)(void); 89 int (*board_be_handler)(struct pt_regs *regs, int is_fixup); 90 void (*board_nmi_handler_setup)(void); 91 void (*board_ejtag_handler_setup)(void); 92 void (*board_bind_eic_interrupt)(int irq, int regset); 93 void (*board_ebase_setup)(void); 94 void(*board_cache_error_setup)(void); 95 96 static void show_raw_backtrace(unsigned long reg29) 97 { 98 unsigned long *sp = (unsigned long *)(reg29 & ~3); 99 unsigned long addr; 100 101 printk("Call Trace:"); 102 #ifdef CONFIG_KALLSYMS 103 printk("\n"); 104 #endif 105 while (!kstack_end(sp)) { 106 unsigned long __user *p = 107 (unsigned long __user *)(unsigned long)sp++; 108 if (__get_user(addr, p)) { 109 printk(" (Bad stack address)"); 110 break; 111 } 112 if (__kernel_text_address(addr)) 113 print_ip_sym(addr); 114 } 115 printk("\n"); 116 } 117 118 #ifdef CONFIG_KALLSYMS 119 int raw_show_trace; 120 static int __init set_raw_show_trace(char *str) 121 { 122 raw_show_trace = 1; 123 return 1; 124 } 125 __setup("raw_show_trace", set_raw_show_trace); 126 #endif 127 128 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs) 129 { 130 unsigned long sp = regs->regs[29]; 131 unsigned long ra = regs->regs[31]; 132 unsigned long pc = regs->cp0_epc; 133 134 if (!task) 135 task = current; 136 137 if (raw_show_trace || !__kernel_text_address(pc)) { 138 show_raw_backtrace(sp); 139 return; 140 } 141 printk("Call Trace:\n"); 142 do { 143 print_ip_sym(pc); 144 pc = unwind_stack(task, &sp, pc, &ra); 145 } while (pc); 146 printk("\n"); 147 } 148 149 /* 150 * This routine abuses get_user()/put_user() to reference pointers 151 * with at least a bit of error checking ... 152 */ 153 static void show_stacktrace(struct task_struct *task, 154 const struct pt_regs *regs) 155 { 156 const int field = 2 * sizeof(unsigned long); 157 long stackdata; 158 int i; 159 unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; 160 161 printk("Stack :"); 162 i = 0; 163 while ((unsigned long) sp & (PAGE_SIZE - 1)) { 164 if (i && ((i % (64 / field)) == 0)) 165 printk("\n "); 166 if (i > 39) { 167 printk(" ..."); 168 break; 169 } 170 171 if (__get_user(stackdata, sp++)) { 172 printk(" (Bad stack address)"); 173 break; 174 } 175 176 printk(" %0*lx", field, stackdata); 177 i++; 178 } 179 printk("\n"); 180 show_backtrace(task, regs); 181 } 182 183 void show_stack(struct task_struct *task, unsigned long *sp) 184 { 185 struct pt_regs regs; 186 if (sp) { 187 regs.regs[29] = (unsigned long)sp; 188 regs.regs[31] = 0; 189 regs.cp0_epc = 0; 190 } else { 191 if (task && task != current) { 192 regs.regs[29] = task->thread.reg29; 193 regs.regs[31] = 0; 194 regs.cp0_epc = task->thread.reg31; 195 #ifdef CONFIG_KGDB_KDB 196 } else if (atomic_read(&kgdb_active) != -1 && 197 kdb_current_regs) { 198 memcpy(®s, kdb_current_regs, sizeof(regs)); 199 #endif /* CONFIG_KGDB_KDB */ 200 } else { 201 prepare_frametrace(®s); 202 } 203 } 204 show_stacktrace(task, ®s); 205 } 206 207 static void show_code(unsigned int __user *pc) 208 { 209 long i; 210 unsigned short __user *pc16 = NULL; 211 212 printk("\nCode:"); 213 214 if ((unsigned long)pc & 1) 215 pc16 = (unsigned short __user *)((unsigned long)pc & ~1); 216 for(i = -3 ; i < 6 ; i++) { 217 unsigned int insn; 218 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { 219 printk(" (Bad address in epc)\n"); 220 break; 221 } 222 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); 223 } 224 } 225 226 static void __show_regs(const struct pt_regs *regs) 227 { 228 const int field = 2 * sizeof(unsigned long); 229 unsigned int cause = regs->cp0_cause; 230 int i; 231 232 show_regs_print_info(KERN_DEFAULT); 233 234 /* 235 * Saved main processor registers 236 */ 237 for (i = 0; i < 32; ) { 238 if ((i % 4) == 0) 239 printk("$%2d :", i); 240 if (i == 0) 241 printk(" %0*lx", field, 0UL); 242 else if (i == 26 || i == 27) 243 printk(" %*s", field, ""); 244 else 245 printk(" %0*lx", field, regs->regs[i]); 246 247 i++; 248 if ((i % 4) == 0) 249 printk("\n"); 250 } 251 252 #ifdef CONFIG_CPU_HAS_SMARTMIPS 253 printk("Acx : %0*lx\n", field, regs->acx); 254 #endif 255 printk("Hi : %0*lx\n", field, regs->hi); 256 printk("Lo : %0*lx\n", field, regs->lo); 257 258 /* 259 * Saved cp0 registers 260 */ 261 printk("epc : %0*lx %pS\n", field, regs->cp0_epc, 262 (void *) regs->cp0_epc); 263 printk(" %s\n", print_tainted()); 264 printk("ra : %0*lx %pS\n", field, regs->regs[31], 265 (void *) regs->regs[31]); 266 267 printk("Status: %08x ", (uint32_t) regs->cp0_status); 268 269 if (cpu_has_3kex) { 270 if (regs->cp0_status & ST0_KUO) 271 printk("KUo "); 272 if (regs->cp0_status & ST0_IEO) 273 printk("IEo "); 274 if (regs->cp0_status & ST0_KUP) 275 printk("KUp "); 276 if (regs->cp0_status & ST0_IEP) 277 printk("IEp "); 278 if (regs->cp0_status & ST0_KUC) 279 printk("KUc "); 280 if (regs->cp0_status & ST0_IEC) 281 printk("IEc "); 282 } else if (cpu_has_4kex) { 283 if (regs->cp0_status & ST0_KX) 284 printk("KX "); 285 if (regs->cp0_status & ST0_SX) 286 printk("SX "); 287 if (regs->cp0_status & ST0_UX) 288 printk("UX "); 289 switch (regs->cp0_status & ST0_KSU) { 290 case KSU_USER: 291 printk("USER "); 292 break; 293 case KSU_SUPERVISOR: 294 printk("SUPERVISOR "); 295 break; 296 case KSU_KERNEL: 297 printk("KERNEL "); 298 break; 299 default: 300 printk("BAD_MODE "); 301 break; 302 } 303 if (regs->cp0_status & ST0_ERL) 304 printk("ERL "); 305 if (regs->cp0_status & ST0_EXL) 306 printk("EXL "); 307 if (regs->cp0_status & ST0_IE) 308 printk("IE "); 309 } 310 printk("\n"); 311 312 printk("Cause : %08x\n", cause); 313 314 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; 315 if (1 <= cause && cause <= 5) 316 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); 317 318 printk("PrId : %08x (%s)\n", read_c0_prid(), 319 cpu_name_string()); 320 } 321 322 /* 323 * FIXME: really the generic show_regs should take a const pointer argument. 