1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle 7 * Copyright (C) 1995, 1996 Paul M. Antoine 8 * Copyright (C) 1998 Ulf Carlsson 9 * Copyright (C) 1999 Silicon Graphics, Inc. 10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki 12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved. 13 * Copyright (C) 2014, Imagination Technologies Ltd. 14 */ 15 #include <linux/bitops.h> 16 #include <linux/bug.h> 17 #include <linux/compiler.h> 18 #include <linux/context_tracking.h> 19 #include <linux/cpu_pm.h> 20 #include <linux/kexec.h> 21 #include <linux/init.h> 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/extable.h> 25 #include <linux/mm.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/debug.h> 28 #include <linux/smp.h> 29 #include <linux/spinlock.h> 30 #include <linux/kallsyms.h> 31 #include <linux/bootmem.h> 32 #include <linux/interrupt.h> 33 #include <linux/ptrace.h> 34 #include <linux/kgdb.h> 35 #include <linux/kdebug.h> 36 #include <linux/kprobes.h> 37 #include <linux/notifier.h> 38 #include <linux/kdb.h> 39 #include <linux/irq.h> 40 #include <linux/perf_event.h> 41 42 #include <asm/addrspace.h> 43 #include <asm/bootinfo.h> 44 #include <asm/branch.h> 45 #include <asm/break.h> 46 #include <asm/cop2.h> 47 #include <asm/cpu.h> 48 #include <asm/cpu-type.h> 49 #include <asm/dsp.h> 50 #include <asm/fpu.h> 51 #include <asm/fpu_emulator.h> 52 #include <asm/idle.h> 53 #include <asm/mips-cm.h> 54 #include <asm/mips-r2-to-r6-emul.h> 55 #include <asm/mips-cm.h> 56 #include <asm/mipsregs.h> 57 #include <asm/mipsmtregs.h> 58 #include <asm/module.h> 59 #include <asm/msa.h> 60 #include <asm/pgtable.h> 61 #include <asm/ptrace.h> 62 #include <asm/sections.h> 63 #include <asm/siginfo.h> 64 #include <asm/tlbdebug.h> 65 #include <asm/traps.h> 66 #include <linux/uaccess.h> 67 #include <asm/watch.h> 68 #include <asm/mmu_context.h> 69 #include <asm/types.h> 70 #include <asm/stacktrace.h> 71 #include <asm/uasm.h> 72 73 extern void check_wait(void); 74 extern asmlinkage void rollback_handle_int(void); 75 extern asmlinkage void handle_int(void); 76 extern u32 handle_tlbl[]; 77 extern u32 handle_tlbs[]; 78 extern u32 handle_tlbm[]; 79 extern asmlinkage void handle_adel(void); 80 extern asmlinkage void handle_ades(void); 81 extern asmlinkage void handle_ibe(void); 82 extern asmlinkage void handle_dbe(void); 83 extern asmlinkage void handle_sys(void); 84 extern asmlinkage void handle_bp(void); 85 extern asmlinkage void handle_ri(void); 86 extern asmlinkage void handle_ri_rdhwr_tlbp(void); 87 extern asmlinkage void handle_ri_rdhwr(void); 88 extern asmlinkage void handle_cpu(void); 89 extern asmlinkage void handle_ov(void); 90 extern asmlinkage void handle_tr(void); 91 extern asmlinkage void handle_msa_fpe(void); 92 extern asmlinkage void handle_fpe(void); 93 extern asmlinkage void handle_ftlb(void); 94 extern asmlinkage void handle_msa(void); 95 extern asmlinkage void handle_mdmx(void); 96 extern asmlinkage void handle_watch(void); 97 extern asmlinkage void handle_mt(void); 98 extern asmlinkage void handle_dsp(void); 99 extern asmlinkage void handle_mcheck(void); 100 extern asmlinkage void handle_reserved(void); 101 extern void tlb_do_page_fault_0(void); 102 103 void (*board_be_init)(void); 104 int (*board_be_handler)(struct pt_regs *regs, int is_fixup); 105 void (*board_nmi_handler_setup)(void); 106 void (*board_ejtag_handler_setup)(void); 107 void (*board_bind_eic_interrupt)(int irq, int regset); 108 void (*board_ebase_setup)(void); 109 void(*board_cache_error_setup)(void); 110 111 static void show_raw_backtrace(unsigned long reg29) 112 { 113 unsigned long *sp = (unsigned long *)(reg29 & ~3); 114 unsigned long addr; 115 116 printk("Call Trace:"); 117 #ifdef CONFIG_KALLSYMS 118 printk("\n"); 119 #endif 120 while (!kstack_end(sp)) { 121 unsigned long __user *p = 122 (unsigned long __user *)(unsigned long)sp++; 123 if (__get_user(addr, p)) { 124 printk(" (Bad stack address)"); 125 break; 126 } 127 if (__kernel_text_address(addr)) 128 print_ip_sym(addr); 129 } 130 printk("\n"); 131 } 132 133 #ifdef CONFIG_KALLSYMS 134 int raw_show_trace; 135 static int __init set_raw_show_trace(char *str) 136 { 137 raw_show_trace = 1; 138 return 1; 139 } 140 __setup("raw_show_trace", set_raw_show_trace); 141 #endif 142 143 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs) 144 { 145 unsigned long sp = regs->regs[29]; 146 unsigned long ra = regs->regs[31]; 147 unsigned long pc = regs->cp0_epc; 148 149 if (!task) 150 task = current; 151 152 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) { 153 show_raw_backtrace(sp); 154 return; 155 } 156 printk("Call Trace:\n"); 157 do { 158 print_ip_sym(pc); 159 pc = unwind_stack(task, &sp, pc, &ra); 160 } while (pc); 161 pr_cont("\n"); 162 } 163 164 /* 165 * This routine abuses get_user()/put_user() to reference pointers 166 * with at least a bit of error checking ... 167 */ 168 static void show_stacktrace(struct task_struct *task, 169 const struct pt_regs *regs) 170 { 171 const int field = 2 * sizeof(unsigned long); 172 long stackdata; 173 int i; 174 unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; 175 176 printk("Stack :"); 177 i = 0; 178 while ((unsigned long) sp & (PAGE_SIZE - 1)) { 179 if (i && ((i % (64 / field)) == 0)) { 180 pr_cont("\n"); 181 printk(" "); 182 } 183 if (i > 39) { 184 pr_cont(" ..."); 185 break; 186 } 187 188 if (__get_user(stackdata, sp++)) { 189 pr_cont(" (Bad stack address)"); 190 break; 191 } 192 193 pr_cont(" %0*lx", field, stackdata); 194 i++; 195 } 196 pr_cont("\n"); 197 show_backtrace(task, regs); 198 } 199 200 void show_stack(struct task_struct *task, unsigned long *sp) 201 { 202 struct pt_regs regs; 203 mm_segment_t old_fs = get_fs(); 204 205 regs.cp0_status = KSU_KERNEL; 206 if (sp) { 207 regs.regs[29] = (unsigned long)sp; 208 regs.regs[31] = 0; 209 regs.cp0_epc = 0; 210 } else { 211 if (task && task != current) { 212 regs.regs[29] = task->thread.reg29; 213 regs.regs[31] = 0; 214 regs.cp0_epc = task->thread.reg31; 215 #ifdef CONFIG_KGDB_KDB 216 } else if (atomic_read(&kgdb_active) != -1 && 217 kdb_current_regs) { 218 memcpy(®s, kdb_current_regs, sizeof(regs)); 219 #endif /* CONFIG_KGDB_KDB */ 220 } else { 221 prepare_frametrace(®s); 222 } 223 } 224 /* 225 * show_stack() deals exclusively with kernel mode, so be sure to access 226 * the stack in the kernel (not user) address space. 