xref: /openbmc/linux/arch/mips/kernel/traps.c (revision 565d76cb)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
13  */
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/init.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/sched.h>
20 #include <linux/smp.h>
21 #include <linux/spinlock.h>
22 #include <linux/kallsyms.h>
23 #include <linux/bootmem.h>
24 #include <linux/interrupt.h>
25 #include <linux/ptrace.h>
26 #include <linux/kgdb.h>
27 #include <linux/kdebug.h>
28 #include <linux/kprobes.h>
29 #include <linux/notifier.h>
30 #include <linux/kdb.h>
31 #include <linux/irq.h>
32 #include <linux/perf_event.h>
33 
34 #include <asm/bootinfo.h>
35 #include <asm/branch.h>
36 #include <asm/break.h>
37 #include <asm/cop2.h>
38 #include <asm/cpu.h>
39 #include <asm/dsp.h>
40 #include <asm/fpu.h>
41 #include <asm/fpu_emulator.h>
42 #include <asm/mipsregs.h>
43 #include <asm/mipsmtregs.h>
44 #include <asm/module.h>
45 #include <asm/pgtable.h>
46 #include <asm/ptrace.h>
47 #include <asm/sections.h>
48 #include <asm/system.h>
49 #include <asm/tlbdebug.h>
50 #include <asm/traps.h>
51 #include <asm/uaccess.h>
52 #include <asm/watch.h>
53 #include <asm/mmu_context.h>
54 #include <asm/types.h>
55 #include <asm/stacktrace.h>
56 #include <asm/uasm.h>
57 
58 extern void check_wait(void);
59 extern asmlinkage void r4k_wait(void);
60 extern asmlinkage void rollback_handle_int(void);
61 extern asmlinkage void handle_int(void);
62 extern asmlinkage void handle_tlbm(void);
63 extern asmlinkage void handle_tlbl(void);
64 extern asmlinkage void handle_tlbs(void);
65 extern asmlinkage void handle_adel(void);
66 extern asmlinkage void handle_ades(void);
67 extern asmlinkage void handle_ibe(void);
68 extern asmlinkage void handle_dbe(void);
69 extern asmlinkage void handle_sys(void);
70 extern asmlinkage void handle_bp(void);
71 extern asmlinkage void handle_ri(void);
72 extern asmlinkage void handle_ri_rdhwr_vivt(void);
73 extern asmlinkage void handle_ri_rdhwr(void);
74 extern asmlinkage void handle_cpu(void);
75 extern asmlinkage void handle_ov(void);
76 extern asmlinkage void handle_tr(void);
77 extern asmlinkage void handle_fpe(void);
78 extern asmlinkage void handle_mdmx(void);
79 extern asmlinkage void handle_watch(void);
80 extern asmlinkage void handle_mt(void);
81 extern asmlinkage void handle_dsp(void);
82 extern asmlinkage void handle_mcheck(void);
83 extern asmlinkage void handle_reserved(void);
84 
85 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
86 				    struct mips_fpu_struct *ctx, int has_fpu,
87 				    void *__user *fault_addr);
88 
89 void (*board_be_init)(void);
90 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
91 void (*board_nmi_handler_setup)(void);
92 void (*board_ejtag_handler_setup)(void);
93 void (*board_bind_eic_interrupt)(int irq, int regset);
94 
95 
96 static void show_raw_backtrace(unsigned long reg29)
97 {
98 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
99 	unsigned long addr;
100 
101 	printk("Call Trace:");
102 #ifdef CONFIG_KALLSYMS
103 	printk("\n");
104 #endif
105 	while (!kstack_end(sp)) {
106 		unsigned long __user *p =
107 			(unsigned long __user *)(unsigned long)sp++;
108 		if (__get_user(addr, p)) {
109 			printk(" (Bad stack address)");
110 			break;
111 		}
112 		if (__kernel_text_address(addr))
113 			print_ip_sym(addr);
114 	}
115 	printk("\n");
116 }
117 
118 #ifdef CONFIG_KALLSYMS
119 int raw_show_trace;
120 static int __init set_raw_show_trace(char *str)
121 {
122 	raw_show_trace = 1;
123 	return 1;
124 }
125 __setup("raw_show_trace", set_raw_show_trace);
126 #endif
127 
128 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
129 {
130 	unsigned long sp = regs->regs[29];
131 	unsigned long ra = regs->regs[31];
132 	unsigned long pc = regs->cp0_epc;
133 
134 	if (raw_show_trace || !__kernel_text_address(pc)) {
135 		show_raw_backtrace(sp);
136 		return;
137 	}
138 	printk("Call Trace:\n");
139 	do {
140 		print_ip_sym(pc);
141 		pc = unwind_stack(task, &sp, pc, &ra);
142 	} while (pc);
143 	printk("\n");
144 }
145 
146 /*
147  * This routine abuses get_user()/put_user() to reference pointers
148  * with at least a bit of error checking ...
149  */
150 static void show_stacktrace(struct task_struct *task,
151 	const struct pt_regs *regs)
152 {
153 	const int field = 2 * sizeof(unsigned long);
154 	long stackdata;
155 	int i;
156 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
157 
158 	printk("Stack :");
159 	i = 0;
160 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
161 		if (i && ((i % (64 / field)) == 0))
162 			printk("\n       ");
163 		if (i > 39) {
164 			printk(" ...");
165 			break;
166 		}
167 
168 		if (__get_user(stackdata, sp++)) {
169 			printk(" (Bad stack address)");
170 			break;
171 		}
172 
173 		printk(" %0*lx", field, stackdata);
174 		i++;
175 	}
176 	printk("\n");
177 	show_backtrace(task, regs);
178 }
179 
180 void show_stack(struct task_struct *task, unsigned long *sp)
181 {
182 	struct pt_regs regs;
183 	if (sp) {
184 		regs.regs[29] = (unsigned long)sp;
185 		regs.regs[31] = 0;
186 		regs.cp0_epc = 0;
187 	} else {
188 		if (task && task != current) {
189 			regs.regs[29] = task->thread.reg29;
190 			regs.regs[31] = 0;
191 			regs.cp0_epc = task->thread.reg31;
192 #ifdef CONFIG_KGDB_KDB
193 		} else if (atomic_read(&kgdb_active) != -1 &&
194 			   kdb_current_regs) {
195 			memcpy(&regs, kdb_current_regs, sizeof(regs));
196 #endif /* CONFIG_KGDB_KDB */
197 		} else {
198 			prepare_frametrace(&regs);
199 		}
200 	}
201 	show_stacktrace(task, &regs);
202 }
203 
204 /*
205  * The architecture-independent dump_stack generator
206  */
207 void dump_stack(void)
208 {
209 	struct pt_regs regs;
210 
211 	prepare_frametrace(&regs);
212 	show_backtrace(current, &regs);
213 }
214 
215 EXPORT_SYMBOL(dump_stack);
216 
217 static void show_code(unsigned int __user *pc)
218 {
219 	long i;
220 	unsigned short __user *pc16 = NULL;
221 
222 	printk("\nCode:");
223 
224 	if ((unsigned long)pc & 1)
225 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
226 	for(i = -3 ; i < 6 ; i++) {
227 		unsigned int insn;
