xref: /openbmc/linux/arch/mips/kernel/traps.c (revision 5b4cb650)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
25 #include <linux/mm.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memblock.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
41 
42 #include <asm/addrspace.h>
43 #include <asm/bootinfo.h>
44 #include <asm/branch.h>
45 #include <asm/break.h>
46 #include <asm/cop2.h>
47 #include <asm/cpu.h>
48 #include <asm/cpu-type.h>
49 #include <asm/dsp.h>
50 #include <asm/fpu.h>
51 #include <asm/fpu_emulator.h>
52 #include <asm/idle.h>
53 #include <asm/isa-rev.h>
54 #include <asm/mips-cps.h>
55 #include <asm/mips-r2-to-r6-emul.h>
56 #include <asm/mipsregs.h>
57 #include <asm/mipsmtregs.h>
58 #include <asm/module.h>
59 #include <asm/msa.h>
60 #include <asm/pgtable.h>
61 #include <asm/ptrace.h>
62 #include <asm/sections.h>
63 #include <asm/siginfo.h>
64 #include <asm/tlbdebug.h>
65 #include <asm/traps.h>
66 #include <linux/uaccess.h>
67 #include <asm/watch.h>
68 #include <asm/mmu_context.h>
69 #include <asm/types.h>
70 #include <asm/stacktrace.h>
71 #include <asm/tlbex.h>
72 #include <asm/uasm.h>
73 
74 extern void check_wait(void);
75 extern asmlinkage void rollback_handle_int(void);
76 extern asmlinkage void handle_int(void);
77 extern asmlinkage void handle_adel(void);
78 extern asmlinkage void handle_ades(void);
79 extern asmlinkage void handle_ibe(void);
80 extern asmlinkage void handle_dbe(void);
81 extern asmlinkage void handle_sys(void);
82 extern asmlinkage void handle_bp(void);
83 extern asmlinkage void handle_ri(void);
84 extern asmlinkage void handle_ri_rdhwr_tlbp(void);
85 extern asmlinkage void handle_ri_rdhwr(void);
86 extern asmlinkage void handle_cpu(void);
87 extern asmlinkage void handle_ov(void);
88 extern asmlinkage void handle_tr(void);
89 extern asmlinkage void handle_msa_fpe(void);
90 extern asmlinkage void handle_fpe(void);
91 extern asmlinkage void handle_ftlb(void);
92 extern asmlinkage void handle_msa(void);
93 extern asmlinkage void handle_mdmx(void);
94 extern asmlinkage void handle_watch(void);
95 extern asmlinkage void handle_mt(void);
96 extern asmlinkage void handle_dsp(void);
97 extern asmlinkage void handle_mcheck(void);
98 extern asmlinkage void handle_reserved(void);
99 extern void tlb_do_page_fault_0(void);
100 
101 void (*board_be_init)(void);
102 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
103 void (*board_nmi_handler_setup)(void);
104 void (*board_ejtag_handler_setup)(void);
105 void (*board_bind_eic_interrupt)(int irq, int regset);
106 void (*board_ebase_setup)(void);
107 void(*board_cache_error_setup)(void);
108 
109 static void show_raw_backtrace(unsigned long reg29)
110 {
111 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
112 	unsigned long addr;
113 
114 	printk("Call Trace:");
115 #ifdef CONFIG_KALLSYMS
116 	printk("\n");
117 #endif
118 	while (!kstack_end(sp)) {
119 		unsigned long __user *p =
120 			(unsigned long __user *)(unsigned long)sp++;
121 		if (__get_user(addr, p)) {
122 			printk(" (Bad stack address)");
123 			break;
124 		}
125 		if (__kernel_text_address(addr))
126 			print_ip_sym(addr);
127 	}
128 	printk("\n");
129 }
130 
131 #ifdef CONFIG_KALLSYMS
132 int raw_show_trace;
133 static int __init set_raw_show_trace(char *str)
134 {
135 	raw_show_trace = 1;
136 	return 1;
137 }
138 __setup("raw_show_trace", set_raw_show_trace);
139 #endif
140 
141 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
142 {
143 	unsigned long sp = regs->regs[29];
144 	unsigned long ra = regs->regs[31];
145 	unsigned long pc = regs->cp0_epc;
146 
147 	if (!task)
148 		task = current;
149 
150 	if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
151 		show_raw_backtrace(sp);
152 		return;
153 	}
154 	printk("Call Trace:\n");
155 	do {
156 		print_ip_sym(pc);
157 		pc = unwind_stack(task, &sp, pc, &ra);
158 	} while (pc);
159 	pr_cont("\n");
160 }
161 
162 /*
163  * This routine abuses get_user()/put_user() to reference pointers
164  * with at least a bit of error checking ...
165  */
166 static void show_stacktrace(struct task_struct *task,
167 	const struct pt_regs *regs)
168 {
169 	const int field = 2 * sizeof(unsigned long);
170 	long stackdata;
171 	int i;
172 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
173 
174 	printk("Stack :");
175 	i = 0;
176 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
177 		if (i && ((i % (64 / field)) == 0)) {
178 			pr_cont("\n");
179 			printk("       ");
180 		}
181 		if (i > 39) {
182 			pr_cont(" ...");
183 			break;
184 		}
185 
186 		if (__get_user(stackdata, sp++)) {
187 			pr_cont(" (Bad stack address)");
188 			break;
189 		}
190 
191 		pr_cont(" %0*lx", field, stackdata);
192 		i++;
193 	}
194 	pr_cont("\n");
195 	show_backtrace(task, regs);
196 }
197 
198 void show_stack(struct task_struct *task, unsigned long *sp)
199 {
200 	struct pt_regs regs;
201 	mm_segment_t old_fs = get_fs();
202 
203 	regs.cp0_status = KSU_KERNEL;
204 	if (sp) {
205 		regs.regs[29] = (unsigned long)sp;
206 		regs.regs[31] = 0;
207 		regs.cp0_epc = 0;
208 	} else {
209 		if (task && task != current) {
210 			regs.regs[29] = task->thread.reg29;
211 			regs.regs[31] = 0;
212 			regs.cp0_epc = task->thread.reg31;
213 #ifdef CONFIG_KGDB_KDB
214 		} else if (atomic_read(&kgdb_active) != -1 &&
215 			   kdb_current_regs) {
216 			memcpy(&regs, kdb_current_regs, sizeof(regs));
217 #endif /* CONFIG_KGDB_KDB */
218 		} else {
219 			prepare_frametrace(&regs);
220 		}
221 	}
222 	/*
223 	 * show_stack() deals exclusively with kernel mode, so be sure to access
224 	 * the stack in the kernel (not user) address space.
225 	 */
226 	set_fs(KERNEL_DS);
227 	show_stacktrace(task, &regs);
228 	set_fs(old_fs);
229 }
230 
231 static void show_code(unsigned int __user *pc)
232 {
233 	long i;
234 	unsigned short __user *pc16 = NULL;
235 
236 	printk("Code:");
237 
238 	if ((unsigned long)pc & 1)
239 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
240 	for(i = -3 ; i < 6 ; i++) {
241 		unsigned int insn;
242 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
243 			pr_cont(" (Bad address in epc)\n");
244 			break;
245 		}
246 		pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
247 	}
248 	pr_cont("\n");
249 }
250 
251 static void __show_regs(const struct pt_regs *regs)
252 {
253 	const int field = 2 * sizeof(unsigned long);
254 	unsigned int cause = regs->cp0_cause;
255 	unsigned int exccode;
256 	int i;
257 
258 	show_regs_print_info(KERN_DEFAULT);
259 
260 	/*
261 	 * Saved main processor registers
262 	 */
263 	for (i = 0; i < 32; ) {
264 		if ((i % 4) == 0)
265 			printk("$%2d   :", i);
266 		if (i == 0)
267 			pr_cont(" %0*lx", field, 0UL);
268 		else if (i == 26 || i == 27)
269 			pr_cont(" %*s", field, "");
270 		else
271 			pr_cont(" %0*lx", field, regs->regs[i]);
272 
273 		i++;
274 		if ((i % 4) == 0)
275 			pr_cont("\n");
276 	}
277 
278 #ifdef CONFIG_CPU_HAS_SMARTMIPS
279 	printk("Acx    : %0*lx\n", field, regs->acx);
280 #endif
281 	if (MIPS_ISA_REV < 6) {
282 		printk("Hi    : %0*lx\n", field, regs->hi);
283 		printk("Lo    : %0*lx\n", field, regs->lo);
284 	}
285 
286 	/*
287 	 * Saved cp0 registers
288 	 */
289 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
290 	       (void *) regs->cp0_epc);
291 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
292 	       (void *) regs->regs[31]);
293 
294 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
295 
296 	if (cpu_has_3kex) {
297 		if (regs->cp0_status & ST0_KUO)
298 			pr_cont("KUo ");
299 		if (regs->cp0_status & ST0_IEO)
300 			pr_cont("IEo ");
301 		if (regs->cp0_status & ST0_KUP)
302 			pr_cont("KUp ");
303 		if (regs->cp0_status & ST0_IEP)
304 			pr_cont("IEp ");
305 		if (regs->cp0_status & ST0_KUC)
306 			pr_cont("KUc ");
307 		if (regs->cp0_status & ST0_IEC)
308 			pr_cont("IEc ");
309 	} else if (cpu_has_4kex) {
310 		if (regs->cp0_status & ST0_KX)
311 			pr_cont("KX ");
312 		if (regs->cp0_status & ST0_SX)
313 			pr_cont("SX ");
314 		if (regs->cp0_status & ST0_UX)
315 			pr_cont("UX ");
316 		switch (regs->cp0_status & ST0_KSU) {
317 		case KSU_USER:
318 			pr_cont("USER ");
319 			break;
320 		case KSU_SUPERVISOR:
321 			pr_cont("SUPERVISOR ");
322 			break;
323 		case KSU_KERNEL:
324 			pr_cont("KERNEL ");
325 			break;
326 		default:
327 			pr_cont("BAD_MODE ");
328 			break;
329 		}
330 		if (regs->cp0_status & ST0_ERL)
331 			pr_cont("ERL ");
332 		if (regs->cp0_status & ST0_EXL)
333 			pr_cont("EXL ");
334 		if (regs->cp0_status & ST0_IE)
335 			pr_cont("IE ");
336 	}
337 	pr_cont("\n");
338 
339 	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
340 	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
341 
342 	if (1 <= exccode && exccode <= 5)
343 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
344 
345 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
346 	       cpu_name_string());
347 }
348 
349 /*
350  * FIXME: really the generic show_regs should take a const pointer argument.