324 */ 325 void show_regs(struct pt_regs *regs) 326 { 327 __show_regs((struct pt_regs *)regs); 328 } 329 330 void show_registers(struct pt_regs *regs) 331 { 332 const int field = 2 * sizeof(unsigned long); 333 334 __show_regs(regs); 335 print_modules(); 336 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", 337 current->comm, current->pid, current_thread_info(), current, 338 field, current_thread_info()->tp_value); 339 if (cpu_has_userlocal) { 340 unsigned long tls; 341 342 tls = read_c0_userlocal(); 343 if (tls != current_thread_info()->tp_value) 344 printk("*HwTLS: %0*lx\n", field, tls); 345 } 346 347 show_stacktrace(current, regs); 348 show_code((unsigned int __user *) regs->cp0_epc); 349 printk("\n"); 350 } 351 352 static int regs_to_trapnr(struct pt_regs *regs) 353 { 354 return (regs->cp0_cause >> 2) & 0x1f; 355 } 356 357 static DEFINE_RAW_SPINLOCK(die_lock); 358 359 void __noreturn die(const char *str, struct pt_regs *regs) 360 { 361 static int die_counter; 362 int sig = SIGSEGV; 363 #ifdef CONFIG_MIPS_MT_SMTC 364 unsigned long dvpret; 365 #endif /* CONFIG_MIPS_MT_SMTC */ 366 367 oops_enter(); 368 369 if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV) == NOTIFY_STOP) 370 sig = 0; 371 372 console_verbose(); 373 raw_spin_lock_irq(&die_lock); 374 #ifdef CONFIG_MIPS_MT_SMTC 375 dvpret = dvpe(); 376 #endif /* CONFIG_MIPS_MT_SMTC */ 377 bust_spinlocks(1); 378 #ifdef CONFIG_MIPS_MT_SMTC 379 mips_mt_regdump(dvpret); 380 #endif /* CONFIG_MIPS_MT_SMTC */ 381 382 printk("%s[#%d]:\n", str, ++die_counter); 383 show_registers(regs); 384 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 385 raw_spin_unlock_irq(&die_lock); 386 387 oops_exit(); 388 389 if (in_interrupt()) 390 panic("Fatal exception in interrupt"); 391 392 if (panic_on_oops) { 393 printk(KERN_EMERG "Fatal exception: panic in 5 seconds"); 394 ssleep(5); 395 panic("Fatal exception"); 396 } 397 398 if (regs && kexec_should_crash(current)) 399 crash_kexec(regs); 400 401 do_exit(sig); 402 } 403 404 extern struct exception_table_entry __start___dbe_table[]; 405 extern struct exception_table_entry __stop___dbe_table[]; 406 407 __asm__( 408 " .section __dbe_table, \"a\"\n" 409 " .previous \n"); 410 411 /* Given an address, look for it in the exception tables. */ 412 static const struct exception_table_entry *search_dbe_tables(unsigned long addr) 413 { 414 const struct exception_table_entry *e; 415 416 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr); 417 if (!e) 418 e = search_module_dbetables(addr); 419 return e; 420 } 421 422 asmlinkage void do_be(struct pt_regs *regs) 423 { 424 const int field = 2 * sizeof(unsigned long); 425 const struct exception_table_entry *fixup = NULL; 426 int data = regs->cp0_cause & 4; 427 int action = MIPS_BE_FATAL; 428 enum ctx_state prev_state; 429 430 prev_state = exception_enter(); 431 /* XXX For now. Fixme, this searches the wrong table ... */ 432 if (data && !user_mode(regs)) 433 fixup = search_dbe_tables(exception_epc(regs)); 434 435 if (fixup) 436 action = MIPS_BE_FIXUP; 437 438 if (board_be_handler) 439 action = board_be_handler(regs, fixup != NULL); 440 441 switch (action) { 442 case MIPS_BE_DISCARD: 443 goto out; 444 case MIPS_BE_FIXUP: 445 if (fixup) { 446 regs->cp0_epc = fixup->nextinsn; 447 goto out; 448 } 449 break; 450 default: 451 break; 452 } 453 454 /* 455 * Assume it would be too dangerous to continue ... 456 */ 457 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", 458 data ? "Data" : "Instruction", 459 field, regs->cp0_epc, field, regs->regs[31]); 460 if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), SIGBUS) 461 == NOTIFY_STOP) 462 goto out; 463 464 die_if_kernel("Oops", regs); 465 force_sig(SIGBUS, current); 466 467 out: 468 exception_exit(prev_state); 469 } 470 471 /* 472 * ll/sc, rdhwr, sync emulation 473 */ 474 475 #define OPCODE 0xfc000000 476 #define BASE 0x03e00000 477 #define RT 0x001f0000 478 #define OFFSET 0x0000ffff 479 #define LL 0xc0000000 480 #define SC 0xe0000000 481 #define SPEC0 0x00000000 482 #define SPEC3 0x7c000000 483 #define RD 0x0000f800 484 #define FUNC 0x0000003f 485 #define SYNC 0x0000000f 486 #define RDHWR 0x0000003b 487 488 /* microMIPS definitions */ 489 #define MM_POOL32A_FUNC 0xfc00ffff 490 #define MM_RDHWR 0x00006b3c 491 #define MM_RS 0x001f0000 492 #define MM_RT 0x03e00000 493 494 /* 495 * The ll_bit is cleared by r*_switch.S 496 */ 497 498 unsigned int ll_bit; 499 struct task_struct *ll_task; 500 501 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) 502 { 503 unsigned long value, __user *vaddr; 504 long offset; 505 506 /* 507 * analyse the ll instruction that just caused a ri exception 508 * and put the referenced address to addr. 509 */ 510 511 /* sign extend offset */ 512 offset = opcode & OFFSET; 513 offset <<= 16; 514 offset >>= 16; 515 516 vaddr = (unsigned long __user *) 517 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 518 519 if ((unsigned long)vaddr & 3) 520 return SIGBUS; 521 if (get_user(value, vaddr)) 522 return SIGSEGV; 523 524 preempt_disable(); 525 526 if (ll_task == NULL || ll_task == current) { 527 ll_bit = 1; 528 } else { 529 ll_bit = 0; 530 } 531 ll_task = current; 532 533 preempt_enable(); 534 535 regs->regs[(opcode & RT) >> 16] = value; 536 537 return 0; 538 } 539 540 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) 541 { 542 unsigned long __user *vaddr; 543 unsigned long reg; 544 long offset; 545 546 /* 547 * analyse the sc instruction that just caused a ri exception 548 * and put the referenced address to addr. 549 */ 550 551 /* sign extend offset */ 552 offset = opcode & OFFSET; 553 offset <<= 16; 554 offset >>= 16; 555 556 vaddr = (unsigned long __user *) 557 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 558 reg = (opcode & RT) >> 16; 559 560 if ((unsigned long)vaddr & 3) 561 return SIGBUS; 562 563 preempt_disable(); 564 565 if (ll_bit == 0 || ll_task != current) { 566 regs->regs[reg] = 0; 567 preempt_enable(); 568 return 0; 569 } 570 571 preempt_enable(); 572 573 if (put_user(regs->regs[reg], vaddr)) 574 return SIGSEGV; 575 576 regs->regs[reg] = 1; 577 578 return 0; 579 } 580 581 /* 582 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both 583 * opcodes are supposed to result in coprocessor unusable exceptions if 584 * executed on ll/sc-less processors. That's the theory. In practice a 585 * few processors such as NEC's VR4100 throw reserved instruction exceptions 586 * instead, so we're doing the emulation thing in both exception handlers. 587 */ 588 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) 589 { 590 if ((opcode & OPCODE) == LL) { 591 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 592 1, regs, 0); 593 return simulate_ll(regs, opcode); 594 } 595 if ((opcode & OPCODE) == SC) { 596 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 597 1, regs, 0); 598 return simulate_sc(regs, opcode); 599 } 600 601 return -1; /* Must be something else ... */ 602 } 603 604 /* 605 * Simulate trapping 'rdhwr' instructions to provide user accessible 606 * registers not implemented in hardware. 