228 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
229 			printk(" (Bad address in epc)\n");
230 			break;
231 		}
232 		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
233 	}
234 }
235 
236 static void __show_regs(const struct pt_regs *regs)
237 {
238 	const int field = 2 * sizeof(unsigned long);
239 	unsigned int cause = regs->cp0_cause;
240 	int i;
241 
242 	printk("Cpu %d\n", smp_processor_id());
243 
244 	/*
245 	 * Saved main processor registers
246 	 */
247 	for (i = 0; i < 32; ) {
248 		if ((i % 4) == 0)
249 			printk("$%2d   :", i);
250 		if (i == 0)
251 			printk(" %0*lx", field, 0UL);
252 		else if (i == 26 || i == 27)
253 			printk(" %*s", field, "");
254 		else
255 			printk(" %0*lx", field, regs->regs[i]);
256 
257 		i++;
258 		if ((i % 4) == 0)
259 			printk("\n");
260 	}
261 
262 #ifdef CONFIG_CPU_HAS_SMARTMIPS
263 	printk("Acx    : %0*lx\n", field, regs->acx);
264 #endif
265 	printk("Hi    : %0*lx\n", field, regs->hi);
266 	printk("Lo    : %0*lx\n", field, regs->lo);
267 
268 	/*
269 	 * Saved cp0 registers
270 	 */
271 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
272 	       (void *) regs->cp0_epc);
273 	printk("    %s\n", print_tainted());
274 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
275 	       (void *) regs->regs[31]);
276 
277 	printk("Status: %08x    ", (uint32_t) regs->cp0_status);
278 
279 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
280 		if (regs->cp0_status & ST0_KUO)
281 			printk("KUo ");
282 		if (regs->cp0_status & ST0_IEO)
283 			printk("IEo ");
284 		if (regs->cp0_status & ST0_KUP)
285 			printk("KUp ");
286 		if (regs->cp0_status & ST0_IEP)
287 			printk("IEp ");
288 		if (regs->cp0_status & ST0_KUC)
289 			printk("KUc ");
290 		if (regs->cp0_status & ST0_IEC)
291 			printk("IEc ");
292 	} else {
293 		if (regs->cp0_status & ST0_KX)
294 			printk("KX ");
295 		if (regs->cp0_status & ST0_SX)
296 			printk("SX ");
297 		if (regs->cp0_status & ST0_UX)
298 			printk("UX ");
299 		switch (regs->cp0_status & ST0_KSU) {
300 		case KSU_USER:
301 			printk("USER ");
302 			break;
303 		case KSU_SUPERVISOR:
304 			printk("SUPERVISOR ");
305 			break;
306 		case KSU_KERNEL:
307 			printk("KERNEL ");
308 			break;
309 		default:
310 			printk("BAD_MODE ");
311 			break;
312 		}
313 		if (regs->cp0_status & ST0_ERL)
314 			printk("ERL ");
315 		if (regs->cp0_status & ST0_EXL)
316 			printk("EXL ");
317 		if (regs->cp0_status & ST0_IE)
318 			printk("IE ");
319 	}
320 	printk("\n");
321 
322 	printk("Cause : %08x\n", cause);
323 
324 	cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
325 	if (1 <= cause && cause <= 5)
326 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
327 
328 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
329 	       cpu_name_string());
330 }
331 
332 /*
333  * FIXME: really the generic show_regs should take a const pointer argument.
334  */
335 void show_regs(struct pt_regs *regs)
336 {
337 	__show_regs((struct pt_regs *)regs);
338 }
339 
340 void show_registers(struct pt_regs *regs)
341 {
342 	const int field = 2 * sizeof(unsigned long);
343 
344 	__show_regs(regs);
345 	print_modules();
346 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
347 	       current->comm, current->pid, current_thread_info(), current,
348 	      field, current_thread_info()->tp_value);
349 	if (cpu_has_userlocal) {
350 		unsigned long tls;
351 
352 		tls = read_c0_userlocal();
353 		if (tls != current_thread_info()->tp_value)
354 			printk("*HwTLS: %0*lx\n", field, tls);
355 	}
356 
357 	show_stacktrace(current, regs);
358 	show_code((unsigned int __user *) regs->cp0_epc);
359 	printk("\n");
360 }
361 
362 static int regs_to_trapnr(struct pt_regs *regs)
363 {
364 	return (regs->cp0_cause >> 2) & 0x1f;
365 }
366 
367 static DEFINE_SPINLOCK(die_lock);
368 
369 void __noreturn die(const char *str, struct pt_regs *regs)
370 {
371 	static int die_counter;
372 	int sig = SIGSEGV;
373 #ifdef CONFIG_MIPS_MT_SMTC
374 	unsigned long dvpret = dvpe();
375 #endif /* CONFIG_MIPS_MT_SMTC */
376 
377 	notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV);
378 
379 	console_verbose();
380 	spin_lock_irq(&die_lock);
381 	bust_spinlocks(1);
382 #ifdef CONFIG_MIPS_MT_SMTC
383 	mips_mt_regdump(dvpret);
384 #endif /* CONFIG_MIPS_MT_SMTC */
385 
386 	if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV) == NOTIFY_STOP)
387 		sig = 0;
388 
389 	printk("%s[#%d]:\n", str, ++die_counter);
390 	show_registers(regs);
391 	add_taint(TAINT_DIE);
392 	spin_unlock_irq(&die_lock);
393 
394 	if (in_interrupt())
395 		panic("Fatal exception in interrupt");
396 
397 	if (panic_on_oops) {
398 		printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
399 		ssleep(5);
400 		panic("Fatal exception");
401 	}
402 
403 	do_exit(sig);
404 }
405 
406 extern struct exception_table_entry __start___dbe_table[];
407 extern struct exception_table_entry __stop___dbe_table[];
408 
409 __asm__(
410 "	.section	__dbe_table, \"a\"\n"
411 "	.previous			\n");
412 
413 /* Given an address, look for it in the exception tables. */
414 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
415 {
416 	const struct exception_table_entry *e;
417 
418 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
419 	if (!e)
420 		e = search_module_dbetables(addr);
421 	return e;
422 }
423 
424 asmlinkage void do_be(struct pt_regs *regs)
425 {
426 	const int field = 2 * sizeof(unsigned long);
427 	const struct exception_table_entry *fixup = NULL;
428 	int data = regs->cp0_cause & 4;
429 	int action = MIPS_BE_FATAL;
430 
431 	/* XXX For now.  Fixme, this searches the wrong table ...  */
432 	if (data && !user_mode(regs))
433 		fixup = search_dbe_tables(exception_epc(regs));
434 
435 	if (fixup)
436 		action = MIPS_BE_FIXUP;
437 
438 	if (board_be_handler)
439 		action = board_be_handler(regs, fixup != NULL);
440 
441 	switch (action) {
442 	case MIPS_BE_DISCARD:
443 		return;
444 	case MIPS_BE_FIXUP:
445 		if (fixup) {
446 			regs->cp0_epc = fixup->nextinsn;
447 			return;
448 		}
449 		break;
450 	default:
451 		break;
452 	}
453 
454 	/*
455 	 * Assume it would be too dangerous to continue ...