351  */
352 void show_regs(struct pt_regs *regs)
353 {
354 	__show_regs(regs);
355 	dump_stack();
356 }
357 
358 void show_registers(struct pt_regs *regs)
359 {
360 	const int field = 2 * sizeof(unsigned long);
361 	mm_segment_t old_fs = get_fs();
362 
363 	__show_regs(regs);
364 	print_modules();
365 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
366 	       current->comm, current->pid, current_thread_info(), current,
367 	      field, current_thread_info()->tp_value);
368 	if (cpu_has_userlocal) {
369 		unsigned long tls;
370 
371 		tls = read_c0_userlocal();
372 		if (tls != current_thread_info()->tp_value)
373 			printk("*HwTLS: %0*lx\n", field, tls);
374 	}
375 
376 	if (!user_mode(regs))
377 		/* Necessary for getting the correct stack content */
378 		set_fs(KERNEL_DS);
379 	show_stacktrace(current, regs);
380 	show_code((unsigned int __user *) regs->cp0_epc);
381 	printk("\n");
382 	set_fs(old_fs);
383 }
384 
385 static DEFINE_RAW_SPINLOCK(die_lock);
386 
387 void __noreturn die(const char *str, struct pt_regs *regs)
388 {
389 	static int die_counter;
390 	int sig = SIGSEGV;
391 
392 	oops_enter();
393 
394 	if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
395 		       SIGSEGV) == NOTIFY_STOP)
396 		sig = 0;
397 
398 	console_verbose();
399 	raw_spin_lock_irq(&die_lock);
400 	bust_spinlocks(1);
401 
402 	printk("%s[#%d]:\n", str, ++die_counter);
403 	show_registers(regs);
404 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
405 	raw_spin_unlock_irq(&die_lock);
406 
407 	oops_exit();
408 
409 	if (in_interrupt())
410 		panic("Fatal exception in interrupt");
411 
412 	if (panic_on_oops)
413 		panic("Fatal exception");
414 
415 	if (regs && kexec_should_crash(current))
416 		crash_kexec(regs);
417 
418 	do_exit(sig);
419 }
420 
421 extern struct exception_table_entry __start___dbe_table[];
422 extern struct exception_table_entry __stop___dbe_table[];
423 
424 __asm__(
425 "	.section	__dbe_table, \"a\"\n"
426 "	.previous			\n");
427 
428 /* Given an address, look for it in the exception tables. */
429 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
430 {
431 	const struct exception_table_entry *e;
432 
433 	e = search_extable(__start___dbe_table,
434 			   __stop___dbe_table - __start___dbe_table, addr);
435 	if (!e)
436 		e = search_module_dbetables(addr);
437 	return e;
438 }
439 
440 asmlinkage void do_be(struct pt_regs *regs)
441 {
442 	const int field = 2 * sizeof(unsigned long);
443 	const struct exception_table_entry *fixup = NULL;
444 	int data = regs->cp0_cause & 4;
445 	int action = MIPS_BE_FATAL;
446 	enum ctx_state prev_state;
447 
448 	prev_state = exception_enter();
449 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
450 	if (data && !user_mode(regs))
451 		fixup = search_dbe_tables(exception_epc(regs));
452 
453 	if (fixup)
454 		action = MIPS_BE_FIXUP;
455 
456 	if (board_be_handler)
457 		action = board_be_handler(regs, fixup != NULL);
458 	else
459 		mips_cm_error_report();
460 
461 	switch (action) {
462 	case MIPS_BE_DISCARD:
463 		goto out;
464 	case MIPS_BE_FIXUP:
465 		if (fixup) {
466 			regs->cp0_epc = fixup->nextinsn;
467 			goto out;
468 		}
469 		break;
470 	default:
471 		break;
472 	}
473 
474 	/*
475 	 * Assume it would be too dangerous to continue ...
476 	 */
477 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
478 	       data ? "Data" : "Instruction",
479 	       field, regs->cp0_epc, field, regs->regs[31]);
480 	if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
481 		       SIGBUS) == NOTIFY_STOP)
482 		goto out;
483 
484 	die_if_kernel("Oops", regs);
485 	force_sig(SIGBUS, current);
486 
487 out:
488 	exception_exit(prev_state);
489 }
490 
491 /*
492  * ll/sc, rdhwr, sync emulation
493  */
494 
495 #define OPCODE 0xfc000000
496 #define BASE   0x03e00000
497 #define RT     0x001f0000
498 #define OFFSET 0x0000ffff
499 #define LL     0xc0000000
500 #define SC     0xe0000000
501 #define SPEC0  0x00000000
502 #define SPEC3  0x7c000000
503 #define RD     0x0000f800
504 #define FUNC   0x0000003f
505 #define SYNC   0x0000000f
506 #define RDHWR  0x0000003b
507 
508 /*  microMIPS definitions   */
509 #define MM_POOL32A_FUNC 0xfc00ffff
510 #define MM_RDHWR        0x00006b3c
511 #define MM_RS           0x001f0000
512 #define MM_RT           0x03e00000
513 
514 /*
515  * The ll_bit is cleared by r*_switch.S
516  */
517 
518 unsigned int ll_bit;
519 struct task_struct *ll_task;
520 
521 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
522 {
523 	unsigned long value, __user *vaddr;
524 	long offset;
525 
526 	/*
527 	 * analyse the ll instruction that just caused a ri exception
528 	 * and put the referenced address to addr.
529 	 */
530 
531 	/* sign extend offset */
532 	offset = opcode & OFFSET;
533 	offset <<= 16;
534 	offset >>= 16;
535 
536 	vaddr = (unsigned long __user *)
537 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
538 
539 	if ((unsigned long)vaddr & 3)
540 		return SIGBUS;
541 	if (get_user(value, vaddr))
542 		return SIGSEGV;
543 
544 	preempt_disable();
545 
546 	if (ll_task == NULL || ll_task == current) {
547 		ll_bit = 1;
548 	} else {
549 		ll_bit = 0;
550 	}
551 	ll_task = current;
552 
553 	preempt_enable();
554 
555 	regs->regs[(opcode & RT) >> 16] = value;
556 
557 	return 0;
558 }
559 
560 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
561 {
562 	unsigned long __user *vaddr;
563 	unsigned long reg;
564 	long offset;
565 
566 	/*
567 	 * analyse the sc instruction that just caused a ri exception
568 	 * and put the referenced address to addr.
569 	 */
570 
571 	/* sign extend offset */
572 	offset = opcode & OFFSET;
573 	offset <<= 16;
574 	offset >>= 16;
575 
576 	vaddr = (unsigned long __user *)
577 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
578 	reg = (opcode & RT) >> 16;
579 
580 	if ((unsigned long)vaddr & 3)
581 		return SIGBUS;
582 
583 	preempt_disable();
584 
585 	if (ll_bit == 0 || ll_task != current) {
586 		regs->regs[reg] = 0;
587 		preempt_enable();
588 		return 0;
589 	}
590 
591 	preempt_enable();
592 
593 	if (put_user(regs->regs[reg], vaddr))
594 		return SIGSEGV;
595 
596 	regs->regs[reg] = 1;
597 
598 	return 0;
599 }
600 
601 /*
602  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
603  * opcodes are supposed to result in coprocessor unusable exceptions if
604  * executed on ll/sc-less processors.  That's the theory.  In practice a
605  * few processors such as NEC's VR4100 throw reserved instruction exceptions
606  * instead, so we're doing the emulation thing in both exception handlers.
607  */
608 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
609 {
610 	if ((opcode & OPCODE) == LL) {
611 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
612 				1, regs, 0);
613 		return simulate_ll(regs, opcode);
614 	}
615 	if ((opcode & OPCODE) == SC) {
616 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
617 				1, regs, 0);
618 		return simulate_sc(regs, opcode);
619 	}
620 
621 	return -1;			/* Must be something else ... */
622 }
623 
624 /*
625  * Simulate trapping 'rdhwr' instructions to provide user accessible
626  * registers not implemented in hardware.
