xref: /openbmc/linux/arch/mips/kernel/traps.c (revision 530e7a660fb795452357b36cce26b839a9a187a9)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
25 #include <linux/mm.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/bootmem.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
41 
42 #include <asm/addrspace.h>
43 #include <asm/bootinfo.h>
44 #include <asm/branch.h>
45 #include <asm/break.h>
46 #include <asm/cop2.h>
47 #include <asm/cpu.h>
48 #include <asm/cpu-type.h>
49 #include <asm/dsp.h>
50 #include <asm/fpu.h>
51 #include <asm/fpu_emulator.h>
52 #include <asm/idle.h>
53 #include <asm/mips-cps.h>
54 #include <asm/mips-r2-to-r6-emul.h>
55 #include <asm/mipsregs.h>
56 #include <asm/mipsmtregs.h>
57 #include <asm/module.h>
58 #include <asm/msa.h>
59 #include <asm/pgtable.h>
60 #include <asm/ptrace.h>
61 #include <asm/sections.h>
62 #include <asm/siginfo.h>
63 #include <asm/tlbdebug.h>
64 #include <asm/traps.h>
65 #include <linux/uaccess.h>
66 #include <asm/watch.h>
67 #include <asm/mmu_context.h>
68 #include <asm/types.h>
69 #include <asm/stacktrace.h>
70 #include <asm/uasm.h>
71 
72 extern void check_wait(void);
73 extern asmlinkage void rollback_handle_int(void);
74 extern asmlinkage void handle_int(void);
75 extern u32 handle_tlbl[];
76 extern u32 handle_tlbs[];
77 extern u32 handle_tlbm[];
78 extern asmlinkage void handle_adel(void);
79 extern asmlinkage void handle_ades(void);
80 extern asmlinkage void handle_ibe(void);
81 extern asmlinkage void handle_dbe(void);
82 extern asmlinkage void handle_sys(void);
83 extern asmlinkage void handle_bp(void);
84 extern asmlinkage void handle_ri(void);
85 extern asmlinkage void handle_ri_rdhwr_tlbp(void);
86 extern asmlinkage void handle_ri_rdhwr(void);
87 extern asmlinkage void handle_cpu(void);
88 extern asmlinkage void handle_ov(void);
89 extern asmlinkage void handle_tr(void);
90 extern asmlinkage void handle_msa_fpe(void);
91 extern asmlinkage void handle_fpe(void);
92 extern asmlinkage void handle_ftlb(void);
93 extern asmlinkage void handle_msa(void);
94 extern asmlinkage void handle_mdmx(void);
95 extern asmlinkage void handle_watch(void);
96 extern asmlinkage void handle_mt(void);
97 extern asmlinkage void handle_dsp(void);
98 extern asmlinkage void handle_mcheck(void);
99 extern asmlinkage void handle_reserved(void);
100 extern void tlb_do_page_fault_0(void);
101 
102 void (*board_be_init)(void);
103 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
104 void (*board_nmi_handler_setup)(void);
105 void (*board_ejtag_handler_setup)(void);
106 void (*board_bind_eic_interrupt)(int irq, int regset);
107 void (*board_ebase_setup)(void);
108 void(*board_cache_error_setup)(void);
109 
110 static void show_raw_backtrace(unsigned long reg29)
111 {
112 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
113 	unsigned long addr;
114 
115 	printk("Call Trace:");
116 #ifdef CONFIG_KALLSYMS
117 	printk("\n");
118 #endif
119 	while (!kstack_end(sp)) {
120 		unsigned long __user *p =
121 			(unsigned long __user *)(unsigned long)sp++;
122 		if (__get_user(addr, p)) {
123 			printk(" (Bad stack address)");
124 			break;
125 		}
126 		if (__kernel_text_address(addr))
127 			print_ip_sym(addr);
128 	}
129 	printk("\n");
130 }
131 
132 #ifdef CONFIG_KALLSYMS
133 int raw_show_trace;
134 static int __init set_raw_show_trace(char *str)
135 {
136 	raw_show_trace = 1;
137 	return 1;
138 }
139 __setup("raw_show_trace", set_raw_show_trace);
140 #endif
141 
142 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
143 {
144 	unsigned long sp = regs->regs[29];
145 	unsigned long ra = regs->regs[31];
146 	unsigned long pc = regs->cp0_epc;
147 
148 	if (!task)
149 		task = current;
150 
151 	if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
152 		show_raw_backtrace(sp);
153 		return;
154 	}
155 	printk("Call Trace:\n");
156 	do {
157 		print_ip_sym(pc);
158 		pc = unwind_stack(task, &sp, pc, &ra);
159 	} while (pc);
160 	pr_cont("\n");
161 }
162 
163 /*
164  * This routine abuses get_user()/put_user() to reference pointers
165  * with at least a bit of error checking ...
166  */
167 static void show_stacktrace(struct task_struct *task,
168 	const struct pt_regs *regs)
169 {
170 	const int field = 2 * sizeof(unsigned long);
171 	long stackdata;
172 	int i;
173 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
174 
175 	printk("Stack :");
176 	i = 0;
177 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
178 		if (i && ((i % (64 / field)) == 0)) {
179 			pr_cont("\n");
180 			printk("       ");
181 		}
182 		if (i > 39) {
183 			pr_cont(" ...");
184 			break;
185 		}
186 
187 		if (__get_user(stackdata, sp++)) {
188 			pr_cont(" (Bad stack address)");
189 			break;
190 		}
191 
192 		pr_cont(" %0*lx", field, stackdata);
193 		i++;
194 	}
195 	pr_cont("\n");
196 	show_backtrace(task, regs);
197 }
198 
199 void show_stack(struct task_struct *task, unsigned long *sp)
200 {
201 	struct pt_regs regs;
202 	mm_segment_t old_fs = get_fs();
203 
204 	regs.cp0_status = KSU_KERNEL;
205 	if (sp) {
206 		regs.regs[29] = (unsigned long)sp;
207 		regs.regs[31] = 0;
208 		regs.cp0_epc = 0;
209 	} else {
210 		if (task && task != current) {
211 			regs.regs[29] = task->thread.reg29;
212 			regs.regs[31] = 0;
213 			regs.cp0_epc = task->thread.reg31;
214 #ifdef CONFIG_KGDB_KDB
215 		} else if (atomic_read(&kgdb_active) != -1 &&
216 			   kdb_current_regs) {
217 			memcpy(&regs, kdb_current_regs, sizeof(regs));
218 #endif /* CONFIG_KGDB_KDB */
219 		} else {
220 			prepare_frametrace(&regs);
221 		}
222 	}
223 	/*
224 	 * show_stack() deals exclusively with kernel mode, so be sure to access
225 	 * the stack in the kernel (not user) address space.
226 	 */
227 	set_fs(KERNEL_DS);
228 	show_stacktrace(task, &regs);
229 	set_fs(old_fs);
230 }
231 
232 static void show_code(unsigned int __user *pc)
233 {
234 	long i;
235 	unsigned short __user *pc16 = NULL;
236 
237 	printk("Code:");
238 
239 	if ((unsigned long)pc & 1)
240 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
241 	for(i = -3 ; i < 6 ; i++) {
242 		unsigned int insn;
243 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
244 			pr_cont(" (Bad address in epc)\n");
245 			break;
246 		}
247 		pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
248 	}
249 	pr_cont("\n");
250 }
251 
252 static void __show_regs(const struct pt_regs *regs)
253 {
254 	const int field = 2 * sizeof(unsigned long);
255 	unsigned int cause = regs->cp0_cause;
256 	unsigned int exccode;
257 	int i;
258 
259 	show_regs_print_info(KERN_DEFAULT);
260 
261 	/*
262 	 * Saved main processor registers
263 	 */
264 	for (i = 0; i < 32; ) {
265 		if ((i % 4) == 0)
266 			printk("$%2d   :", i);
267 		if (i == 0)
268 			pr_cont(" %0*lx", field, 0UL);
269 		else if (i == 26 || i == 27)
270 			pr_cont(" %*s", field, "");
271 		else
272 			pr_cont(" %0*lx", field, regs->regs[i]);
273 
274 		i++;
275 		if ((i % 4) == 0)
276 			pr_cont("\n");
277 	}
278 
279 #ifdef CONFIG_CPU_HAS_SMARTMIPS
280 	printk("Acx    : %0*lx\n", field, regs->acx);
281 #endif
282 	printk("Hi    : %0*lx\n", field, regs->hi);
283 	printk("Lo    : %0*lx\n", field, regs->lo);
284 
285 	/*
286 	 * Saved cp0 registers
287 	 */
288 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
289 	       (void *) regs->cp0_epc);
290 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
291 	       (void *) regs->regs[31]);
292 
293 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
294 
295 	if (cpu_has_3kex) {
296 		if (regs->cp0_status & ST0_KUO)
297 			pr_cont("KUo ");
298 		if (regs->cp0_status & ST0_IEO)
299 			pr_cont("IEo ");
300 		if (regs->cp0_status & ST0_KUP)
301 			pr_cont("KUp ");
302 		if (regs->cp0_status & ST0_IEP)
303 			pr_cont("IEp ");
304 		if (regs->cp0_status & ST0_KUC)
305 			pr_cont("KUc ");
306 		if (regs->cp0_status & ST0_IEC)
307 			pr_cont("IEc ");
308 	} else if (cpu_has_4kex) {
309 		if (regs->cp0_status & ST0_KX)
310 			pr_cont("KX ");
311 		if (regs->cp0_status & ST0_SX)
312 			pr_cont("SX ");
313 		if (regs->cp0_status & ST0_UX)
314 			pr_cont("UX ");
315 		switch (regs->cp0_status & ST0_KSU) {
316 		case KSU_USER:
317 			pr_cont("USER ");
318 			break;
319 		case KSU_SUPERVISOR:
320 			pr_cont("SUPERVISOR ");
321 			break;
322 		case KSU_KERNEL:
323 			pr_cont("KERNEL ");
324 			break;
325 		default:
326 			pr_cont("BAD_MODE ");
327 			break;
328 		}
329 		if (regs->cp0_status & ST0_ERL)
330 			pr_cont("ERL ");
331 		if (regs->cp0_status & ST0_EXL)
332 			pr_cont("EXL ");
333 		if (regs->cp0_status & ST0_IE)
334 			pr_cont("IE ");
335 	}
336 	pr_cont("\n");
337 
338 	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
339 	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
340 
341 	if (1 <= exccode && exccode <= 5)
342 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
343 
344 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
345 	       cpu_name_string());
346 }
347 
348 /*
349  * FIXME: really the generic show_regs should take a const pointer argument.