456 	 */
457 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
458 	       data ? "Data" : "Instruction",
459 	       field, regs->cp0_epc, field, regs->regs[31]);
460 	if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), SIGBUS)
461 	    == NOTIFY_STOP)
462 		return;
463 
464 	die_if_kernel("Oops", regs);
465 	force_sig(SIGBUS, current);
466 }
467 
468 /*
469  * ll/sc, rdhwr, sync emulation
470  */
471 
472 #define OPCODE 0xfc000000
473 #define BASE   0x03e00000
474 #define RT     0x001f0000
475 #define OFFSET 0x0000ffff
476 #define LL     0xc0000000
477 #define SC     0xe0000000
478 #define SPEC0  0x00000000
479 #define SPEC3  0x7c000000
480 #define RD     0x0000f800
481 #define FUNC   0x0000003f
482 #define SYNC   0x0000000f
483 #define RDHWR  0x0000003b
484 
485 /*
486  * The ll_bit is cleared by r*_switch.S
487  */
488 
489 unsigned int ll_bit;
490 struct task_struct *ll_task;
491 
492 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
493 {
494 	unsigned long value, __user *vaddr;
495 	long offset;
496 
497 	/*
498 	 * analyse the ll instruction that just caused a ri exception
499 	 * and put the referenced address to addr.
500 	 */
501 
502 	/* sign extend offset */
503 	offset = opcode & OFFSET;
504 	offset <<= 16;
505 	offset >>= 16;
506 
507 	vaddr = (unsigned long __user *)
508 	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
509 
510 	if ((unsigned long)vaddr & 3)
511 		return SIGBUS;
512 	if (get_user(value, vaddr))
513 		return SIGSEGV;
514 
515 	preempt_disable();
516 
517 	if (ll_task == NULL || ll_task == current) {
518 		ll_bit = 1;
519 	} else {
520 		ll_bit = 0;
521 	}
522 	ll_task = current;
523 
524 	preempt_enable();
525 
526 	regs->regs[(opcode & RT) >> 16] = value;
527 
528 	return 0;
529 }
530 
531 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
532 {
533 	unsigned long __user *vaddr;
534 	unsigned long reg;
535 	long offset;
536 
537 	/*
538 	 * analyse the sc instruction that just caused a ri exception
539 	 * and put the referenced address to addr.
540 	 */
541 
542 	/* sign extend offset */
543 	offset = opcode & OFFSET;
544 	offset <<= 16;
545 	offset >>= 16;
546 
547 	vaddr = (unsigned long __user *)
548 	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
549 	reg = (opcode & RT) >> 16;
550 
551 	if ((unsigned long)vaddr & 3)
552 		return SIGBUS;
553 
554 	preempt_disable();
555 
556 	if (ll_bit == 0 || ll_task != current) {
557 		regs->regs[reg] = 0;
558 		preempt_enable();
559 		return 0;
560 	}
561 
562 	preempt_enable();
563 
564 	if (put_user(regs->regs[reg], vaddr))
565 		return SIGSEGV;
566 
567 	regs->regs[reg] = 1;
568 
569 	return 0;
570 }
571 
572 /*
573  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
574  * opcodes are supposed to result in coprocessor unusable exceptions if
575  * executed on ll/sc-less processors.  That's the theory.  In practice a
576  * few processors such as NEC's VR4100 throw reserved instruction exceptions
577  * instead, so we're doing the emulation thing in both exception handlers.
578  */
579 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
580 {
581 	if ((opcode & OPCODE) == LL) {
582 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
583 				1, 0, regs, 0);
584 		return simulate_ll(regs, opcode);
585 	}
586 	if ((opcode & OPCODE) == SC) {
587 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
588 				1, 0, regs, 0);
589 		return simulate_sc(regs, opcode);
590 	}
591 
592 	return -1;			/* Must be something else ... */
593 }
594 
595 /*
596  * Simulate trapping 'rdhwr' instructions to provide user accessible
597  * registers not implemented in hardware.
598  */
599 static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode)
600 {
601 	struct thread_info *ti = task_thread_info(current);
602 
603 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
604 		int rd = (opcode & RD) >> 11;
605 		int rt = (opcode & RT) >> 16;
606 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
607 				1, 0, regs, 0);
608 		switch (rd) {
609 		case 0:		/* CPU number */
610 			regs->regs[rt] = smp_processor_id();
611 			return 0;
612 		case 1:		/* SYNCI length */
613 			regs->regs[rt] = min(current_cpu_data.dcache.linesz,
614 					     current_cpu_data.icache.linesz);
615 			return 0;
616 		case 2:		/* Read count register */
617 			regs->regs[rt] = read_c0_count();
618 			return 0;
619 		case 3:		/* Count register resolution */
620 			switch (current_cpu_data.cputype) {
621 			case CPU_20KC:
622 			case CPU_25KF:
623 				regs->regs[rt] = 1;
624 				break;
625 			default:
626 				regs->regs[rt] = 2;
627 			}
628 			return 0;
629 		case 29:
630 			regs->regs[rt] = ti->tp_value;
631 			return 0;
632 		default:
633 			return -1;
634 		}
635 	}
636 
637 	/* Not ours.  */
638 	return -1;
639 }
640 
641 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
642 {
643 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
644 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
645 				1, 0, regs, 0);
646 		return 0;
647 	}
648 
649 	return -1;			/* Must be something else ... */
650 }
651 
652 asmlinkage void do_ov(struct pt_regs *regs)
653 {
654 	siginfo_t info;
655 
656 	die_if_kernel("Integer overflow", regs);
657 
658 	info.si_code = FPE_INTOVF;
659 	info.si_signo = SIGFPE;
660 	info.si_errno = 0;
661 	info.si_addr = (void __user *) regs->cp0_epc;
662 	force_sig_info(SIGFPE, &info, current);
663 }
664 
665 static int process_fpemu_return(int sig, void __user *fault_addr)
666 {
667 	if (sig == SIGSEGV || sig == SIGBUS) {
668 		struct siginfo si = {0};
669 		si.si_addr = fault_addr;
670 		si.si_signo = sig;
671 		if (sig == SIGSEGV) {
672 			if (find_vma(current->mm, (unsigned long)fault_addr))
673 				si.si_code = SEGV_ACCERR;
674 			else
675 				si.si_code = SEGV_MAPERR;
676 		} else {
677 			si.si_code = BUS_ADRERR;
678 		}
679 		force_sig_info(sig, &si, current);
680 		return 1;
681 	} else if (sig) {
682 		force_sig(sig, current);
683 		return 1;
684 	} else {
685 		return 0;
686 	}
687 }
688 
689 /*
690  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
691  */
692 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
693 {
694 	siginfo_t info = {0};
695 
696 	if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), SIGFPE)
697 	    == NOTIFY_STOP)
698 		return;
699 	die_if_kernel("FP exception in kernel code", regs);
700 
701 	if (fcr31 & FPU_CSR_UNI_X) {
702 		int sig;
703 		void __user *fault_addr = NULL;
704 
705 		/*
706 		 * Unimplemented operation exception.  If we've got the full
707 		 * software emulator on-board, let's use it...
708 		 *
709 		 * Force FPU to dump state into task/thread context.  We're
710 		 * moving a lot of data here for what is probably a single
711 		 * instruction, but the alternative is to pre-decode the FP
712 		 * register operands before invoking the emulator, which seems
713 		 * a bit extreme for what should be an infrequent event.