627  */
628 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
629 {
630 	struct thread_info *ti = task_thread_info(current);
631 
632 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
633 			1, regs, 0);
634 	switch (rd) {
635 	case MIPS_HWR_CPUNUM:		/* CPU number */
636 		regs->regs[rt] = smp_processor_id();
637 		return 0;
638 	case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
639 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
640 				     current_cpu_data.icache.linesz);
641 		return 0;
642 	case MIPS_HWR_CC:		/* Read count register */
643 		regs->regs[rt] = read_c0_count();
644 		return 0;
645 	case MIPS_HWR_CCRES:		/* Count register resolution */
646 		switch (current_cpu_type()) {
647 		case CPU_20KC:
648 		case CPU_25KF:
649 			regs->regs[rt] = 1;
650 			break;
651 		default:
652 			regs->regs[rt] = 2;
653 		}
654 		return 0;
655 	case MIPS_HWR_ULR:		/* Read UserLocal register */
656 		regs->regs[rt] = ti->tp_value;
657 		return 0;
658 	default:
659 		return -1;
660 	}
661 }
662 
663 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
664 {
665 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
666 		int rd = (opcode & RD) >> 11;
667 		int rt = (opcode & RT) >> 16;
668 
669 		simulate_rdhwr(regs, rd, rt);
670 		return 0;
671 	}
672 
673 	/* Not ours.  */
674 	return -1;
675 }
676 
677 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
678 {
679 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
680 		int rd = (opcode & MM_RS) >> 16;
681 		int rt = (opcode & MM_RT) >> 21;
682 		simulate_rdhwr(regs, rd, rt);
683 		return 0;
684 	}
685 
686 	/* Not ours.  */
687 	return -1;
688 }
689 
690 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
691 {
692 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
693 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
694 				1, regs, 0);
695 		return 0;
696 	}
697 
698 	return -1;			/* Must be something else ... */
699 }
700 
701 asmlinkage void do_ov(struct pt_regs *regs)
702 {
703 	enum ctx_state prev_state;
704 
705 	prev_state = exception_enter();
706 	die_if_kernel("Integer overflow", regs);
707 
708 	force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc, current);
709 	exception_exit(prev_state);
710 }
711 
712 #ifdef CONFIG_MIPS_FP_SUPPORT
713 
714 /*
715  * Send SIGFPE according to FCSR Cause bits, which must have already
716  * been masked against Enable bits.  This is impotant as Inexact can
717  * happen together with Overflow or Underflow, and `ptrace' can set
718  * any bits.
719  */
720 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
721 		     struct task_struct *tsk)
722 {
723 	int si_code = FPE_FLTUNK;
724 
725 	if (fcr31 & FPU_CSR_INV_X)
726 		si_code = FPE_FLTINV;
727 	else if (fcr31 & FPU_CSR_DIV_X)
728 		si_code = FPE_FLTDIV;
729 	else if (fcr31 & FPU_CSR_OVF_X)
730 		si_code = FPE_FLTOVF;
731 	else if (fcr31 & FPU_CSR_UDF_X)
732 		si_code = FPE_FLTUND;
733 	else if (fcr31 & FPU_CSR_INE_X)
734 		si_code = FPE_FLTRES;
735 
736 	force_sig_fault(SIGFPE, si_code, fault_addr, tsk);
737 }
738 
739 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
740 {
741 	int si_code;
742 	struct vm_area_struct *vma;
743 
744 	switch (sig) {
745 	case 0:
746 		return 0;
747 
748 	case SIGFPE:
749 		force_fcr31_sig(fcr31, fault_addr, current);
750 		return 1;
751 
752 	case SIGBUS:
753 		force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr, current);
754 		return 1;
755 
756 	case SIGSEGV:
757 		down_read(&current->mm->mmap_sem);
758 		vma = find_vma(current->mm, (unsigned long)fault_addr);
759 		if (vma && (vma->vm_start <= (unsigned long)fault_addr))
760 			si_code = SEGV_ACCERR;
761 		else
762 			si_code = SEGV_MAPERR;
763 		up_read(&current->mm->mmap_sem);
764 		force_sig_fault(SIGSEGV, si_code, fault_addr, current);
765 		return 1;
766 
767 	default:
768 		force_sig(sig, current);
769 		return 1;
770 	}
771 }
772 
773 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
774 		       unsigned long old_epc, unsigned long old_ra)
775 {
776 	union mips_instruction inst = { .word = opcode };
777 	void __user *fault_addr;
778 	unsigned long fcr31;
779 	int sig;
780 
781 	/* If it's obviously not an FP instruction, skip it */
782 	switch (inst.i_format.opcode) {
783 	case cop1_op:
784 	case cop1x_op:
785 	case lwc1_op:
786 	case ldc1_op:
787 	case swc1_op:
788 	case sdc1_op:
789 		break;
790 
791 	default:
792 		return -1;
793 	}
794 
795 	/*
796 	 * do_ri skipped over the instruction via compute_return_epc, undo
797 	 * that for the FPU emulator.
798 	 */
799 	regs->cp0_epc = old_epc;
800 	regs->regs[31] = old_ra;
801 
802 	/* Run the emulator */
803 	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
804 				       &fault_addr);
805 
806 	/*
807 	 * We can't allow the emulated instruction to leave any
808 	 * enabled Cause bits set in $fcr31.
809 	 */
810 	fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
811 	current->thread.fpu.fcr31 &= ~fcr31;
812 
813 	/* Restore the hardware register state */
814 	own_fpu(1);
815 
816 	/* Send a signal if required.  */
817 	process_fpemu_return(sig, fault_addr, fcr31);
818 
819 	return 0;
820 }
821 
822 /*
823  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
824  */
825 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
826 {
827 	enum ctx_state prev_state;
828 	void __user *fault_addr;
829 	int sig;
830 
831 	prev_state = exception_enter();
832 	if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
833 		       SIGFPE) == NOTIFY_STOP)
834 		goto out;
835 
836 	/* Clear FCSR.Cause before enabling interrupts */
837 	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
838 	local_irq_enable();
839 
840 	die_if_kernel("FP exception in kernel code", regs);
841 
842 	if (fcr31 & FPU_CSR_UNI_X) {
843 		/*
844 		 * Unimplemented operation exception.  If we've got the full
845 		 * software emulator on-board, let's use it...
846 		 *
847 		 * Force FPU to dump state into task/thread context.  We're
848 		 * moving a lot of data here for what is probably a single
849 		 * instruction, but the alternative is to pre-decode the FP
850 		 * register operands before invoking the emulator, which seems
851 		 * a bit extreme for what should be an infrequent event.
852 		 */
853 
854 		/* Run the emulator */
855 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
856 					       &fault_addr);
857 
858 		/*
859 		 * We can't allow the emulated instruction to leave any
860 		 * enabled Cause bits set in $fcr31.
861 		 */
862 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
863 		current->thread.fpu.fcr31 &= ~fcr31;
864 
865 		/* Restore the hardware register state */
866 		own_fpu(1);	/* Using the FPU again.	 */
867 	} else {
868 		sig = SIGFPE;
869 		fault_addr = (void __user *) regs->cp0_epc;
870 	}
871 
872 	/* Send a signal if required.  */
873 	process_fpemu_return(sig, fault_addr, fcr31);
874 
875 out:
876 	exception_exit(prev_state);
877 }
878 
879 /*
880  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
881  * emulated more than some threshold number of instructions, force migration to
882  * a "CPU" that has FP support.
883  */
884 static void mt_ase_fp_affinity(void)
885 {
886 #ifdef CONFIG_MIPS_MT_FPAFF
887 	if (mt_fpemul_threshold > 0 &&
888 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
889 		/*
890 		 * If there's no FPU present, or if the application has already
891 		 * restricted the allowed set to exclude any CPUs with FPUs,
892 		 * we'll skip the procedure.
893 		 */
894 		if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
895 			cpumask_t tmask;
896 
897 			current->thread.user_cpus_allowed
898 				= current->cpus_allowed;
899 			cpumask_and(&tmask, &current->cpus_allowed,
900 				    &mt_fpu_cpumask);
901 			set_cpus_allowed_ptr(current, &tmask);
902 			set_thread_flag(TIF_FPUBOUND);
903 		}
904 	}
905 #endif /* CONFIG_MIPS_MT_FPAFF */
906 }
907 
908 #else /* !CONFIG_MIPS_FP_SUPPORT */
909 
910 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
911 		       unsigned long old_epc, unsigned long old_ra)
912 {
913 	return -1;
914 }
915 
916 #endif /* !CONFIG_MIPS_FP_SUPPORT */
917 
918 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
919 	const char *str)
920 {
921 	char b[40];
922 
923 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
924 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
925 			 SIGTRAP) == NOTIFY_STOP)
926 		return;
927 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
928 
929 	if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
930 		       SIGTRAP) == NOTIFY_STOP)
931 		return;
932 
933 	/*
934 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
935 	 * insns, even for trap and break codes that indicate arithmetic
936 	 * failures.  Weird ...
937 	 * But should we continue the brokenness???  --macro
938 	 */
939 	switch (code) {
940 	case BRK_OVERFLOW:
941 	case BRK_DIVZERO:
942 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
943 		die_if_kernel(b, regs);
944 		force_sig_fault(SIGFPE,
945 				code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
946 				(void __user *) regs->cp0_epc, current);
947 		break;
948 	case BRK_BUG:
949 		die_if_kernel("Kernel bug detected", regs);
950 		force_sig(SIGTRAP, current);
951 		break;
952 	case BRK_MEMU:
953 		/*
954 		 * This breakpoint code is used by the FPU emulator to retake
955 		 * control of the CPU after executing the instruction from the
956 		 * delay slot of an emulated branch.
957 		 *
958 		 * Terminate if exception was recognized as a delay slot return
959 		 * otherwise handle as normal.
960 		 */
961 		if (do_dsemulret(regs))
962 			return;
963 
964 		die_if_kernel("Math emu break/trap", regs);
965 		force_sig(SIGTRAP, current);
966 		break;
967 	default:
968 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
969 		die_if_kernel(b, regs);
970 		if (si_code) {
971 			force_sig_fault(SIGTRAP, si_code, NULL,	current);
972 		} else {
973 			force_sig(SIGTRAP, current);
974 		}
975 	}
976 }
977 
978 asmlinkage void do_bp(struct pt_regs *regs)
979 {
980 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
981 	unsigned int opcode, bcode;
982 	enum ctx_state prev_state;
983 	mm_segment_t seg;
984 
985 	seg = get_fs();
986 	if (!user_mode(regs))
987 		set_fs(KERNEL_DS);
988 
989 	prev_state = exception_enter();
990 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
991 	if (get_isa16_mode(regs->cp0_epc)) {
992 		u16 instr[2];
993 
994 		if (__get_user(instr[0], (u16 __user *)epc))
995 			goto out_sigsegv;
996 
997 		if (!cpu_has_mmips) {
998 			/* MIPS16e mode */
999 			bcode = (instr[0] >> 5) & 0x3f;
1000 		} else if (mm_insn_16bit(instr[0])) {
1001 			/* 16-bit microMIPS BREAK */
1002 			bcode = instr[0] & 0xf;
1003 		} else {
1004 			/* 32-bit microMIPS BREAK */
1005 			if (__get_user(instr[1], (u16 __user *)(epc + 2)))
1006 				goto out_sigsegv;
1007 			opcode = (instr[0] << 16) | instr[1];
1008 			bcode = (opcode >> 6) & ((1 << 20) - 1);
1009 		}
1010 	} else {
1011 		if (__get_user(opcode, (unsigned int __user *)epc))
1012 			goto out_sigsegv;
1013 		bcode = (opcode >> 6) & ((1 << 20) - 1);
1014 	}
1015 
1016 	/*
1017 	 * There is the ancient bug in the MIPS assemblers that the break
1018 	 * code starts left to bit 16 instead to bit 6 in the opcode.