350  */
351 void show_regs(struct pt_regs *regs)
352 {
353 	__show_regs((struct pt_regs *)regs);
354 }
355 
356 void show_registers(struct pt_regs *regs)
357 {
358 	const int field = 2 * sizeof(unsigned long);
359 	mm_segment_t old_fs = get_fs();
360 
361 	__show_regs(regs);
362 	print_modules();
363 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
364 	       current->comm, current->pid, current_thread_info(), current,
365 	      field, current_thread_info()->tp_value);
366 	if (cpu_has_userlocal) {
367 		unsigned long tls;
368 
369 		tls = read_c0_userlocal();
370 		if (tls != current_thread_info()->tp_value)
371 			printk("*HwTLS: %0*lx\n", field, tls);
372 	}
373 
374 	if (!user_mode(regs))
375 		/* Necessary for getting the correct stack content */
376 		set_fs(KERNEL_DS);
377 	show_stacktrace(current, regs);
378 	show_code((unsigned int __user *) regs->cp0_epc);
379 	printk("\n");
380 	set_fs(old_fs);
381 }
382 
383 static DEFINE_RAW_SPINLOCK(die_lock);
384 
385 void __noreturn die(const char *str, struct pt_regs *regs)
386 {
387 	static int die_counter;
388 	int sig = SIGSEGV;
389 
390 	oops_enter();
391 
392 	if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
393 		       SIGSEGV) == NOTIFY_STOP)
394 		sig = 0;
395 
396 	console_verbose();
397 	raw_spin_lock_irq(&die_lock);
398 	bust_spinlocks(1);
399 
400 	printk("%s[#%d]:\n", str, ++die_counter);
401 	show_registers(regs);
402 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
403 	raw_spin_unlock_irq(&die_lock);
404 
405 	oops_exit();
406 
407 	if (in_interrupt())
408 		panic("Fatal exception in interrupt");
409 
410 	if (panic_on_oops)
411 		panic("Fatal exception");
412 
413 	if (regs && kexec_should_crash(current))
414 		crash_kexec(regs);
415 
416 	do_exit(sig);
417 }
418 
419 extern struct exception_table_entry __start___dbe_table[];
420 extern struct exception_table_entry __stop___dbe_table[];
421 
422 __asm__(
423 "	.section	__dbe_table, \"a\"\n"
424 "	.previous			\n");
425 
426 /* Given an address, look for it in the exception tables. */
427 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
428 {
429 	const struct exception_table_entry *e;
430 
431 	e = search_extable(__start___dbe_table,
432 			   __stop___dbe_table - __start___dbe_table, addr);
433 	if (!e)
434 		e = search_module_dbetables(addr);
435 	return e;
436 }
437 
438 asmlinkage void do_be(struct pt_regs *regs)
439 {
440 	const int field = 2 * sizeof(unsigned long);
441 	const struct exception_table_entry *fixup = NULL;
442 	int data = regs->cp0_cause & 4;
443 	int action = MIPS_BE_FATAL;
444 	enum ctx_state prev_state;
445 
446 	prev_state = exception_enter();
447 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
448 	if (data && !user_mode(regs))
449 		fixup = search_dbe_tables(exception_epc(regs));
450 
451 	if (fixup)
452 		action = MIPS_BE_FIXUP;
453 
454 	if (board_be_handler)
455 		action = board_be_handler(regs, fixup != NULL);
456 	else
457 		mips_cm_error_report();
458 
459 	switch (action) {
460 	case MIPS_BE_DISCARD:
461 		goto out;
462 	case MIPS_BE_FIXUP:
463 		if (fixup) {
464 			regs->cp0_epc = fixup->nextinsn;
465 			goto out;
466 		}
467 		break;
468 	default:
469 		break;
470 	}
471 
472 	/*
473 	 * Assume it would be too dangerous to continue ...
474 	 */
475 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
476 	       data ? "Data" : "Instruction",
477 	       field, regs->cp0_epc, field, regs->regs[31]);
478 	if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
479 		       SIGBUS) == NOTIFY_STOP)
480 		goto out;
481 
482 	die_if_kernel("Oops", regs);
483 	force_sig(SIGBUS, current);
484 
485 out:
486 	exception_exit(prev_state);
487 }
488 
489 /*
490  * ll/sc, rdhwr, sync emulation
491  */
492 
493 #define OPCODE 0xfc000000
494 #define BASE   0x03e00000
495 #define RT     0x001f0000
496 #define OFFSET 0x0000ffff
497 #define LL     0xc0000000
498 #define SC     0xe0000000
499 #define SPEC0  0x00000000
500 #define SPEC3  0x7c000000
501 #define RD     0x0000f800
502 #define FUNC   0x0000003f
503 #define SYNC   0x0000000f
504 #define RDHWR  0x0000003b
505 
506 /*  microMIPS definitions   */
507 #define MM_POOL32A_FUNC 0xfc00ffff
508 #define MM_RDHWR        0x00006b3c
509 #define MM_RS           0x001f0000
510 #define MM_RT           0x03e00000
511 
512 /*
513  * The ll_bit is cleared by r*_switch.S
514  */
515 
516 unsigned int ll_bit;
517 struct task_struct *ll_task;
518 
519 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
520 {
521 	unsigned long value, __user *vaddr;
522 	long offset;
523 
524 	/*
525 	 * analyse the ll instruction that just caused a ri exception
526 	 * and put the referenced address to addr.
527 	 */
528 
529 	/* sign extend offset */
530 	offset = opcode & OFFSET;
531 	offset <<= 16;
532 	offset >>= 16;
533 
534 	vaddr = (unsigned long __user *)
535 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
536 
537 	if ((unsigned long)vaddr & 3)
538 		return SIGBUS;
539 	if (get_user(value, vaddr))
540 		return SIGSEGV;
541 
542 	preempt_disable();
543 
544 	if (ll_task == NULL || ll_task == current) {
545 		ll_bit = 1;
546 	} else {
547 		ll_bit = 0;
548 	}
549 	ll_task = current;
550 
551 	preempt_enable();
552 
553 	regs->regs[(opcode & RT) >> 16] = value;
554 
555 	return 0;
556 }
557 
558 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
559 {
560 	unsigned long __user *vaddr;
561 	unsigned long reg;
562 	long offset;
563 
564 	/*
565 	 * analyse the sc instruction that just caused a ri exception
566 	 * and put the referenced address to addr.
567 	 */
568 
569 	/* sign extend offset */
570 	offset = opcode & OFFSET;
571 	offset <<= 16;
572 	offset >>= 16;
573 
574 	vaddr = (unsigned long __user *)
575 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
576 	reg = (opcode & RT) >> 16;
577 
578 	if ((unsigned long)vaddr & 3)
579 		return SIGBUS;
580 
581 	preempt_disable();
582 
583 	if (ll_bit == 0 || ll_task != current) {
584 		regs->regs[reg] = 0;
585 		preempt_enable();
586 		return 0;
587 	}
588 
589 	preempt_enable();
590 
591 	if (put_user(regs->regs[reg], vaddr))
592 		return SIGSEGV;
593 
594 	regs->regs[reg] = 1;
595 
596 	return 0;
597 }
598 
599 /*
600  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
601  * opcodes are supposed to result in coprocessor unusable exceptions if
602  * executed on ll/sc-less processors.  That's the theory.  In practice a
603  * few processors such as NEC's VR4100 throw reserved instruction exceptions
604  * instead, so we're doing the emulation thing in both exception handlers.
605  */
606 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
607 {
608 	if ((opcode & OPCODE) == LL) {
609 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
610 				1, regs, 0);
611 		return simulate_ll(regs, opcode);
612 	}
613 	if ((opcode & OPCODE) == SC) {
614 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
615 				1, regs, 0);
616 		return simulate_sc(regs, opcode);
617 	}
618 
619 	return -1;			/* Must be something else ... */
620 }
621 
622 /*
623  * Simulate trapping 'rdhwr' instructions to provide user accessible
624  * registers not implemented in hardware.