714 		 */
715 		/* Ensure 'resume' not overwrite saved fp context again. */
716 		lose_fpu(1);
717 
718 		/* Run the emulator */
719 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
720 					       &fault_addr);
721 
722 		/*
723 		 * We can't allow the emulated instruction to leave any of
724 		 * the cause bit set in $fcr31.
725 		 */
726 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
727 
728 		/* Restore the hardware register state */
729 		own_fpu(1);	/* Using the FPU again.  */
730 
731 		/* If something went wrong, signal */
732 		process_fpemu_return(sig, fault_addr);
733 
734 		return;
735 	} else if (fcr31 & FPU_CSR_INV_X)
736 		info.si_code = FPE_FLTINV;
737 	else if (fcr31 & FPU_CSR_DIV_X)
738 		info.si_code = FPE_FLTDIV;
739 	else if (fcr31 & FPU_CSR_OVF_X)
740 		info.si_code = FPE_FLTOVF;
741 	else if (fcr31 & FPU_CSR_UDF_X)
742 		info.si_code = FPE_FLTUND;
743 	else if (fcr31 & FPU_CSR_INE_X)
744 		info.si_code = FPE_FLTRES;
745 	else
746 		info.si_code = __SI_FAULT;
747 	info.si_signo = SIGFPE;
748 	info.si_errno = 0;
749 	info.si_addr = (void __user *) regs->cp0_epc;
750 	force_sig_info(SIGFPE, &info, current);
751 }
752 
753 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
754 	const char *str)
755 {
756 	siginfo_t info;
757 	char b[40];
758 
759 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
760 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
761 		return;
762 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
763 
764 	if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
765 		return;
766 
767 	/*
768 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
769 	 * insns, even for trap and break codes that indicate arithmetic
770 	 * failures.  Weird ...
771 	 * But should we continue the brokenness???  --macro
772 	 */
773 	switch (code) {
774 	case BRK_OVERFLOW:
775 	case BRK_DIVZERO:
776 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
777 		die_if_kernel(b, regs);
778 		if (code == BRK_DIVZERO)
779 			info.si_code = FPE_INTDIV;
780 		else
781 			info.si_code = FPE_INTOVF;
782 		info.si_signo = SIGFPE;
783 		info.si_errno = 0;
784 		info.si_addr = (void __user *) regs->cp0_epc;
785 		force_sig_info(SIGFPE, &info, current);
786 		break;
787 	case BRK_BUG:
788 		die_if_kernel("Kernel bug detected", regs);
789 		force_sig(SIGTRAP, current);
790 		break;
791 	case BRK_MEMU:
792 		/*
793 		 * Address errors may be deliberately induced by the FPU
794 		 * emulator to retake control of the CPU after executing the
795 		 * instruction in the delay slot of an emulated branch.
796 		 *
797 		 * Terminate if exception was recognized as a delay slot return
798 		 * otherwise handle as normal.
799 		 */
800 		if (do_dsemulret(regs))
801 			return;
802 
803 		die_if_kernel("Math emu break/trap", regs);
804 		force_sig(SIGTRAP, current);
805 		break;
806 	default:
807 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
808 		die_if_kernel(b, regs);
809 		force_sig(SIGTRAP, current);
810 	}
811 }
812 
813 asmlinkage void do_bp(struct pt_regs *regs)
814 {
815 	unsigned int opcode, bcode;
816 
817 	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
818 		goto out_sigsegv;
819 
820 	/*
821 	 * There is the ancient bug in the MIPS assemblers that the break
822 	 * code starts left to bit 16 instead to bit 6 in the opcode.
823 	 * Gas is bug-compatible, but not always, grrr...
824 	 * We handle both cases with a simple heuristics.  --macro
825 	 */
826 	bcode = ((opcode >> 6) & ((1 << 20) - 1));
827 	if (bcode >= (1 << 10))
828 		bcode >>= 10;
829 
830 	/*
831 	 * notify the kprobe handlers, if instruction is likely to
832 	 * pertain to them.
833 	 */
834 	switch (bcode) {
835 	case BRK_KPROBE_BP:
836 		if (notify_die(DIE_BREAK, "debug", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
837 			return;
838 		else
839 			break;
840 	case BRK_KPROBE_SSTEPBP:
841 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
842 			return;
843 		else
844 			break;
845 	default:
846 		break;
847 	}
848 
849 	do_trap_or_bp(regs, bcode, "Break");
850 	return;
851 
852 out_sigsegv:
853 	force_sig(SIGSEGV, current);
854 }
855 
856 asmlinkage void do_tr(struct pt_regs *regs)
857 {
858 	unsigned int opcode, tcode = 0;
859 
860 	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
861 		goto out_sigsegv;
862 
863 	/* Immediate versions don't provide a code.  */
864 	if (!(opcode & OPCODE))
865 		tcode = ((opcode >> 6) & ((1 << 10) - 1));
866 
867 	do_trap_or_bp(regs, tcode, "Trap");
868 	return;
869 
870 out_sigsegv:
871 	force_sig(SIGSEGV, current);
872 }
873 
874 asmlinkage void do_ri(struct pt_regs *regs)
875 {
876 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
877 	unsigned long old_epc = regs->cp0_epc;
878 	unsigned int opcode = 0;
879 	int status = -1;
880 
881 	if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), SIGILL)
882 	    == NOTIFY_STOP)
883 		return;
884 
885 	die_if_kernel("Reserved instruction in kernel code", regs);
886 
887 	if (unlikely(compute_return_epc(regs) < 0))
888 		return;
889 
890 	if (unlikely(get_user(opcode, epc) < 0))
891 		status = SIGSEGV;
892 
893 	if (!cpu_has_llsc && status < 0)
894 		status = simulate_llsc(regs, opcode);
895 
896 	if (status < 0)
897 		status = simulate_rdhwr(regs, opcode);
898 
899 	if (status < 0)
900 		status = simulate_sync(regs, opcode);
901 
902 	if (status < 0)
903 		status = SIGILL;
904 
905 	if (unlikely(status > 0)) {
906 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
907 		force_sig(status, current);
908 	}
909 }
910 
911 /*
912  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
913  * emulated more than some threshold number of instructions, force migration to
914  * a "CPU" that has FP support.
915  */
916 static void mt_ase_fp_affinity(void)
917 {
918 #ifdef CONFIG_MIPS_MT_FPAFF
919 	if (mt_fpemul_threshold > 0 &&
920 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
921 		/*
922 		 * If there's no FPU present, or if the application has already
923 		 * restricted the allowed set to exclude any CPUs with FPUs,
924 		 * we'll skip the procedure.
925 		 */
926 		if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
927 			cpumask_t tmask;
928 
929 			current->thread.user_cpus_allowed
930 				= current->cpus_allowed;
931 			cpus_and(tmask, current->cpus_allowed,
932 				mt_fpu_cpumask);
933 			set_cpus_allowed_ptr(current, &tmask);
934 			set_thread_flag(TIF_FPUBOUND);
935 		}
936 	}
937 #endif /* CONFIG_MIPS_MT_FPAFF */
938 }
939 
940 /*
941  * No lock; only written during early bootup by CPU 0.