1019 	 * Gas is bug-compatible, but not always, grrr...
1020 	 * We handle both cases with a simple heuristics.  --macro
1021 	 */
1022 	if (bcode >= (1 << 10))
1023 		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1024 
1025 	/*
1026 	 * notify the kprobe handlers, if instruction is likely to
1027 	 * pertain to them.
1028 	 */
1029 	switch (bcode) {
1030 	case BRK_UPROBE:
1031 		if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1032 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1033 			goto out;
1034 		else
1035 			break;
1036 	case BRK_UPROBE_XOL:
1037 		if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1038 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1039 			goto out;
1040 		else
1041 			break;
1042 	case BRK_KPROBE_BP:
1043 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
1044 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1045 			goto out;
1046 		else
1047 			break;
1048 	case BRK_KPROBE_SSTEPBP:
1049 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1050 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1051 			goto out;
1052 		else
1053 			break;
1054 	default:
1055 		break;
1056 	}
1057 
1058 	do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1059 
1060 out:
1061 	set_fs(seg);
1062 	exception_exit(prev_state);
1063 	return;
1064 
1065 out_sigsegv:
1066 	force_sig(SIGSEGV, current);
1067 	goto out;
1068 }
1069 
1070 asmlinkage void do_tr(struct pt_regs *regs)
1071 {
1072 	u32 opcode, tcode = 0;
1073 	enum ctx_state prev_state;
1074 	u16 instr[2];
1075 	mm_segment_t seg;
1076 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1077 
1078 	seg = get_fs();
1079 	if (!user_mode(regs))
1080 		set_fs(get_ds());
1081 
1082 	prev_state = exception_enter();
1083 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1084 	if (get_isa16_mode(regs->cp0_epc)) {
1085 		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1086 		    __get_user(instr[1], (u16 __user *)(epc + 2)))
1087 			goto out_sigsegv;
1088 		opcode = (instr[0] << 16) | instr[1];
1089 		/* Immediate versions don't provide a code.  */
1090 		if (!(opcode & OPCODE))
1091 			tcode = (opcode >> 12) & ((1 << 4) - 1);
1092 	} else {
1093 		if (__get_user(opcode, (u32 __user *)epc))
1094 			goto out_sigsegv;
1095 		/* Immediate versions don't provide a code.  */
1096 		if (!(opcode & OPCODE))
1097 			tcode = (opcode >> 6) & ((1 << 10) - 1);
1098 	}
1099 
1100 	do_trap_or_bp(regs, tcode, 0, "Trap");
1101 
1102 out:
1103 	set_fs(seg);
1104 	exception_exit(prev_state);
1105 	return;
1106 
1107 out_sigsegv:
1108 	force_sig(SIGSEGV, current);
1109 	goto out;
1110 }
1111 
1112 asmlinkage void do_ri(struct pt_regs *regs)
1113 {
1114 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1115 	unsigned long old_epc = regs->cp0_epc;
1116 	unsigned long old31 = regs->regs[31];
1117 	enum ctx_state prev_state;
1118 	unsigned int opcode = 0;
1119 	int status = -1;
1120 
1121 	/*
1122 	 * Avoid any kernel code. Just emulate the R2 instruction
1123 	 * as quickly as possible.
1124 	 */
1125 	if (mipsr2_emulation && cpu_has_mips_r6 &&
1126 	    likely(user_mode(regs)) &&
1127 	    likely(get_user(opcode, epc) >= 0)) {
1128 		unsigned long fcr31 = 0;
1129 
1130 		status = mipsr2_decoder(regs, opcode, &fcr31);
1131 		switch (status) {
1132 		case 0:
1133 		case SIGEMT:
1134 			return;
1135 		case SIGILL:
1136 			goto no_r2_instr;
1137 		default:
1138 			process_fpemu_return(status,
1139 					     &current->thread.cp0_baduaddr,
1140 					     fcr31);
1141 			return;
1142 		}
1143 	}
1144 
1145 no_r2_instr:
1146 
1147 	prev_state = exception_enter();
1148 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1149 
1150 	if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1151 		       SIGILL) == NOTIFY_STOP)
1152 		goto out;
1153 
1154 	die_if_kernel("Reserved instruction in kernel code", regs);
1155 
1156 	if (unlikely(compute_return_epc(regs) < 0))
1157 		goto out;
1158 
1159 	if (!get_isa16_mode(regs->cp0_epc)) {
1160 		if (unlikely(get_user(opcode, epc) < 0))
1161 			status = SIGSEGV;
1162 
1163 		if (!cpu_has_llsc && status < 0)
1164 			status = simulate_llsc(regs, opcode);
1165 
1166 		if (status < 0)
1167 			status = simulate_rdhwr_normal(regs, opcode);
1168 
1169 		if (status < 0)
1170 			status = simulate_sync(regs, opcode);
1171 
1172 		if (status < 0)
1173 			status = simulate_fp(regs, opcode, old_epc, old31);
1174 	} else if (cpu_has_mmips) {
1175 		unsigned short mmop[2] = { 0 };
1176 
1177 		if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1178 			status = SIGSEGV;
1179 		if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1180 			status = SIGSEGV;
1181 		opcode = mmop[0];
1182 		opcode = (opcode << 16) | mmop[1];
1183 
1184 		if (status < 0)
1185 			status = simulate_rdhwr_mm(regs, opcode);
1186 	}
1187 
1188 	if (status < 0)
1189 		status = SIGILL;
1190 
1191 	if (unlikely(status > 0)) {
1192 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1193 		regs->regs[31] = old31;
1194 		force_sig(status, current);
1195 	}
1196 
1197 out:
1198 	exception_exit(prev_state);
1199 }
1200 
1201 /*
1202  * No lock; only written during early bootup by CPU 0.
1203  */
1204 static RAW_NOTIFIER_HEAD(cu2_chain);
1205 
1206 int __ref register_cu2_notifier(struct notifier_block *nb)
1207 {
1208 	return raw_notifier_chain_register(&cu2_chain, nb);
1209 }
1210 
1211 int cu2_notifier_call_chain(unsigned long val, void *v)
1212 {
1213 	return raw_notifier_call_chain(&cu2_chain, val, v);
1214 }
1215 
1216 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1217 	void *data)
1218 {
1219 	struct pt_regs *regs = data;
1220 
1221 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1222 			      "instruction", regs);
1223 	force_sig(SIGILL, current);
1224 
1225 	return NOTIFY_OK;
1226 }
1227 
1228 #ifdef CONFIG_MIPS_FP_SUPPORT
1229 
1230 static int enable_restore_fp_context(int msa)
1231 {
1232 	int err, was_fpu_owner, prior_msa;
1233 	bool first_fp;
1234 
1235 	/* Initialize context if it hasn't been used already */
1236 	first_fp = init_fp_ctx(current);
1237 
1238 	if (first_fp) {
1239 		preempt_disable();
1240 		err = own_fpu_inatomic(1);
1241 		if (msa && !err) {
1242 			enable_msa();
1243 			set_thread_flag(TIF_USEDMSA);
1244 			set_thread_flag(TIF_MSA_CTX_LIVE);
1245 		}
1246 		preempt_enable();
1247 		return err;
1248 	}
1249 
1250 	/*
1251 	 * This task has formerly used the FP context.
1252 	 *
1253 	 * If this thread has no live MSA vector context then we can simply
1254 	 * restore the scalar FP context. If it has live MSA vector context
1255 	 * (that is, it has or may have used MSA since last performing a
1256 	 * function call) then we'll need to restore the vector context. This
1257 	 * applies even if we're currently only executing a scalar FP
1258 	 * instruction. This is because if we were to later execute an MSA
1259 	 * instruction then we'd either have to:
1260 	 *
1261 	 *  - Restore the vector context & clobber any registers modified by
1262 	 *    scalar FP instructions between now & then.
1263 	 *
1264 	 * or
1265 	 *
1266 	 *  - Not restore the vector context & lose the most significant bits
1267 	 *    of all vector registers.
1268 	 *
1269 	 * Neither of those options is acceptable. We cannot restore the least
1270 	 * significant bits of the registers now & only restore the most
1271 	 * significant bits later because the most significant bits of any
1272 	 * vector registers whose aliased FP register is modified now will have
1273 	 * been zeroed. We'd have no way to know that when restoring the vector
1274 	 * context & thus may load an outdated value for the most significant
1275 	 * bits of a vector register.
1276 	 */
1277 	if (!msa && !thread_msa_context_live())
1278 		return own_fpu(1);
1279 
1280 	/*
1281 	 * This task is using or has previously used MSA. Thus we require
1282 	 * that Status.FR == 1.
1283 	 */
1284 	preempt_disable();
1285 	was_fpu_owner = is_fpu_owner();
1286 	err = own_fpu_inatomic(0);
1287 	if (err)
1288 		goto out;
1289 
1290 	enable_msa();
1291 	write_msa_csr(current->thread.fpu.msacsr);
1292 	set_thread_flag(TIF_USEDMSA);
1293 
1294 	/*
1295 	 * If this is the first time that the task is using MSA and it has
1296 	 * previously used scalar FP in this time slice then we already nave
1297 	 * FP context which we shouldn't clobber. We do however need to clear
1298 	 * the upper 64b of each vector register so that this task has no
1299 	 * opportunity to see data left behind by another.