625  */
626 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
627 {
628 	struct thread_info *ti = task_thread_info(current);
629 
630 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
631 			1, regs, 0);
632 	switch (rd) {
633 	case MIPS_HWR_CPUNUM:		/* CPU number */
634 		regs->regs[rt] = smp_processor_id();
635 		return 0;
636 	case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
637 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
638 				     current_cpu_data.icache.linesz);
639 		return 0;
640 	case MIPS_HWR_CC:		/* Read count register */
641 		regs->regs[rt] = read_c0_count();
642 		return 0;
643 	case MIPS_HWR_CCRES:		/* Count register resolution */
644 		switch (current_cpu_type()) {
645 		case CPU_20KC:
646 		case CPU_25KF:
647 			regs->regs[rt] = 1;
648 			break;
649 		default:
650 			regs->regs[rt] = 2;
651 		}
652 		return 0;
653 	case MIPS_HWR_ULR:		/* Read UserLocal register */
654 		regs->regs[rt] = ti->tp_value;
655 		return 0;
656 	default:
657 		return -1;
658 	}
659 }
660 
661 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
662 {
663 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
664 		int rd = (opcode & RD) >> 11;
665 		int rt = (opcode & RT) >> 16;
666 
667 		simulate_rdhwr(regs, rd, rt);
668 		return 0;
669 	}
670 
671 	/* Not ours.  */
672 	return -1;
673 }
674 
675 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
676 {
677 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
678 		int rd = (opcode & MM_RS) >> 16;
679 		int rt = (opcode & MM_RT) >> 21;
680 		simulate_rdhwr(regs, rd, rt);
681 		return 0;
682 	}
683 
684 	/* Not ours.  */
685 	return -1;
686 }
687 
688 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
689 {
690 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
691 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
692 				1, regs, 0);
693 		return 0;
694 	}
695 
696 	return -1;			/* Must be something else ... */
697 }
698 
699 asmlinkage void do_ov(struct pt_regs *regs)
700 {
701 	enum ctx_state prev_state;
702 
703 	prev_state = exception_enter();
704 	die_if_kernel("Integer overflow", regs);
705 
706 	force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc, current);
707 	exception_exit(prev_state);
708 }
709 
710 /*
711  * Send SIGFPE according to FCSR Cause bits, which must have already
712  * been masked against Enable bits.  This is impotant as Inexact can
713  * happen together with Overflow or Underflow, and `ptrace' can set
714  * any bits.
715  */
716 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
717 		     struct task_struct *tsk)
718 {
719 	int si_code = FPE_FLTUNK;
720 
721 	if (fcr31 & FPU_CSR_INV_X)
722 		si_code = FPE_FLTINV;
723 	else if (fcr31 & FPU_CSR_DIV_X)
724 		si_code = FPE_FLTDIV;
725 	else if (fcr31 & FPU_CSR_OVF_X)
726 		si_code = FPE_FLTOVF;
727 	else if (fcr31 & FPU_CSR_UDF_X)
728 		si_code = FPE_FLTUND;
729 	else if (fcr31 & FPU_CSR_INE_X)
730 		si_code = FPE_FLTRES;
731 
732 	force_sig_fault(SIGFPE, si_code, fault_addr, tsk);
733 }
734 
735 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
736 {
737 	int si_code;
738 	struct vm_area_struct *vma;
739 
740 	switch (sig) {
741 	case 0:
742 		return 0;
743 
744 	case SIGFPE:
745 		force_fcr31_sig(fcr31, fault_addr, current);
746 		return 1;
747 
748 	case SIGBUS:
749 		force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr, current);
750 		return 1;
751 
752 	case SIGSEGV:
753 		down_read(&current->mm->mmap_sem);
754 		vma = find_vma(current->mm, (unsigned long)fault_addr);
755 		if (vma && (vma->vm_start <= (unsigned long)fault_addr))
756 			si_code = SEGV_ACCERR;
757 		else
758 			si_code = SEGV_MAPERR;
759 		up_read(&current->mm->mmap_sem);
760 		force_sig_fault(SIGSEGV, si_code, fault_addr, current);
761 		return 1;
762 
763 	default:
764 		force_sig(sig, current);
765 		return 1;
766 	}
767 }
768 
769 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
770 		       unsigned long old_epc, unsigned long old_ra)
771 {
772 	union mips_instruction inst = { .word = opcode };
773 	void __user *fault_addr;
774 	unsigned long fcr31;
775 	int sig;
776 
777 	/* If it's obviously not an FP instruction, skip it */
778 	switch (inst.i_format.opcode) {
779 	case cop1_op:
780 	case cop1x_op:
781 	case lwc1_op:
782 	case ldc1_op:
783 	case swc1_op:
784 	case sdc1_op:
785 		break;
786 
787 	default:
788 		return -1;
789 	}
790 
791 	/*
792 	 * do_ri skipped over the instruction via compute_return_epc, undo
793 	 * that for the FPU emulator.
794 	 */
795 	regs->cp0_epc = old_epc;
796 	regs->regs[31] = old_ra;
797 
798 	/* Save the FP context to struct thread_struct */
799 	lose_fpu(1);
800 
801 	/* Run the emulator */
802 	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
803 				       &fault_addr);
804 
805 	/*
806 	 * We can't allow the emulated instruction to leave any
807 	 * enabled Cause bits set in $fcr31.
808 	 */
809 	fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
810 	current->thread.fpu.fcr31 &= ~fcr31;
811 
812 	/* Restore the hardware register state */
813 	own_fpu(1);
814 
815 	/* Send a signal if required.  */
816 	process_fpemu_return(sig, fault_addr, fcr31);
817 
818 	return 0;
819 }
820 
821 /*
822  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
823  */
824 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
825 {
826 	enum ctx_state prev_state;
827 	void __user *fault_addr;
828 	int sig;
829 
830 	prev_state = exception_enter();
831 	if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
832 		       SIGFPE) == NOTIFY_STOP)
833 		goto out;
834 
835 	/* Clear FCSR.Cause before enabling interrupts */
836 	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
837 	local_irq_enable();
838 
839 	die_if_kernel("FP exception in kernel code", regs);
840 
841 	if (fcr31 & FPU_CSR_UNI_X) {
842 		/*
843 		 * Unimplemented operation exception.  If we've got the full
844 		 * software emulator on-board, let's use it...
845 		 *
846 		 * Force FPU to dump state into task/thread context.  We're
847 		 * moving a lot of data here for what is probably a single
848 		 * instruction, but the alternative is to pre-decode the FP
849 		 * register operands before invoking the emulator, which seems
850 		 * a bit extreme for what should be an infrequent event.
851 		 */
852 		/* Ensure 'resume' not overwrite saved fp context again. */
853 		lose_fpu(1);
854 
855 		/* Run the emulator */
856 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
857 					       &fault_addr);
858 
859 		/*
860 		 * We can't allow the emulated instruction to leave any
861 		 * enabled Cause bits set in $fcr31.
862 		 */
863 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
864 		current->thread.fpu.fcr31 &= ~fcr31;
865 
866 		/* Restore the hardware register state */
867 		own_fpu(1);	/* Using the FPU again.	 */
868 	} else {
869 		sig = SIGFPE;
870 		fault_addr = (void __user *) regs->cp0_epc;
871 	}
872 
873 	/* Send a signal if required.  */
874 	process_fpemu_return(sig, fault_addr, fcr31);
875 
876 out:
877 	exception_exit(prev_state);
878 }
879 
880 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
881 	const char *str)
882 {
883 	char b[40];
884 
885 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
886 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
887 			 SIGTRAP) == NOTIFY_STOP)
888 		return;
889 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
890 
891 	if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
892 		       SIGTRAP) == NOTIFY_STOP)
893 		return;
894 
895 	/*
896 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
897 	 * insns, even for trap and break codes that indicate arithmetic
898 	 * failures.  Weird ...
899 	 * But should we continue the brokenness???  --macro
900 	 */
901 	switch (code) {
902 	case BRK_OVERFLOW:
903 	case BRK_DIVZERO:
904 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
905 		die_if_kernel(b, regs);
906 		force_sig_fault(SIGFPE,
907 				code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
908 				(void __user *) regs->cp0_epc, current);
909 		break;
910 	case BRK_BUG:
911 		die_if_kernel("Kernel bug detected", regs);
912 		force_sig(SIGTRAP, current);
913 		break;
914 	case BRK_MEMU:
915 		/*
916 		 * This breakpoint code is used by the FPU emulator to retake
917 		 * control of the CPU after executing the instruction from the
918 		 * delay slot of an emulated branch.
919 		 *
920 		 * Terminate if exception was recognized as a delay slot return
921 		 * otherwise handle as normal.
922 		 */
923 		if (do_dsemulret(regs))
924 			return;
925 
926 		die_if_kernel("Math emu break/trap", regs);
927 		force_sig(SIGTRAP, current);
928 		break;
929 	default:
930 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
931 		die_if_kernel(b, regs);
932 		if (si_code) {
933 			force_sig_fault(SIGTRAP, si_code, NULL,	current);
934 		} else {
935 			force_sig(SIGTRAP, current);
936 		}
937 	}
938 }
939 
940 asmlinkage void do_bp(struct pt_regs *regs)
941 {
942 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
943 	unsigned int opcode, bcode;
944 	enum ctx_state prev_state;
945 	mm_segment_t seg;
946 
947 	seg = get_fs();
948 	if (!user_mode(regs))
949 		set_fs(KERNEL_DS);
950 
951 	prev_state = exception_enter();
952 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
953 	if (get_isa16_mode(regs->cp0_epc)) {
954 		u16 instr[2];
955 
956 		if (__get_user(instr[0], (u16 __user *)epc))
957 			goto out_sigsegv;
958 
959 		if (!cpu_has_mmips) {
960 			/* MIPS16e mode */
961 			bcode = (instr[0] >> 5) & 0x3f;
962 		} else if (mm_insn_16bit(instr[0])) {
963 			/* 16-bit microMIPS BREAK */
964 			bcode = instr[0] & 0xf;
965 		} else {
966 			/* 32-bit microMIPS BREAK */
967 			if (__get_user(instr[1], (u16 __user *)(epc + 2)))
968 				goto out_sigsegv;
969 			opcode = (instr[0] << 16) | instr[1];
970 			bcode = (opcode >> 6) & ((1 << 20) - 1);
971 		}
972 	} else {
973 		if (__get_user(opcode, (unsigned int __user *)epc))
974 			goto out_sigsegv;
975 		bcode = (opcode >> 6) & ((1 << 20) - 1);
976 	}
977 
978 	/*
979 	 * There is the ancient bug in the MIPS assemblers that the break
980 	 * code starts left to bit 16 instead to bit 6 in the opcode.