942  */
943 static RAW_NOTIFIER_HEAD(cu2_chain);
944 
945 int __ref register_cu2_notifier(struct notifier_block *nb)
946 {
947 	return raw_notifier_chain_register(&cu2_chain, nb);
948 }
949 
950 int cu2_notifier_call_chain(unsigned long val, void *v)
951 {
952 	return raw_notifier_call_chain(&cu2_chain, val, v);
953 }
954 
955 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
956         void *data)
957 {
958 	struct pt_regs *regs = data;
959 
960 	switch (action) {
961 	default:
962 		die_if_kernel("Unhandled kernel unaligned access or invalid "
963 			      "instruction", regs);
964 		/* Fall through  */
965 
966 	case CU2_EXCEPTION:
967 		force_sig(SIGILL, current);
968 	}
969 
970 	return NOTIFY_OK;
971 }
972 
973 asmlinkage void do_cpu(struct pt_regs *regs)
974 {
975 	unsigned int __user *epc;
976 	unsigned long old_epc;
977 	unsigned int opcode;
978 	unsigned int cpid;
979 	int status;
980 	unsigned long __maybe_unused flags;
981 
982 	die_if_kernel("do_cpu invoked from kernel context!", regs);
983 
984 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
985 
986 	switch (cpid) {
987 	case 0:
988 		epc = (unsigned int __user *)exception_epc(regs);
989 		old_epc = regs->cp0_epc;
990 		opcode = 0;
991 		status = -1;
992 
993 		if (unlikely(compute_return_epc(regs) < 0))
994 			return;
995 
996 		if (unlikely(get_user(opcode, epc) < 0))
997 			status = SIGSEGV;
998 
999 		if (!cpu_has_llsc && status < 0)
1000 			status = simulate_llsc(regs, opcode);
1001 
1002 		if (status < 0)
1003 			status = simulate_rdhwr(regs, opcode);
1004 
1005 		if (status < 0)
1006 			status = SIGILL;
1007 
1008 		if (unlikely(status > 0)) {
1009 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1010 			force_sig(status, current);
1011 		}
1012 
1013 		return;
1014 
1015 	case 1:
1016 		if (used_math())	/* Using the FPU again.  */
1017 			own_fpu(1);
1018 		else {			/* First time FPU user.  */
1019 			init_fpu();
1020 			set_used_math();
1021 		}
1022 
1023 		if (!raw_cpu_has_fpu) {
1024 			int sig;
1025 			void __user *fault_addr = NULL;
1026 			sig = fpu_emulator_cop1Handler(regs,
1027 						       &current->thread.fpu,
1028 						       0, &fault_addr);
1029 			if (!process_fpemu_return(sig, fault_addr))
1030 				mt_ase_fp_affinity();
1031 		}
1032 
1033 		return;
1034 
1035 	case 2:
1036 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1037 		return;
1038 
1039 	case 3:
1040 		break;
1041 	}
1042 
1043 	force_sig(SIGILL, current);
1044 }
1045 
1046 asmlinkage void do_mdmx(struct pt_regs *regs)
1047 {
1048 	force_sig(SIGILL, current);
1049 }
1050 
1051 /*
1052  * Called with interrupts disabled.
1053  */
1054 asmlinkage void do_watch(struct pt_regs *regs)
1055 {
1056 	u32 cause;
1057 
1058 	/*
1059 	 * Clear WP (bit 22) bit of cause register so we don't loop
1060 	 * forever.
1061 	 */
1062 	cause = read_c0_cause();
1063 	cause &= ~(1 << 22);
1064 	write_c0_cause(cause);
1065 
1066 	/*
1067 	 * If the current thread has the watch registers loaded, save
1068 	 * their values and send SIGTRAP.  Otherwise another thread
1069 	 * left the registers set, clear them and continue.
1070 	 */
1071 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1072 		mips_read_watch_registers();
1073 		local_irq_enable();
1074 		force_sig(SIGTRAP, current);
1075 	} else {
1076 		mips_clear_watch_registers();
1077 		local_irq_enable();
1078 	}
1079 }
1080 
1081 asmlinkage void do_mcheck(struct pt_regs *regs)
1082 {
1083 	const int field = 2 * sizeof(unsigned long);
1084 	int multi_match = regs->cp0_status & ST0_TS;
1085 
1086 	show_regs(regs);
1087 
1088 	if (multi_match) {
1089 		printk("Index   : %0x\n", read_c0_index());
1090 		printk("Pagemask: %0x\n", read_c0_pagemask());
1091 		printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1092 		printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1093 		printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1094 		printk("\n");
1095 		dump_tlb_all();
1096 	}
1097 
1098 	show_code((unsigned int __user *) regs->cp0_epc);
1099 
1100 	/*
1101 	 * Some chips may have other causes of machine check (e.g. SB1
1102 	 * graduation timer)
1103 	 */
1104 	panic("Caught Machine Check exception - %scaused by multiple "
1105 	      "matching entries in the TLB.",
1106 	      (multi_match) ? "" : "not ");
1107 }
1108 
1109 asmlinkage void do_mt(struct pt_regs *regs)
1110 {
1111 	int subcode;
1112 
1113 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1114 			>> VPECONTROL_EXCPT_SHIFT;
1115 	switch (subcode) {
1116 	case 0:
1117 		printk(KERN_DEBUG "Thread Underflow\n");
1118 		break;
1119 	case 1:
1120 		printk(KERN_DEBUG "Thread Overflow\n");
1121 		break;
1122 	case 2:
1123 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1124 		break;
1125 	case 3:
1126 		printk(KERN_DEBUG "Gating Storage Exception\n");
1127 		break;
1128 	case 4:
1129 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1130 		break;
1131 	case 5:
1132 		printk(KERN_DEBUG "Gating Storage Schedulier Exception\n");
1133 		break;
1134 	default:
1135 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1136 			subcode);
1137 		break;
1138 	}
1139 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1140 
1141 	force_sig(SIGILL, current);
1142 }
1143 
1144 
1145 asmlinkage void do_dsp(struct pt_regs *regs)
1146 {
1147 	if (cpu_has_dsp)
1148 		panic("Unexpected DSP exception\n");
1149 
1150 	force_sig(SIGILL, current);
1151 }
1152 
1153 asmlinkage void do_reserved(struct pt_regs *regs)
1154 {
1155 	/*
1156 	 * Game over - no way to handle this if it ever occurs.  Most probably
1157 	 * caused by a new unknown cpu type or after another deadly
1158 	 * hard/software error.
1159 	 */
1160 	show_regs(regs);
1161 	panic("Caught reserved exception %ld - should not happen.",
1162 	      (regs->cp0_cause & 0x7f) >> 2);
1163 }
1164 
1165 static int __initdata l1parity = 1;
1166 static int __init nol1parity(char *s)
1167 {
1168 	l1parity = 0;
1169 	return 1;
1170 }
1171 __setup("nol1par", nol1parity);
1172 static int __initdata l2parity = 1;
1173 static int __init nol2parity(char *s)
1174 {
1175 	l2parity = 0;
1176 	return 1;
1177 }
1178 __setup("nol2par", nol2parity);
1179 
1180 /*
1181  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1182  * it different ways.