607 */ 608 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt) 609 { 610 struct thread_info *ti = task_thread_info(current); 611 612 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 613 1, regs, 0); 614 switch (rd) { 615 case 0: /* CPU number */ 616 regs->regs[rt] = smp_processor_id(); 617 return 0; 618 case 1: /* SYNCI length */ 619 regs->regs[rt] = min(current_cpu_data.dcache.linesz, 620 current_cpu_data.icache.linesz); 621 return 0; 622 case 2: /* Read count register */ 623 regs->regs[rt] = read_c0_count(); 624 return 0; 625 case 3: /* Count register resolution */ 626 switch (current_cpu_type()) { 627 case CPU_20KC: 628 case CPU_25KF: 629 regs->regs[rt] = 1; 630 break; 631 default: 632 regs->regs[rt] = 2; 633 } 634 return 0; 635 case 29: 636 regs->regs[rt] = ti->tp_value; 637 return 0; 638 default: 639 return -1; 640 } 641 } 642 643 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode) 644 { 645 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { 646 int rd = (opcode & RD) >> 11; 647 int rt = (opcode & RT) >> 16; 648 649 simulate_rdhwr(regs, rd, rt); 650 return 0; 651 } 652 653 /* Not ours. */ 654 return -1; 655 } 656 657 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode) 658 { 659 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) { 660 int rd = (opcode & MM_RS) >> 16; 661 int rt = (opcode & MM_RT) >> 21; 662 simulate_rdhwr(regs, rd, rt); 663 return 0; 664 } 665 666 /* Not ours. */ 667 return -1; 668 } 669 670 static int simulate_sync(struct pt_regs *regs, unsigned int opcode) 671 { 672 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) { 673 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 674 1, regs, 0); 675 return 0; 676 } 677 678 return -1; /* Must be something else ... */ 679 } 680 681 asmlinkage void do_ov(struct pt_regs *regs) 682 { 683 enum ctx_state prev_state; 684 siginfo_t info; 685 686 prev_state = exception_enter(); 687 die_if_kernel("Integer overflow", regs); 688 689 info.si_code = FPE_INTOVF; 690 info.si_signo = SIGFPE; 691 info.si_errno = 0; 692 info.si_addr = (void __user *) regs->cp0_epc; 693 force_sig_info(SIGFPE, &info, current); 694 exception_exit(prev_state); 695 } 696 697 int process_fpemu_return(int sig, void __user *fault_addr) 698 { 699 if (sig == SIGSEGV || sig == SIGBUS) { 700 struct siginfo si = {0}; 701 si.si_addr = fault_addr; 702 si.si_signo = sig; 703 if (sig == SIGSEGV) { 704 if (find_vma(current->mm, (unsigned long)fault_addr)) 705 si.si_code = SEGV_ACCERR; 706 else 707 si.si_code = SEGV_MAPERR; 708 } else { 709 si.si_code = BUS_ADRERR; 710 } 711 force_sig_info(sig, &si, current); 712 return 1; 713 } else if (sig) { 714 force_sig(sig, current); 715 return 1; 716 } else { 717 return 0; 718 } 719 } 720 721 /* 722 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX 723 */ 724 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) 725 { 726 enum ctx_state prev_state; 727 siginfo_t info = {0}; 728 729 prev_state = exception_enter(); 730 if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), SIGFPE) 731 == NOTIFY_STOP) 732 goto out; 733 die_if_kernel("FP exception in kernel code", regs); 734 735 if (fcr31 & FPU_CSR_UNI_X) { 736 int sig; 737 void __user *fault_addr = NULL; 738 739 /* 740 * Unimplemented operation exception. If we've got the full 741 * software emulator on-board, let's use it... 742 * 743 * Force FPU to dump state into task/thread context. We're 744 * moving a lot of data here for what is probably a single 745 * instruction, but the alternative is to pre-decode the FP 746 * register operands before invoking the emulator, which seems 747 * a bit extreme for what should be an infrequent event. 748 */ 749 /* Ensure 'resume' not overwrite saved fp context again. */ 750 lose_fpu(1); 751 752 /* Run the emulator */ 753 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 754 &fault_addr); 755 756 /* 757 * We can't allow the emulated instruction to leave any of 758 * the cause bit set in $fcr31. 759 */ 760 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 761 762 /* Restore the hardware register state */ 763 own_fpu(1); /* Using the FPU again. */ 764 765 /* If something went wrong, signal */ 766 process_fpemu_return(sig, fault_addr); 767 768 goto out; 769 } else if (fcr31 & FPU_CSR_INV_X) 770 info.si_code = FPE_FLTINV; 771 else if (fcr31 & FPU_CSR_DIV_X) 772 info.si_code = FPE_FLTDIV; 773 else if (fcr31 & FPU_CSR_OVF_X) 774 info.si_code = FPE_FLTOVF; 775 else if (fcr31 & FPU_CSR_UDF_X) 776 info.si_code = FPE_FLTUND; 777 else if (fcr31 & FPU_CSR_INE_X) 778 info.si_code = FPE_FLTRES; 779 else 780 info.si_code = __SI_FAULT; 781 info.si_signo = SIGFPE; 782 info.si_errno = 0; 783 info.si_addr = (void __user *) regs->cp0_epc; 784 force_sig_info(SIGFPE, &info, current); 785 786 out: 787 exception_exit(prev_state); 788 } 789 790 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code, 791 const char *str) 792 { 793 siginfo_t info; 794 char b[40]; 795 796 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 797 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 798 return; 799 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 800 801 if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 802 return; 803 804 /* 805 * A short test says that IRIX 5.3 sends SIGTRAP for all trap 806 * insns, even for trap and break codes that indicate arithmetic 807 * failures. Weird ... 808 * But should we continue the brokenness??? --macro 809 */ 810 switch (code) { 811 case BRK_OVERFLOW: 812 case BRK_DIVZERO: 813 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 814 die_if_kernel(b, regs); 815 if (code == BRK_DIVZERO) 816 info.si_code = FPE_INTDIV; 817 else 818 info.si_code = FPE_INTOVF; 819 info.si_signo = SIGFPE; 820 info.si_errno = 0; 821 info.si_addr = (void __user *) regs->cp0_epc; 822 force_sig_info(SIGFPE, &info, current); 823 break; 824 case BRK_BUG: 825 die_if_kernel("Kernel bug detected", regs); 826 force_sig(SIGTRAP, current); 827 break; 828 case BRK_MEMU: 829 /* 830 * Address errors may be deliberately induced by the FPU 831 * emulator to retake control of the CPU after executing the 832 * instruction in the delay slot of an emulated branch. 833 * 834 * Terminate if exception was recognized as a delay slot return 835 * otherwise handle as normal. 