227 */ 228 set_fs(KERNEL_DS); 229 show_stacktrace(task, ®s); 230 set_fs(old_fs); 231 } 232 233 static void show_code(unsigned int __user *pc) 234 { 235 long i; 236 unsigned short __user *pc16 = NULL; 237 238 printk("Code:"); 239 240 if ((unsigned long)pc & 1) 241 pc16 = (unsigned short __user *)((unsigned long)pc & ~1); 242 for(i = -3 ; i < 6 ; i++) { 243 unsigned int insn; 244 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { 245 pr_cont(" (Bad address in epc)\n"); 246 break; 247 } 248 pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); 249 } 250 pr_cont("\n"); 251 } 252 253 static void __show_regs(const struct pt_regs *regs) 254 { 255 const int field = 2 * sizeof(unsigned long); 256 unsigned int cause = regs->cp0_cause; 257 unsigned int exccode; 258 int i; 259 260 show_regs_print_info(KERN_DEFAULT); 261 262 /* 263 * Saved main processor registers 264 */ 265 for (i = 0; i < 32; ) { 266 if ((i % 4) == 0) 267 printk("$%2d :", i); 268 if (i == 0) 269 pr_cont(" %0*lx", field, 0UL); 270 else if (i == 26 || i == 27) 271 pr_cont(" %*s", field, ""); 272 else 273 pr_cont(" %0*lx", field, regs->regs[i]); 274 275 i++; 276 if ((i % 4) == 0) 277 pr_cont("\n"); 278 } 279 280 #ifdef CONFIG_CPU_HAS_SMARTMIPS 281 printk("Acx : %0*lx\n", field, regs->acx); 282 #endif 283 printk("Hi : %0*lx\n", field, regs->hi); 284 printk("Lo : %0*lx\n", field, regs->lo); 285 286 /* 287 * Saved cp0 registers 288 */ 289 printk("epc : %0*lx %pS\n", field, regs->cp0_epc, 290 (void *) regs->cp0_epc); 291 printk("ra : %0*lx %pS\n", field, regs->regs[31], 292 (void *) regs->regs[31]); 293 294 printk("Status: %08x ", (uint32_t) regs->cp0_status); 295 296 if (cpu_has_3kex) { 297 if (regs->cp0_status & ST0_KUO) 298 pr_cont("KUo "); 299 if (regs->cp0_status & ST0_IEO) 300 pr_cont("IEo "); 301 if (regs->cp0_status & ST0_KUP) 302 pr_cont("KUp "); 303 if (regs->cp0_status & ST0_IEP) 304 pr_cont("IEp "); 305 if (regs->cp0_status & ST0_KUC) 306 pr_cont("KUc "); 307 if (regs->cp0_status & ST0_IEC) 308 pr_cont("IEc "); 309 } else if (cpu_has_4kex) { 310 if (regs->cp0_status & ST0_KX) 311 pr_cont("KX "); 312 if (regs->cp0_status & ST0_SX) 313 pr_cont("SX "); 314 if (regs->cp0_status & ST0_UX) 315 pr_cont("UX "); 316 switch (regs->cp0_status & ST0_KSU) { 317 case KSU_USER: 318 pr_cont("USER "); 319 break; 320 case KSU_SUPERVISOR: 321 pr_cont("SUPERVISOR "); 322 break; 323 case KSU_KERNEL: 324 pr_cont("KERNEL "); 325 break; 326 default: 327 pr_cont("BAD_MODE "); 328 break; 329 } 330 if (regs->cp0_status & ST0_ERL) 331 pr_cont("ERL "); 332 if (regs->cp0_status & ST0_EXL) 333 pr_cont("EXL "); 334 if (regs->cp0_status & ST0_IE) 335 pr_cont("IE "); 336 } 337 pr_cont("\n"); 338 339 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; 340 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode); 341 342 if (1 <= exccode && exccode <= 5) 343 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); 344 345 printk("PrId : %08x (%s)\n", read_c0_prid(), 346 cpu_name_string()); 347 } 348 349 /* 350 * FIXME: really the generic show_regs should take a const pointer argument. 351 */ 352 void show_regs(struct pt_regs *regs) 353 { 354 __show_regs((struct pt_regs *)regs); 355 } 356 357 void show_registers(struct pt_regs *regs) 358 { 359 const int field = 2 * sizeof(unsigned long); 360 mm_segment_t old_fs = get_fs(); 361 362 __show_regs(regs); 363 print_modules(); 364 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", 365 current->comm, current->pid, current_thread_info(), current, 366 field, current_thread_info()->tp_value); 367 if (cpu_has_userlocal) { 368 unsigned long tls; 369 370 tls = read_c0_userlocal(); 371 if (tls != current_thread_info()->tp_value) 372 printk("*HwTLS: %0*lx\n", field, tls); 