1300 	 */
1301 	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1302 	if (!prior_msa && was_fpu_owner) {
1303 		init_msa_upper();
1304 
1305 		goto out;
1306 	}
1307 
1308 	if (!prior_msa) {
1309 		/*
1310 		 * Restore the least significant 64b of each vector register
1311 		 * from the existing scalar FP context.
1312 		 */
1313 		_restore_fp(current);
1314 
1315 		/*
1316 		 * The task has not formerly used MSA, so clear the upper 64b
1317 		 * of each vector register such that it cannot see data left
1318 		 * behind by another task.
1319 		 */
1320 		init_msa_upper();
1321 	} else {
1322 		/* We need to restore the vector context. */
1323 		restore_msa(current);
1324 
1325 		/* Restore the scalar FP control & status register */
1326 		if (!was_fpu_owner)
1327 			write_32bit_cp1_register(CP1_STATUS,
1328 						 current->thread.fpu.fcr31);
1329 	}
1330 
1331 out:
1332 	preempt_enable();
1333 
1334 	return 0;
1335 }
1336 
1337 #else /* !CONFIG_MIPS_FP_SUPPORT */
1338 
1339 static int enable_restore_fp_context(int msa)
1340 {
1341 	return SIGILL;
1342 }
1343 
1344 #endif /* CONFIG_MIPS_FP_SUPPORT */
1345 
1346 asmlinkage void do_cpu(struct pt_regs *regs)
1347 {
1348 	enum ctx_state prev_state;
1349 	unsigned int __user *epc;
1350 	unsigned long old_epc, old31;
1351 	unsigned int opcode;
1352 	unsigned int cpid;
1353 	int status;
1354 
1355 	prev_state = exception_enter();
1356 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1357 
1358 	if (cpid != 2)
1359 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1360 
1361 	switch (cpid) {
1362 	case 0:
1363 		epc = (unsigned int __user *)exception_epc(regs);
1364 		old_epc = regs->cp0_epc;
1365 		old31 = regs->regs[31];
1366 		opcode = 0;
1367 		status = -1;
1368 
1369 		if (unlikely(compute_return_epc(regs) < 0))
1370 			break;
1371 
1372 		if (!get_isa16_mode(regs->cp0_epc)) {
1373 			if (unlikely(get_user(opcode, epc) < 0))
1374 				status = SIGSEGV;
1375 
1376 			if (!cpu_has_llsc && status < 0)
1377 				status = simulate_llsc(regs, opcode);
1378 		}
1379 
1380 		if (status < 0)
1381 			status = SIGILL;
1382 
1383 		if (unlikely(status > 0)) {
1384 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1385 			regs->regs[31] = old31;
1386 			force_sig(status, current);
1387 		}
1388 
1389 		break;
1390 
1391 #ifdef CONFIG_MIPS_FP_SUPPORT
1392 	case 3:
1393 		/*
1394 		 * The COP3 opcode space and consequently the CP0.Status.CU3
1395 		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1396 		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1397 		 * up the space has been reused for COP1X instructions, that
1398 		 * are enabled by the CP0.Status.CU1 bit and consequently
1399 		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1400 		 * exceptions.  Some FPU-less processors that implement one
1401 		 * of these ISAs however use this code erroneously for COP1X
1402 		 * instructions.  Therefore we redirect this trap to the FP
1403 		 * emulator too.
1404 		 */
1405 		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1406 			force_sig(SIGILL, current);
1407 			break;
1408 		}
1409 		/* Fall through.  */
1410 
1411 	case 1: {
1412 		void __user *fault_addr;
1413 		unsigned long fcr31;
1414 		int err, sig;
1415 
1416 		err = enable_restore_fp_context(0);
1417 
1418 		if (raw_cpu_has_fpu && !err)
1419 			break;
1420 
1421 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1422 					       &fault_addr);
1423 
1424 		/*
1425 		 * We can't allow the emulated instruction to leave
1426 		 * any enabled Cause bits set in $fcr31.
1427 		 */
1428 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1429 		current->thread.fpu.fcr31 &= ~fcr31;
1430 
1431 		/* Send a signal if required.  */
1432 		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1433 			mt_ase_fp_affinity();
1434 
1435 		break;
1436 	}
1437 #else /* CONFIG_MIPS_FP_SUPPORT */
1438 	case 1:
1439 	case 3:
1440 		force_sig(SIGILL, current);
1441 		break;
1442 #endif /* CONFIG_MIPS_FP_SUPPORT */
1443 
1444 	case 2:
1445 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1446 		break;
1447 	}
1448 
1449 	exception_exit(prev_state);
1450 }
1451 
1452 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1453 {
1454 	enum ctx_state prev_state;
1455 
1456 	prev_state = exception_enter();
1457 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1458 	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1459 		       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1460 		goto out;
1461 
1462 	/* Clear MSACSR.Cause before enabling interrupts */
1463 	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1464 	local_irq_enable();
1465 
1466 	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1467 	force_sig(SIGFPE, current);
1468 out:
1469 	exception_exit(prev_state);
1470 }
1471 
1472 asmlinkage void do_msa(struct pt_regs *regs)
1473 {
1474 	enum ctx_state prev_state;
1475 	int err;
1476 
1477 	prev_state = exception_enter();
1478 
1479 	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1480 		force_sig(SIGILL, current);
1481 		goto out;
1482 	}
1483 
1484 	die_if_kernel("do_msa invoked from kernel context!", regs);
1485 
1486 	err = enable_restore_fp_context(1);
1487 	if (err)
1488 		force_sig(SIGILL, current);
1489 out:
1490 	exception_exit(prev_state);
1491 }
1492 
1493 asmlinkage void do_mdmx(struct pt_regs *regs)
1494 {
1495 	enum ctx_state prev_state;
1496 
1497 	prev_state = exception_enter();
1498 	force_sig(SIGILL, current);
1499 	exception_exit(prev_state);
1500 }
1501 
1502 /*
1503  * Called with interrupts disabled.
1504  */
1505 asmlinkage void do_watch(struct pt_regs *regs)
1506 {
1507 	enum ctx_state prev_state;
1508 
1509 	prev_state = exception_enter();
1510 	/*
1511 	 * Clear WP (bit 22) bit of cause register so we don't loop
1512 	 * forever.
1513 	 */
1514 	clear_c0_cause(CAUSEF_WP);
1515 
1516 	/*
1517 	 * If the current thread has the watch registers loaded, save
1518 	 * their values and send SIGTRAP.  Otherwise another thread
1519 	 * left the registers set, clear them and continue.
1520 	 */
1521 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1522 		mips_read_watch_registers();
1523 		local_irq_enable();
1524 		force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL, current);
1525 	} else {
1526 		mips_clear_watch_registers();
1527 		local_irq_enable();
1528 	}
1529 	exception_exit(prev_state);
1530 }
1531 
1532 asmlinkage void do_mcheck(struct pt_regs *regs)
1533 {
1534 	int multi_match = regs->cp0_status & ST0_TS;
1535 	enum ctx_state prev_state;
1536 	mm_segment_t old_fs = get_fs();
1537 
1538 	prev_state = exception_enter();
1539 	show_regs(regs);
1540 
1541 	if (multi_match) {
1542 		dump_tlb_regs();
1543 		pr_info("\n");
1544 		dump_tlb_all();
1545 	}
1546 
1547 	if (!user_mode(regs))
1548 		set_fs(KERNEL_DS);
1549 
1550 	show_code((unsigned int __user *) regs->cp0_epc);
1551 
1552 	set_fs(old_fs);
1553 
1554 	/*
1555 	 * Some chips may have other causes of machine check (e.g. SB1
1556 	 * graduation timer)
1557 	 */
1558 	panic("Caught Machine Check exception - %scaused by multiple "
1559 	      "matching entries in the TLB.",
1560 	      (multi_match) ? "" : "not ");
1561 }
1562 
1563 asmlinkage void do_mt(struct pt_regs *regs)
1564 {
1565 	int subcode;
1566 
1567 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1568 			>> VPECONTROL_EXCPT_SHIFT;
1569 	switch (subcode) {
1570 	case 0:
1571 		printk(KERN_DEBUG "Thread Underflow\n");
1572 		break;
1573 	case 1:
1574 		printk(KERN_DEBUG "Thread Overflow\n");
1575 		break;
1576 	case 2:
1577 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1578 		break;
1579 	case 3:
1580 		printk(KERN_DEBUG "Gating Storage Exception\n");
1581 		break;
1582 	case 4:
1583 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1584 		break;
1585 	case 5:
1586 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1587 		break;
1588 	default:
1589 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1590 			subcode);
1591 		break;
1592 	}
1593 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1594 
1595 	force_sig(SIGILL, current);
1596 }
1597 
1598 
1599 asmlinkage void do_dsp(struct pt_regs *regs)
1600 {
1601 	if (cpu_has_dsp)
1602 		panic("Unexpected DSP exception");
1603 
1604 	force_sig(SIGILL, current);
1605 }
1606 
1607 asmlinkage void do_reserved(struct pt_regs *regs)
1608 {
1609 	/*
1610 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1611 	 * caused by a new unknown cpu type or after another deadly
1612 	 * hard/software error.
1613 	 */
1614 	show_regs(regs);
1615 	panic("Caught reserved exception %ld - should not happen.",
1616 	      (regs->cp0_cause & 0x7f) >> 2);
1617 }
1618 
1619 static int __initdata l1parity = 1;
1620 static int __init nol1parity(char *s)
1621 {
1622 	l1parity = 0;
1623 	return 1;
1624 }
1625 __setup("nol1par", nol1parity);
1626 static int __initdata l2parity = 1;
1627 static int __init nol2parity(char *s)
1628 {
1629 	l2parity = 0;
1630 	return 1;
1631 }
1632 __setup("nol2par", nol2parity);
1633 
1634 /*
1635  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1636  * it different ways.