836 */ 837 if (do_dsemulret(regs)) 838 return; 839 840 die_if_kernel("Math emu break/trap", regs); 841 force_sig(SIGTRAP, current); 842 break; 843 default: 844 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 845 die_if_kernel(b, regs); 846 force_sig(SIGTRAP, current); 847 } 848 } 849 850 asmlinkage void do_bp(struct pt_regs *regs) 851 { 852 unsigned int opcode, bcode; 853 enum ctx_state prev_state; 854 unsigned long epc; 855 u16 instr[2]; 856 857 prev_state = exception_enter(); 858 if (get_isa16_mode(regs->cp0_epc)) { 859 /* Calculate EPC. */ 860 epc = exception_epc(regs); 861 if (cpu_has_mmips) { 862 if ((__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc)) || 863 (__get_user(instr[1], (u16 __user *)msk_isa16_mode(epc + 2))))) 864 goto out_sigsegv; 865 opcode = (instr[0] << 16) | instr[1]; 866 } else { 867 /* MIPS16e mode */ 868 if (__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc))) 869 goto out_sigsegv; 870 bcode = (instr[0] >> 6) & 0x3f; 871 do_trap_or_bp(regs, bcode, "Break"); 872 goto out; 873 } 874 } else { 875 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs))) 876 goto out_sigsegv; 877 } 878 879 /* 880 * There is the ancient bug in the MIPS assemblers that the break 881 * code starts left to bit 16 instead to bit 6 in the opcode. 882 * Gas is bug-compatible, but not always, grrr... 883 * We handle both cases with a simple heuristics. --macro 884 */ 885 bcode = ((opcode >> 6) & ((1 << 20) - 1)); 886 if (bcode >= (1 << 10)) 887 bcode >>= 10; 888 889 /* 890 * notify the kprobe handlers, if instruction is likely to 891 * pertain to them. 892 */ 893 switch (bcode) { 894 case BRK_KPROBE_BP: 895 if (notify_die(DIE_BREAK, "debug", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 896 goto out; 897 else 898 break; 899 case BRK_KPROBE_SSTEPBP: 900 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 901 goto out; 902 else 903 break; 904 default: 905 break; 906 } 907 908 do_trap_or_bp(regs, bcode, "Break"); 909 910 out: 911 exception_exit(prev_state); 912 return; 913 914 out_sigsegv: 915 force_sig(SIGSEGV, current); 916 goto out; 917 } 918 919 asmlinkage void do_tr(struct pt_regs *regs) 920 { 921 u32 opcode, tcode = 0; 922 enum ctx_state prev_state; 923 u16 instr[2]; 924 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 925 926 prev_state = exception_enter(); 927 if (get_isa16_mode(regs->cp0_epc)) { 928 if (__get_user(instr[0], (u16 __user *)(epc + 0)) || 929 __get_user(instr[1], (u16 __user *)(epc + 2))) 930 goto out_sigsegv; 931 opcode = (instr[0] << 16) | instr[1]; 932 /* Immediate versions don't provide a code. */ 933 if (!(opcode & OPCODE)) 934 tcode = (opcode >> 12) & ((1 << 4) - 1); 935 } else { 936 if (__get_user(opcode, (u32 __user *)epc)) 937 goto out_sigsegv; 938 /* Immediate versions don't provide a code. */ 939 if (!(opcode & OPCODE)) 940 tcode = (opcode >> 6) & ((1 << 10) - 1); 941 } 942 943 do_trap_or_bp(regs, tcode, "Trap"); 944 945 out: 946 exception_exit(prev_state); 947 return; 948 949 out_sigsegv: 950 force_sig(SIGSEGV, current); 951 goto out; 952 } 953 954 asmlinkage void do_ri(struct pt_regs *regs) 955 { 956 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); 957 unsigned long old_epc = regs->cp0_epc; 958 unsigned long old31 = regs->regs[31]; 959 enum ctx_state prev_state; 960 unsigned int opcode = 0; 961 int status = -1; 962 963 prev_state = exception_enter(); 964 if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), SIGILL) 965 == NOTIFY_STOP) 966 goto out; 967 968 die_if_kernel("Reserved instruction in kernel code", regs); 969 970 if (unlikely(compute_return_epc(regs) < 0)) 971 goto out; 972 973 if (get_isa16_mode(regs->cp0_epc)) { 974 unsigned short mmop[2] = { 0 }; 975 976 if (unlikely(get_user(mmop[0], epc) < 0)) 977 status = SIGSEGV; 978 if (unlikely(get_user(mmop[1], epc) < 0)) 979 status = SIGSEGV; 980 opcode = (mmop[0] << 16) | mmop[1]; 981 982 if (status < 0) 983 status = simulate_rdhwr_mm(regs, opcode); 984 } else { 985 if (unlikely(get_user(opcode, epc) < 0)) 986 status = SIGSEGV; 987 988 if (!cpu_has_llsc && status < 0) 989 status = simulate_llsc(regs, opcode); 990 991 if (status < 0) 992 status = simulate_rdhwr_normal(regs, opcode); 993 994 if (status < 0) 995 status = simulate_sync(regs, opcode); 996 } 997 998 if (status < 0) 999 status = SIGILL; 1000 1001 if (unlikely(status > 0)) { 1002 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1003 regs->regs[31] = old31; 1004 force_sig(status, current); 1005 } 1006 1007 out: 1008 exception_exit(prev_state); 1009 } 1010 1011 /* 1012 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've 1013 * emulated more than some threshold number of instructions, force migration to 1014 * a "CPU" that has FP support. 1015 */ 1016 static void mt_ase_fp_affinity(void) 1017 { 1018 #ifdef CONFIG_MIPS_MT_FPAFF 1019 if (mt_fpemul_threshold > 0 && 1020 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { 1021 /* 1022 * If there's no FPU present, or if the application has already 1023 * restricted the allowed set to exclude any CPUs with FPUs, 1024 * we'll skip the procedure. 1025 */ 1026 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) { 1027 cpumask_t tmask; 1028 1029 current->thread.user_cpus_allowed 1030 = current->cpus_allowed; 1031 cpus_and(tmask, current->cpus_allowed, 1032 mt_fpu_cpumask); 1033 set_cpus_allowed_ptr(current, &tmask); 1034 set_thread_flag(TIF_FPUBOUND); 1035 } 1036 } 1037 #endif /* CONFIG_MIPS_MT_FPAFF */ 1038 } 1039 1040 /* 1041 * No lock; only written during early bootup by CPU 0. 1042 */ 1043 static RAW_NOTIFIER_HEAD(cu2_chain); 1044 1045 int __ref register_cu2_notifier(struct notifier_block *nb) 1046 { 1047 return raw_notifier_chain_register(&cu2_chain, nb); 1048 } 1049 1050 int cu2_notifier_call_chain(unsigned long val, void *v) 1051 { 1052 return raw_notifier_call_chain(&cu2_chain, val, v); 1053 } 1054 1055 static int default_cu2_call(struct notifier_block *nfb, unsigned long action, 1056 void *data) 1057 { 1058 struct pt_regs *regs = data; 1059 1060 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid " 1061 "instruction", regs); 1062 force_sig(SIGILL, current); 1063 1064 return NOTIFY_OK; 1065 } 1066 1067 asmlinkage void do_cpu(struct pt_regs *regs) 1068 { 1069 enum ctx_state prev_state; 1070 unsigned int __user *epc; 1071 unsigned long old_epc, old31; 1072 unsigned int opcode; 1073 unsigned int cpid; 1074 int status; 1075 unsigned long __maybe_unused flags; 1076 1077 prev_state = exception_enter(); 1078 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; 1079 1080 if (cpid != 2) 1081 die_if_kernel("do_cpu invoked from kernel context!", regs); 1082 1083 switch (cpid) { 1084 case 0: 1085 epc = (unsigned int __user *)exception_epc(regs); 1086 old_epc = regs->cp0_epc; 1087 old31 = regs->regs[31]; 1088 opcode = 0; 1089 status = -1; 1090 1091 if (unlikely(compute_return_epc(regs) < 0)) 1092 goto out; 1093 1094 if (get_isa16_mode(regs->cp0_epc)) { 1095 unsigned short mmop[2] = { 0 }; 1096 1097 if (unlikely(get_user(mmop[0], epc) < 0)) 1098 status = SIGSEGV; 1099 