xref: /openbmc/linux/arch/mips/kernel/traps.c (revision 5104d265)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  */
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/context_tracking.h>
17 #include <linux/kexec.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/mm.h>
22 #include <linux/sched.h>
23 #include <linux/smp.h>
24 #include <linux/spinlock.h>
25 #include <linux/kallsyms.h>
26 #include <linux/bootmem.h>
27 #include <linux/interrupt.h>
28 #include <linux/ptrace.h>
29 #include <linux/kgdb.h>
30 #include <linux/kdebug.h>
31 #include <linux/kprobes.h>
32 #include <linux/notifier.h>
33 #include <linux/kdb.h>
34 #include <linux/irq.h>
35 #include <linux/perf_event.h>
36 
37 #include <asm/bootinfo.h>
38 #include <asm/branch.h>
39 #include <asm/break.h>
40 #include <asm/cop2.h>
41 #include <asm/cpu.h>
42 #include <asm/dsp.h>
43 #include <asm/fpu.h>
44 #include <asm/fpu_emulator.h>
45 #include <asm/idle.h>
46 #include <asm/mipsregs.h>
47 #include <asm/mipsmtregs.h>
48 #include <asm/module.h>
49 #include <asm/pgtable.h>
50 #include <asm/ptrace.h>
51 #include <asm/sections.h>
52 #include <asm/tlbdebug.h>
53 #include <asm/traps.h>
54 #include <asm/uaccess.h>
55 #include <asm/watch.h>
56 #include <asm/mmu_context.h>
57 #include <asm/types.h>
58 #include <asm/stacktrace.h>
59 #include <asm/uasm.h>
60 
61 extern void check_wait(void);
62 extern asmlinkage void rollback_handle_int(void);
63 extern asmlinkage void handle_int(void);
64 extern u32 handle_tlbl[];
65 extern u32 handle_tlbs[];
66 extern u32 handle_tlbm[];
67 extern asmlinkage void handle_adel(void);
68 extern asmlinkage void handle_ades(void);
69 extern asmlinkage void handle_ibe(void);
70 extern asmlinkage void handle_dbe(void);
71 extern asmlinkage void handle_sys(void);
72 extern asmlinkage void handle_bp(void);
73 extern asmlinkage void handle_ri(void);
74 extern asmlinkage void handle_ri_rdhwr_vivt(void);
75 extern asmlinkage void handle_ri_rdhwr(void);
76 extern asmlinkage void handle_cpu(void);
77 extern asmlinkage void handle_ov(void);
78 extern asmlinkage void handle_tr(void);
79 extern asmlinkage void handle_fpe(void);
80 extern asmlinkage void handle_mdmx(void);
81 extern asmlinkage void handle_watch(void);
82 extern asmlinkage void handle_mt(void);
83 extern asmlinkage void handle_dsp(void);
84 extern asmlinkage void handle_mcheck(void);
85 extern asmlinkage void handle_reserved(void);
86 
87 void (*board_be_init)(void);
88 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
89 void (*board_nmi_handler_setup)(void);
90 void (*board_ejtag_handler_setup)(void);
91 void (*board_bind_eic_interrupt)(int irq, int regset);
92 void (*board_ebase_setup)(void);
93 void(*board_cache_error_setup)(void);
94 
95 static void show_raw_backtrace(unsigned long reg29)
96 {
97 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
98 	unsigned long addr;
99 
100 	printk("Call Trace:");
101 #ifdef CONFIG_KALLSYMS
102 	printk("\n");
103 #endif
104 	while (!kstack_end(sp)) {
105 		unsigned long __user *p =
106 			(unsigned long __user *)(unsigned long)sp++;
107 		if (__get_user(addr, p)) {
108 			printk(" (Bad stack address)");
109 			break;
110 		}
111 		if (__kernel_text_address(addr))
112 			print_ip_sym(addr);
113 	}
114 	printk("\n");
115 }
116 
117 #ifdef CONFIG_KALLSYMS
118 int raw_show_trace;
119 static int __init set_raw_show_trace(char *str)
120 {
121 	raw_show_trace = 1;
122 	return 1;
123 }
124 __setup("raw_show_trace", set_raw_show_trace);
125 #endif
126 
127 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
128 {
129 	unsigned long sp = regs->regs[29];
130 	unsigned long ra = regs->regs[31];
131 	unsigned long pc = regs->cp0_epc;
132 
133 	if (!task)
134 		task = current;
135 
136 	if (raw_show_trace || !__kernel_text_address(pc)) {
137 		show_raw_backtrace(sp);
138 		return;
139 	}
140 	printk("Call Trace:\n");
141 	do {
142 		print_ip_sym(pc);
143 		pc = unwind_stack(task, &sp, pc, &ra);
144 	} while (pc);
145 	printk("\n");
146 }
147 
148 /*
149  * This routine abuses get_user()/put_user() to reference pointers
150  * with at least a bit of error checking ...
151  */
152 static void show_stacktrace(struct task_struct *task,
153 	const struct pt_regs *regs)
154 {
155 	const int field = 2 * sizeof(unsigned long);
156 	long stackdata;
157 	int i;
158 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
159 
160 	printk("Stack :");
161 	i = 0;
162 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
163 		if (i && ((i % (64 / field)) == 0))
164 			printk("\n	 ");
165 		if (i > 39) {
166 			printk(" ...");
167 			break;
168 		}
169 
170 		if (__get_user(stackdata, sp++)) {
171 			printk(" (Bad stack address)");
172 			break;
173 		}
174 
175 		printk(" %0*lx", field, stackdata);
176 		i++;
177 	}
178 	printk("\n");
179 	show_backtrace(task, regs);
180 }
181 
182 void show_stack(struct task_struct *task, unsigned long *sp)
183 {
184 	struct pt_regs regs;
185 	if (sp) {
186 		regs.regs[29] = (unsigned long)sp;
187 		regs.regs[31] = 0;
188 		regs.cp0_epc = 0;
189 	} else {
190 		if (task && task != current) {
191 			regs.regs[29] = task->thread.reg29;
192 			regs.regs[31] = 0;
193 			regs.cp0_epc = task->thread.reg31;
194 #ifdef CONFIG_KGDB_KDB
195 		} else if (atomic_read(&kgdb_active) != -1 &&
196 			   kdb_current_regs) {
197 			memcpy(&regs, kdb_current_regs, sizeof(regs));
198 #endif /* CONFIG_KGDB_KDB */
199 		} else {
200 			prepare_frametrace(&regs);
201 		}
202 	}
203 	show_stacktrace(task, &regs);
204 }
205 
206 static void show_code(unsigned int __user *pc)
207 {
208 	long i;
209 	unsigned short __user *pc16 = NULL;
210 
211 	printk("\nCode:");
212 
213 	if ((unsigned long)pc & 1)
214 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
215 	for(i = -3 ; i < 6 ; i++) {
216 		unsigned int insn;
217 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
218 			printk(" (Bad address in epc)\n");
219 			break;
220 		}
221 		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
222 	}
223 }
224 
225 static void __show_regs(const struct pt_regs *regs)
226 {
227 	const int field = 2 * sizeof(unsigned long);
228 	unsigned int cause = regs->cp0_cause;
229 	int i;
230 
231 	show_regs_print_info(KERN_DEFAULT);
232 
233 	/*
234 	 * Saved main processor registers
235 	 */
236 	for (i = 0; i < 32; ) {
237 		if ((i % 4) == 0)
238 			printk("$%2d   :", i);
239 		if (i == 0)
240 			printk(" %0*lx", field, 0UL);
241 		else if (i == 26 || i == 27)
242 			printk(" %*s", field, "");
243 		else
244 			printk(" %0*lx", field, regs->regs[i]);
245 
246 		i++;
247 		if ((i % 4) == 0)
248 			printk("\n");
249 	}
250 
251 #ifdef CONFIG_CPU_HAS_SMARTMIPS
252 	printk("Acx    : %0*lx\n", field, regs->acx);
253 #endif
254 	printk("Hi    : %0*lx\n", field, regs->hi);
255 	printk("Lo    : %0*lx\n", field, regs->lo);
256 
257 	/*
258 	 * Saved cp0 registers
259 	 */
260 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
261 	       (void *) regs->cp0_epc);
262 	printk("    %s\n", print_tainted());
263 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
264 	       (void *) regs->regs[31]);
265 
266 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
267 
268 	if (cpu_has_3kex) {
269 		if (regs->cp0_status & ST0_KUO)
270 			printk("KUo ");
271 		if (regs->cp0_status & ST0_IEO)
272 			printk("IEo ");
273 		if (regs->cp0_status & ST0_KUP)
274 			printk("KUp ");
275 		if (regs->cp0_status & ST0_IEP)
276 			printk("IEp ");
277 		if (regs->cp0_status & ST0_KUC)
278 			printk("KUc ");
279 		if (regs->cp0_status & ST0_IEC)
280 			printk("IEc ");
281 	} else if (cpu_has_4kex) {
282 		if (regs->cp0_status & ST0_KX)
283 			printk("KX ");
284 		if (regs->cp0_status & ST0_SX)
285 			printk("SX ");
286 		if (regs->cp0_status & ST0_UX)
287 			printk("UX ");
288 		switch (regs->cp0_status & ST0_KSU) {
289 		case KSU_USER:
290 			printk("USER ");
291 			break;
292 		case KSU_SUPERVISOR:
293 			printk("SUPERVISOR ");
294 			break;
295 		case KSU_KERNEL:
296 			printk("KERNEL ");
297 			break;
298 		default:
299 			printk("BAD_MODE ");
300 			break;
301 		}
302 		if (regs->cp0_status & ST0_ERL)
303 			printk("ERL ");
304 		if (regs->cp0_status & ST0_EXL)
305 			printk("EXL ");
306 		if (regs->cp0_status & ST0_IE)
307 			printk("IE ");
308 	}
309 	printk("\n");
310 
311 	printk("Cause : %08x\n", cause);
312 
313 	cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
314 	if (1 <= cause && cause <= 5)
315 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
316 
317 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
318 	       cpu_name_string());
319 }
320 
321 /*
322  * FIXME: really the generic show_regs should take a const pointer argument.