981 	 * Gas is bug-compatible, but not always, grrr...
982 	 * We handle both cases with a simple heuristics.  --macro
983 	 */
984 	if (bcode >= (1 << 10))
985 		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
986 
987 	/*
988 	 * notify the kprobe handlers, if instruction is likely to
989 	 * pertain to them.
990 	 */
991 	switch (bcode) {
992 	case BRK_UPROBE:
993 		if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
994 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
995 			goto out;
996 		else
997 			break;
998 	case BRK_UPROBE_XOL:
999 		if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1000 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1001 			goto out;
1002 		else
1003 			break;
1004 	case BRK_KPROBE_BP:
1005 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
1006 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1007 			goto out;
1008 		else
1009 			break;
1010 	case BRK_KPROBE_SSTEPBP:
1011 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1012 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1013 			goto out;
1014 		else
1015 			break;
1016 	default:
1017 		break;
1018 	}
1019 
1020 	do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1021 
1022 out:
1023 	set_fs(seg);
1024 	exception_exit(prev_state);
1025 	return;
1026 
1027 out_sigsegv:
1028 	force_sig(SIGSEGV, current);
1029 	goto out;
1030 }
1031 
1032 asmlinkage void do_tr(struct pt_regs *regs)
1033 {
1034 	u32 opcode, tcode = 0;
1035 	enum ctx_state prev_state;
1036 	u16 instr[2];
1037 	mm_segment_t seg;
1038 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1039 
1040 	seg = get_fs();
1041 	if (!user_mode(regs))
1042 		set_fs(get_ds());
1043 
1044 	prev_state = exception_enter();
1045 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1046 	if (get_isa16_mode(regs->cp0_epc)) {
1047 		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1048 		    __get_user(instr[1], (u16 __user *)(epc + 2)))
1049 			goto out_sigsegv;
1050 		opcode = (instr[0] << 16) | instr[1];
1051 		/* Immediate versions don't provide a code.  */
1052 		if (!(opcode & OPCODE))
1053 			tcode = (opcode >> 12) & ((1 << 4) - 1);
1054 	} else {
1055 		if (__get_user(opcode, (u32 __user *)epc))
1056 			goto out_sigsegv;
1057 		/* Immediate versions don't provide a code.  */
1058 		if (!(opcode & OPCODE))
1059 			tcode = (opcode >> 6) & ((1 << 10) - 1);
1060 	}
1061 
1062 	do_trap_or_bp(regs, tcode, 0, "Trap");
1063 
1064 out:
1065 	set_fs(seg);
1066 	exception_exit(prev_state);
1067 	return;
1068 
1069 out_sigsegv:
1070 	force_sig(SIGSEGV, current);
1071 	goto out;
1072 }
1073 
1074 asmlinkage void do_ri(struct pt_regs *regs)
1075 {
1076 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1077 	unsigned long old_epc = regs->cp0_epc;
1078 	unsigned long old31 = regs->regs[31];
1079 	enum ctx_state prev_state;
1080 	unsigned int opcode = 0;
1081 	int status = -1;
1082 
1083 	/*
1084 	 * Avoid any kernel code. Just emulate the R2 instruction
1085 	 * as quickly as possible.
1086 	 */
1087 	if (mipsr2_emulation && cpu_has_mips_r6 &&
1088 	    likely(user_mode(regs)) &&
1089 	    likely(get_user(opcode, epc) >= 0)) {
1090 		unsigned long fcr31 = 0;
1091 
1092 		status = mipsr2_decoder(regs, opcode, &fcr31);
1093 		switch (status) {
1094 		case 0:
1095 		case SIGEMT:
1096 			return;
1097 		case SIGILL:
1098 			goto no_r2_instr;
1099 		default:
1100 			process_fpemu_return(status,
1101 					     &current->thread.cp0_baduaddr,
1102 					     fcr31);
1103 			return;
1104 		}
1105 	}
1106 
1107 no_r2_instr:
1108 
1109 	prev_state = exception_enter();
1110 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1111 
1112 	if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1113 		       SIGILL) == NOTIFY_STOP)
1114 		goto out;
1115 
1116 	die_if_kernel("Reserved instruction in kernel code", regs);
1117 
1118 	if (unlikely(compute_return_epc(regs) < 0))
1119 		goto out;
1120 
1121 	if (!get_isa16_mode(regs->cp0_epc)) {
1122 		if (unlikely(get_user(opcode, epc) < 0))
1123 			status = SIGSEGV;
1124 
1125 		if (!cpu_has_llsc && status < 0)
1126 			status = simulate_llsc(regs, opcode);
1127 
1128 		if (status < 0)
1129 			status = simulate_rdhwr_normal(regs, opcode);
1130 
1131 		if (status < 0)
1132 			status = simulate_sync(regs, opcode);
1133 
1134 		if (status < 0)
1135 			status = simulate_fp(regs, opcode, old_epc, old31);
1136 	} else if (cpu_has_mmips) {
1137 		unsigned short mmop[2] = { 0 };
1138 
1139 		if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1140 			status = SIGSEGV;
1141 		if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1142 			status = SIGSEGV;
1143 		opcode = mmop[0];
1144 		opcode = (opcode << 16) | mmop[1];
1145 
1146 		if (status < 0)
1147 			status = simulate_rdhwr_mm(regs, opcode);
1148 	}
1149 
1150 	if (status < 0)
1151 		status = SIGILL;
1152 
1153 	if (unlikely(status > 0)) {
1154 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1155 		regs->regs[31] = old31;
1156 		force_sig(status, current);
1157 	}
1158 
1159 out:
1160 	exception_exit(prev_state);
1161 }
1162 
1163 /*
1164  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1165  * emulated more than some threshold number of instructions, force migration to
1166  * a "CPU" that has FP support.
1167  */
1168 static void mt_ase_fp_affinity(void)
1169 {
1170 #ifdef CONFIG_MIPS_MT_FPAFF
1171 	if (mt_fpemul_threshold > 0 &&
1172 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1173 		/*
1174 		 * If there's no FPU present, or if the application has already
1175 		 * restricted the allowed set to exclude any CPUs with FPUs,
1176 		 * we'll skip the procedure.
1177 		 */
1178 		if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1179 			cpumask_t tmask;
1180 
1181 			current->thread.user_cpus_allowed
1182 				= current->cpus_allowed;
1183 			cpumask_and(&tmask, &current->cpus_allowed,
1184 				    &mt_fpu_cpumask);
1185 			set_cpus_allowed_ptr(current, &tmask);
1186 			set_thread_flag(TIF_FPUBOUND);
1187 		}
1188 	}
1189 #endif /* CONFIG_MIPS_MT_FPAFF */
1190 }
1191 
1192 /*
1193  * No lock; only written during early bootup by CPU 0.
1194  */
1195 static RAW_NOTIFIER_HEAD(cu2_chain);
1196 
1197 int __ref register_cu2_notifier(struct notifier_block *nb)
1198 {
1199 	return raw_notifier_chain_register(&cu2_chain, nb);
1200 }
1201 
1202 int cu2_notifier_call_chain(unsigned long val, void *v)
1203 {
1204 	return raw_notifier_call_chain(&cu2_chain, val, v);
1205 }
1206 
1207 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1208 	void *data)
1209 {
1210 	struct pt_regs *regs = data;
1211 
1212 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1213 			      "instruction", regs);
1214 	force_sig(SIGILL, current);
1215 
1216 	return NOTIFY_OK;
1217 }
1218 
1219 static int enable_restore_fp_context(int msa)
1220 {
1221 	int err, was_fpu_owner, prior_msa;
1222 
1223 	/*
1224 	 * If an FP mode switch is currently underway, wait for it to
1225 	 * complete before proceeding.
1226 	 */
1227 	wait_var_event(&current->mm->context.fp_mode_switching,
1228 		       !atomic_read(&current->mm->context.fp_mode_switching));
1229 
1230 	if (!used_math()) {
1231 		/* First time FP context user. */
1232 		preempt_disable();
1233 		err = init_fpu();
1234 		if (msa && !err) {
1235 			enable_msa();
1236 			init_msa_upper();
1237 			set_thread_flag(TIF_USEDMSA);
1238 			set_thread_flag(TIF_MSA_CTX_LIVE);
1239 		}
1240 		preempt_enable();
1241 		if (!err)
1242 			set_used_math();
1243 		return err;
1244 	}
1245 
1246 	/*
1247 	 * This task has formerly used the FP context.
1248 	 *
1249 	 * If this thread has no live MSA vector context then we can simply
1250 	 * restore the scalar FP context. If it has live MSA vector context
1251 	 * (that is, it has or may have used MSA since last performing a
1252 	 * function call) then we'll need to restore the vector context. This
1253 	 * applies even if we're currently only executing a scalar FP
1254 	 * instruction. This is because if we were to later execute an MSA
1255 	 * instruction then we'd either have to:
1256 	 *
1257 	 *  - Restore the vector context & clobber any registers modified by
1258 	 *    scalar FP instructions between now & then.
1259 	 *
1260 	 * or
1261 	 *
1262 	 *  - Not restore the vector context & lose the most significant bits
1263 	 *    of all vector registers.
1264 	 *
1265 	 * Neither of those options is acceptable. We cannot restore the least
1266 	 * significant bits of the registers now & only restore the most
1267 	 * significant bits later because the most significant bits of any
1268 	 * vector registers whose aliased FP register is modified now will have
1269 	 * been zeroed. We'd have no way to know that when restoring the vector
1270 	 * context & thus may load an outdated value for the most significant
1271 	 * bits of a vector register.
1272 	 */
1273 	if (!msa && !thread_msa_context_live())
1274 		return own_fpu(1);
1275 
1276 	/*
1277 	 * This task is using or has previously used MSA. Thus we require
1278 	 * that Status.FR == 1.