if (unlikely(get_user(mmop[1], epc) < 0)) 1100 status = SIGSEGV; 1101 opcode = (mmop[0] << 16) | mmop[1]; 1102 1103 if (status < 0) 1104 status = simulate_rdhwr_mm(regs, opcode); 1105 } else { 1106 if (unlikely(get_user(opcode, epc) < 0)) 1107 status = SIGSEGV; 1108 1109 if (!cpu_has_llsc && status < 0) 1110 status = simulate_llsc(regs, opcode); 1111 1112 if (status < 0) 1113 status = simulate_rdhwr_normal(regs, opcode); 1114 } 1115 1116 if (status < 0) 1117 status = SIGILL; 1118 1119 if (unlikely(status > 0)) { 1120 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1121 regs->regs[31] = old31; 1122 force_sig(status, current); 1123 } 1124 1125 goto out; 1126 1127 case 3: 1128 /* 1129 * Old (MIPS I and MIPS II) processors will set this code 1130 * for COP1X opcode instructions that replaced the original 1131 * COP3 space. We don't limit COP1 space instructions in 1132 * the emulator according to the CPU ISA, so we want to 1133 * treat COP1X instructions consistently regardless of which 1134 * code the CPU chose. Therefore we redirect this trap to 1135 * the FP emulator too. 1136 * 1137 * Then some newer FPU-less processors use this code 1138 * erroneously too, so they are covered by this choice 1139 * as well. 1140 */ 1141 if (raw_cpu_has_fpu) 1142 break; 1143 /* Fall through. */ 1144 1145 case 1: 1146 if (used_math()) /* Using the FPU again. */ 1147 own_fpu(1); 1148 else { /* First time FPU user. */ 1149 init_fpu(); 1150 set_used_math(); 1151 } 1152 1153 if (!raw_cpu_has_fpu) { 1154 int sig; 1155 void __user *fault_addr = NULL; 1156 sig = fpu_emulator_cop1Handler(regs, 1157 ¤t->thread.fpu, 1158 0, &fault_addr); 1159 if (!process_fpemu_return(sig, fault_addr)) 1160 mt_ase_fp_affinity(); 1161 } 1162 1163 goto out; 1164 1165 case 2: 1166 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); 1167 goto out; 1168 } 1169 1170 force_sig(SIGILL, current); 1171 1172 out: 1173 exception_exit(prev_state); 1174 } 1175 1176 asmlinkage void do_mdmx(struct pt_regs *regs) 1177 { 1178 enum ctx_state prev_state; 1179 1180 prev_state = exception_enter(); 1181 force_sig(SIGILL, current); 1182 exception_exit(prev_state); 1183 } 1184 1185 /* 1186 * Called with interrupts disabled. 1187 */ 1188 asmlinkage void do_watch(struct pt_regs *regs) 1189 { 1190 enum ctx_state prev_state; 1191 u32 cause; 1192 1193 prev_state = exception_enter(); 1194 /* 1195 * Clear WP (bit 22) bit of cause register so we don't loop 1196 * forever. 1197 */ 1198 cause = read_c0_cause(); 1199 cause &= ~(1 << 22); 1200 write_c0_cause(cause); 1201 1202 /* 1203 * If the current thread has the watch registers loaded, save 1204 * their values and send SIGTRAP. Otherwise another thread 1205 * left the registers set, clear them and continue. 1206 */ 1207 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { 1208 mips_read_watch_registers(); 1209 local_irq_enable(); 1210 force_sig(SIGTRAP, current); 1211 } else { 1212 mips_clear_watch_registers(); 1213 local_irq_enable(); 1214 } 1215 exception_exit(prev_state); 1216 } 1217 1218 asmlinkage void do_mcheck(struct pt_regs *regs) 1219 { 1220 const int field = 2 * sizeof(unsigned long); 1221 int multi_match = regs->cp0_status & ST0_TS; 1222 enum ctx_state prev_state; 1223 1224 prev_state = exception_enter(); 1225 show_regs(regs); 1226 1227 if (multi_match) { 1228 printk("Index : %0x\n", read_c0_index()); 1229 printk("Pagemask: %0x\n", read_c0_pagemask()); 1230 printk("EntryHi : %0*lx\n", field, read_c0_entryhi()); 1231 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0()); 1232 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1()); 1233 printk("\n"); 1234 dump_tlb_all(); 1235 } 1236 1237 show_code((unsigned int __user *) regs->cp0_epc); 1238 1239 /* 1240 * Some chips may have other causes of machine check (e.g. SB1 1241 * graduation timer) 1242 */ 1243 panic("Caught Machine Check exception - %scaused by multiple " 1244 "matching entries in the TLB.", 1245 (multi_match) ? "" : "not "); 1246 } 1247 1248 asmlinkage void do_mt(struct pt_regs *regs) 1249 { 1250 int subcode; 1251 1252 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) 1253 >> VPECONTROL_EXCPT_SHIFT; 1254 switch (subcode) { 1255 case 0: 1256 printk(KERN_DEBUG "Thread Underflow\n"); 1257 break; 1258 case 1: 1259 printk(KERN_DEBUG "Thread Overflow\n"); 1260 break; 1261 case 2: 1262 printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); 1263 break; 1264 case 3: 1265 printk(KERN_DEBUG "Gating Storage Exception\n"); 1266 break; 1267 case 4: 1268 printk(KERN_DEBUG "YIELD Scheduler Exception\n"); 1269 break; 1270 case 5: 1271 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n"); 1272 break; 1273 default: 1274 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", 1275 subcode); 1276 break; 1277 } 1278 die_if_kernel("MIPS MT Thread exception in kernel", regs); 1279 1280 force_sig(SIGILL, current); 1281 } 1282 1283 1284 asmlinkage void do_dsp(struct pt_regs *regs) 1285 { 1286 if (cpu_has_dsp) 1287 panic("Unexpected DSP exception"); 1288 1289 force_sig(SIGILL, current); 1290 } 1291 1292 asmlinkage void do_reserved(struct pt_regs *regs) 1293 { 1294 /* 1295 * Game over - no way to handle this if it ever occurs. Most probably 1296 * caused by a new unknown cpu type or after another deadly 1297 * hard/software error. 1298 */ 1299 show_regs(regs); 1300 panic("Caught reserved exception %ld - should not happen.", 1301 (regs->cp0_cause & 0x7f) >> 2); 1302 } 1303 1304 static int __initdata l1parity = 1; 1305 static int __init nol1parity(char *s) 1306 { 1307 l1parity = 0; 1308 return 1; 1309 } 1310 __setup("nol1par", nol1parity); 1311 static int __initdata l2parity = 1; 1312 static int __init nol2parity(char *s) 1313 { 1314 l2parity = 0; 1315 return 1; 1316 } 1317 __setup("nol2par", nol2parity); 1318 1319 /* 1320 * Some MIPS CPUs can enable/disable for cache parity detection, but do 1321 * it different ways. 1322 */ 1323 static inline void parity_protection_init(void) 1324 { 1325 switch (current_cpu_type()) { 1326 case CPU_24K: 1327 case CPU_34K: 1328 case CPU_74K: 1329 case CPU_1004K: 1330 { 1331 #define ERRCTL_PE 0x80000000 1332 #define ERRCTL_L2P 0x00800000 1333 unsigned long errctl; 1334 unsigned int l1parity_present, l2parity_present; 1335 1336 errctl = read_c0_ecc(); 1337 errctl &= ~(ERRCTL_PE|ERRCTL_L2P); 1338 1339 /* probe L1 parity support */ 1340 write_c0_ecc(errctl | ERRCTL_PE); 1341 back_to_back_c0_hazard(); 1342 l1parity_present = (read_c0_ecc() & ERRCTL_PE); 1343 1344 /* probe L2 parity support */ 1345 write_c0_ecc(errctl|ERRCTL_L2P); 1346 back_to_back_c0_hazard(); 