323  */
324 void show_regs(struct pt_regs *regs)
325 {
326 	__show_regs((struct pt_regs *)regs);
327 }
328 
329 void show_registers(struct pt_regs *regs)
330 {
331 	const int field = 2 * sizeof(unsigned long);
332 
333 	__show_regs(regs);
334 	print_modules();
335 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
336 	       current->comm, current->pid, current_thread_info(), current,
337 	      field, current_thread_info()->tp_value);
338 	if (cpu_has_userlocal) {
339 		unsigned long tls;
340 
341 		tls = read_c0_userlocal();
342 		if (tls != current_thread_info()->tp_value)
343 			printk("*HwTLS: %0*lx\n", field, tls);
344 	}
345 
346 	show_stacktrace(current, regs);
347 	show_code((unsigned int __user *) regs->cp0_epc);
348 	printk("\n");
349 }
350 
351 static int regs_to_trapnr(struct pt_regs *regs)
352 {
353 	return (regs->cp0_cause >> 2) & 0x1f;
354 }
355 
356 static DEFINE_RAW_SPINLOCK(die_lock);
357 
358 void __noreturn die(const char *str, struct pt_regs *regs)
359 {
360 	static int die_counter;
361 	int sig = SIGSEGV;
362 #ifdef CONFIG_MIPS_MT_SMTC
363 	unsigned long dvpret;
364 #endif /* CONFIG_MIPS_MT_SMTC */
365 
366 	oops_enter();
367 
368 	if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV) == NOTIFY_STOP)
369 		sig = 0;
370 
371 	console_verbose();
372 	raw_spin_lock_irq(&die_lock);
373 #ifdef CONFIG_MIPS_MT_SMTC
374 	dvpret = dvpe();
375 #endif /* CONFIG_MIPS_MT_SMTC */
376 	bust_spinlocks(1);
377 #ifdef CONFIG_MIPS_MT_SMTC
378 	mips_mt_regdump(dvpret);
379 #endif /* CONFIG_MIPS_MT_SMTC */
380 
381 	printk("%s[#%d]:\n", str, ++die_counter);
382 	show_registers(regs);
383 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
384 	raw_spin_unlock_irq(&die_lock);
385 
386 	oops_exit();
387 
388 	if (in_interrupt())
389 		panic("Fatal exception in interrupt");
390 
391 	if (panic_on_oops) {
392 		printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
393 		ssleep(5);
394 		panic("Fatal exception");
395 	}
396 
397 	if (regs && kexec_should_crash(current))
398 		crash_kexec(regs);
399 
400 	do_exit(sig);
401 }
402 
403 extern struct exception_table_entry __start___dbe_table[];
404 extern struct exception_table_entry __stop___dbe_table[];
405 
406 __asm__(
407 "	.section	__dbe_table, \"a\"\n"
408 "	.previous			\n");
409 
410 /* Given an address, look for it in the exception tables. */
411 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
412 {
413 	const struct exception_table_entry *e;
414 
415 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
416 	if (!e)
417 		e = search_module_dbetables(addr);
418 	return e;
419 }
420 
421 asmlinkage void do_be(struct pt_regs *regs)
422 {
423 	const int field = 2 * sizeof(unsigned long);
424 	const struct exception_table_entry *fixup = NULL;
425 	int data = regs->cp0_cause & 4;
426 	int action = MIPS_BE_FATAL;
427 	enum ctx_state prev_state;
428 
429 	prev_state = exception_enter();
430 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
431 	if (data && !user_mode(regs))
432 		fixup = search_dbe_tables(exception_epc(regs));
433 
434 	if (fixup)
435 		action = MIPS_BE_FIXUP;
436 
437 	if (board_be_handler)
438 		action = board_be_handler(regs, fixup != NULL);
439 
440 	switch (action) {
441 	case MIPS_BE_DISCARD:
442 		goto out;
443 	case MIPS_BE_FIXUP:
444 		if (fixup) {
445 			regs->cp0_epc = fixup->nextinsn;
446 			goto out;
447 		}
448 		break;
449 	default:
450 		break;
451 	}
452 
453 	/*
454 	 * Assume it would be too dangerous to continue ...
455 	 */
456 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
457 	       data ? "Data" : "Instruction",
458 	       field, regs->cp0_epc, field, regs->regs[31]);
459 	if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), SIGBUS)
460 	    == NOTIFY_STOP)
461 		goto out;
462 
463 	die_if_kernel("Oops", regs);
464 	force_sig(SIGBUS, current);
465 
466 out:
467 	exception_exit(prev_state);
468 }
469 
470 /*
471  * ll/sc, rdhwr, sync emulation
472  */
473 
474 #define OPCODE 0xfc000000
475 #define BASE   0x03e00000
476 #define RT     0x001f0000
477 #define OFFSET 0x0000ffff
478 #define LL     0xc0000000
479 #define SC     0xe0000000
480 #define SPEC0  0x00000000
481 #define SPEC3  0x7c000000
482 #define RD     0x0000f800
483 #define FUNC   0x0000003f
484 #define SYNC   0x0000000f
485 #define RDHWR  0x0000003b
486 
487 /*  microMIPS definitions   */
488 #define MM_POOL32A_FUNC 0xfc00ffff
489 #define MM_RDHWR        0x00006b3c
490 #define MM_RS           0x001f0000
491 #define MM_RT           0x03e00000
492 
493 /*
494  * The ll_bit is cleared by r*_switch.S
495  */
496 
497 unsigned int ll_bit;
498 struct task_struct *ll_task;
499 
500 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
501 {
502 	unsigned long value, __user *vaddr;
503 	long offset;
504 
505 	/*
506 	 * analyse the ll instruction that just caused a ri exception
507 	 * and put the referenced address to addr.
508 	 */
509 
510 	/* sign extend offset */
511 	offset = opcode & OFFSET;
512 	offset <<= 16;
513 	offset >>= 16;
514 
515 	vaddr = (unsigned long __user *)
516 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
517 
518 	if ((unsigned long)vaddr & 3)
519 		return SIGBUS;
520 	if (get_user(value, vaddr))
521 		return SIGSEGV;
522 
523 	preempt_disable();
524 
525 	if (ll_task == NULL || ll_task == current) {
526 		ll_bit = 1;
527 	} else {
528 		ll_bit = 0;
529 	}
530 	ll_task = current;
531 
532 	preempt_enable();
533 
534 	regs->regs[(opcode & RT) >> 16] = value;
535 
536 	return 0;
537 }
538 
539 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
540 {
541 	unsigned long __user *vaddr;
542 	unsigned long reg;
543 	long offset;
544 
545 	/*
546 	 * analyse the sc instruction that just caused a ri exception
547 	 * and put the referenced address to addr.