1279 	 */
1280 	preempt_disable();
1281 	was_fpu_owner = is_fpu_owner();
1282 	err = own_fpu_inatomic(0);
1283 	if (err)
1284 		goto out;
1285 
1286 	enable_msa();
1287 	write_msa_csr(current->thread.fpu.msacsr);
1288 	set_thread_flag(TIF_USEDMSA);
1289 
1290 	/*
1291 	 * If this is the first time that the task is using MSA and it has
1292 	 * previously used scalar FP in this time slice then we already nave
1293 	 * FP context which we shouldn't clobber. We do however need to clear
1294 	 * the upper 64b of each vector register so that this task has no
1295 	 * opportunity to see data left behind by another.
1296 	 */
1297 	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1298 	if (!prior_msa && was_fpu_owner) {
1299 		init_msa_upper();
1300 
1301 		goto out;
1302 	}
1303 
1304 	if (!prior_msa) {
1305 		/*
1306 		 * Restore the least significant 64b of each vector register
1307 		 * from the existing scalar FP context.
1308 		 */
1309 		_restore_fp(current);
1310 
1311 		/*
1312 		 * The task has not formerly used MSA, so clear the upper 64b
1313 		 * of each vector register such that it cannot see data left
1314 		 * behind by another task.
1315 		 */
1316 		init_msa_upper();
1317 	} else {
1318 		/* We need to restore the vector context. */
1319 		restore_msa(current);
1320 
1321 		/* Restore the scalar FP control & status register */
1322 		if (!was_fpu_owner)
1323 			write_32bit_cp1_register(CP1_STATUS,
1324 						 current->thread.fpu.fcr31);
1325 	}
1326 
1327 out:
1328 	preempt_enable();
1329 
1330 	return 0;
1331 }
1332 
1333 asmlinkage void do_cpu(struct pt_regs *regs)
1334 {
1335 	enum ctx_state prev_state;
1336 	unsigned int __user *epc;
1337 	unsigned long old_epc, old31;
1338 	void __user *fault_addr;
1339 	unsigned int opcode;
1340 	unsigned long fcr31;
1341 	unsigned int cpid;
1342 	int status, err;
1343 	int sig;
1344 
1345 	prev_state = exception_enter();
1346 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1347 
1348 	if (cpid != 2)
1349 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1350 
1351 	switch (cpid) {
1352 	case 0:
1353 		epc = (unsigned int __user *)exception_epc(regs);
1354 		old_epc = regs->cp0_epc;
1355 		old31 = regs->regs[31];
1356 		opcode = 0;
1357 		status = -1;
1358 
1359 		if (unlikely(compute_return_epc(regs) < 0))
1360 			break;
1361 
1362 		if (!get_isa16_mode(regs->cp0_epc)) {
1363 			if (unlikely(get_user(opcode, epc) < 0))
1364 				status = SIGSEGV;
1365 
1366 			if (!cpu_has_llsc && status < 0)
1367 				status = simulate_llsc(regs, opcode);
1368 		}
1369 
1370 		if (status < 0)
1371 			status = SIGILL;
1372 
1373 		if (unlikely(status > 0)) {
1374 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1375 			regs->regs[31] = old31;
1376 			force_sig(status, current);
1377 		}
1378 
1379 		break;
1380 
1381 	case 3:
1382 		/*
1383 		 * The COP3 opcode space and consequently the CP0.Status.CU3
1384 		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1385 		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1386 		 * up the space has been reused for COP1X instructions, that
1387 		 * are enabled by the CP0.Status.CU1 bit and consequently
1388 		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1389 		 * exceptions.  Some FPU-less processors that implement one
1390 		 * of these ISAs however use this code erroneously for COP1X
1391 		 * instructions.  Therefore we redirect this trap to the FP
1392 		 * emulator too.
1393 		 */
1394 		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1395 			force_sig(SIGILL, current);
1396 			break;
1397 		}
1398 		/* Fall through.  */
1399 
1400 	case 1:
1401 		err = enable_restore_fp_context(0);
1402 
1403 		if (raw_cpu_has_fpu && !err)
1404 			break;
1405 
1406 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1407 					       &fault_addr);
1408 
1409 		/*
1410 		 * We can't allow the emulated instruction to leave
1411 		 * any enabled Cause bits set in $fcr31.
1412 		 */
1413 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1414 		current->thread.fpu.fcr31 &= ~fcr31;
1415 
1416 		/* Send a signal if required.  */
1417 		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1418 			mt_ase_fp_affinity();
1419 
1420 		break;
1421 
1422 	case 2:
1423 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1424 		break;
1425 	}
1426 
1427 	exception_exit(prev_state);
1428 }
1429 
1430 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1431 {
1432 	enum ctx_state prev_state;
1433 
1434 	prev_state = exception_enter();
1435 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1436 	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1437 		       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1438 		goto out;
1439 
1440 	/* Clear MSACSR.Cause before enabling interrupts */
1441 	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1442 	local_irq_enable();
1443 
1444 	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1445 	force_sig(SIGFPE, current);
1446 out:
1447 	exception_exit(prev_state);
1448 }
1449 
1450 asmlinkage void do_msa(struct pt_regs *regs)
1451 {
1452 	enum ctx_state prev_state;
1453 	int err;
1454 
1455 	prev_state = exception_enter();
1456 
1457 	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1458 		force_sig(SIGILL, current);
1459 		goto out;
1460 	}
1461 
1462 	die_if_kernel("do_msa invoked from kernel context!", regs);
1463 
1464 	err = enable_restore_fp_context(1);
1465 	if (err)
1466 		force_sig(SIGILL, current);
1467 out:
1468 	exception_exit(prev_state);
1469 }
1470 
1471 asmlinkage void do_mdmx(struct pt_regs *regs)
1472 {
1473 	enum ctx_state prev_state;
1474 
1475 	prev_state = exception_enter();
1476 	force_sig(SIGILL, current);
1477 	exception_exit(prev_state);
1478 }
1479 
1480 /*
1481  * Called with interrupts disabled.
1482  */
1483 asmlinkage void do_watch(struct pt_regs *regs)
1484 {
1485 	enum ctx_state prev_state;
1486 
1487 	prev_state = exception_enter();
1488 	/*
1489 	 * Clear WP (bit 22) bit of cause register so we don't loop
1490 	 * forever.
1491 	 */
1492 	clear_c0_cause(CAUSEF_WP);
1493 
1494 	/*
1495 	 * If the current thread has the watch registers loaded, save
1496 	 * their values and send SIGTRAP.  Otherwise another thread
1497 	 * left the registers set, clear them and continue.
1498 	 */
1499 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1500 		mips_read_watch_registers();
1501 		local_irq_enable();
1502 		force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL, current);
1503 	} else {
1504 		mips_clear_watch_registers();
1505 		local_irq_enable();
1506 	}
1507 	exception_exit(prev_state);
1508 }
1509 
1510 asmlinkage void do_mcheck(struct pt_regs *regs)
1511 {
1512 	int multi_match = regs->cp0_status & ST0_TS;
1513 	enum ctx_state prev_state;
1514 	mm_segment_t old_fs = get_fs();
1515 
1516 	prev_state = exception_enter();
1517 	show_regs(regs);
1518 
1519 	if (multi_match) {
1520 		dump_tlb_regs();
1521 		pr_info("\n");
1522 		dump_tlb_all();
1523 	}
1524 
1525 	if (!user_mode(regs))
1526 		set_fs(KERNEL_DS);
1527 
1528 	show_code((unsigned int __user *) regs->cp0_epc);
1529 
1530 	set_fs(old_fs);
1531 
1532 	/*
1533 	 * Some chips may have other causes of machine check (e.g. SB1
1534 	 * graduation timer)
1535 	 */
1536 	panic("Caught Machine Check exception - %scaused by multiple "
1537 	      "matching entries in the TLB.",
1538 	      (multi_match) ? "" : "not ");
1539 }
1540 
1541 asmlinkage void do_mt(struct pt_regs *regs)
1542 {
1543 	int subcode;
1544 
1545 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1546 			>> VPECONTROL_EXCPT_SHIFT;
1547 	switch (subcode) {
1548 	case 0:
1549 		printk(KERN_DEBUG "Thread Underflow\n");
1550 		break;
1551 	case 1:
1552 		printk(KERN_DEBUG "Thread Overflow\n");
1553 		break;
1554 	case 2:
1555 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1556 		break;
1557 	case 3:
1558 		printk(KERN_DEBUG "Gating Storage Exception\n");
1559 		break;
1560 	case 4:
1561 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1562 		break;
1563 	case 5:
1564 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1565 		break;
1566 	default:
1567 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1568 			subcode);
1569 		break;
1570 	}
1571 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1572 
1573 	force_sig(SIGILL, current);
1574 }
1575 
1576 
1577 asmlinkage void do_dsp(struct pt_regs *regs)
1578 {
1579 	if (cpu_has_dsp)
1580 		panic("Unexpected DSP exception");
1581 
1582 	force_sig(SIGILL, current);
1583 }
1584 
1585 asmlinkage void do_reserved(struct pt_regs *regs)
1586 {
1587 	/*
1588 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1589 	 * caused by a new unknown cpu type or after another deadly
1590 	 * hard/software error.
1591 	 */
1592 	show_regs(regs);
1593 	panic("Caught reserved exception %ld - should not happen.",
1594 	      (regs->cp0_cause & 0x7f) >> 2);
1595 }
1596 
1597 static int __initdata l1parity = 1;
1598 static int __init nol1parity(char *s)
1599 {
1600 	l1parity = 0;
1601 	return 1;
1602 }
1603 __setup("nol1par", nol1parity);
1604 static int __initdata l2parity = 1;
1605 static int __init nol2parity(char *s)
1606 {
1607 	l2parity = 0;
1608 	return 1;
1609 }
1610 __setup("nol2par", nol2parity);
1611 
1612 /*
1613  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1614  * it different ways.