1347 l2parity_present = (read_c0_ecc() & ERRCTL_L2P); 1348 1349 if (l1parity_present && l2parity_present) { 1350 if (l1parity) 1351 errctl |= ERRCTL_PE; 1352 if (l1parity ^ l2parity) 1353 errctl |= ERRCTL_L2P; 1354 } else if (l1parity_present) { 1355 if (l1parity) 1356 errctl |= ERRCTL_PE; 1357 } else if (l2parity_present) { 1358 if (l2parity) 1359 errctl |= ERRCTL_L2P; 1360 } else { 1361 /* No parity available */ 1362 } 1363 1364 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); 1365 1366 write_c0_ecc(errctl); 1367 back_to_back_c0_hazard(); 1368 errctl = read_c0_ecc(); 1369 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); 1370 1371 if (l1parity_present) 1372 printk(KERN_INFO "Cache parity protection %sabled\n", 1373 (errctl & ERRCTL_PE) ? "en" : "dis"); 1374 1375 if (l2parity_present) { 1376 if (l1parity_present && l1parity) 1377 errctl ^= ERRCTL_L2P; 1378 printk(KERN_INFO "L2 cache parity protection %sabled\n", 1379 (errctl & ERRCTL_L2P) ? "en" : "dis"); 1380 } 1381 } 1382 break; 1383 1384 case CPU_5KC: 1385 case CPU_5KE: 1386 case CPU_LOONGSON1: 1387 write_c0_ecc(0x80000000); 1388 back_to_back_c0_hazard(); 1389 /* Set the PE bit (bit 31) in the c0_errctl register. */ 1390 printk(KERN_INFO "Cache parity protection %sabled\n", 1391 (read_c0_ecc() & 0x80000000) ? "en" : "dis"); 1392 break; 1393 case CPU_20KC: 1394 case CPU_25KF: 1395 /* Clear the DE bit (bit 16) in the c0_status register. */ 1396 printk(KERN_INFO "Enable cache parity protection for " 1397 "MIPS 20KC/25KF CPUs.\n"); 1398 clear_c0_status(ST0_DE); 1399 break; 1400 default: 1401 break; 1402 } 1403 } 1404 1405 asmlinkage void cache_parity_error(void) 1406 { 1407 const int field = 2 * sizeof(unsigned long); 1408 unsigned int reg_val; 1409 1410 /* For the moment, report the problem and hang. */ 1411 printk("Cache error exception:\n"); 1412 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1413 reg_val = read_c0_cacheerr(); 1414 printk("c0_cacheerr == %08x\n", reg_val); 1415 1416 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1417 reg_val & (1<<30) ? "secondary" : "primary", 1418 reg_val & (1<<31) ? "data" : "insn"); 1419 printk("Error bits: %s%s%s%s%s%s%s\n", 1420 reg_val & (1<<29) ? "ED " : "", 1421 reg_val & (1<<28) ? "ET " : "", 1422 reg_val & (1<<26) ? "EE " : "", 1423 reg_val & (1<<25) ? "EB " : "", 1424 reg_val & (1<<24) ? "EI " : "", 1425 reg_val & (1<<23) ? "E1 " : "", 1426 reg_val & (1<<22) ? "E0 " : ""); 1427 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); 1428 1429 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) 1430 if (reg_val & (1<<22)) 1431 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); 1432 1433 if (reg_val & (1<<23)) 1434 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); 1435 #endif 1436 1437 panic("Can't handle the cache error!"); 1438 } 1439 1440 /* 1441 * SDBBP EJTAG debug exception handler. 1442 * We skip the instruction and return to the next instruction. 1443 */ 1444 void ejtag_exception_handler(struct pt_regs *regs) 1445 { 1446 const int field = 2 * sizeof(unsigned long); 1447 unsigned long depc, old_epc, old_ra; 1448 unsigned int debug; 1449 1450 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); 1451 depc = read_c0_depc(); 1452 debug = read_c0_debug(); 1453 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); 1454 if (debug & 0x80000000) { 1455 /* 1456 * In branch delay slot. 1457 * We cheat a little bit here and use EPC to calculate the 1458 * debug return address (DEPC). EPC is restored after the 1459 * calculation. 1460 */ 1461 old_epc = regs->cp0_epc; 1462 old_ra = regs->regs[31]; 1463 regs->cp0_epc = depc; 1464 compute_return_epc(regs); 1465 depc = regs->cp0_epc; 1466 regs->cp0_epc = old_epc; 1467 regs->regs[31] = old_ra; 1468 } else 1469 depc += 4; 1470 write_c0_depc(depc); 1471 1472 #if 0 1473 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); 1474 write_c0_debug(debug | 0x100); 1475 #endif 1476 } 1477 1478 /* 1479 * NMI exception handler. 1480 * No lock; only written during early bootup by CPU 0. 1481 */ 1482 static RAW_NOTIFIER_HEAD(nmi_chain); 1483 1484 int register_nmi_notifier(struct notifier_block *nb) 1485 { 1486 return raw_notifier_chain_register(&nmi_chain, nb); 1487 } 1488 1489 void __noreturn nmi_exception_handler(struct pt_regs *regs) 1490 { 1491 raw_notifier_call_chain(&nmi_chain, 0, regs); 1492 bust_spinlocks(1); 1493 printk("NMI taken!!!!\n"); 1494 die("NMI", regs); 1495 } 1496 1497 #define VECTORSPACING 0x100 /* for EI/VI mode */ 1498 1499 unsigned long ebase; 1500 unsigned long exception_handlers[32]; 1501 unsigned long vi_handlers[64]; 1502 1503 void __init *set_except_vector(int n, void *addr) 1504 { 1505 unsigned long handler = (unsigned long) addr; 1506 unsigned long old_handler; 1507 1508 #ifdef CONFIG_CPU_MICROMIPS 1509 /* 1510 * Only the TLB handlers are cache aligned with an even 1511 * address. All other handlers are on an odd address and 1512 * require no modification. Otherwise, MIPS32 mode will 1513 * be entered when handling any TLB exceptions. That 1514 * would be bad...since we must stay in microMIPS mode. 1515 */ 1516 if (!(handler & 0x1)) 1517 handler |= 1; 1518 #endif 1519 old_handler = xchg(&exception_handlers[n], handler); 1520 1521 if (n == 0 && cpu_has_divec) { 1522 #ifdef CONFIG_CPU_MICROMIPS 1523 unsigned long jump_mask = ~((1 << 27) - 1); 1524 #else 1525 unsigned long jump_mask = ~((1 << 28) - 1); 1526 #endif 1527 u32 *buf = (u32 *)(ebase + 0x200); 1528 unsigned int k0 = 26; 1529 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { 1530 uasm_i_j(&buf, handler & ~jump_mask); 1531 uasm_i_nop(&buf); 1532 } else { 1533 UASM_i_LA(&buf, k0, handler); 1534 uasm_i_jr(&buf, k0); 1535 uasm_i_nop(&buf); 1536 } 1537 local_flush_icache_range(ebase + 0x200, (unsigned long)buf); 1538 } 1539 return (void *)old_handler; 1540 } 1541 1542 static void do_default_vi(void) 1543 { 1544 show_regs(get_irq_regs()); 1545 panic("Caught unexpected vectored interrupt."); 1546 } 1547 1548 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) 1549 { 1550 unsigned long handler; 1551 unsigned long old_handler = vi_handlers[n]; 1552 int srssets = current_cpu_data.srsets; 1553 u16 *h; 1554 unsigned char *b; 1555 1556 BUG_ON(!cpu_has_veic && !cpu_has_vint); 1557 BUG_ON((n < 0) && (n > 9)); 1558 1559 if (addr == NULL) { 1560 handler = (unsigned long) do_default_vi; 1561 srs = 0; 1562 } else 1563 handler = (unsigned long) addr; 1564 vi_handlers[n] = handler; 1565 1566 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); 1567 1568 if (srs >= srssets) 1569 panic("Shadow register set %d not supported", srs); 1570 1571 if (cpu_has_veic) { 1572 if (board_bind_eic_interrupt) 1573 board_bind_eic_interrupt(n, srs); 1574 } else if (cpu_has_vint) { 1575 /* SRSMap is only defined if shadow sets are implemented */ 1576 if (srssets > 1) 1577 change_c0_srsmap(0xf << n*4, srs << n*4); 1578 } 1579 1580 if (srs == 0) { 1581 /* 1582 * If no shadow set is selected then use the default handler 1583 * that does normal register saving and standard interrupt exit 1584 */ 1585 extern char except_vec_vi, except_vec_vi_lui; 1586 extern char except_vec_vi_ori, except_vec_vi_end; 1587 extern char rollback_except_vec_vi; 1588 char *vec_start = using_rollback_handler() ? 