548 	 */
549 
550 	/* sign extend offset */
551 	offset = opcode & OFFSET;
552 	offset <<= 16;
553 	offset >>= 16;
554 
555 	vaddr = (unsigned long __user *)
556 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
557 	reg = (opcode & RT) >> 16;
558 
559 	if ((unsigned long)vaddr & 3)
560 		return SIGBUS;
561 
562 	preempt_disable();
563 
564 	if (ll_bit == 0 || ll_task != current) {
565 		regs->regs[reg] = 0;
566 		preempt_enable();
567 		return 0;
568 	}
569 
570 	preempt_enable();
571 
572 	if (put_user(regs->regs[reg], vaddr))
573 		return SIGSEGV;
574 
575 	regs->regs[reg] = 1;
576 
577 	return 0;
578 }
579 
580 /*
581  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
582  * opcodes are supposed to result in coprocessor unusable exceptions if
583  * executed on ll/sc-less processors.  That's the theory.  In practice a
584  * few processors such as NEC's VR4100 throw reserved instruction exceptions
585  * instead, so we're doing the emulation thing in both exception handlers.
586  */
587 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
588 {
589 	if ((opcode & OPCODE) == LL) {
590 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
591 				1, regs, 0);
592 		return simulate_ll(regs, opcode);
593 	}
594 	if ((opcode & OPCODE) == SC) {
595 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
596 				1, regs, 0);
597 		return simulate_sc(regs, opcode);
598 	}
599 
600 	return -1;			/* Must be something else ... */
601 }
602 
603 /*
604  * Simulate trapping 'rdhwr' instructions to provide user accessible
605  * registers not implemented in hardware.
606  */
607 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
608 {
609 	struct thread_info *ti = task_thread_info(current);
610 
611 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
612 			1, regs, 0);
613 	switch (rd) {
614 	case 0:		/* CPU number */
615 		regs->regs[rt] = smp_processor_id();
616 		return 0;
617 	case 1:		/* SYNCI length */
618 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
619 				     current_cpu_data.icache.linesz);
620 		return 0;
621 	case 2:		/* Read count register */
622 		regs->regs[rt] = read_c0_count();
623 		return 0;
624 	case 3:		/* Count register resolution */
625 		switch (current_cpu_data.cputype) {
626 		case CPU_20KC:
627 		case CPU_25KF:
628 			regs->regs[rt] = 1;
629 			break;
630 		default:
631 			regs->regs[rt] = 2;
632 		}
633 		return 0;
634 	case 29:
635 		regs->regs[rt] = ti->tp_value;
636 		return 0;
637 	default:
638 		return -1;
639 	}
640 }
641 
642 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
643 {
644 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
645 		int rd = (opcode & RD) >> 11;
646 		int rt = (opcode & RT) >> 16;
647 
648 		simulate_rdhwr(regs, rd, rt);
649 		return 0;
650 	}
651 
652 	/* Not ours.  */
653 	return -1;
654 }
655 
656 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
657 {
658 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
659 		int rd = (opcode & MM_RS) >> 16;
660 		int rt = (opcode & MM_RT) >> 21;
661 		simulate_rdhwr(regs, rd, rt);
662 		return 0;
663 	}
664 
665 	/* Not ours.  */
666 	return -1;
667 }
668 
669 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
670 {
671 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
672 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
673 				1, regs, 0);
674 		return 0;
675 	}
676 
677 	return -1;			/* Must be something else ... */
678 }
679 
680 asmlinkage void do_ov(struct pt_regs *regs)
681 {
682 	enum ctx_state prev_state;
683 	siginfo_t info;
684 
685 	prev_state = exception_enter();
686 	die_if_kernel("Integer overflow", regs);
687 
688 	info.si_code = FPE_INTOVF;
689 	info.si_signo = SIGFPE;
690 	info.si_errno = 0;
691 	info.si_addr = (void __user *) regs->cp0_epc;
692 	force_sig_info(SIGFPE, &info, current);
693 	exception_exit(prev_state);
694 }
695 
696 int process_fpemu_return(int sig, void __user *fault_addr)
697 {
698 	if (sig == SIGSEGV || sig == SIGBUS) {
699 		struct siginfo si = {0};
700 		si.si_addr = fault_addr;
701 		si.si_signo = sig;
702 		if (sig == SIGSEGV) {
703 			if (find_vma(current->mm, (unsigned long)fault_addr))
704 				si.si_code = SEGV_ACCERR;
705 			else
706 				si.si_code = SEGV_MAPERR;
707 		} else {
708 			si.si_code = BUS_ADRERR;
709 		}
710 		force_sig_info(sig, &si, current);
711 		return 1;
712 	} else if (sig) {
713 		force_sig(sig, current);
714 		return 1;
715 	} else {
716 		return 0;
717 	}
718 }
719 
720 /*
721  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
722  */
723 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
724 {
725 	enum ctx_state prev_state;
726 	siginfo_t info = {0};
727 
728 	prev_state = exception_enter();
729 	if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), SIGFPE)
730 	    == NOTIFY_STOP)
731 		goto out;
732 	die_if_kernel("FP exception in kernel code", regs);
733 
734 	if (fcr31 & FPU_CSR_UNI_X) {
735 		int sig;
736 		void __user *fault_addr = NULL;
737 
738 		/*
739 		 * Unimplemented operation exception.  If we've got the full
740 		 * software emulator on-board, let's use it...
741 		 *
742 		 * Force FPU to dump state into task/thread context.  We're
743 		 * moving a lot of data here for what is probably a single
744 		 * instruction, but the alternative is to pre-decode the FP
745 		 * register operands before invoking the emulator, which seems
746 		 * a bit extreme for what should be an infrequent event.
747 		 */
748 		/* Ensure 'resume' not overwrite saved fp context again. */
749 		lose_fpu(1);
750 
751 		/* Run the emulator */
752 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
753 					       &fault_addr);
754 
755 		/*
756 		 * We can't allow the emulated instruction to leave any of
757 		 * the cause bit set in $fcr31.
758 		 */
759 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
760 
761 		/* Restore the hardware register state */
762 		own_fpu(1);	/* Using the FPU again.	 */
763 
764 		/* If something went wrong, signal */
765 		process_fpemu_return(sig, fault_addr);
766 
767 		goto out;
768 	} else if (fcr31 & FPU_CSR_INV_X)
769 		info.si_code = FPE_FLTINV;
770 	else if (fcr31 & FPU_CSR_DIV_X)
771 		info.si_code = FPE_FLTDIV;
772 	else if (fcr31 & FPU_CSR_OVF_X)
773 		info.si_code = FPE_FLTOVF;
774 	else if (fcr31 & FPU_CSR_UDF_X)
775 		info.si_code = FPE_FLTUND;
776 	else if (fcr31 & FPU_CSR_INE_X)
777 		info.si_code = FPE_FLTRES;
778 	else
779 		info.si_code = __SI_FAULT;
780 	info.si_signo = SIGFPE;
781 	info.si_errno = 0;
782 	info.si_addr = (void __user *) regs->cp0_epc;
783 	force_sig_info(SIGFPE, &info, current);
784 
785 out:
786 	exception_exit(prev_state);
787 }
788 
789 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
790 	const char *str)
791 {
792 	siginfo_t info;
793 	char b[40];
794 
795 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
796 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
797 		return;
798 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
799 
800 	if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
801 		return;
802 
803 	/*
804 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
805 	 * insns, even for trap and break codes that indicate arithmetic
806 	 * failures.  Weird ...