1615  */
1616 static inline void parity_protection_init(void)
1617 {
1618 #define ERRCTL_PE	0x80000000
1619 #define ERRCTL_L2P	0x00800000
1620 
1621 	if (mips_cm_revision() >= CM_REV_CM3) {
1622 		ulong gcr_ectl, cp0_ectl;
1623 
1624 		/*
1625 		 * With CM3 systems we need to ensure that the L1 & L2
1626 		 * parity enables are set to the same value, since this
1627 		 * is presumed by the hardware engineers.
1628 		 *
1629 		 * If the user disabled either of L1 or L2 ECC checking,
1630 		 * disable both.
1631 		 */
1632 		l1parity &= l2parity;
1633 		l2parity &= l1parity;
1634 
1635 		/* Probe L1 ECC support */
1636 		cp0_ectl = read_c0_ecc();
1637 		write_c0_ecc(cp0_ectl | ERRCTL_PE);
1638 		back_to_back_c0_hazard();
1639 		cp0_ectl = read_c0_ecc();
1640 
1641 		/* Probe L2 ECC support */
1642 		gcr_ectl = read_gcr_err_control();
1643 
1644 		if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1645 		    !(cp0_ectl & ERRCTL_PE)) {
1646 			/*
1647 			 * One of L1 or L2 ECC checking isn't supported,
1648 			 * so we cannot enable either.
1649 			 */
1650 			l1parity = l2parity = 0;
1651 		}
1652 
1653 		/* Configure L1 ECC checking */
1654 		if (l1parity)
1655 			cp0_ectl |= ERRCTL_PE;
1656 		else
1657 			cp0_ectl &= ~ERRCTL_PE;
1658 		write_c0_ecc(cp0_ectl);
1659 		back_to_back_c0_hazard();
1660 		WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1661 
1662 		/* Configure L2 ECC checking */
1663 		if (l2parity)
1664 			gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1665 		else
1666 			gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1667 		write_gcr_err_control(gcr_ectl);
1668 		gcr_ectl = read_gcr_err_control();
1669 		gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1670 		WARN_ON(!!gcr_ectl != l2parity);
1671 
1672 		pr_info("Cache parity protection %sabled\n",
1673 			l1parity ? "en" : "dis");
1674 		return;
1675 	}
1676 
1677 	switch (current_cpu_type()) {
1678 	case CPU_24K:
1679 	case CPU_34K:
1680 	case CPU_74K:
1681 	case CPU_1004K:
1682 	case CPU_1074K:
1683 	case CPU_INTERAPTIV:
1684 	case CPU_PROAPTIV:
1685 	case CPU_P5600:
1686 	case CPU_QEMU_GENERIC:
1687 	case CPU_P6600:
1688 		{
1689 			unsigned long errctl;
1690 			unsigned int l1parity_present, l2parity_present;
1691 
1692 			errctl = read_c0_ecc();
1693 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1694 
1695 			/* probe L1 parity support */
1696 			write_c0_ecc(errctl | ERRCTL_PE);
1697 			back_to_back_c0_hazard();
1698 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1699 
1700 			/* probe L2 parity support */
1701 			write_c0_ecc(errctl|ERRCTL_L2P);
1702 			back_to_back_c0_hazard();
1703 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1704 
1705 			if (l1parity_present && l2parity_present) {
1706 				if (l1parity)
1707 					errctl |= ERRCTL_PE;
1708 				if (l1parity ^ l2parity)
1709 					errctl |= ERRCTL_L2P;
1710 			} else if (l1parity_present) {
1711 				if (l1parity)
1712 					errctl |= ERRCTL_PE;
1713 			} else if (l2parity_present) {
1714 				if (l2parity)
1715 					errctl |= ERRCTL_L2P;
1716 			} else {
1717 				/* No parity available */
1718 			}
1719 
1720 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1721 
1722 			write_c0_ecc(errctl);
1723 			back_to_back_c0_hazard();
1724 			errctl = read_c0_ecc();
1725 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1726 
1727 			if (l1parity_present)
1728 				printk(KERN_INFO "Cache parity protection %sabled\n",
1729 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1730 
1731 			if (l2parity_present) {
1732 				if (l1parity_present && l1parity)
1733 					errctl ^= ERRCTL_L2P;
1734 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1735 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1736 			}
1737 		}
1738 		break;
1739 
1740 	case CPU_5KC:
1741 	case CPU_5KE:
1742 	case CPU_LOONGSON1:
1743 		write_c0_ecc(0x80000000);
1744 		back_to_back_c0_hazard();
1745 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1746 		printk(KERN_INFO "Cache parity protection %sabled\n",
1747 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1748 		break;
1749 	case CPU_20KC:
1750 	case CPU_25KF:
1751 		/* Clear the DE bit (bit 16) in the c0_status register. */
1752 		printk(KERN_INFO "Enable cache parity protection for "
1753 		       "MIPS 20KC/25KF CPUs.\n");
1754 		clear_c0_status(ST0_DE);
1755 		break;
1756 	default:
1757 		break;
1758 	}
1759 }
1760 
1761 asmlinkage void cache_parity_error(void)
1762 {
1763 	const int field = 2 * sizeof(unsigned long);
1764 	unsigned int reg_val;
1765 
1766 	/* For the moment, report the problem and hang. */
1767 	printk("Cache error exception:\n");
1768 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1769 	reg_val = read_c0_cacheerr();
1770 	printk("c0_cacheerr == %08x\n", reg_val);
1771 
1772 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1773 	       reg_val & (1<<30) ? "secondary" : "primary",
1774 	       reg_val & (1<<31) ? "data" : "insn");
1775 	if ((cpu_has_mips_r2_r6) &&
1776 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1777 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1778 			reg_val & (1<<29) ? "ED " : "",
1779 			reg_val & (1<<28) ? "ET " : "",
1780 			reg_val & (1<<27) ? "ES " : "",
1781 			reg_val & (1<<26) ? "EE " : "",
1782 			reg_val & (1<<25) ? "EB " : "",
1783 			reg_val & (1<<24) ? "EI " : "",
1784 			reg_val & (1<<23) ? "E1 " : "",
1785 			reg_val & (1<<22) ? "E0 " : "");
1786 	} else {
1787 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1788 			reg_val & (1<<29) ? "ED " : "",
1789 			reg_val & (1<<28) ? "ET " : "",
1790 			reg_val & (1<<26) ? "EE " : "",
1791 			reg_val & (1<<25) ? "EB " : "",
1792 			reg_val & (1<<24) ? "EI " : "",
1793 			reg_val & (1<<23) ? "E1 " : "",
1794 			reg_val & (1<<22) ? "E0 " : "");
1795 	}
1796 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1797 
1798 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1799 	if (reg_val & (1<<22))
1800 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1801 
1802 	if (reg_val & (1<<23))
1803 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1804 #endif
1805 
1806 	panic("Can't handle the cache error!");
1807 }
1808 
1809 asmlinkage void do_ftlb(void)
1810 {
1811 	const int field = 2 * sizeof(unsigned long);
1812 	unsigned int reg_val;
1813 
1814 	/* For the moment, report the problem and hang. */
1815 	if ((cpu_has_mips_r2_r6) &&
1816 	    (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1817 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1818 		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1819 		       read_c0_ecc());
1820 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1821 		reg_val = read_c0_cacheerr();
1822 		pr_err("c0_cacheerr == %08x\n", reg_val);
1823 
1824 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1825 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1826 		} else {
1827 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1828 			       reg_val & (1<<30) ? "secondary" : "primary",
1829 			       reg_val & (1<<31) ? "data" : "insn");
1830 		}
1831 	} else {
1832 		pr_err("FTLB error exception\n");
1833 	}
1834 	/* Just print the cacheerr bits for now */
1835 	cache_parity_error();
1836 }
1837 
1838 /*
1839  * SDBBP EJTAG debug exception handler.
1840  * We skip the instruction and return to the next instruction.
1841  */
1842 void ejtag_exception_handler(struct pt_regs *regs)
1843 {
1844 	const int field = 2 * sizeof(unsigned long);
1845 	unsigned long depc, old_epc, old_ra;
1846 	unsigned int debug;
1847 
1848 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1849 	depc = read_c0_depc();
1850 	debug = read_c0_debug();
1851 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1852 	if (debug & 0x80000000) {
1853 		/*
1854 		 * In branch delay slot.
1855 		 * We cheat a little bit here and use EPC to calculate the
1856 		 * debug return address (DEPC). EPC is restored after the
1857 		 * calculation.
1858 		 */
1859 		old_epc = regs->cp0_epc;
1860 		old_ra = regs->regs[31];
1861 		regs->cp0_epc = depc;
1862 		compute_return_epc(regs);
1863 		depc = regs->cp0_epc;
1864 		regs->cp0_epc = old_epc;
1865 		regs->regs[31] = old_ra;
1866 	} else
1867 		depc += 4;
1868 	write_c0_depc(depc);
1869 
1870 #if 0
1871 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1872 	write_c0_debug(debug | 0x100);
1873 #endif
1874 }
1875 
1876 /*
1877  * NMI exception handler.
1878  * No lock; only written during early bootup by CPU 0.