373 } 374 375 if (!user_mode(regs)) 376 /* Necessary for getting the correct stack content */ 377 set_fs(KERNEL_DS); 378 show_stacktrace(current, regs); 379 show_code((unsigned int __user *) regs->cp0_epc); 380 printk("\n"); 381 set_fs(old_fs); 382 } 383 384 static DEFINE_RAW_SPINLOCK(die_lock); 385 386 void __noreturn die(const char *str, struct pt_regs *regs) 387 { 388 static int die_counter; 389 int sig = SIGSEGV; 390 391 oops_enter(); 392 393 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr, 394 SIGSEGV) == NOTIFY_STOP) 395 sig = 0; 396 397 console_verbose(); 398 raw_spin_lock_irq(&die_lock); 399 bust_spinlocks(1); 400 401 printk("%s[#%d]:\n", str, ++die_counter); 402 show_registers(regs); 403 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 404 raw_spin_unlock_irq(&die_lock); 405 406 oops_exit(); 407 408 if (in_interrupt()) 409 panic("Fatal exception in interrupt"); 410 411 if (panic_on_oops) 412 panic("Fatal exception"); 413 414 if (regs && kexec_should_crash(current)) 415 crash_kexec(regs); 416 417 do_exit(sig); 418 } 419 420 extern struct exception_table_entry __start___dbe_table[]; 421 extern struct exception_table_entry __stop___dbe_table[]; 422 423 __asm__( 424 " .section __dbe_table, \"a\"\n" 425 " .previous \n"); 426 427 /* Given an address, look for it in the exception tables. */ 428 static const struct exception_table_entry *search_dbe_tables(unsigned long addr) 429 { 430 const struct exception_table_entry *e; 431 432 e = search_extable(__start___dbe_table, 433 __stop___dbe_table - __start___dbe_table, addr); 434 if (!e) 435 e = search_module_dbetables(addr); 436 return e; 437 } 438 439 asmlinkage void do_be(struct pt_regs *regs) 440 { 441 const int field = 2 * sizeof(unsigned long); 442 const struct exception_table_entry *fixup = NULL; 443 int data = regs->cp0_cause & 4; 444 int action = MIPS_BE_FATAL; 445 enum ctx_state prev_state; 446 447 prev_state = exception_enter(); 448 /* XXX For now. Fixme, this searches the wrong table ... */ 449 if (data && !user_mode(regs)) 450 fixup = search_dbe_tables(exception_epc(regs)); 451 452 if (fixup) 453 action = MIPS_BE_FIXUP; 454 455 if (board_be_handler) 456 action = board_be_handler(regs, fixup != NULL); 457 else 458 mips_cm_error_report(); 459 460 switch (action) { 461 case MIPS_BE_DISCARD: 462 goto out; 463 case MIPS_BE_FIXUP: 464 if (fixup) { 465 regs->cp0_epc = fixup->nextinsn; 466 goto out; 467 } 468 break; 469 default: 470 break; 471 } 472 473 /* 474 * Assume it would be too dangerous to continue ... 475 */ 476 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", 477 data ? "Data" : "Instruction", 478 field, regs->cp0_epc, field, regs->regs[31]); 479 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr, 480 SIGBUS) == NOTIFY_STOP) 481 goto out; 482 483 die_if_kernel("Oops", regs); 484 force_sig(SIGBUS, current); 485 486 out: 487 exception_exit(prev_state); 488 } 489 490 /* 491 * ll/sc, rdhwr, sync emulation 492 */ 493 494 #define OPCODE 0xfc000000 495 #define BASE 0x03e00000 496 #define RT 0x001f0000 497 #define OFFSET 0x0000ffff 498 #define LL 0xc0000000 499 #define SC 0xe0000000 500 #define SPEC0 0x00000000 501 #define SPEC3 0x7c000000 502 #define RD 0x0000f800 503 #define FUNC 0x0000003f 504 #define SYNC 0x0000000f 505 #define RDHWR 0x0000003b 506 507 /* microMIPS definitions */ 508 #define MM_POOL32A_FUNC 0xfc00ffff 