807 	 * But should we continue the brokenness???  --macro
808 	 */
809 	switch (code) {
810 	case BRK_OVERFLOW:
811 	case BRK_DIVZERO:
812 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
813 		die_if_kernel(b, regs);
814 		if (code == BRK_DIVZERO)
815 			info.si_code = FPE_INTDIV;
816 		else
817 			info.si_code = FPE_INTOVF;
818 		info.si_signo = SIGFPE;
819 		info.si_errno = 0;
820 		info.si_addr = (void __user *) regs->cp0_epc;
821 		force_sig_info(SIGFPE, &info, current);
822 		break;
823 	case BRK_BUG:
824 		die_if_kernel("Kernel bug detected", regs);
825 		force_sig(SIGTRAP, current);
826 		break;
827 	case BRK_MEMU:
828 		/*
829 		 * Address errors may be deliberately induced by the FPU
830 		 * emulator to retake control of the CPU after executing the
831 		 * instruction in the delay slot of an emulated branch.
832 		 *
833 		 * Terminate if exception was recognized as a delay slot return
834 		 * otherwise handle as normal.
835 		 */
836 		if (do_dsemulret(regs))
837 			return;
838 
839 		die_if_kernel("Math emu break/trap", regs);
840 		force_sig(SIGTRAP, current);
841 		break;
842 	default:
843 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
844 		die_if_kernel(b, regs);
845 		force_sig(SIGTRAP, current);
846 	}
847 }
848 
849 asmlinkage void do_bp(struct pt_regs *regs)
850 {
851 	unsigned int opcode, bcode;
852 	enum ctx_state prev_state;
853 	unsigned long epc;
854 	u16 instr[2];
855 
856 	prev_state = exception_enter();
857 	if (get_isa16_mode(regs->cp0_epc)) {
858 		/* Calculate EPC. */
859 		epc = exception_epc(regs);
860 		if (cpu_has_mmips) {
861 			if ((__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc)) ||
862 			    (__get_user(instr[1], (u16 __user *)msk_isa16_mode(epc + 2)))))
863 				goto out_sigsegv;
864 		    opcode = (instr[0] << 16) | instr[1];
865 		} else {
866 		    /* MIPS16e mode */
867 		    if (__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc)))
868 				goto out_sigsegv;
869 		    bcode = (instr[0] >> 6) & 0x3f;
870 		    do_trap_or_bp(regs, bcode, "Break");
871 		    goto out;
872 		}
873 	} else {
874 		if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
875 			goto out_sigsegv;
876 	}
877 
878 	/*
879 	 * There is the ancient bug in the MIPS assemblers that the break
880 	 * code starts left to bit 16 instead to bit 6 in the opcode.
881 	 * Gas is bug-compatible, but not always, grrr...
882 	 * We handle both cases with a simple heuristics.  --macro
883 	 */
884 	bcode = ((opcode >> 6) & ((1 << 20) - 1));
885 	if (bcode >= (1 << 10))
886 		bcode >>= 10;
887 
888 	/*
889 	 * notify the kprobe handlers, if instruction is likely to
890 	 * pertain to them.
891 	 */
892 	switch (bcode) {
893 	case BRK_KPROBE_BP:
894 		if (notify_die(DIE_BREAK, "debug", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
895 			goto out;
896 		else
897 			break;
898 	case BRK_KPROBE_SSTEPBP:
899 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
900 			goto out;
901 		else
902 			break;
903 	default:
904 		break;
905 	}
906 
907 	do_trap_or_bp(regs, bcode, "Break");
908 
909 out:
910 	exception_exit(prev_state);
911 	return;
912 
913 out_sigsegv:
914 	force_sig(SIGSEGV, current);
915 	goto out;
916 }
917 
918 asmlinkage void do_tr(struct pt_regs *regs)
919 {
920 	u32 opcode, tcode = 0;
921 	enum ctx_state prev_state;
922 	u16 instr[2];
923 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
924 
925 	prev_state = exception_enter();
926 	if (get_isa16_mode(regs->cp0_epc)) {
927 		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
928 		    __get_user(instr[1], (u16 __user *)(epc + 2)))
929 			goto out_sigsegv;
930 		opcode = (instr[0] << 16) | instr[1];
931 		/* Immediate versions don't provide a code.  */
932 		if (!(opcode & OPCODE))
933 			tcode = (opcode >> 12) & ((1 << 4) - 1);
934 	} else {
935 		if (__get_user(opcode, (u32 __user *)epc))
936 			goto out_sigsegv;
937 		/* Immediate versions don't provide a code.  */
938 		if (!(opcode & OPCODE))
939 			tcode = (opcode >> 6) & ((1 << 10) - 1);
940 	}
941 
942 	do_trap_or_bp(regs, tcode, "Trap");
943 
944 out:
945 	exception_exit(prev_state);
946 	return;
947 
948 out_sigsegv:
949 	force_sig(SIGSEGV, current);
950 	goto out;
951 }
952 
953 asmlinkage void do_ri(struct pt_regs *regs)
954 {
955 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
956 	unsigned long old_epc = regs->cp0_epc;
957 	unsigned long old31 = regs->regs[31];
958 	enum ctx_state prev_state;
959 	unsigned int opcode = 0;
960 	int status = -1;
961 
962 	prev_state = exception_enter();
963 	if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), SIGILL)
964 	    == NOTIFY_STOP)
965 		goto out;
966 
967 	die_if_kernel("Reserved instruction in kernel code", regs);
968 
969 	if (unlikely(compute_return_epc(regs) < 0))
970 		goto out;
971 
972 	if (get_isa16_mode(regs->cp0_epc)) {
973 		unsigned short mmop[2] = { 0 };
974 
975 		if (unlikely(get_user(mmop[0], epc) < 0))
976 			status = SIGSEGV;
977 		if (unlikely(get_user(mmop[1], epc) < 0))
978 			status = SIGSEGV;
979 		opcode = (mmop[0] << 16) | mmop[1];
980 
981 		if (status < 0)
982 			status = simulate_rdhwr_mm(regs, opcode);
983 	} else {
984 		if (unlikely(get_user(opcode, epc) < 0))
985 			status = SIGSEGV;
986 
987 		if (!cpu_has_llsc && status < 0)
988 			status = simulate_llsc(regs, opcode);
989 
990 		if (status < 0)
991 			status = simulate_rdhwr_normal(regs, opcode);
992 
993 		if (status < 0)
994 			status = simulate_sync(regs, opcode);
995 	}
996 
997 	if (status < 0)
998 		status = SIGILL;
999 
1000 	if (unlikely(status > 0)) {
1001 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1002 		regs->regs[31] = old31;
1003 		force_sig(status, current);
1004 	}
1005 
1006 out:
1007 	exception_exit(prev_state);
1008 }
1009 
1010 /*
1011  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1012  * emulated more than some threshold number of instructions, force migration to
1013  * a "CPU" that has FP support.
1014  */
1015 static void mt_ase_fp_affinity(void)
1016 {
1017 #ifdef CONFIG_MIPS_MT_FPAFF
1018 	if (mt_fpemul_threshold > 0 &&
1019 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1020 		/*
1021 		 * If there's no FPU present, or if the application has already
1022 		 * restricted the allowed set to exclude any CPUs with FPUs,
1023 		 * we'll skip the procedure.
1024 		 */
1025 		if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
1026 			cpumask_t tmask;
1027 
1028 			current->thread.user_cpus_allowed
1029 				= current->cpus_allowed;
1030 			cpus_and(tmask, current->cpus_allowed,
1031 				mt_fpu_cpumask);
1032 			set_cpus_allowed_ptr(current, &tmask);
1033 			set_thread_flag(TIF_FPUBOUND);
1034 		}
1035 	}
1036 #endif /* CONFIG_MIPS_MT_FPAFF */
1037 }
1038 
1039 /*
1040  * No lock; only written during early bootup by CPU 0.