1637  */
1638 static inline void parity_protection_init(void)
1639 {
1640 #define ERRCTL_PE	0x80000000
1641 #define ERRCTL_L2P	0x00800000
1642 
1643 	if (mips_cm_revision() >= CM_REV_CM3) {
1644 		ulong gcr_ectl, cp0_ectl;
1645 
1646 		/*
1647 		 * With CM3 systems we need to ensure that the L1 & L2
1648 		 * parity enables are set to the same value, since this
1649 		 * is presumed by the hardware engineers.
1650 		 *
1651 		 * If the user disabled either of L1 or L2 ECC checking,
1652 		 * disable both.
1653 		 */
1654 		l1parity &= l2parity;
1655 		l2parity &= l1parity;
1656 
1657 		/* Probe L1 ECC support */
1658 		cp0_ectl = read_c0_ecc();
1659 		write_c0_ecc(cp0_ectl | ERRCTL_PE);
1660 		back_to_back_c0_hazard();
1661 		cp0_ectl = read_c0_ecc();
1662 
1663 		/* Probe L2 ECC support */
1664 		gcr_ectl = read_gcr_err_control();
1665 
1666 		if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1667 		    !(cp0_ectl & ERRCTL_PE)) {
1668 			/*
1669 			 * One of L1 or L2 ECC checking isn't supported,
1670 			 * so we cannot enable either.
1671 			 */
1672 			l1parity = l2parity = 0;
1673 		}
1674 
1675 		/* Configure L1 ECC checking */
1676 		if (l1parity)
1677 			cp0_ectl |= ERRCTL_PE;
1678 		else
1679 			cp0_ectl &= ~ERRCTL_PE;
1680 		write_c0_ecc(cp0_ectl);
1681 		back_to_back_c0_hazard();
1682 		WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1683 
1684 		/* Configure L2 ECC checking */
1685 		if (l2parity)
1686 			gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1687 		else
1688 			gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1689 		write_gcr_err_control(gcr_ectl);
1690 		gcr_ectl = read_gcr_err_control();
1691 		gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1692 		WARN_ON(!!gcr_ectl != l2parity);
1693 
1694 		pr_info("Cache parity protection %sabled\n",
1695 			l1parity ? "en" : "dis");
1696 		return;
1697 	}
1698 
1699 	switch (current_cpu_type()) {
1700 	case CPU_24K:
1701 	case CPU_34K:
1702 	case CPU_74K:
1703 	case CPU_1004K:
1704 	case CPU_1074K:
1705 	case CPU_INTERAPTIV:
1706 	case CPU_PROAPTIV:
1707 	case CPU_P5600:
1708 	case CPU_QEMU_GENERIC:
1709 	case CPU_P6600:
1710 		{
1711 			unsigned long errctl;
1712 			unsigned int l1parity_present, l2parity_present;
1713 
1714 			errctl = read_c0_ecc();
1715 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1716 
1717 			/* probe L1 parity support */
1718 			write_c0_ecc(errctl | ERRCTL_PE);
1719 			back_to_back_c0_hazard();
1720 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1721 
1722 			/* probe L2 parity support */
1723 			write_c0_ecc(errctl|ERRCTL_L2P);
1724 			back_to_back_c0_hazard();
1725 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1726 
1727 			if (l1parity_present && l2parity_present) {
1728 				if (l1parity)
1729 					errctl |= ERRCTL_PE;
1730 				if (l1parity ^ l2parity)
1731 					errctl |= ERRCTL_L2P;
1732 			} else if (l1parity_present) {
1733 				if (l1parity)
1734 					errctl |= ERRCTL_PE;
1735 			} else if (l2parity_present) {
1736 				if (l2parity)
1737 					errctl |= ERRCTL_L2P;
1738 			} else {
1739 				/* No parity available */
1740 			}
1741 
1742 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1743 
1744 			write_c0_ecc(errctl);
1745 			back_to_back_c0_hazard();
1746 			errctl = read_c0_ecc();
1747 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1748 
1749 			if (l1parity_present)
1750 				printk(KERN_INFO "Cache parity protection %sabled\n",
1751 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1752 
1753 			if (l2parity_present) {
1754 				if (l1parity_present && l1parity)
1755 					errctl ^= ERRCTL_L2P;
1756 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1757 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1758 			}
1759 		}
1760 		break;
1761 
1762 	case CPU_5KC:
1763 	case CPU_5KE:
1764 	case CPU_LOONGSON1:
1765 		write_c0_ecc(0x80000000);
1766 		back_to_back_c0_hazard();
1767 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1768 		printk(KERN_INFO "Cache parity protection %sabled\n",
1769 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1770 		break;
1771 	case CPU_20KC:
1772 	case CPU_25KF:
1773 		/* Clear the DE bit (bit 16) in the c0_status register. */
1774 		printk(KERN_INFO "Enable cache parity protection for "
1775 		       "MIPS 20KC/25KF CPUs.\n");
1776 		clear_c0_status(ST0_DE);
1777 		break;
1778 	default:
1779 		break;
1780 	}
1781 }
1782 
1783 asmlinkage void cache_parity_error(void)
1784 {
1785 	const int field = 2 * sizeof(unsigned long);
1786 	unsigned int reg_val;
1787 
1788 	/* For the moment, report the problem and hang. */
1789 	printk("Cache error exception:\n");
1790 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1791 	reg_val = read_c0_cacheerr();
1792 	printk("c0_cacheerr == %08x\n", reg_val);
1793 
1794 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1795 	       reg_val & (1<<30) ? "secondary" : "primary",
1796 	       reg_val & (1<<31) ? "data" : "insn");
1797 	if ((cpu_has_mips_r2_r6) &&
1798 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1799 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1800 			reg_val & (1<<29) ? "ED " : "",
1801 			reg_val & (1<<28) ? "ET " : "",
1802 			reg_val & (1<<27) ? "ES " : "",
1803 			reg_val & (1<<26) ? "EE " : "",
1804 			reg_val & (1<<25) ? "EB " : "",
1805 			reg_val & (1<<24) ? "EI " : "",
1806 			reg_val & (1<<23) ? "E1 " : "",
1807 			reg_val & (1<<22) ? "E0 " : "");
1808 	} else {
1809 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1810 			reg_val & (1<<29) ? "ED " : "",
1811 			reg_val & (1<<28) ? "ET " : "",
1812 			reg_val & (1<<26) ? "EE " : "",
1813 			reg_val & (1<<25) ? "EB " : "",
1814 			reg_val & (1<<24) ? "EI " : "",
1815 			reg_val & (1<<23) ? "E1 " : "",
1816 			reg_val & (1<<22) ? "E0 " : "");
1817 	}
1818 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1819 
1820 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1821 	if (reg_val & (1<<22))
1822 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1823 
1824 	if (reg_val & (1<<23))
1825 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1826 #endif
1827 
1828 	panic("Can't handle the cache error!");
1829 }
1830 
1831 asmlinkage void do_ftlb(void)
1832 {
1833 	const int field = 2 * sizeof(unsigned long);
1834 	unsigned int reg_val;
1835 
1836 	/* For the moment, report the problem and hang. */
1837 	if ((cpu_has_mips_r2_r6) &&
1838 	    (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1839 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1840 		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1841 		       read_c0_ecc());
1842 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1843 		reg_val = read_c0_cacheerr();
1844 		pr_err("c0_cacheerr == %08x\n", reg_val);
1845 
1846 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1847 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1848 		} else {
1849 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1850 			       reg_val & (1<<30) ? "secondary" : "primary",
1851 			       reg_val & (1<<31) ? "data" : "insn");
1852 		}
1853 	} else {
1854 		pr_err("FTLB error exception\n");
1855 	}
1856 	/* Just print the cacheerr bits for now */
1857 	cache_parity_error();
1858 }
1859 
1860 /*
1861  * SDBBP EJTAG debug exception handler.
1862  * We skip the instruction and return to the next instruction.
1863  */
1864 void ejtag_exception_handler(struct pt_regs *regs)
1865 {
1866 	const int field = 2 * sizeof(unsigned long);
1867 	unsigned long depc, old_epc, old_ra;
1868 	unsigned int debug;
1869 
1870 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1871 	depc = read_c0_depc();
1872 	debug = read_c0_debug();
1873 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1874 	if (debug & 0x80000000) {
1875 		/*
1876 		 * In branch delay slot.
1877 		 * We cheat a little bit here and use EPC to calculate the
1878 		 * debug return address (DEPC). EPC is restored after the
1879 		 * calculation.
1880 		 */
1881 		old_epc = regs->cp0_epc;
1882 		old_ra = regs->regs[31];
1883 		regs->cp0_epc = depc;
1884 		compute_return_epc(regs);
1885 		depc = regs->cp0_epc;
1886 		regs->cp0_epc = old_epc;
1887 		regs->regs[31] = old_ra;
1888 	} else
1889 		depc += 4;
1890 	write_c0_depc(depc);
1891 
1892 #if 0
1893 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1894 	write_c0_debug(debug | 0x100);
1895 #endif
1896 }
1897 
1898 /*
1899  * NMI exception handler.
1900  * No lock; only written during early bootup by CPU 0.