509 #define MM_RDHWR 0x00006b3c 510 #define MM_RS 0x001f0000 511 #define MM_RT 0x03e00000 512 513 /* 514 * The ll_bit is cleared by r*_switch.S 515 */ 516 517 unsigned int ll_bit; 518 struct task_struct *ll_task; 519 520 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) 521 { 522 unsigned long value, __user *vaddr; 523 long offset; 524 525 /* 526 * analyse the ll instruction that just caused a ri exception 527 * and put the referenced address to addr. 528 */ 529 530 /* sign extend offset */ 531 offset = opcode & OFFSET; 532 offset <<= 16; 533 offset >>= 16; 534 535 vaddr = (unsigned long __user *) 536 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 537 538 if ((unsigned long)vaddr & 3) 539 return SIGBUS; 540 if (get_user(value, vaddr)) 541 return SIGSEGV; 542 543 preempt_disable(); 544 545 if (ll_task == NULL || ll_task == current) { 546 ll_bit = 1; 547 } else { 548 ll_bit = 0; 549 } 550 ll_task = current; 551 552 preempt_enable(); 553 554 regs->regs[(opcode & RT) >> 16] = value; 555 556 return 0; 557 } 558 559 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) 560 { 561 unsigned long __user *vaddr; 562 unsigned long reg; 563 long offset; 564 565 /* 566 * analyse the sc instruction that just caused a ri exception 567 * and put the referenced address to addr. 568 */ 569 570 /* sign extend offset */ 571 offset = opcode & OFFSET; 572 offset <<= 16; 573 offset >>= 16; 574 575 vaddr = (unsigned long __user *) 576 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 577 reg = (opcode & RT) >> 16; 578 579 if ((unsigned long)vaddr & 3) 580 return SIGBUS; 581 582 preempt_disable(); 583 584 if (ll_bit == 0 || ll_task != current) { 585 regs->regs[reg] = 0; 586 preempt_enable(); 587 return 0; 588 } 589 590 preempt_enable(); 591 592 if (put_user(regs->regs[reg], vaddr)) 593 return SIGSEGV; 594 595 regs->regs[reg] = 1; 596 597 return 0; 598 } 599 600 /* 601 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both 602 * opcodes are supposed to result in coprocessor unusable exceptions if 603 * executed on ll/sc-less processors. That's the theory. In practice a 604 * few processors such as NEC's VR4100 throw reserved instruction exceptions 605 * instead, so we're doing the emulation thing in both exception handlers. 606 */ 607 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) 608 { 609 if ((opcode & OPCODE) == LL) { 610 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 611 1, regs, 0); 612 return simulate_ll(regs, opcode); 613 } 614 if ((opcode & OPCODE) == SC) { 615 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 616 1, regs, 0); 617 return simulate_sc(regs, opcode); 618 } 619 620 return -1; /* Must be something else ... */ 621 } 622 623 /* 624 * Simulate trapping 'rdhwr' instructions to provide user accessible 625 * registers not implemented in hardware. 626 */ 627 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt) 628 { 629 struct thread_info *ti = task_thread_info(current); 630 631 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 632 1, regs, 0); 633 switch (rd) { 634 case MIPS_HWR_CPUNUM: /* CPU number */ 635 regs->regs[rt] = smp_processor_id(); 636 return 0; 637 case MIPS_HWR_SYNCISTEP: /* SYNCI length */ 638 regs->regs[rt] = min(current_cpu_data.dcache.linesz, 639 current_cpu_data.icache.linesz); 640 return 0; 641 case MIPS_HWR_CC: /* Read count register */ 