1041  */
1042 static RAW_NOTIFIER_HEAD(cu2_chain);
1043 
1044 int __ref register_cu2_notifier(struct notifier_block *nb)
1045 {
1046 	return raw_notifier_chain_register(&cu2_chain, nb);
1047 }
1048 
1049 int cu2_notifier_call_chain(unsigned long val, void *v)
1050 {
1051 	return raw_notifier_call_chain(&cu2_chain, val, v);
1052 }
1053 
1054 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1055 	void *data)
1056 {
1057 	struct pt_regs *regs = data;
1058 
1059 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1060 			      "instruction", regs);
1061 	force_sig(SIGILL, current);
1062 
1063 	return NOTIFY_OK;
1064 }
1065 
1066 asmlinkage void do_cpu(struct pt_regs *regs)
1067 {
1068 	enum ctx_state prev_state;
1069 	unsigned int __user *epc;
1070 	unsigned long old_epc, old31;
1071 	unsigned int opcode;
1072 	unsigned int cpid;
1073 	int status;
1074 	unsigned long __maybe_unused flags;
1075 
1076 	prev_state = exception_enter();
1077 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1078 
1079 	if (cpid != 2)
1080 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1081 
1082 	switch (cpid) {
1083 	case 0:
1084 		epc = (unsigned int __user *)exception_epc(regs);
1085 		old_epc = regs->cp0_epc;
1086 		old31 = regs->regs[31];
1087 		opcode = 0;
1088 		status = -1;
1089 
1090 		if (unlikely(compute_return_epc(regs) < 0))
1091 			goto out;
1092 
1093 		if (get_isa16_mode(regs->cp0_epc)) {
1094 			unsigned short mmop[2] = { 0 };
1095 
1096 			if (unlikely(get_user(mmop[0], epc) < 0))
1097 				status = SIGSEGV;
1098 			if (unlikely(get_user(mmop[1], epc) < 0))
1099 				status = SIGSEGV;
1100 			opcode = (mmop[0] << 16) | mmop[1];
1101 
1102 			if (status < 0)
1103 				status = simulate_rdhwr_mm(regs, opcode);
1104 		} else {
1105 			if (unlikely(get_user(opcode, epc) < 0))
1106 				status = SIGSEGV;
1107 
1108 			if (!cpu_has_llsc && status < 0)
1109 				status = simulate_llsc(regs, opcode);
1110 
1111 			if (status < 0)
1112 				status = simulate_rdhwr_normal(regs, opcode);
1113 		}
1114 
1115 		if (status < 0)
1116 			status = SIGILL;
1117 
1118 		if (unlikely(status > 0)) {
1119 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1120 			regs->regs[31] = old31;
1121 			force_sig(status, current);
1122 		}
1123 
1124 		goto out;
1125 
1126 	case 3:
1127 		/*
1128 		 * Old (MIPS I and MIPS II) processors will set this code
1129 		 * for COP1X opcode instructions that replaced the original
1130 		 * COP3 space.	We don't limit COP1 space instructions in
1131 		 * the emulator according to the CPU ISA, so we want to
1132 		 * treat COP1X instructions consistently regardless of which
1133 		 * code the CPU chose.	Therefore we redirect this trap to
1134 		 * the FP emulator too.
1135 		 *
1136 		 * Then some newer FPU-less processors use this code
1137 		 * erroneously too, so they are covered by this choice
1138 		 * as well.
1139 		 */
1140 		if (raw_cpu_has_fpu)
1141 			break;
1142 		/* Fall through.  */
1143 
1144 	case 1:
1145 		if (used_math())	/* Using the FPU again.	 */
1146 			own_fpu(1);
1147 		else {			/* First time FPU user.	 */
1148 			init_fpu();
1149 			set_used_math();
1150 		}
1151 
1152 		if (!raw_cpu_has_fpu) {
1153 			int sig;
1154 			void __user *fault_addr = NULL;
1155 			sig = fpu_emulator_cop1Handler(regs,
1156 						       &current->thread.fpu,
1157 						       0, &fault_addr);
1158 			if (!process_fpemu_return(sig, fault_addr))
1159 				mt_ase_fp_affinity();
1160 		}
1161 
1162 		goto out;
1163 
1164 	case 2:
1165 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1166 		goto out;
1167 	}
1168 
1169 	force_sig(SIGILL, current);
1170 
1171 out:
1172 	exception_exit(prev_state);
1173 }
1174 
1175 asmlinkage void do_mdmx(struct pt_regs *regs)
1176 {
1177 	enum ctx_state prev_state;
1178 
1179 	prev_state = exception_enter();
1180 	force_sig(SIGILL, current);
1181 	exception_exit(prev_state);
1182 }
1183 
1184 /*
1185  * Called with interrupts disabled.
1186  */
1187 asmlinkage void do_watch(struct pt_regs *regs)
1188 {
1189 	enum ctx_state prev_state;
1190 	u32 cause;
1191 
1192 	prev_state = exception_enter();
1193 	/*
1194 	 * Clear WP (bit 22) bit of cause register so we don't loop
1195 	 * forever.
1196 	 */
1197 	cause = read_c0_cause();
1198 	cause &= ~(1 << 22);
1199 	write_c0_cause(cause);
1200 
1201 	/*
1202 	 * If the current thread has the watch registers loaded, save
1203 	 * their values and send SIGTRAP.  Otherwise another thread
1204 	 * left the registers set, clear them and continue.
1205 	 */
1206 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1207 		mips_read_watch_registers();
1208 		local_irq_enable();
1209 		force_sig(SIGTRAP, current);
1210 	} else {
1211 		mips_clear_watch_registers();
1212 		local_irq_enable();
1213 	}
1214 	exception_exit(prev_state);
1215 }
1216 
1217 asmlinkage void do_mcheck(struct pt_regs *regs)
1218 {
1219 	const int field = 2 * sizeof(unsigned long);
1220 	int multi_match = regs->cp0_status & ST0_TS;
1221 	enum ctx_state prev_state;
1222 
1223 	prev_state = exception_enter();
1224 	show_regs(regs);
1225 
1226 	if (multi_match) {
1227 		printk("Index	: %0x\n", read_c0_index());
1228 		printk("Pagemask: %0x\n", read_c0_pagemask());
1229 		printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1230 		printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1231 		printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1232 		printk("\n");
1233 		dump_tlb_all();
1234 	}
1235 
1236 	show_code((unsigned int __user *) regs->cp0_epc);
1237 
1238 	/*
1239 	 * Some chips may have other causes of machine check (e.g. SB1
1240 	 * graduation timer)
1241 	 */
1242 	panic("Caught Machine Check exception - %scaused by multiple "
1243 	      "matching entries in the TLB.",
1244 	      (multi_match) ? "" : "not ");
1245 }
1246 
1247 asmlinkage void do_mt(struct pt_regs *regs)
1248 {
1249 	int subcode;
1250 
1251 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1252 			>> VPECONTROL_EXCPT_SHIFT;
1253 	switch (subcode) {
1254 	case 0:
1255 		printk(KERN_DEBUG "Thread Underflow\n");
1256 		break;
1257 	case 1:
1258 		printk(KERN_DEBUG "Thread Overflow\n");
1259 		break;
1260 	case 2:
1261 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1262 		break;
1263 	case 3:
1264 		printk(KERN_DEBUG "Gating Storage Exception\n");
1265 		break;
1266 	case 4:
1267 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1268 		break;
1269 	case 5:
1270 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1271 		break;
1272 	default:
1273 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1274 			subcode);
1275 		break;
1276 	}
1277 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1278 
1279 	force_sig(SIGILL, current);
1280 }
1281 
1282 
1283 asmlinkage void do_dsp(struct pt_regs *regs)
1284 {
1285 	if (cpu_has_dsp)
1286 		panic("Unexpected DSP exception");
1287 
1288 	force_sig(SIGILL, current);
1289 }
1290 
1291 asmlinkage void do_reserved(struct pt_regs *regs)
1292 {
1293 	/*
1294 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1295 	 * caused by a new unknown cpu type or after another deadly
1296 	 * hard/software error.
1297 	 */
1298 	show_regs(regs);
1299 	panic("Caught reserved exception %ld - should not happen.",
1300 	      (regs->cp0_cause & 0x7f) >> 2);
1301 }
1302 
1303 static int __initdata l1parity = 1;
1304 static int __init nol1parity(char *s)
1305 {
1306 	l1parity = 0;
1307 	return 1;
1308 }
1309 __setup("nol1par", nol1parity);
1310 static int __initdata l2parity = 1;
1311 static int __init nol2parity(char *s)
1312 {
1313 	l2parity = 0;
1314 	return 1;
1315 }
1316 __setup("nol2par", nol2parity);
1317 
1318 /*
1319  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1320  * it different ways.