1901  */
1902 static RAW_NOTIFIER_HEAD(nmi_chain);
1903 
1904 int register_nmi_notifier(struct notifier_block *nb)
1905 {
1906 	return raw_notifier_chain_register(&nmi_chain, nb);
1907 }
1908 
1909 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1910 {
1911 	char str[100];
1912 
1913 	nmi_enter();
1914 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1915 	bust_spinlocks(1);
1916 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1917 		 smp_processor_id(), regs->cp0_epc);
1918 	regs->cp0_epc = read_c0_errorepc();
1919 	die(str, regs);
1920 	nmi_exit();
1921 }
1922 
1923 #define VECTORSPACING 0x100	/* for EI/VI mode */
1924 
1925 unsigned long ebase;
1926 EXPORT_SYMBOL_GPL(ebase);
1927 unsigned long exception_handlers[32];
1928 unsigned long vi_handlers[64];
1929 
1930 void __init *set_except_vector(int n, void *addr)
1931 {
1932 	unsigned long handler = (unsigned long) addr;
1933 	unsigned long old_handler;
1934 
1935 #ifdef CONFIG_CPU_MICROMIPS
1936 	/*
1937 	 * Only the TLB handlers are cache aligned with an even
1938 	 * address. All other handlers are on an odd address and
1939 	 * require no modification. Otherwise, MIPS32 mode will
1940 	 * be entered when handling any TLB exceptions. That
1941 	 * would be bad...since we must stay in microMIPS mode.
1942 	 */
1943 	if (!(handler & 0x1))
1944 		handler |= 1;
1945 #endif
1946 	old_handler = xchg(&exception_handlers[n], handler);
1947 
1948 	if (n == 0 && cpu_has_divec) {
1949 #ifdef CONFIG_CPU_MICROMIPS
1950 		unsigned long jump_mask = ~((1 << 27) - 1);
1951 #else
1952 		unsigned long jump_mask = ~((1 << 28) - 1);
1953 #endif
1954 		u32 *buf = (u32 *)(ebase + 0x200);
1955 		unsigned int k0 = 26;
1956 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1957 			uasm_i_j(&buf, handler & ~jump_mask);
1958 			uasm_i_nop(&buf);
1959 		} else {
1960 			UASM_i_LA(&buf, k0, handler);
1961 			uasm_i_jr(&buf, k0);
1962 			uasm_i_nop(&buf);
1963 		}
1964 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1965 	}
1966 	return (void *)old_handler;
1967 }
1968 
1969 static void do_default_vi(void)
1970 {
1971 	show_regs(get_irq_regs());
1972 	panic("Caught unexpected vectored interrupt.");
1973 }
1974 
1975 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1976 {
1977 	unsigned long handler;
1978 	unsigned long old_handler = vi_handlers[n];
1979 	int srssets = current_cpu_data.srsets;
1980 	u16 *h;
1981 	unsigned char *b;
1982 
1983 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1984 
1985 	if (addr == NULL) {
1986 		handler = (unsigned long) do_default_vi;
1987 		srs = 0;
1988 	} else
1989 		handler = (unsigned long) addr;
1990 	vi_handlers[n] = handler;
1991 
1992 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1993 
1994 	if (srs >= srssets)
1995 		panic("Shadow register set %d not supported", srs);
1996 
1997 	if (cpu_has_veic) {
1998 		if (board_bind_eic_interrupt)
1999 			board_bind_eic_interrupt(n, srs);
2000 	} else if (cpu_has_vint) {
2001 		/* SRSMap is only defined if shadow sets are implemented */
2002 		if (srssets > 1)
2003 			change_c0_srsmap(0xf << n*4, srs << n*4);
2004 	}
2005 
2006 	if (srs == 0) {
2007 		/*
2008 		 * If no shadow set is selected then use the default handler
2009 		 * that does normal register saving and standard interrupt exit
2010 		 */
2011 		extern char except_vec_vi, except_vec_vi_lui;
2012 		extern char except_vec_vi_ori, except_vec_vi_end;
2013 		extern char rollback_except_vec_vi;
2014 		char *vec_start = using_rollback_handler() ?
2015 			&rollback_except_vec_vi : &except_vec_vi;
2016 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2017 		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2018 		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2019 #else
2020 		const int lui_offset = &except_vec_vi_lui - vec_start;
2021 		const int ori_offset = &except_vec_vi_ori - vec_start;
2022 #endif
2023 		const int handler_len = &except_vec_vi_end - vec_start;
2024 
2025 		if (handler_len > VECTORSPACING) {
2026 			/*
2027 			 * Sigh... panicing won't help as the console
2028 			 * is probably not configured :(
2029 			 */
2030 			panic("VECTORSPACING too small");
2031 		}
2032 
2033 		set_handler(((unsigned long)b - ebase), vec_start,
2034 #ifdef CONFIG_CPU_MICROMIPS
2035 				(handler_len - 1));
2036 #else
2037 				handler_len);
2038 #endif
2039 		h = (u16 *)(b + lui_offset);
2040 		*h = (handler >> 16) & 0xffff;
2041 		h = (u16 *)(b + ori_offset);
2042 		*h = (handler & 0xffff);
2043 		local_flush_icache_range((unsigned long)b,
2044 					 (unsigned long)(b+handler_len));
2045 	}
2046 	else {
2047 		/*
2048 		 * In other cases jump directly to the interrupt handler. It
2049 		 * is the handler's responsibility to save registers if required
2050 		 * (eg hi/lo) and return from the exception using "eret".
2051 		 */
2052 		u32 insn;
2053 
2054 		h = (u16 *)b;
2055 		/* j handler */
2056 #ifdef CONFIG_CPU_MICROMIPS
2057 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2058 #else
2059 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2060 #endif
2061 		h[0] = (insn >> 16) & 0xffff;
2062 		h[1] = insn & 0xffff;
2063 		h[2] = 0;
2064 		h[3] = 0;
2065 		local_flush_icache_range((unsigned long)b,
2066 					 (unsigned long)(b+8));
2067 	}
2068 
2069 	return (void *)old_handler;
2070 }
2071 
2072 void *set_vi_handler(int n, vi_handler_t addr)
2073 {
2074 	return set_vi_srs_handler(n, addr, 0);
2075 }
2076 
2077 extern void tlb_init(void);
2078 
2079 /*
2080  * Timer interrupt
2081  */
2082 int cp0_compare_irq;
2083 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2084 int cp0_compare_irq_shift;
2085 
2086 /*
2087  * Performance counter IRQ or -1 if shared with timer
2088  */
2089 int cp0_perfcount_irq;
2090 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2091 
2092 /*
2093  * Fast debug channel IRQ or -1 if not present
2094  */
2095 int cp0_fdc_irq;
2096 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2097 
2098 static int noulri;
2099 
2100 static int __init ulri_disable(char *s)
2101 {
2102 	pr_info("Disabling ulri\n");
2103 	noulri = 1;
2104 
2105 	return 1;
2106 }
2107 __setup("noulri", ulri_disable);
2108 
2109 /* configure STATUS register */
2110 static void configure_status(void)
2111 {
2112 	/*
2113 	 * Disable coprocessors and select 32-bit or 64-bit addressing
2114 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2115 	 * flag that some firmware may have left set and the TS bit (for
2116 	 * IP27).  Set XX for ISA IV code to work.
2117 	 */
2118 	unsigned int status_set = ST0_CU0;
2119 #ifdef CONFIG_64BIT
2120 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2121 #endif
2122 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2123 		status_set |= ST0_XX;
2124 	if (cpu_has_dsp)
2125 		status_set |= ST0_MX;
2126 
2127 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2128 			 status_set);
2129 }
2130 
2131 unsigned int hwrena;
2132 EXPORT_SYMBOL_GPL(hwrena);
2133 
2134 /* configure HWRENA register */
2135 static void configure_hwrena(void)
2136 {
2137 	hwrena = cpu_hwrena_impl_bits;
2138 
2139 	if (cpu_has_mips_r2_r6)
2140 		hwrena |= MIPS_HWRENA_CPUNUM |
2141 			  MIPS_HWRENA_SYNCISTEP |
2142 			  MIPS_HWRENA_CC |
2143 			  MIPS_HWRENA_CCRES;
2144 
2145 	if (!noulri && cpu_has_userlocal)
2146 		hwrena |= MIPS_HWRENA_ULR;
2147 
2148 	if (hwrena)
2149 		write_c0_hwrena(hwrena);
2150 }
2151 
2152 static void configure_exception_vector(void)
2153 {
2154 	if (cpu_has_veic || cpu_has_vint) {
2155 		unsigned long sr = set_c0_status(ST0_BEV);
2156 		/* If available, use WG to set top bits of EBASE */
2157 		if (cpu_has_ebase_wg) {
2158 #ifdef CONFIG_64BIT
2159 			write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2160 #else
2161 			write_c0_ebase(ebase | MIPS_EBASE_WG);
2162 #endif
2163 		}
2164 		write_c0_ebase(ebase);
2165 		write_c0_status(sr);
2166 		/* Setting vector spacing enables EI/VI mode  */
2167 		change_c0_intctl(0x3e0, VECTORSPACING);
2168 	}
2169 	if (cpu_has_divec) {
2170 		if (cpu_has_mipsmt) {
2171 			unsigned int vpflags = dvpe();
2172 			set_c0_cause(CAUSEF_IV);
2173 			evpe(vpflags);
2174 		} else
2175 			set_c0_cause(CAUSEF_IV);
2176 	}
2177 }
2178 
2179 void per_cpu_trap_init(bool is_boot_cpu)
2180 {
2181 	unsigned int cpu = smp_processor_id();
2182 
2183 	configure_status();
2184 	configure_hwrena();
2185 
2186 	configure_exception_vector();
2187 
2188 	/*
2189 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2190 	 *
2191 	 *  o read IntCtl.IPTI to determine the timer interrupt
2192 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2193 	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2194 	 */
2195 	if (cpu_has_mips_r2_r6) {
2196 		/*
2197 		 * We shouldn't trust a secondary core has a sane EBASE register
2198 		 * so use the one calculated by the boot CPU.