1183  */
1184 static inline void parity_protection_init(void)
1185 {
1186 	switch (current_cpu_type()) {
1187 	case CPU_24K:
1188 	case CPU_34K:
1189 	case CPU_74K:
1190 	case CPU_1004K:
1191 		{
1192 #define ERRCTL_PE	0x80000000
1193 #define ERRCTL_L2P	0x00800000
1194 			unsigned long errctl;
1195 			unsigned int l1parity_present, l2parity_present;
1196 
1197 			errctl = read_c0_ecc();
1198 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1199 
1200 			/* probe L1 parity support */
1201 			write_c0_ecc(errctl | ERRCTL_PE);
1202 			back_to_back_c0_hazard();
1203 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1204 
1205 			/* probe L2 parity support */
1206 			write_c0_ecc(errctl|ERRCTL_L2P);
1207 			back_to_back_c0_hazard();
1208 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1209 
1210 			if (l1parity_present && l2parity_present) {
1211 				if (l1parity)
1212 					errctl |= ERRCTL_PE;
1213 				if (l1parity ^ l2parity)
1214 					errctl |= ERRCTL_L2P;
1215 			} else if (l1parity_present) {
1216 				if (l1parity)
1217 					errctl |= ERRCTL_PE;
1218 			} else if (l2parity_present) {
1219 				if (l2parity)
1220 					errctl |= ERRCTL_L2P;
1221 			} else {
1222 				/* No parity available */
1223 			}
1224 
1225 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1226 
1227 			write_c0_ecc(errctl);
1228 			back_to_back_c0_hazard();
1229 			errctl = read_c0_ecc();
1230 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1231 
1232 			if (l1parity_present)
1233 				printk(KERN_INFO "Cache parity protection %sabled\n",
1234 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1235 
1236 			if (l2parity_present) {
1237 				if (l1parity_present && l1parity)
1238 					errctl ^= ERRCTL_L2P;
1239 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1240 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1241 			}
1242 		}
1243 		break;
1244 
1245 	case CPU_5KC:
1246 		write_c0_ecc(0x80000000);
1247 		back_to_back_c0_hazard();
1248 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1249 		printk(KERN_INFO "Cache parity protection %sabled\n",
1250 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1251 		break;
1252 	case CPU_20KC:
1253 	case CPU_25KF:
1254 		/* Clear the DE bit (bit 16) in the c0_status register. */
1255 		printk(KERN_INFO "Enable cache parity protection for "
1256 		       "MIPS 20KC/25KF CPUs.\n");
1257 		clear_c0_status(ST0_DE);
1258 		break;
1259 	default:
1260 		break;
1261 	}
1262 }
1263 
1264 asmlinkage void cache_parity_error(void)
1265 {
1266 	const int field = 2 * sizeof(unsigned long);
1267 	unsigned int reg_val;
1268 
1269 	/* For the moment, report the problem and hang. */
1270 	printk("Cache error exception:\n");
1271 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1272 	reg_val = read_c0_cacheerr();
1273 	printk("c0_cacheerr == %08x\n", reg_val);
1274 
1275 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1276 	       reg_val & (1<<30) ? "secondary" : "primary",
1277 	       reg_val & (1<<31) ? "data" : "insn");
1278 	printk("Error bits: %s%s%s%s%s%s%s\n",
1279 	       reg_val & (1<<29) ? "ED " : "",
1280 	       reg_val & (1<<28) ? "ET " : "",
1281 	       reg_val & (1<<26) ? "EE " : "",
1282 	       reg_val & (1<<25) ? "EB " : "",
1283 	       reg_val & (1<<24) ? "EI " : "",
1284 	       reg_val & (1<<23) ? "E1 " : "",
1285 	       reg_val & (1<<22) ? "E0 " : "");
1286 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1287 
1288 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1289 	if (reg_val & (1<<22))
1290 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1291 
1292 	if (reg_val & (1<<23))
1293 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1294 #endif
1295 
1296 	panic("Can't handle the cache error!");
1297 }
1298 
1299 /*
1300  * SDBBP EJTAG debug exception handler.
1301  * We skip the instruction and return to the next instruction.
1302  */
1303 void ejtag_exception_handler(struct pt_regs *regs)
1304 {
1305 	const int field = 2 * sizeof(unsigned long);
1306 	unsigned long depc, old_epc;
1307 	unsigned int debug;
1308 
1309 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1310 	depc = read_c0_depc();
1311 	debug = read_c0_debug();
1312 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1313 	if (debug & 0x80000000) {
1314 		/*
1315 		 * In branch delay slot.
1316 		 * We cheat a little bit here and use EPC to calculate the
1317 		 * debug return address (DEPC). EPC is restored after the
1318 		 * calculation.
1319 		 */
1320 		old_epc = regs->cp0_epc;
1321 		regs->cp0_epc = depc;
1322 		__compute_return_epc(regs);
1323 		depc = regs->cp0_epc;
1324 		regs->cp0_epc = old_epc;
1325 	} else
1326 		depc += 4;
1327 	write_c0_depc(depc);
1328 
1329 #if 0
1330 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1331 	write_c0_debug(debug | 0x100);
1332 #endif
1333 }
1334 
1335 /*
1336  * NMI exception handler.
1337  */
1338 NORET_TYPE void ATTRIB_NORET nmi_exception_handler(struct pt_regs *regs)
1339 {
1340 	bust_spinlocks(1);
1341 	printk("NMI taken!!!!\n");
1342 	die("NMI", regs);
1343 }
1344 
1345 #define VECTORSPACING 0x100	/* for EI/VI mode */
1346 
1347 unsigned long ebase;
1348 unsigned long exception_handlers[32];
1349 unsigned long vi_handlers[64];
1350 
1351 void __init *set_except_vector(int n, void *addr)
1352 {
1353 	unsigned long handler = (unsigned long) addr;
1354 	unsigned long old_handler = exception_handlers[n];
1355 
1356 	exception_handlers[n] = handler;
1357 	if (n == 0 && cpu_has_divec) {
1358 		unsigned long jump_mask = ~((1 << 28) - 1);
1359 		u32 *buf = (u32 *)(ebase + 0x200);
1360 		unsigned int k0 = 26;
1361 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1362 			uasm_i_j(&buf, handler & ~jump_mask);
1363 			uasm_i_nop(&buf);
1364 		} else {
1365 			UASM_i_LA(&buf, k0, handler);
1366 			uasm_i_jr(&buf, k0);
1367 			uasm_i_nop(&buf);
1368 		}
1369 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1370 	}
1371 	return (void *)old_handler;
1372 }
1373 
1374 static asmlinkage void do_default_vi(void)
1375 {
1376 	show_regs(get_irq_regs());
1377 	panic("Caught unexpected vectored interrupt.");
1378 }
1379 
1380 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1381 {
1382 	unsigned long handler;
1383 	unsigned long old_handler = vi_handlers[n];
1384 	int srssets = current_cpu_data.srsets;
1385 	u32 *w;
1386 	unsigned char *b;
1387 
1388 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1389 
1390 	if (addr == NULL) {
1391 		handler = (unsigned long) do_default_vi;
1392 		srs = 0;
1393 	} else
1394 		handler = (unsigned long) addr;
1395 	vi_handlers[n] = (unsigned long) addr;
1396 
1397 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1398 
1399 	if (srs >= srssets)
1400 		panic("Shadow register set %d not supported", srs);
1401 
1402 	if (cpu_has_veic) {
1403 		if (board_bind_eic_interrupt)
1404 			board_bind_eic_interrupt(n, srs);
1405 	} else if (cpu_has_vint) {
1406 		/* SRSMap is only defined if shadow sets are implemented */
1407 		if (srssets > 1)
1408 			change_c0_srsmap(0xf << n*4, srs << n*4);
1409 	}
1410 
1411 	if (srs == 0) {
1412 		/*
1413 		 * If no shadow set is selected then use the default handler
1414 		 * that does normal register saving and a standard interrupt exit
1415 		 */
1416 
1417 		extern char except_vec_vi, except_vec_vi_lui;
1418 		extern char except_vec_vi_ori, except_vec_vi_end;
1419 		extern char rollback_except_vec_vi;
1420 		char *vec_start = (cpu_wait == r4k_wait) ?