1321  */
1322 static inline void parity_protection_init(void)
1323 {
1324 	switch (current_cpu_type()) {
1325 	case CPU_24K:
1326 	case CPU_34K:
1327 	case CPU_74K:
1328 	case CPU_1004K:
1329 		{
1330 #define ERRCTL_PE	0x80000000
1331 #define ERRCTL_L2P	0x00800000
1332 			unsigned long errctl;
1333 			unsigned int l1parity_present, l2parity_present;
1334 
1335 			errctl = read_c0_ecc();
1336 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1337 
1338 			/* probe L1 parity support */
1339 			write_c0_ecc(errctl | ERRCTL_PE);
1340 			back_to_back_c0_hazard();
1341 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1342 
1343 			/* probe L2 parity support */
1344 			write_c0_ecc(errctl|ERRCTL_L2P);
1345 			back_to_back_c0_hazard();
1346 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1347 
1348 			if (l1parity_present && l2parity_present) {
1349 				if (l1parity)
1350 					errctl |= ERRCTL_PE;
1351 				if (l1parity ^ l2parity)
1352 					errctl |= ERRCTL_L2P;
1353 			} else if (l1parity_present) {
1354 				if (l1parity)
1355 					errctl |= ERRCTL_PE;
1356 			} else if (l2parity_present) {
1357 				if (l2parity)
1358 					errctl |= ERRCTL_L2P;
1359 			} else {
1360 				/* No parity available */
1361 			}
1362 
1363 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1364 
1365 			write_c0_ecc(errctl);
1366 			back_to_back_c0_hazard();
1367 			errctl = read_c0_ecc();
1368 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1369 
1370 			if (l1parity_present)
1371 				printk(KERN_INFO "Cache parity protection %sabled\n",
1372 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1373 
1374 			if (l2parity_present) {
1375 				if (l1parity_present && l1parity)
1376 					errctl ^= ERRCTL_L2P;
1377 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1378 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1379 			}
1380 		}
1381 		break;
1382 
1383 	case CPU_5KC:
1384 	case CPU_5KE:
1385 	case CPU_LOONGSON1:
1386 		write_c0_ecc(0x80000000);
1387 		back_to_back_c0_hazard();
1388 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1389 		printk(KERN_INFO "Cache parity protection %sabled\n",
1390 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1391 		break;
1392 	case CPU_20KC:
1393 	case CPU_25KF:
1394 		/* Clear the DE bit (bit 16) in the c0_status register. */
1395 		printk(KERN_INFO "Enable cache parity protection for "
1396 		       "MIPS 20KC/25KF CPUs.\n");
1397 		clear_c0_status(ST0_DE);
1398 		break;
1399 	default:
1400 		break;
1401 	}
1402 }
1403 
1404 asmlinkage void cache_parity_error(void)
1405 {
1406 	const int field = 2 * sizeof(unsigned long);
1407 	unsigned int reg_val;
1408 
1409 	/* For the moment, report the problem and hang. */
1410 	printk("Cache error exception:\n");
1411 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1412 	reg_val = read_c0_cacheerr();
1413 	printk("c0_cacheerr == %08x\n", reg_val);
1414 
1415 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1416 	       reg_val & (1<<30) ? "secondary" : "primary",
1417 	       reg_val & (1<<31) ? "data" : "insn");
1418 	printk("Error bits: %s%s%s%s%s%s%s\n",
1419 	       reg_val & (1<<29) ? "ED " : "",
1420 	       reg_val & (1<<28) ? "ET " : "",
1421 	       reg_val & (1<<26) ? "EE " : "",
1422 	       reg_val & (1<<25) ? "EB " : "",
1423 	       reg_val & (1<<24) ? "EI " : "",
1424 	       reg_val & (1<<23) ? "E1 " : "",
1425 	       reg_val & (1<<22) ? "E0 " : "");
1426 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1427 
1428 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1429 	if (reg_val & (1<<22))
1430 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1431 
1432 	if (reg_val & (1<<23))
1433 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1434 #endif
1435 
1436 	panic("Can't handle the cache error!");
1437 }
1438 
1439 /*
1440  * SDBBP EJTAG debug exception handler.
1441  * We skip the instruction and return to the next instruction.
1442  */
1443 void ejtag_exception_handler(struct pt_regs *regs)
1444 {
1445 	const int field = 2 * sizeof(unsigned long);
1446 	unsigned long depc, old_epc, old_ra;
1447 	unsigned int debug;
1448 
1449 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1450 	depc = read_c0_depc();
1451 	debug = read_c0_debug();
1452 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1453 	if (debug & 0x80000000) {
1454 		/*
1455 		 * In branch delay slot.
1456 		 * We cheat a little bit here and use EPC to calculate the
1457 		 * debug return address (DEPC). EPC is restored after the
1458 		 * calculation.
1459 		 */
1460 		old_epc = regs->cp0_epc;
1461 		old_ra = regs->regs[31];
1462 		regs->cp0_epc = depc;
1463 		compute_return_epc(regs);
1464 		depc = regs->cp0_epc;
1465 		regs->cp0_epc = old_epc;
1466 		regs->regs[31] = old_ra;
1467 	} else
1468 		depc += 4;
1469 	write_c0_depc(depc);
1470 
1471 #if 0
1472 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1473 	write_c0_debug(debug | 0x100);
1474 #endif
1475 }
1476 
1477 /*
1478  * NMI exception handler.
1479  * No lock; only written during early bootup by CPU 0.
1480  */
1481 static RAW_NOTIFIER_HEAD(nmi_chain);
1482 
1483 int register_nmi_notifier(struct notifier_block *nb)
1484 {
1485 	return raw_notifier_chain_register(&nmi_chain, nb);
1486 }
1487 
1488 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1489 {
1490 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1491 	bust_spinlocks(1);
1492 	printk("NMI taken!!!!\n");
1493 	die("NMI", regs);
1494 }
1495 
1496 #define VECTORSPACING 0x100	/* for EI/VI mode */
1497 
1498 unsigned long ebase;
1499 unsigned long exception_handlers[32];
1500 unsigned long vi_handlers[64];
1501 
1502 void __init *set_except_vector(int n, void *addr)
1503 {
1504 	unsigned long handler = (unsigned long) addr;
1505 	unsigned long old_handler;
1506 
1507 #ifdef CONFIG_CPU_MICROMIPS
1508 	/*
1509 	 * Only the TLB handlers are cache aligned with an even
1510 	 * address. All other handlers are on an odd address and
1511 	 * require no modification. Otherwise, MIPS32 mode will
1512 	 * be entered when handling any TLB exceptions. That
1513 	 * would be bad...since we must stay in microMIPS mode.
1514 	 */
1515 	if (!(handler & 0x1))
1516 		handler |= 1;
1517 #endif
1518 	old_handler = xchg(&exception_handlers[n], handler);
1519 
1520 	if (n == 0 && cpu_has_divec) {
1521 #ifdef CONFIG_CPU_MICROMIPS
1522 		unsigned long jump_mask = ~((1 << 27) - 1);
1523 #else
1524 		unsigned long jump_mask = ~((1 << 28) - 1);
1525 #endif
1526 		u32 *buf = (u32 *)(ebase + 0x200);
1527 		unsigned int k0 = 26;
1528 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1529 			uasm_i_j(&buf, handler & ~jump_mask);
1530 			uasm_i_nop(&buf);
1531 		} else {
1532 			UASM_i_LA(&buf, k0, handler);
1533 			uasm_i_jr(&buf, k0);
1534 			uasm_i_nop(&buf);
1535 		}
1536 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1537 	}
1538 	return (void *)old_handler;
1539 }
1540 
1541 static void do_default_vi(void)
1542 {
1543 	show_regs(get_irq_regs());
1544 	panic("Caught unexpected vectored interrupt.");
1545 }
1546 
1547 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1548 {
1549 	unsigned long handler;
1550 	unsigned long old_handler = vi_handlers[n];
1551 	int srssets = current_cpu_data.srsets;
1552 	u16 *h;
1553 	unsigned char *b;
1554 
1555 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1556 	BUG_ON((n < 0) && (n > 9));
1557 
1558 	if (addr == NULL) {
1559 		handler = (unsigned long) do_default_vi;
1560 		srs = 0;
1561 	} else
1562 		handler = (unsigned long) addr;
1563 	vi_handlers[n] = handler;
1564 
1565 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1566 
1567 	if (srs >= srssets)
1568 		panic("Shadow register set %d not supported", srs);
1569 
1570 	if (cpu_has_veic) {
1571 		if (board_bind_eic_interrupt)
1572 			board_bind_eic_interrupt(n, srs);
1573 	} else if (cpu_has_vint) {
1574 		/* SRSMap is only defined if shadow sets are implemented */
1575 		if (srssets > 1)
1576 			change_c0_srsmap(0xf << n*4, srs << n*4);
1577 	}
1578 
1579 	if (srs == 0) {
1580 		/*
1581 		 * If no shadow set is selected then use the default handler
1582 		 * that does normal register saving and standard interrupt exit
1583 		 */
1584 		extern char except_vec_vi, except_vec_vi_lui;
1585 		extern char except_vec_vi_ori, except_vec_vi_end;
1586 		extern char rollback_except_vec_vi;
1587 		char *vec_start = using_rollback_handler() ?