2199 		 */
2200 		if (!is_boot_cpu) {
2201 			/* If available, use WG to set top bits of EBASE */
2202 			if (cpu_has_ebase_wg) {
2203 #ifdef CONFIG_64BIT
2204 				write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2205 #else
2206 				write_c0_ebase(ebase | MIPS_EBASE_WG);
2207 #endif
2208 			}
2209 			write_c0_ebase(ebase);
2210 		}
2211 
2212 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2213 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2214 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2215 		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2216 		if (!cp0_fdc_irq)
2217 			cp0_fdc_irq = -1;
2218 
2219 	} else {
2220 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2221 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2222 		cp0_perfcount_irq = -1;
2223 		cp0_fdc_irq = -1;
2224 	}
2225 
2226 	if (!cpu_data[cpu].asid_cache)
2227 		cpu_data[cpu].asid_cache = asid_first_version(cpu);
2228 
2229 	mmgrab(&init_mm);
2230 	current->active_mm = &init_mm;
2231 	BUG_ON(current->mm);
2232 	enter_lazy_tlb(&init_mm, current);
2233 
2234 	/* Boot CPU's cache setup in setup_arch(). */
2235 	if (!is_boot_cpu)
2236 		cpu_cache_init();
2237 	tlb_init();
2238 	TLBMISS_HANDLER_SETUP();
2239 }
2240 
2241 /* Install CPU exception handler */
2242 void set_handler(unsigned long offset, void *addr, unsigned long size)
2243 {
2244 #ifdef CONFIG_CPU_MICROMIPS
2245 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2246 #else
2247 	memcpy((void *)(ebase + offset), addr, size);
2248 #endif
2249 	local_flush_icache_range(ebase + offset, ebase + offset + size);
2250 }
2251 
2252 static const char panic_null_cerr[] =
2253 	"Trying to set NULL cache error exception handler\n";
2254 
2255 /*
2256  * Install uncached CPU exception handler.
2257  * This is suitable only for the cache error exception which is the only
2258  * exception handler that is being run uncached.
2259  */
2260 void set_uncached_handler(unsigned long offset, void *addr,
2261 	unsigned long size)
2262 {
2263 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2264 
2265 	if (!addr)
2266 		panic(panic_null_cerr);
2267 
2268 	memcpy((void *)(uncached_ebase + offset), addr, size);
2269 }
2270 
2271 static int __initdata rdhwr_noopt;
2272 static int __init set_rdhwr_noopt(char *str)
2273 {
2274 	rdhwr_noopt = 1;
2275 	return 1;
2276 }
2277 
2278 __setup("rdhwr_noopt", set_rdhwr_noopt);
2279 
2280 void __init trap_init(void)
2281 {
2282 	extern char except_vec3_generic;
2283 	extern char except_vec4;
2284 	extern char except_vec3_r4000;
2285 	unsigned long i;
2286 
2287 	check_wait();
2288 
2289 	if (cpu_has_veic || cpu_has_vint) {
2290 		unsigned long size = 0x200 + VECTORSPACING*64;
2291 		phys_addr_t ebase_pa;
2292 
2293 		ebase = (unsigned long)
2294 			memblock_alloc_from(size, 1 << fls(size), 0);
2295 
2296 		/*
2297 		 * Try to ensure ebase resides in KSeg0 if possible.
2298 		 *
2299 		 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2300 		 * hitting a poorly defined exception base for Cache Errors.
2301 		 * The allocation is likely to be in the low 512MB of physical,
2302 		 * in which case we should be able to convert to KSeg0.
2303 		 *
2304 		 * EVA is special though as it allows segments to be rearranged
2305 		 * and to become uncached during cache error handling.
2306 		 */
2307 		ebase_pa = __pa(ebase);
2308 		if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2309 			ebase = CKSEG0ADDR(ebase_pa);
2310 	} else {
2311 		ebase = CAC_BASE;
2312 
2313 		if (cpu_has_mips_r2_r6) {
2314 			if (cpu_has_ebase_wg) {
2315 #ifdef CONFIG_64BIT
2316 				ebase = (read_c0_ebase_64() & ~0xfff);
2317 #else
2318 				ebase = (read_c0_ebase() & ~0xfff);
2319 #endif
2320 			} else {
2321 				ebase += (read_c0_ebase() & 0x3ffff000);
2322 			}
2323 		}
2324 	}
2325 
2326 	if (cpu_has_mmips) {
2327 		unsigned int config3 = read_c0_config3();
2328 
2329 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2330 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2331 		else
2332 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2333 	}
2334 
2335 	if (board_ebase_setup)
2336 		board_ebase_setup();
2337 	per_cpu_trap_init(true);
2338 	memblock_set_bottom_up(false);
2339 
2340 	/*
2341 	 * Copy the generic exception handlers to their final destination.
2342 	 * This will be overridden later as suitable for a particular
2343 	 * configuration.
2344 	 */
2345 	set_handler(0x180, &except_vec3_generic, 0x80);
2346 
2347 	/*
2348 	 * Setup default vectors
2349 	 */
2350 	for (i = 0; i <= 31; i++)
2351 		set_except_vector(i, handle_reserved);
2352 
2353 	/*
2354 	 * Copy the EJTAG debug exception vector handler code to it's final
2355 	 * destination.
2356 	 */
2357 	if (cpu_has_ejtag && board_ejtag_handler_setup)
2358 		board_ejtag_handler_setup();
2359 
2360 	/*
2361 	 * Only some CPUs have the watch exceptions.
2362 	 */
2363 	if (cpu_has_watch)
2364 		set_except_vector(EXCCODE_WATCH, handle_watch);
2365 
2366 	/*
2367 	 * Initialise interrupt handlers
2368 	 */
2369 	if (cpu_has_veic || cpu_has_vint) {
2370 		int nvec = cpu_has_veic ? 64 : 8;
2371 		for (i = 0; i < nvec; i++)
2372 			set_vi_handler(i, NULL);
2373 	}
2374 	else if (cpu_has_divec)
2375 		set_handler(0x200, &except_vec4, 0x8);
2376 
2377 	/*
2378 	 * Some CPUs can enable/disable for cache parity detection, but does
2379 	 * it different ways.
2380 	 */
2381 	parity_protection_init();
2382 
2383 	/*
2384 	 * The Data Bus Errors / Instruction Bus Errors are signaled
2385 	 * by external hardware.  Therefore these two exceptions
2386 	 * may have board specific handlers.
2387 	 */
2388 	if (board_be_init)
2389 		board_be_init();
2390 
2391 	set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2392 					rollback_handle_int : handle_int);
2393 	set_except_vector(EXCCODE_MOD, handle_tlbm);
2394 	set_except_vector(EXCCODE_TLBL, handle_tlbl);
2395 	set_except_vector(EXCCODE_TLBS, handle_tlbs);
2396 
2397 	set_except_vector(EXCCODE_ADEL, handle_adel);
2398 	set_except_vector(EXCCODE_ADES, handle_ades);
2399 
2400 	set_except_vector(EXCCODE_IBE, handle_ibe);
2401 	set_except_vector(EXCCODE_DBE, handle_dbe);
2402 
2403 	set_except_vector(EXCCODE_SYS, handle_sys);
2404 	set_except_vector(EXCCODE_BP, handle_bp);
2405 
2406 	if (rdhwr_noopt)
2407 		set_except_vector(EXCCODE_RI, handle_ri);
2408 	else {
2409 		if (cpu_has_vtag_icache)
2410 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2411 		else if (current_cpu_type() == CPU_LOONGSON3)
2412 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2413 		else
2414 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2415 	}
2416 
2417 	set_except_vector(EXCCODE_CPU, handle_cpu);
2418 	set_except_vector(EXCCODE_OV, handle_ov);
2419 	set_except_vector(EXCCODE_TR, handle_tr);
2420 	set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2421 
2422 	if (board_nmi_handler_setup)
2423 		board_nmi_handler_setup();
2424 
2425 	if (cpu_has_fpu && !cpu_has_nofpuex)
2426 		set_except_vector(EXCCODE_FPE, handle_fpe);
2427 
2428 	set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2429 
2430 	if (cpu_has_rixiex) {
2431 		set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2432 		set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2433 	}
2434 
2435 	set_except_vector(EXCCODE_MSADIS, handle_msa);
2436 	set_except_vector(EXCCODE_MDMX, handle_mdmx);
2437 
2438 	if (cpu_has_mcheck)
2439 		set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2440 
2441 	if (cpu_has_mipsmt)
2442 		set_except_vector(EXCCODE_THREAD, handle_mt);
2443 
2444 	set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2445 
2446 	if (board_cache_error_setup)
2447 		board_cache_error_setup();
2448 
2449 	if (cpu_has_vce)
2450 		/* Special exception: R4[04]00 uses also the divec space. */
2451 		set_handler(0x180, &except_vec3_r4000, 0x100);
2452 	else if (cpu_has_4kex)
2453 		set_handler(0x180, &except_vec3_generic, 0x80);
2454 	else
2455 		set_handler(0x080, &except_vec3_generic, 0x80);
2456 
2457 	local_flush_icache_range(ebase, ebase + 0x400);
2458 
2459 	sort_extable(__start___dbe_table, __stop___dbe_table);
2460 
2461 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2462 }
2463 
2464 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2465 			    void *v)
2466 {
2467 	switch (cmd) {
2468 	case CPU_PM_ENTER_FAILED:
2469 	case CPU_PM_EXIT:
2470 		configure_status();
2471 		configure_hwrena();
2472 		configure_exception_vector();
2473 
2474 		/* Restore register with CPU number for TLB handlers */
2475 		TLBMISS_HANDLER_RESTORE();
2476 
2477 		break;
2478 	}
2479 
2480 	return NOTIFY_OK;
2481 }
2482 
2483 static struct notifier_block trap_pm_notifier_block = {
2484 	.notifier_call = trap_pm_notifier,
2485 };
2486 
2487 static int __init trap_pm_init(void)
2488 {
2489 	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2490 }
2491 arch_initcall(trap_pm_init);
2492