1879  */
1880 static RAW_NOTIFIER_HEAD(nmi_chain);
1881 
1882 int register_nmi_notifier(struct notifier_block *nb)
1883 {
1884 	return raw_notifier_chain_register(&nmi_chain, nb);
1885 }
1886 
1887 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1888 {
1889 	char str[100];
1890 
1891 	nmi_enter();
1892 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1893 	bust_spinlocks(1);
1894 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1895 		 smp_processor_id(), regs->cp0_epc);
1896 	regs->cp0_epc = read_c0_errorepc();
1897 	die(str, regs);
1898 	nmi_exit();
1899 }
1900 
1901 #define VECTORSPACING 0x100	/* for EI/VI mode */
1902 
1903 unsigned long ebase;
1904 EXPORT_SYMBOL_GPL(ebase);
1905 unsigned long exception_handlers[32];
1906 unsigned long vi_handlers[64];
1907 
1908 void __init *set_except_vector(int n, void *addr)
1909 {
1910 	unsigned long handler = (unsigned long) addr;
1911 	unsigned long old_handler;
1912 
1913 #ifdef CONFIG_CPU_MICROMIPS
1914 	/*
1915 	 * Only the TLB handlers are cache aligned with an even
1916 	 * address. All other handlers are on an odd address and
1917 	 * require no modification. Otherwise, MIPS32 mode will
1918 	 * be entered when handling any TLB exceptions. That
1919 	 * would be bad...since we must stay in microMIPS mode.
1920 	 */
1921 	if (!(handler & 0x1))
1922 		handler |= 1;
1923 #endif
1924 	old_handler = xchg(&exception_handlers[n], handler);
1925 
1926 	if (n == 0 && cpu_has_divec) {
1927 #ifdef CONFIG_CPU_MICROMIPS
1928 		unsigned long jump_mask = ~((1 << 27) - 1);
1929 #else
1930 		unsigned long jump_mask = ~((1 << 28) - 1);
1931 #endif
1932 		u32 *buf = (u32 *)(ebase + 0x200);
1933 		unsigned int k0 = 26;
1934 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1935 			uasm_i_j(&buf, handler & ~jump_mask);
1936 			uasm_i_nop(&buf);
1937 		} else {
1938 			UASM_i_LA(&buf, k0, handler);
1939 			uasm_i_jr(&buf, k0);
1940 			uasm_i_nop(&buf);
1941 		}
1942 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1943 	}
1944 	return (void *)old_handler;
1945 }
1946 
1947 static void do_default_vi(void)
1948 {
1949 	show_regs(get_irq_regs());
1950 	panic("Caught unexpected vectored interrupt.");
1951 }
1952 
1953 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1954 {
1955 	unsigned long handler;
1956 	unsigned long old_handler = vi_handlers[n];
1957 	int srssets = current_cpu_data.srsets;
1958 	u16 *h;
1959 	unsigned char *b;
1960 
1961 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1962 
1963 	if (addr == NULL) {
1964 		handler = (unsigned long) do_default_vi;
1965 		srs = 0;
1966 	} else
1967 		handler = (unsigned long) addr;
1968 	vi_handlers[n] = handler;
1969 
1970 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1971 
1972 	if (srs >= srssets)
1973 		panic("Shadow register set %d not supported", srs);
1974 
1975 	if (cpu_has_veic) {
1976 		if (board_bind_eic_interrupt)
1977 			board_bind_eic_interrupt(n, srs);
1978 	} else if (cpu_has_vint) {
1979 		/* SRSMap is only defined if shadow sets are implemented */
1980 		if (srssets > 1)
1981 			change_c0_srsmap(0xf << n*4, srs << n*4);
1982 	}
1983 
1984 	if (srs == 0) {
1985 		/*
1986 		 * If no shadow set is selected then use the default handler
1987 		 * that does normal register saving and standard interrupt exit
1988 		 */
1989 		extern char except_vec_vi, except_vec_vi_lui;
1990 		extern char except_vec_vi_ori, except_vec_vi_end;
1991 		extern char rollback_except_vec_vi;
1992 		char *vec_start = using_rollback_handler() ?
1993 			&rollback_except_vec_vi : &except_vec_vi;
1994 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1995 		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1996 		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1997 #else
1998 		const int lui_offset = &except_vec_vi_lui - vec_start;
1999 		const int ori_offset = &except_vec_vi_ori - vec_start;
2000 #endif
2001 		const int handler_len = &except_vec_vi_end - vec_start;
2002 
2003 		if (handler_len > VECTORSPACING) {
2004 			/*
2005 			 * Sigh... panicing won't help as the console
2006 			 * is probably not configured :(
2007 			 */
2008 			panic("VECTORSPACING too small");
2009 		}
2010 
2011 		set_handler(((unsigned long)b - ebase), vec_start,
2012 #ifdef CONFIG_CPU_MICROMIPS
2013 				(handler_len - 1));
2014 #else
2015 				handler_len);
2016 #endif
2017 		h = (u16 *)(b + lui_offset);
2018 		*h = (handler >> 16) & 0xffff;
2019 		h = (u16 *)(b + ori_offset);
2020 		*h = (handler & 0xffff);
2021 		local_flush_icache_range((unsigned long)b,
2022 					 (unsigned long)(b+handler_len));
2023 	}
2024 	else {
2025 		/*
2026 		 * In other cases jump directly to the interrupt handler. It
2027 		 * is the handler's responsibility to save registers if required
2028 		 * (eg hi/lo) and return from the exception using "eret".
2029 		 */
2030 		u32 insn;
2031 
2032 		h = (u16 *)b;
2033 		/* j handler */
2034 #ifdef CONFIG_CPU_MICROMIPS
2035 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2036 #else
2037 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2038 #endif
2039 		h[0] = (insn >> 16) & 0xffff;
2040 		h[1] = insn & 0xffff;
2041 		h[2] = 0;
2042 		h[3] = 0;
2043 		local_flush_icache_range((unsigned long)b,
2044 					 (unsigned long)(b+8));
2045 	}
2046 
2047 	return (void *)old_handler;
2048 }
2049 
2050 void *set_vi_handler(int n, vi_handler_t addr)
2051 {
2052 	return set_vi_srs_handler(n, addr, 0);
2053 }
2054 
2055 extern void tlb_init(void);
2056 
2057 /*
2058  * Timer interrupt
2059  */
2060 int cp0_compare_irq;
2061 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2062 int cp0_compare_irq_shift;
2063 
2064 /*
2065  * Performance counter IRQ or -1 if shared with timer
2066  */
2067 int cp0_perfcount_irq;
2068 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2069 
2070 /*
2071  * Fast debug channel IRQ or -1 if not present
2072  */
2073 int cp0_fdc_irq;
2074 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2075 
2076 static int noulri;
2077 
2078 static int __init ulri_disable(char *s)
2079 {
2080 	pr_info("Disabling ulri\n");
2081 	noulri = 1;
2082 
2083 	return 1;
2084 }
2085 __setup("noulri", ulri_disable);
2086 
2087 /* configure STATUS register */
2088 static void configure_status(void)
2089 {
2090 	/*
2091 	 * Disable coprocessors and select 32-bit or 64-bit addressing
2092 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2093 	 * flag that some firmware may have left set and the TS bit (for
2094 	 * IP27).  Set XX for ISA IV code to work.
2095 	 */
2096 	unsigned int status_set = ST0_CU0;
2097 #ifdef CONFIG_64BIT
2098 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2099 #endif
2100 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2101 		status_set |= ST0_XX;
2102 	if (cpu_has_dsp)
2103 		status_set |= ST0_MX;
2104 
2105 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2106 			 status_set);
2107 }
2108 
2109 unsigned int hwrena;
2110 EXPORT_SYMBOL_GPL(hwrena);
2111 
2112 /* configure HWRENA register */
2113 static void configure_hwrena(void)
2114 {
2115 	hwrena = cpu_hwrena_impl_bits;
2116 
2117 	if (cpu_has_mips_r2_r6)
2118 		hwrena |= MIPS_HWRENA_CPUNUM |
2119 			  MIPS_HWRENA_SYNCISTEP |
2120 			  MIPS_HWRENA_CC |
2121 			  MIPS_HWRENA_CCRES;
2122 
2123 	if (!noulri && cpu_has_userlocal)
2124 		hwrena |= MIPS_HWRENA_ULR;
2125 
2126 	if (hwrena)
2127 		write_c0_hwrena(hwrena);
2128 }
2129 
2130 static void configure_exception_vector(void)
2131 {
2132 	if (cpu_has_veic || cpu_has_vint) {
2133 		unsigned long sr = set_c0_status(ST0_BEV);
2134 		/* If available, use WG to set top bits of EBASE */
2135 		if (cpu_has_ebase_wg) {
2136 #ifdef CONFIG_64BIT
2137 			write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2138 #else
2139 			write_c0_ebase(ebase | MIPS_EBASE_WG);
2140 #endif
2141 		}
2142 		write_c0_ebase(ebase);
2143 		write_c0_status(sr);
2144 		/* Setting vector spacing enables EI/VI mode  */
2145 		change_c0_intctl(0x3e0, VECTORSPACING);
2146 	}
2147 	if (cpu_has_divec) {
2148 		if (cpu_has_mipsmt) {
2149 			unsigned int vpflags = dvpe();
2150 			set_c0_cause(CAUSEF_IV);
2151 			evpe(vpflags);
2152 		} else
2153 			set_c0_cause(CAUSEF_IV);
2154 	}
2155 }
2156 
2157 void per_cpu_trap_init(bool is_boot_cpu)
2158 {
2159 	unsigned int cpu = smp_processor_id();
2160 
2161 	configure_status();
2162 	configure_hwrena();
2163 
2164 	configure_exception_vector();
2165 
2166 	/*
2167 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2168 	 *
2169 	 *  o read IntCtl.IPTI to determine the timer interrupt
2170 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2171 	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2172 	 */
2173 	if (cpu_has_mips_r2_r6) {
2174 		/*
2175 		 * We shouldn't trust a secondary core has a sane EBASE register
2176 		 * so use the one calculated by the boot CPU.