1588 			&rollback_except_vec_vi : &except_vec_vi;
1589 #ifdef CONFIG_MIPS_MT_SMTC
1590 		/*
1591 		 * We need to provide the SMTC vectored interrupt handler
1592 		 * not only with the address of the handler, but with the
1593 		 * Status.IM bit to be masked before going there.
1594 		 */
1595 		extern char except_vec_vi_mori;
1596 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1597 		const int mori_offset = &except_vec_vi_mori - vec_start + 2;
1598 #else
1599 		const int mori_offset = &except_vec_vi_mori - vec_start;
1600 #endif
1601 #endif /* CONFIG_MIPS_MT_SMTC */
1602 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1603 		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1604 		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1605 #else
1606 		const int lui_offset = &except_vec_vi_lui - vec_start;
1607 		const int ori_offset = &except_vec_vi_ori - vec_start;
1608 #endif
1609 		const int handler_len = &except_vec_vi_end - vec_start;
1610 
1611 		if (handler_len > VECTORSPACING) {
1612 			/*
1613 			 * Sigh... panicing won't help as the console
1614 			 * is probably not configured :(
1615 			 */
1616 			panic("VECTORSPACING too small");
1617 		}
1618 
1619 		set_handler(((unsigned long)b - ebase), vec_start,
1620 #ifdef CONFIG_CPU_MICROMIPS
1621 				(handler_len - 1));
1622 #else
1623 				handler_len);
1624 #endif
1625 #ifdef CONFIG_MIPS_MT_SMTC
1626 		BUG_ON(n > 7);	/* Vector index %d exceeds SMTC maximum. */
1627 
1628 		h = (u16 *)(b + mori_offset);
1629 		*h = (0x100 << n);
1630 #endif /* CONFIG_MIPS_MT_SMTC */
1631 		h = (u16 *)(b + lui_offset);
1632 		*h = (handler >> 16) & 0xffff;
1633 		h = (u16 *)(b + ori_offset);
1634 		*h = (handler & 0xffff);
1635 		local_flush_icache_range((unsigned long)b,
1636 					 (unsigned long)(b+handler_len));
1637 	}
1638 	else {
1639 		/*
1640 		 * In other cases jump directly to the interrupt handler. It
1641 		 * is the handler's responsibility to save registers if required
1642 		 * (eg hi/lo) and return from the exception using "eret".
1643 		 */
1644 		u32 insn;
1645 
1646 		h = (u16 *)b;
1647 		/* j handler */
1648 #ifdef CONFIG_CPU_MICROMIPS
1649 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
1650 #else
1651 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
1652 #endif
1653 		h[0] = (insn >> 16) & 0xffff;
1654 		h[1] = insn & 0xffff;
1655 		h[2] = 0;
1656 		h[3] = 0;
1657 		local_flush_icache_range((unsigned long)b,
1658 					 (unsigned long)(b+8));
1659 	}
1660 
1661 	return (void *)old_handler;
1662 }
1663 
1664 void *set_vi_handler(int n, vi_handler_t addr)
1665 {
1666 	return set_vi_srs_handler(n, addr, 0);
1667 }
1668 
1669 extern void tlb_init(void);
1670 
1671 /*
1672  * Timer interrupt
1673  */
1674 int cp0_compare_irq;
1675 EXPORT_SYMBOL_GPL(cp0_compare_irq);
1676 int cp0_compare_irq_shift;
1677 
1678 /*
1679  * Performance counter IRQ or -1 if shared with timer
1680  */
1681 int cp0_perfcount_irq;
1682 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1683 
1684 static int noulri;
1685 
1686 static int __init ulri_disable(char *s)
1687 {
1688 	pr_info("Disabling ulri\n");
1689 	noulri = 1;
1690 
1691 	return 1;
1692 }
1693 __setup("noulri", ulri_disable);
1694 
1695 void per_cpu_trap_init(bool is_boot_cpu)
1696 {
1697 	unsigned int cpu = smp_processor_id();
1698 	unsigned int status_set = ST0_CU0;
1699 	unsigned int hwrena = cpu_hwrena_impl_bits;
1700 #ifdef CONFIG_MIPS_MT_SMTC
1701 	int secondaryTC = 0;
1702 	int bootTC = (cpu == 0);
1703 
1704 	/*
1705 	 * Only do per_cpu_trap_init() for first TC of Each VPE.
1706 	 * Note that this hack assumes that the SMTC init code
1707 	 * assigns TCs consecutively and in ascending order.
1708 	 */
1709 
1710 	if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1711 	    ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1712 		secondaryTC = 1;
1713 #endif /* CONFIG_MIPS_MT_SMTC */
1714 
1715 	/*
1716 	 * Disable coprocessors and select 32-bit or 64-bit addressing
1717 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
1718 	 * flag that some firmware may have left set and the TS bit (for
1719 	 * IP27).  Set XX for ISA IV code to work.
1720 	 */
1721 #ifdef CONFIG_64BIT
1722 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1723 #endif
1724 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
1725 		status_set |= ST0_XX;
1726 	if (cpu_has_dsp)
1727 		status_set |= ST0_MX;
1728 
1729 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1730 			 status_set);
1731 
1732 	if (cpu_has_mips_r2)
1733 		hwrena |= 0x0000000f;
1734 
1735 	if (!noulri && cpu_has_userlocal)
1736 		hwrena |= (1 << 29);
1737 
1738 	if (hwrena)
1739 		write_c0_hwrena(hwrena);
1740 
1741 #ifdef CONFIG_MIPS_MT_SMTC
1742 	if (!secondaryTC) {
1743 #endif /* CONFIG_MIPS_MT_SMTC */
1744 
1745 	if (cpu_has_veic || cpu_has_vint) {
1746 		unsigned long sr = set_c0_status(ST0_BEV);
1747 		write_c0_ebase(ebase);
1748 		write_c0_status(sr);
1749 		/* Setting vector spacing enables EI/VI mode  */
1750 		change_c0_intctl(0x3e0, VECTORSPACING);
1751 	}
1752 	if (cpu_has_divec) {
1753 		if (cpu_has_mipsmt) {
1754 			unsigned int vpflags = dvpe();
1755 			set_c0_cause(CAUSEF_IV);
1756 			evpe(vpflags);
1757 		} else
1758 			set_c0_cause(CAUSEF_IV);
1759 	}
1760 
1761 	/*
1762 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1763 	 *
1764 	 *  o read IntCtl.IPTI to determine the timer interrupt
1765 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
1766 	 */
1767 	if (cpu_has_mips_r2) {
1768 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1769 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1770 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1771 		if (cp0_perfcount_irq == cp0_compare_irq)
1772 			cp0_perfcount_irq = -1;
1773 	} else {
1774 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1775 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
1776 		cp0_perfcount_irq = -1;
1777 	}
1778 
1779 #ifdef CONFIG_MIPS_MT_SMTC
1780 	}
1781 #endif /* CONFIG_MIPS_MT_SMTC */
1782 
1783 	if (!cpu_data[cpu].asid_cache)
1784 		cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1785 
1786 	atomic_inc(&init_mm.mm_count);
1787 	current->active_mm = &init_mm;
1788 	BUG_ON(current->mm);
1789 	enter_lazy_tlb(&init_mm, current);
1790 
1791 #ifdef CONFIG_MIPS_MT_SMTC
1792 	if (bootTC) {
1793 #endif /* CONFIG_MIPS_MT_SMTC */
1794 		/* Boot CPU's cache setup in setup_arch(). */
1795 		if (!is_boot_cpu)
1796 			cpu_cache_init();
1797 		tlb_init();
1798 #ifdef CONFIG_MIPS_MT_SMTC
1799 	} else if (!secondaryTC) {
1800 		/*
1801 		 * First TC in non-boot VPE must do subset of tlb_init()
1802 		 * for MMU countrol registers.