1421 			&rollback_except_vec_vi : &except_vec_vi;
1422 #ifdef CONFIG_MIPS_MT_SMTC
1423 		/*
1424 		 * We need to provide the SMTC vectored interrupt handler
1425 		 * not only with the address of the handler, but with the
1426 		 * Status.IM bit to be masked before going there.
1427 		 */
1428 		extern char except_vec_vi_mori;
1429 		const int mori_offset = &except_vec_vi_mori - vec_start;
1430 #endif /* CONFIG_MIPS_MT_SMTC */
1431 		const int handler_len = &except_vec_vi_end - vec_start;
1432 		const int lui_offset = &except_vec_vi_lui - vec_start;
1433 		const int ori_offset = &except_vec_vi_ori - vec_start;
1434 
1435 		if (handler_len > VECTORSPACING) {
1436 			/*
1437 			 * Sigh... panicing won't help as the console
1438 			 * is probably not configured :(
1439 			 */
1440 			panic("VECTORSPACING too small");
1441 		}
1442 
1443 		memcpy(b, vec_start, handler_len);
1444 #ifdef CONFIG_MIPS_MT_SMTC
1445 		BUG_ON(n > 7);	/* Vector index %d exceeds SMTC maximum. */
1446 
1447 		w = (u32 *)(b + mori_offset);
1448 		*w = (*w & 0xffff0000) | (0x100 << n);
1449 #endif /* CONFIG_MIPS_MT_SMTC */
1450 		w = (u32 *)(b + lui_offset);
1451 		*w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1452 		w = (u32 *)(b + ori_offset);
1453 		*w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1454 		local_flush_icache_range((unsigned long)b,
1455 					 (unsigned long)(b+handler_len));
1456 	}
1457 	else {
1458 		/*
1459 		 * In other cases jump directly to the interrupt handler
1460 		 *
1461 		 * It is the handlers responsibility to save registers if required
1462 		 * (eg hi/lo) and return from the exception using "eret"
1463 		 */
1464 		w = (u32 *)b;
1465 		*w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1466 		*w = 0;
1467 		local_flush_icache_range((unsigned long)b,
1468 					 (unsigned long)(b+8));
1469 	}
1470 
1471 	return (void *)old_handler;
1472 }
1473 
1474 void *set_vi_handler(int n, vi_handler_t addr)
1475 {
1476 	return set_vi_srs_handler(n, addr, 0);
1477 }
1478 
1479 extern void cpu_cache_init(void);
1480 extern void tlb_init(void);
1481 extern void flush_tlb_handlers(void);
1482 
1483 /*
1484  * Timer interrupt
1485  */
1486 int cp0_compare_irq;
1487 int cp0_compare_irq_shift;
1488 
1489 /*
1490  * Performance counter IRQ or -1 if shared with timer
1491  */
1492 int cp0_perfcount_irq;
1493 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1494 
1495 static int __cpuinitdata noulri;
1496 
1497 static int __init ulri_disable(char *s)
1498 {
1499 	pr_info("Disabling ulri\n");
1500 	noulri = 1;
1501 
1502 	return 1;
1503 }
1504 __setup("noulri", ulri_disable);
1505 
1506 void __cpuinit per_cpu_trap_init(void)
1507 {
1508 	unsigned int cpu = smp_processor_id();
1509 	unsigned int status_set = ST0_CU0;
1510 	unsigned int hwrena = cpu_hwrena_impl_bits;
1511 #ifdef CONFIG_MIPS_MT_SMTC
1512 	int secondaryTC = 0;
1513 	int bootTC = (cpu == 0);
1514 
1515 	/*
1516 	 * Only do per_cpu_trap_init() for first TC of Each VPE.
1517 	 * Note that this hack assumes that the SMTC init code
1518 	 * assigns TCs consecutively and in ascending order.
1519 	 */
1520 
1521 	if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1522 	    ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1523 		secondaryTC = 1;
1524 #endif /* CONFIG_MIPS_MT_SMTC */
1525 
1526 	/*
1527 	 * Disable coprocessors and select 32-bit or 64-bit addressing
1528 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
1529 	 * flag that some firmware may have left set and the TS bit (for
1530 	 * IP27).  Set XX for ISA IV code to work.
1531 	 */
1532 #ifdef CONFIG_64BIT
1533 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1534 #endif
1535 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1536 		status_set |= ST0_XX;
1537 	if (cpu_has_dsp)
1538 		status_set |= ST0_MX;
1539 
1540 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1541 			 status_set);
1542 
1543 	if (cpu_has_mips_r2)
1544 		hwrena |= 0x0000000f;
1545 
1546 	if (!noulri && cpu_has_userlocal)
1547 		hwrena |= (1 << 29);
1548 
1549 	if (hwrena)
1550 		write_c0_hwrena(hwrena);
1551 
1552 #ifdef CONFIG_MIPS_MT_SMTC
1553 	if (!secondaryTC) {
1554 #endif /* CONFIG_MIPS_MT_SMTC */
1555 
1556 	if (cpu_has_veic || cpu_has_vint) {
1557 		unsigned long sr = set_c0_status(ST0_BEV);
1558 		write_c0_ebase(ebase);
1559 		write_c0_status(sr);
1560 		/* Setting vector spacing enables EI/VI mode  */
1561 		change_c0_intctl(0x3e0, VECTORSPACING);
1562 	}
1563 	if (cpu_has_divec) {
1564 		if (cpu_has_mipsmt) {
1565 			unsigned int vpflags = dvpe();
1566 			set_c0_cause(CAUSEF_IV);
1567 			evpe(vpflags);
1568 		} else
1569 			set_c0_cause(CAUSEF_IV);
1570 	}
1571 
1572 	/*
1573 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1574 	 *
1575 	 *  o read IntCtl.IPTI to determine the timer interrupt
1576 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
1577 	 */
1578 	if (cpu_has_mips_r2) {
1579 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1580 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1581 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1582 		if (cp0_perfcount_irq == cp0_compare_irq)
1583 			cp0_perfcount_irq = -1;
1584 	} else {
1585 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1586 		cp0_compare_irq_shift = cp0_compare_irq;
1587 		cp0_perfcount_irq = -1;
1588 	}
1589 
1590 #ifdef CONFIG_MIPS_MT_SMTC
1591 	}
1592 #endif /* CONFIG_MIPS_MT_SMTC */
1593 
1594 	cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1595 
1596 	atomic_inc(&init_mm.mm_count);
1597 	current->active_mm = &init_mm;
1598 	BUG_ON(current->mm);
1599 	enter_lazy_tlb(&init_mm, current);
1600 
1601 #ifdef CONFIG_MIPS_MT_SMTC
1602 	if (bootTC) {
1603 #endif /* CONFIG_MIPS_MT_SMTC */
1604 		cpu_cache_init();
1605 		tlb_init();
1606 #ifdef CONFIG_MIPS_MT_SMTC
1607 	} else if (!secondaryTC) {
1608 		/*
1609 		 * First TC in non-boot VPE must do subset of tlb_init()
1610 		 * for MMU countrol registers.