2177 		 */
2178 		if (!is_boot_cpu) {
2179 			/* If available, use WG to set top bits of EBASE */
2180 			if (cpu_has_ebase_wg) {
2181 #ifdef CONFIG_64BIT
2182 				write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2183 #else
2184 				write_c0_ebase(ebase | MIPS_EBASE_WG);
2185 #endif
2186 			}
2187 			write_c0_ebase(ebase);
2188 		}
2189 
2190 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2191 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2192 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2193 		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2194 		if (!cp0_fdc_irq)
2195 			cp0_fdc_irq = -1;
2196 
2197 	} else {
2198 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2199 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2200 		cp0_perfcount_irq = -1;
2201 		cp0_fdc_irq = -1;
2202 	}
2203 
2204 	if (!cpu_data[cpu].asid_cache)
2205 		cpu_data[cpu].asid_cache = asid_first_version(cpu);
2206 
2207 	mmgrab(&init_mm);
2208 	current->active_mm = &init_mm;
2209 	BUG_ON(current->mm);
2210 	enter_lazy_tlb(&init_mm, current);
2211 
2212 	/* Boot CPU's cache setup in setup_arch(). */
2213 	if (!is_boot_cpu)
2214 		cpu_cache_init();
2215 	tlb_init();
2216 	TLBMISS_HANDLER_SETUP();
2217 }
2218 
2219 /* Install CPU exception handler */
2220 void set_handler(unsigned long offset, void *addr, unsigned long size)
2221 {
2222 #ifdef CONFIG_CPU_MICROMIPS
2223 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2224 #else
2225 	memcpy((void *)(ebase + offset), addr, size);
2226 #endif
2227 	local_flush_icache_range(ebase + offset, ebase + offset + size);
2228 }
2229 
2230 static const char panic_null_cerr[] =
2231 	"Trying to set NULL cache error exception handler\n";
2232 
2233 /*
2234  * Install uncached CPU exception handler.
2235  * This is suitable only for the cache error exception which is the only
2236  * exception handler that is being run uncached.
2237  */
2238 void set_uncached_handler(unsigned long offset, void *addr,
2239 	unsigned long size)
2240 {
2241 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2242 
2243 	if (!addr)
2244 		panic(panic_null_cerr);
2245 
2246 	memcpy((void *)(uncached_ebase + offset), addr, size);
2247 }
2248 
2249 static int __initdata rdhwr_noopt;
2250 static int __init set_rdhwr_noopt(char *str)
2251 {
2252 	rdhwr_noopt = 1;
2253 	return 1;
2254 }
2255 
2256 __setup("rdhwr_noopt", set_rdhwr_noopt);
2257 
2258 void __init trap_init(void)
2259 {
2260 	extern char except_vec3_generic;
2261 	extern char except_vec4;
2262 	extern char except_vec3_r4000;
2263 	unsigned long i;
2264 
2265 	check_wait();
2266 
2267 	if (cpu_has_veic || cpu_has_vint) {
2268 		unsigned long size = 0x200 + VECTORSPACING*64;
2269 		phys_addr_t ebase_pa;
2270 
2271 		ebase = (unsigned long)
2272 			__alloc_bootmem(size, 1 << fls(size), 0);
2273 
2274 		/*
2275 		 * Try to ensure ebase resides in KSeg0 if possible.
2276 		 *
2277 		 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2278 		 * hitting a poorly defined exception base for Cache Errors.
2279 		 * The allocation is likely to be in the low 512MB of physical,
2280 		 * in which case we should be able to convert to KSeg0.
2281 		 *
2282 		 * EVA is special though as it allows segments to be rearranged
2283 		 * and to become uncached during cache error handling.
2284 		 */
2285 		ebase_pa = __pa(ebase);
2286 		if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2287 			ebase = CKSEG0ADDR(ebase_pa);
2288 	} else {
2289 		ebase = CAC_BASE;
2290 
2291 		if (cpu_has_mips_r2_r6) {
2292 			if (cpu_has_ebase_wg) {
2293 #ifdef CONFIG_64BIT
2294 				ebase = (read_c0_ebase_64() & ~0xfff);
2295 #else
2296 				ebase = (read_c0_ebase() & ~0xfff);
2297 #endif
2298 			} else {
2299 				ebase += (read_c0_ebase() & 0x3ffff000);
2300 			}
2301 		}
2302 	}
2303 
2304 	if (cpu_has_mmips) {
2305 		unsigned int config3 = read_c0_config3();
2306 
2307 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2308 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2309 		else
2310 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2311 	}
2312 
2313 	if (board_ebase_setup)
2314 		board_ebase_setup();
2315 	per_cpu_trap_init(true);
2316 
2317 	/*
2318 	 * Copy the generic exception handlers to their final destination.
2319 	 * This will be overridden later as suitable for a particular
2320 	 * configuration.
2321 	 */
2322 	set_handler(0x180, &except_vec3_generic, 0x80);
2323 
2324 	/*
2325 	 * Setup default vectors
2326 	 */
2327 	for (i = 0; i <= 31; i++)
2328 		set_except_vector(i, handle_reserved);
2329 
2330 	/*
2331 	 * Copy the EJTAG debug exception vector handler code to it's final
2332 	 * destination.
2333 	 */
2334 	if (cpu_has_ejtag && board_ejtag_handler_setup)
2335 		board_ejtag_handler_setup();
2336 
2337 	/*
2338 	 * Only some CPUs have the watch exceptions.
2339 	 */
2340 	if (cpu_has_watch)
2341 		set_except_vector(EXCCODE_WATCH, handle_watch);
2342 
2343 	/*
2344 	 * Initialise interrupt handlers
2345 	 */
2346 	if (cpu_has_veic || cpu_has_vint) {
2347 		int nvec = cpu_has_veic ? 64 : 8;
2348 		for (i = 0; i < nvec; i++)
2349 			set_vi_handler(i, NULL);
2350 	}
2351 	else if (cpu_has_divec)
2352 		set_handler(0x200, &except_vec4, 0x8);
2353 
2354 	/*
2355 	 * Some CPUs can enable/disable for cache parity detection, but does
2356 	 * it different ways.
2357 	 */
2358 	parity_protection_init();
2359 
2360 	/*
2361 	 * The Data Bus Errors / Instruction Bus Errors are signaled
2362 	 * by external hardware.  Therefore these two exceptions
2363 	 * may have board specific handlers.
2364 	 */
2365 	if (board_be_init)
2366 		board_be_init();
2367 
2368 	set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2369 					rollback_handle_int : handle_int);
2370 	set_except_vector(EXCCODE_MOD, handle_tlbm);
2371 	set_except_vector(EXCCODE_TLBL, handle_tlbl);
2372 	set_except_vector(EXCCODE_TLBS, handle_tlbs);
2373 
2374 	set_except_vector(EXCCODE_ADEL, handle_adel);
2375 	set_except_vector(EXCCODE_ADES, handle_ades);
2376 
2377 	set_except_vector(EXCCODE_IBE, handle_ibe);
2378 	set_except_vector(EXCCODE_DBE, handle_dbe);
2379 
2380 	set_except_vector(EXCCODE_SYS, handle_sys);
2381 	set_except_vector(EXCCODE_BP, handle_bp);
2382 
2383 	if (rdhwr_noopt)
2384 		set_except_vector(EXCCODE_RI, handle_ri);
2385 	else {
2386 		if (cpu_has_vtag_icache)
2387 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2388 		else if (current_cpu_type() == CPU_LOONGSON3)
2389 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2390 		else
2391 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2392 	}
2393 
2394 	set_except_vector(EXCCODE_CPU, handle_cpu);
2395 	set_except_vector(EXCCODE_OV, handle_ov);
2396 	set_except_vector(EXCCODE_TR, handle_tr);
2397 	set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2398 
2399 	if (board_nmi_handler_setup)
2400 		board_nmi_handler_setup();
2401 
2402 	if (cpu_has_fpu && !cpu_has_nofpuex)
2403 		set_except_vector(EXCCODE_FPE, handle_fpe);
2404 
2405 	set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2406 
2407 	if (cpu_has_rixiex) {
2408 		set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2409 		set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2410 	}
2411 
2412 	set_except_vector(EXCCODE_MSADIS, handle_msa);
2413 	set_except_vector(EXCCODE_MDMX, handle_mdmx);
2414 
2415 	if (cpu_has_mcheck)
2416 		set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2417 
2418 	if (cpu_has_mipsmt)
2419 		set_except_vector(EXCCODE_THREAD, handle_mt);
2420 
2421 	set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2422 
2423 	if (board_cache_error_setup)
2424 		board_cache_error_setup();
2425 
2426 	if (cpu_has_vce)
2427 		/* Special exception: R4[04]00 uses also the divec space. */
2428 		set_handler(0x180, &except_vec3_r4000, 0x100);
2429 	else if (cpu_has_4kex)
2430 		set_handler(0x180, &except_vec3_generic, 0x80);
2431 	else
2432 		set_handler(0x080, &except_vec3_generic, 0x80);
2433 
2434 	local_flush_icache_range(ebase, ebase + 0x400);
2435 
2436 	sort_extable(__start___dbe_table, __stop___dbe_table);
2437 
2438 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2439 }
2440 
2441 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2442 			    void *v)
2443 {
2444 	switch (cmd) {
2445 	case CPU_PM_ENTER_FAILED:
2446 	case CPU_PM_EXIT:
2447 		configure_status();
2448 		configure_hwrena();
2449 		configure_exception_vector();
2450 
2451 		/* Restore register with CPU number for TLB handlers */
2452 		TLBMISS_HANDLER_RESTORE();
2453 
2454 		break;
2455 	}
2456 
2457 	return NOTIFY_OK;
2458 }
2459 
2460 static struct notifier_block trap_pm_notifier_block = {
2461 	.notifier_call = trap_pm_notifier,
2462 };
2463 
2464 static int __init trap_pm_init(void)
2465 {
2466 	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2467 }
2468 arch_initcall(trap_pm_init);
2469