1803 		 */
1804 		write_c0_pagemask(PM_DEFAULT_MASK);
1805 		write_c0_wired(0);
1806 	}
1807 #endif /* CONFIG_MIPS_MT_SMTC */
1808 	TLBMISS_HANDLER_SETUP();
1809 }
1810 
1811 /* Install CPU exception handler */
1812 void set_handler(unsigned long offset, void *addr, unsigned long size)
1813 {
1814 #ifdef CONFIG_CPU_MICROMIPS
1815 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
1816 #else
1817 	memcpy((void *)(ebase + offset), addr, size);
1818 #endif
1819 	local_flush_icache_range(ebase + offset, ebase + offset + size);
1820 }
1821 
1822 static char panic_null_cerr[] =
1823 	"Trying to set NULL cache error exception handler";
1824 
1825 /*
1826  * Install uncached CPU exception handler.
1827  * This is suitable only for the cache error exception which is the only
1828  * exception handler that is being run uncached.
1829  */
1830 void set_uncached_handler(unsigned long offset, void *addr,
1831 	unsigned long size)
1832 {
1833 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
1834 
1835 	if (!addr)
1836 		panic(panic_null_cerr);
1837 
1838 	memcpy((void *)(uncached_ebase + offset), addr, size);
1839 }
1840 
1841 static int __initdata rdhwr_noopt;
1842 static int __init set_rdhwr_noopt(char *str)
1843 {
1844 	rdhwr_noopt = 1;
1845 	return 1;
1846 }
1847 
1848 __setup("rdhwr_noopt", set_rdhwr_noopt);
1849 
1850 void __init trap_init(void)
1851 {
1852 	extern char except_vec3_generic;
1853 	extern char except_vec4;
1854 	extern char except_vec3_r4000;
1855 	unsigned long i;
1856 
1857 	check_wait();
1858 
1859 #if defined(CONFIG_KGDB)
1860 	if (kgdb_early_setup)
1861 		return; /* Already done */
1862 #endif
1863 
1864 	if (cpu_has_veic || cpu_has_vint) {
1865 		unsigned long size = 0x200 + VECTORSPACING*64;
1866 		ebase = (unsigned long)
1867 			__alloc_bootmem(size, 1 << fls(size), 0);
1868 	} else {
1869 #ifdef CONFIG_KVM_GUEST
1870 #define KVM_GUEST_KSEG0     0x40000000
1871         ebase = KVM_GUEST_KSEG0;
1872 #else
1873         ebase = CKSEG0;
1874 #endif
1875 		if (cpu_has_mips_r2)
1876 			ebase += (read_c0_ebase() & 0x3ffff000);
1877 	}
1878 
1879 	if (cpu_has_mmips) {
1880 		unsigned int config3 = read_c0_config3();
1881 
1882 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
1883 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
1884 		else
1885 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
1886 	}
1887 
1888 	if (board_ebase_setup)
1889 		board_ebase_setup();
1890 	per_cpu_trap_init(true);
1891 
1892 	/*
1893 	 * Copy the generic exception handlers to their final destination.
1894 	 * This will be overriden later as suitable for a particular
1895 	 * configuration.
1896 	 */
1897 	set_handler(0x180, &except_vec3_generic, 0x80);
1898 
1899 	/*
1900 	 * Setup default vectors
1901 	 */
1902 	for (i = 0; i <= 31; i++)
1903 		set_except_vector(i, handle_reserved);
1904 
1905 	/*
1906 	 * Copy the EJTAG debug exception vector handler code to it's final
1907 	 * destination.
1908 	 */
1909 	if (cpu_has_ejtag && board_ejtag_handler_setup)
1910 		board_ejtag_handler_setup();
1911 
1912 	/*
1913 	 * Only some CPUs have the watch exceptions.
1914 	 */
1915 	if (cpu_has_watch)
1916 		set_except_vector(23, handle_watch);
1917 
1918 	/*
1919 	 * Initialise interrupt handlers
1920 	 */
1921 	if (cpu_has_veic || cpu_has_vint) {
1922 		int nvec = cpu_has_veic ? 64 : 8;
1923 		for (i = 0; i < nvec; i++)
1924 			set_vi_handler(i, NULL);
1925 	}
1926 	else if (cpu_has_divec)
1927 		set_handler(0x200, &except_vec4, 0x8);
1928 
1929 	/*
1930 	 * Some CPUs can enable/disable for cache parity detection, but does
1931 	 * it different ways.
1932 	 */
1933 	parity_protection_init();
1934 
1935 	/*
1936 	 * The Data Bus Errors / Instruction Bus Errors are signaled
1937 	 * by external hardware.  Therefore these two exceptions
1938 	 * may have board specific handlers.
1939 	 */
1940 	if (board_be_init)
1941 		board_be_init();
1942 
1943 	set_except_vector(0, using_rollback_handler() ? rollback_handle_int
1944 						      : handle_int);
1945 	set_except_vector(1, handle_tlbm);
1946 	set_except_vector(2, handle_tlbl);
1947 	set_except_vector(3, handle_tlbs);
1948 
1949 	set_except_vector(4, handle_adel);
1950 	set_except_vector(5, handle_ades);
1951 
1952 	set_except_vector(6, handle_ibe);
1953 	set_except_vector(7, handle_dbe);
1954 
1955 	set_except_vector(8, handle_sys);
1956 	set_except_vector(9, handle_bp);
1957 	set_except_vector(10, rdhwr_noopt ? handle_ri :
1958 			  (cpu_has_vtag_icache ?
1959 			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1960 	set_except_vector(11, handle_cpu);
1961 	set_except_vector(12, handle_ov);
1962 	set_except_vector(13, handle_tr);
1963 
1964 	if (current_cpu_type() == CPU_R6000 ||
1965 	    current_cpu_type() == CPU_R6000A) {
1966 		/*
1967 		 * The R6000 is the only R-series CPU that features a machine
1968 		 * check exception (similar to the R4000 cache error) and
1969 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
1970 		 * written yet.	 Well, anyway there is no R6000 machine on the
1971 		 * current list of targets for Linux/MIPS.
1972 		 * (Duh, crap, there is someone with a triple R6k machine)
1973 		 */
1974 		//set_except_vector(14, handle_mc);
1975 		//set_except_vector(15, handle_ndc);
1976 	}
1977 
1978 
1979 	if (board_nmi_handler_setup)
1980 		board_nmi_handler_setup();
1981 
1982 	if (cpu_has_fpu && !cpu_has_nofpuex)
1983 		set_except_vector(15, handle_fpe);
1984 
1985 	set_except_vector(22, handle_mdmx);
1986 
1987 	if (cpu_has_mcheck)
1988 		set_except_vector(24, handle_mcheck);
1989 
1990 	if (cpu_has_mipsmt)
1991 		set_except_vector(25, handle_mt);
1992 
1993 	set_except_vector(26, handle_dsp);
1994 
1995 	if (board_cache_error_setup)
1996 		board_cache_error_setup();
1997 
1998 	if (cpu_has_vce)
1999 		/* Special exception: R4[04]00 uses also the divec space. */
2000 		set_handler(0x180, &except_vec3_r4000, 0x100);
2001 	else if (cpu_has_4kex)
2002 		set_handler(0x180, &except_vec3_generic, 0x80);
2003 	else
2004 		set_handler(0x080, &except_vec3_generic, 0x80);
2005 
2006 	local_flush_icache_range(ebase, ebase + 0x400);
2007 
2008 	sort_extable(__start___dbe_table, __stop___dbe_table);
2009 
2010 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2011 }
2012