1589 &rollback_except_vec_vi : &except_vec_vi; 1590 #ifdef CONFIG_MIPS_MT_SMTC 1591 /* 1592 * We need to provide the SMTC vectored interrupt handler 1593 * not only with the address of the handler, but with the 1594 * Status.IM bit to be masked before going there. 1595 */ 1596 extern char except_vec_vi_mori; 1597 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN) 1598 const int mori_offset = &except_vec_vi_mori - vec_start + 2; 1599 #else 1600 const int mori_offset = &except_vec_vi_mori - vec_start; 1601 #endif 1602 #endif /* CONFIG_MIPS_MT_SMTC */ 1603 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN) 1604 const int lui_offset = &except_vec_vi_lui - vec_start + 2; 1605 const int ori_offset = &except_vec_vi_ori - vec_start + 2; 1606 #else 1607 const int lui_offset = &except_vec_vi_lui - vec_start; 1608 const int ori_offset = &except_vec_vi_ori - vec_start; 1609 #endif 1610 const int handler_len = &except_vec_vi_end - vec_start; 1611 1612 if (handler_len > VECTORSPACING) { 1613 /* 1614 * Sigh... panicing won't help as the console 1615 * is probably not configured :( 1616 */ 1617 panic("VECTORSPACING too small"); 1618 } 1619 1620 set_handler(((unsigned long)b - ebase), vec_start, 1621 #ifdef CONFIG_CPU_MICROMIPS 1622 (handler_len - 1)); 1623 #else 1624 handler_len); 1625 #endif 1626 #ifdef CONFIG_MIPS_MT_SMTC 1627 BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */ 1628 1629 h = (u16 *)(b + mori_offset); 1630 *h = (0x100 << n); 1631 #endif /* CONFIG_MIPS_MT_SMTC */ 1632 h = (u16 *)(b + lui_offset); 1633 *h = (handler >> 16) & 0xffff; 1634 h = (u16 *)(b + ori_offset); 1635 *h = (handler & 0xffff); 1636 local_flush_icache_range((unsigned long)b, 1637 (unsigned long)(b+handler_len)); 1638 } 1639 else { 1640 /* 1641 * In other cases jump directly to the interrupt handler. It 1642 * is the handler's responsibility to save registers if required 1643 * (eg hi/lo) and return from the exception using "eret". 1644 */ 1645 u32 insn; 1646 1647 h = (u16 *)b; 1648 /* j handler */ 1649 #ifdef CONFIG_CPU_MICROMIPS 1650 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1); 1651 #else 1652 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2); 1653 #endif 1654 h[0] = (insn >> 16) & 0xffff; 1655 h[1] = insn & 0xffff; 1656 h[2] = 0; 1657 h[3] = 0; 1658 local_flush_icache_range((unsigned long)b, 1659 (unsigned long)(b+8)); 1660 } 1661 1662 return (void *)old_handler; 1663 } 1664 1665 void *set_vi_handler(int n, vi_handler_t addr) 1666 { 1667 return set_vi_srs_handler(n, addr, 0); 1668 } 1669 1670 extern void tlb_init(void); 1671 1672 /* 1673 * Timer interrupt 1674 */ 1675 int cp0_compare_irq; 1676 EXPORT_SYMBOL_GPL(cp0_compare_irq); 1677 int cp0_compare_irq_shift; 1678 1679 /* 1680 * Performance counter IRQ or -1 if shared with timer 1681 */ 1682 int cp0_perfcount_irq; 1683 EXPORT_SYMBOL_GPL(cp0_perfcount_irq); 1684 1685 static int noulri; 1686 1687 static int __init ulri_disable(char *s) 1688 { 1689 pr_info("Disabling ulri\n"); 1690 noulri = 1; 1691 1692 return 1; 1693 } 1694 __setup("noulri", ulri_disable); 1695 1696 void per_cpu_trap_init(bool is_boot_cpu) 1697 { 1698 unsigned int cpu = smp_processor_id(); 1699 unsigned int status_set = ST0_CU0; 1700 unsigned int hwrena = cpu_hwrena_impl_bits; 1701 #ifdef CONFIG_MIPS_MT_SMTC 1702 int secondaryTC = 0; 1703 int bootTC = (cpu == 0); 1704 1705 /* 1706 * Only do per_cpu_trap_init() for first TC of Each VPE. 1707 * Note that this hack assumes that the SMTC init code 1708 * assigns TCs consecutively and in ascending order. 1709 */ 1710 1711 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) && 1712 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id)) 1713 secondaryTC = 1; 1714 #endif /* CONFIG_MIPS_MT_SMTC */ 1715 1716 /* 1717 * Disable coprocessors and select 32-bit or 64-bit addressing 1718 * and the 16/32 or 32/32 FPR register model. Reset the BEV 1719 * flag that some firmware may have left set and the TS bit (for 1720 * IP27). Set XX for ISA IV code to work. 1721 */ 1722 #ifdef CONFIG_64BIT 1723 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; 1724 #endif 1725 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV) 1726 status_set |= ST0_XX; 1727 if (cpu_has_dsp) 1728 status_set |= ST0_MX; 1729 1730 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, 1731 status_set); 1732 1733 if (cpu_has_mips_r2) 1734 hwrena |= 0x0000000f; 1735 1736 if (!noulri && cpu_has_userlocal) 1737 hwrena |= (1 << 29); 1738 1739 if (hwrena) 1740 write_c0_hwrena(hwrena); 1741 1742 #ifdef CONFIG_MIPS_MT_SMTC 1743 if (!secondaryTC) { 1744 #endif /* CONFIG_MIPS_MT_SMTC */ 1745 1746 if (cpu_has_veic || cpu_has_vint) { 1747 unsigned long sr = set_c0_status(ST0_BEV); 1748 write_c0_ebase(ebase); 1749 write_c0_status(sr); 1750 /* Setting vector spacing enables EI/VI mode */ 1751 change_c0_intctl(0x3e0, VECTORSPACING); 1752 } 1753 if (cpu_has_divec) { 1754 if (cpu_has_mipsmt) { 1755 unsigned int vpflags = dvpe(); 1756 set_c0_cause(CAUSEF_IV); 1757 evpe(vpflags); 1758 } else 1759 set_c0_cause(CAUSEF_IV); 1760 } 1761 1762 /* 1763 * Before R2 both interrupt numbers were fixed to 7, so on R2 only: 1764 * 1765 * o read IntCtl.IPTI to determine the timer interrupt 1766 * o read IntCtl.IPPCI to determine the performance counter interrupt 1767 */ 1768 if (cpu_has_mips_r2) { 1769 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; 1770 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; 1771 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; 1772 if (cp0_perfcount_irq == cp0_compare_irq) 1773 cp0_perfcount_irq = -1; 1774 } else { 1775 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; 1776 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ; 1777 cp0_perfcount_irq = -1; 1778 } 1779 1780 #ifdef CONFIG_MIPS_MT_SMTC 1781 } 1782 #endif /* CONFIG_MIPS_MT_SMTC */ 1783 1784 if (!cpu_data[cpu].asid_cache) 1785 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION; 1786 1787 atomic_inc(&init_mm.mm_count); 1788 current->active_mm = &init_mm; 1789 BUG_ON(current->mm); 1790 enter_lazy_tlb(&init_mm, current); 1791 1792 #ifdef CONFIG_MIPS_MT_SMTC 1793 if (bootTC) { 1794 #endif /* CONFIG_MIPS_MT_SMTC */ 1795 /* Boot CPU's cache setup in setup_arch(). */ 1796 if (!is_boot_cpu) 1797 cpu_cache_init(); 1798 tlb_init(); 1799 #ifdef CONFIG_MIPS_MT_SMTC 1800 } else if (!secondaryTC) { 1801 /* 1802 * First TC in non-boot VPE must do subset of tlb_init() 1803 * for MMU countrol registers. 