1611 		 */
1612 		write_c0_pagemask(PM_DEFAULT_MASK);
1613 		write_c0_wired(0);
1614 	}
1615 #endif /* CONFIG_MIPS_MT_SMTC */
1616 	TLBMISS_HANDLER_SETUP();
1617 }
1618 
1619 /* Install CPU exception handler */
1620 void __init set_handler(unsigned long offset, void *addr, unsigned long size)
1621 {
1622 	memcpy((void *)(ebase + offset), addr, size);
1623 	local_flush_icache_range(ebase + offset, ebase + offset + size);
1624 }
1625 
1626 static char panic_null_cerr[] __cpuinitdata =
1627 	"Trying to set NULL cache error exception handler";
1628 
1629 /*
1630  * Install uncached CPU exception handler.
1631  * This is suitable only for the cache error exception which is the only
1632  * exception handler that is being run uncached.
1633  */
1634 void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1635 	unsigned long size)
1636 {
1637 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
1638 
1639 	if (!addr)
1640 		panic(panic_null_cerr);
1641 
1642 	memcpy((void *)(uncached_ebase + offset), addr, size);
1643 }
1644 
1645 static int __initdata rdhwr_noopt;
1646 static int __init set_rdhwr_noopt(char *str)
1647 {
1648 	rdhwr_noopt = 1;
1649 	return 1;
1650 }
1651 
1652 __setup("rdhwr_noopt", set_rdhwr_noopt);
1653 
1654 void __init trap_init(void)
1655 {
1656 	extern char except_vec3_generic, except_vec3_r4000;
1657 	extern char except_vec4;
1658 	unsigned long i;
1659 	int rollback;
1660 
1661 	check_wait();
1662 	rollback = (cpu_wait == r4k_wait);
1663 
1664 #if defined(CONFIG_KGDB)
1665 	if (kgdb_early_setup)
1666 		return;	/* Already done */
1667 #endif
1668 
1669 	if (cpu_has_veic || cpu_has_vint) {
1670 		unsigned long size = 0x200 + VECTORSPACING*64;
1671 		ebase = (unsigned long)
1672 			__alloc_bootmem(size, 1 << fls(size), 0);
1673 	} else {
1674 		ebase = CKSEG0;
1675 		if (cpu_has_mips_r2)
1676 			ebase += (read_c0_ebase() & 0x3ffff000);
1677 	}
1678 
1679 	per_cpu_trap_init();
1680 
1681 	/*
1682 	 * Copy the generic exception handlers to their final destination.
1683 	 * This will be overriden later as suitable for a particular
1684 	 * configuration.
1685 	 */
1686 	set_handler(0x180, &except_vec3_generic, 0x80);
1687 
1688 	/*
1689 	 * Setup default vectors
1690 	 */
1691 	for (i = 0; i <= 31; i++)
1692 		set_except_vector(i, handle_reserved);
1693 
1694 	/*
1695 	 * Copy the EJTAG debug exception vector handler code to it's final
1696 	 * destination.
1697 	 */
1698 	if (cpu_has_ejtag && board_ejtag_handler_setup)
1699 		board_ejtag_handler_setup();
1700 
1701 	/*
1702 	 * Only some CPUs have the watch exceptions.
1703 	 */
1704 	if (cpu_has_watch)
1705 		set_except_vector(23, handle_watch);
1706 
1707 	/*
1708 	 * Initialise interrupt handlers
1709 	 */
1710 	if (cpu_has_veic || cpu_has_vint) {
1711 		int nvec = cpu_has_veic ? 64 : 8;
1712 		for (i = 0; i < nvec; i++)
1713 			set_vi_handler(i, NULL);
1714 	}
1715 	else if (cpu_has_divec)
1716 		set_handler(0x200, &except_vec4, 0x8);
1717 
1718 	/*
1719 	 * Some CPUs can enable/disable for cache parity detection, but does
1720 	 * it different ways.
1721 	 */
1722 	parity_protection_init();
1723 
1724 	/*
1725 	 * The Data Bus Errors / Instruction Bus Errors are signaled
1726 	 * by external hardware.  Therefore these two exceptions
1727 	 * may have board specific handlers.
1728 	 */
1729 	if (board_be_init)
1730 		board_be_init();
1731 
1732 	set_except_vector(0, rollback ? rollback_handle_int : handle_int);
1733 	set_except_vector(1, handle_tlbm);
1734 	set_except_vector(2, handle_tlbl);
1735 	set_except_vector(3, handle_tlbs);
1736 
1737 	set_except_vector(4, handle_adel);
1738 	set_except_vector(5, handle_ades);
1739 
1740 	set_except_vector(6, handle_ibe);
1741 	set_except_vector(7, handle_dbe);
1742 
1743 	set_except_vector(8, handle_sys);
1744 	set_except_vector(9, handle_bp);
1745 	set_except_vector(10, rdhwr_noopt ? handle_ri :
1746 			  (cpu_has_vtag_icache ?
1747 			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1748 	set_except_vector(11, handle_cpu);
1749 	set_except_vector(12, handle_ov);
1750 	set_except_vector(13, handle_tr);
1751 
1752 	if (current_cpu_type() == CPU_R6000 ||
1753 	    current_cpu_type() == CPU_R6000A) {
1754 		/*
1755 		 * The R6000 is the only R-series CPU that features a machine
1756 		 * check exception (similar to the R4000 cache error) and
1757 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
1758 		 * written yet.  Well, anyway there is no R6000 machine on the
1759 		 * current list of targets for Linux/MIPS.
1760 		 * (Duh, crap, there is someone with a triple R6k machine)
1761 		 */
1762 		//set_except_vector(14, handle_mc);
1763 		//set_except_vector(15, handle_ndc);
1764 	}
1765 
1766 
1767 	if (board_nmi_handler_setup)
1768 		board_nmi_handler_setup();
1769 
1770 	if (cpu_has_fpu && !cpu_has_nofpuex)
1771 		set_except_vector(15, handle_fpe);
1772 
1773 	set_except_vector(22, handle_mdmx);
1774 
1775 	if (cpu_has_mcheck)
1776 		set_except_vector(24, handle_mcheck);
1777 
1778 	if (cpu_has_mipsmt)
1779 		set_except_vector(25, handle_mt);
1780 
1781 	set_except_vector(26, handle_dsp);
1782 
1783 	if (cpu_has_vce)
1784 		/* Special exception: R4[04]00 uses also the divec space. */
1785 		memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100);
1786 	else if (cpu_has_4kex)
1787 		memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80);
1788 	else
1789 		memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80);
1790 
1791 	local_flush_icache_range(ebase, ebase + 0x400);
1792 	flush_tlb_handlers();
1793 
1794 	sort_extable(__start___dbe_table, __stop___dbe_table);
1795 
1796 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
1797 }
1798