1804 */ 1805 write_c0_pagemask(PM_DEFAULT_MASK); 1806 write_c0_wired(0); 1807 } 1808 #endif /* CONFIG_MIPS_MT_SMTC */ 1809 TLBMISS_HANDLER_SETUP(); 1810 } 1811 1812 /* Install CPU exception handler */ 1813 void set_handler(unsigned long offset, void *addr, unsigned long size) 1814 { 1815 #ifdef CONFIG_CPU_MICROMIPS 1816 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size); 1817 #else 1818 memcpy((void *)(ebase + offset), addr, size); 1819 #endif 1820 local_flush_icache_range(ebase + offset, ebase + offset + size); 1821 } 1822 1823 static char panic_null_cerr[] = 1824 "Trying to set NULL cache error exception handler"; 1825 1826 /* 1827 * Install uncached CPU exception handler. 1828 * This is suitable only for the cache error exception which is the only 1829 * exception handler that is being run uncached. 1830 */ 1831 void set_uncached_handler(unsigned long offset, void *addr, 1832 unsigned long size) 1833 { 1834 unsigned long uncached_ebase = CKSEG1ADDR(ebase); 1835 1836 if (!addr) 1837 panic(panic_null_cerr); 1838 1839 memcpy((void *)(uncached_ebase + offset), addr, size); 1840 } 1841 1842 static int __initdata rdhwr_noopt; 1843 static int __init set_rdhwr_noopt(char *str) 1844 { 1845 rdhwr_noopt = 1; 1846 return 1; 1847 } 1848 1849 __setup("rdhwr_noopt", set_rdhwr_noopt); 1850 1851 void __init trap_init(void) 1852 { 1853 extern char except_vec3_generic; 1854 extern char except_vec4; 1855 extern char except_vec3_r4000; 1856 unsigned long i; 1857 1858 check_wait(); 1859 1860 #if defined(CONFIG_KGDB) 1861 if (kgdb_early_setup) 1862 return; /* Already done */ 1863 #endif 1864 1865 if (cpu_has_veic || cpu_has_vint) { 1866 unsigned long size = 0x200 + VECTORSPACING*64; 1867 ebase = (unsigned long) 1868 __alloc_bootmem(size, 1 << fls(size), 0); 1869 } else { 1870 #ifdef CONFIG_KVM_GUEST 1871 #define KVM_GUEST_KSEG0 0x40000000 1872 ebase = KVM_GUEST_KSEG0; 1873 #else 1874 ebase = CKSEG0; 1875 #endif 1876 if (cpu_has_mips_r2) 1877 ebase += (read_c0_ebase() & 0x3ffff000); 1878 } 1879 1880 if (cpu_has_mmips) { 1881 unsigned int config3 = read_c0_config3(); 1882 1883 if (IS_ENABLED(CONFIG_CPU_MICROMIPS)) 1884 write_c0_config3(config3 | MIPS_CONF3_ISA_OE); 1885 else 1886 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE); 1887 } 1888 1889 if (board_ebase_setup) 1890 board_ebase_setup(); 1891 per_cpu_trap_init(true); 1892 1893 /* 1894 * Copy the generic exception handlers to their final destination. 1895 * This will be overriden later as suitable for a particular 1896 * configuration. 1897 */ 1898 set_handler(0x180, &except_vec3_generic, 0x80); 1899 1900 /* 1901 * Setup default vectors 1902 */ 1903 for (i = 0; i <= 31; i++) 1904 set_except_vector(i, handle_reserved); 1905 1906 /* 1907 * Copy the EJTAG debug exception vector handler code to it's final 1908 * destination. 1909 */ 1910 if (cpu_has_ejtag && board_ejtag_handler_setup) 1911 board_ejtag_handler_setup(); 1912 1913 /* 1914 * Only some CPUs have the watch exceptions. 1915 */ 1916 if (cpu_has_watch) 1917 set_except_vector(23, handle_watch); 1918 1919 /* 1920 * Initialise interrupt handlers 1921 */ 1922 if (cpu_has_veic || cpu_has_vint) { 1923 int nvec = cpu_has_veic ? 64 : 8; 1924 for (i = 0; i < nvec; i++) 1925 set_vi_handler(i, NULL); 1926 } 1927 else if (cpu_has_divec) 1928 set_handler(0x200, &except_vec4, 0x8); 1929 1930 /* 1931 * Some CPUs can enable/disable for cache parity detection, but does 1932 * it different ways. 1933 */ 1934 parity_protection_init(); 1935 1936 /* 1937 * The Data Bus Errors / Instruction Bus Errors are signaled 1938 * by external hardware. Therefore these two exceptions 1939 * may have board specific handlers. 1940 */ 1941 if (board_be_init) 1942 board_be_init(); 1943 1944 set_except_vector(0, using_rollback_handler() ? rollback_handle_int 1945 : handle_int); 1946 set_except_vector(1, handle_tlbm); 1947 set_except_vector(2, handle_tlbl); 1948 set_except_vector(3, handle_tlbs); 1949 1950 set_except_vector(4, handle_adel); 1951 set_except_vector(5, handle_ades); 1952 1953 set_except_vector(6, handle_ibe); 1954 set_except_vector(7, handle_dbe); 1955 1956 set_except_vector(8, handle_sys); 1957 set_except_vector(9, handle_bp); 1958 set_except_vector(10, rdhwr_noopt ? handle_ri : 1959 (cpu_has_vtag_icache ? 1960 handle_ri_rdhwr_vivt : handle_ri_rdhwr)); 1961 set_except_vector(11, handle_cpu); 1962 set_except_vector(12, handle_ov); 1963 set_except_vector(13, handle_tr); 1964 1965 if (current_cpu_type() == CPU_R6000 || 1966 current_cpu_type() == CPU_R6000A) { 1967 /* 1968 * The R6000 is the only R-series CPU that features a machine 1969 * check exception (similar to the R4000 cache error) and 1970 * unaligned ldc1/sdc1 exception. The handlers have not been 1971 * written yet. Well, anyway there is no R6000 machine on the 1972 * current list of targets for Linux/MIPS. 1973 * (Duh, crap, there is someone with a triple R6k machine) 1974 */ 1975 //set_except_vector(14, handle_mc); 1976 //set_except_vector(15, handle_ndc); 1977 } 1978 1979 1980 if (board_nmi_handler_setup) 1981 board_nmi_handler_setup(); 1982 1983 if (cpu_has_fpu && !cpu_has_nofpuex) 1984 set_except_vector(15, handle_fpe); 1985 1986 set_except_vector(22, handle_mdmx); 1987 1988 if (cpu_has_mcheck) 1989 set_except_vector(24, handle_mcheck); 1990 1991 if (cpu_has_mipsmt) 1992 set_except_vector(25, handle_mt); 1993 1994 set_except_vector(26, handle_dsp); 1995 1996 if (board_cache_error_setup) 1997 board_cache_error_setup(); 1998 1999 if (cpu_has_vce) 2000 /* Special exception: R4[04]00 uses also the divec space. */ 2001 set_handler(0x180, &except_vec3_r4000, 0x100); 2002 else if (cpu_has_4kex) 2003 set_handler(0x180, &except_vec3_generic, 0x80); 2004 else 2005 set_handler(0x080, &except_vec3_generic, 0x80); 2006 2007 local_flush_icache_range(ebase, ebase + 0x400); 2008 2009 sort_extable(__start___dbe_table, __stop___dbe_table); 2010 2011 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */ 2012 } 2013