642 regs->regs[rt] = read_c0_count(); 643 return 0; 644 case MIPS_HWR_CCRES: /* Count register resolution */ 645 switch (current_cpu_type()) { 646 case CPU_20KC: 647 case CPU_25KF: 648 regs->regs[rt] = 1; 649 break; 650 default: 651 regs->regs[rt] = 2; 652 } 653 return 0; 654 case MIPS_HWR_ULR: /* Read UserLocal register */ 655 regs->regs[rt] = ti->tp_value; 656 return 0; 657 default: 658 return -1; 659 } 660 } 661 662 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode) 663 { 664 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { 665 int rd = (opcode & RD) >> 11; 666 int rt = (opcode & RT) >> 16; 667 668 simulate_rdhwr(regs, rd, rt); 669 return 0; 670 } 671 672 /* Not ours. */ 673 return -1; 674 } 675 676 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode) 677 { 678 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) { 679 int rd = (opcode & MM_RS) >> 16; 680 int rt = (opcode & MM_RT) >> 21; 681 simulate_rdhwr(regs, rd, rt); 682 return 0; 683 } 684 685 /* Not ours. */ 686 return -1; 687 } 688 689 static int simulate_sync(struct pt_regs *regs, unsigned int opcode) 690 { 691 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) { 692 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 693 1, regs, 0); 694 return 0; 695 } 696 697 return -1; /* Must be something else ... */ 698 } 699 700 asmlinkage void do_ov(struct pt_regs *regs) 701 { 702 enum ctx_state prev_state; 703 siginfo_t info = { 704 .si_signo = SIGFPE, 705 .si_code = FPE_INTOVF, 706 .si_addr = (void __user *)regs->cp0_epc, 707 }; 708 709 prev_state = exception_enter(); 710 die_if_kernel("Integer overflow", regs); 711 712 force_sig_info(SIGFPE, &info, current); 713 exception_exit(prev_state); 714 } 715 716 /* 717 * Send SIGFPE according to FCSR Cause bits, which must have already 718 * been masked against Enable bits. This is impotant as Inexact can 719 * happen together with Overflow or Underflow, and `ptrace' can set 720 * any bits. 721 */ 722 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr, 723 struct task_struct *tsk) 724 { 725 struct siginfo si = { .si_addr = fault_addr, .si_signo = SIGFPE }; 726 727 if (fcr31 & FPU_CSR_INV_X) 728 si.si_code = FPE_FLTINV; 729 else if (fcr31 & FPU_CSR_DIV_X) 730 si.si_code = FPE_FLTDIV; 731 else if (fcr31 & FPU_CSR_OVF_X) 732 si.si_code = FPE_FLTOVF; 733 else if (fcr31 & FPU_CSR_UDF_X) 734 si.si_code = FPE_FLTUND; 735 else if (fcr31 & FPU_CSR_INE_X) 736 si.si_code = FPE_FLTRES; 737 else 738 si.si_code = __SI_FAULT; 739 force_sig_info(SIGFPE, &si, tsk); 740 } 741 742 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31) 743 { 744 struct siginfo si = { 0 }; 745 struct vm_area_struct *vma; 746 747 switch (sig) { 748 case 0: 749 return 0; 750 751 case SIGFPE: 752 force_fcr31_sig(fcr31, fault_addr, current); 753 return 1; 754 755 case SIGBUS: 756 si.si_addr = fault_addr; 757 si.si_signo = sig; 758 si.si_code = BUS_ADRERR; 759 force_sig_info(sig, &si, current); 760 return 1; 761 762 case SIGSEGV: 763 si.si_addr = fault_addr; 764 si.si_signo = sig; 765 down_read(¤t->mm->mmap_sem); 766 vma = find_vma(current->mm, (unsigned long)fault_addr); 767 if (vma && (vma->vm_start <= (unsigned long)fault_addr)) 768 si.si_code = SEGV_ACCERR; 769 else 770 si.si_code = SEGV_MAPERR; 771 up_read(¤t->mm->mmap_sem); 772 force_sig_info(sig, &si, current); 773 return 1; 774 775 default: 776 force_sig(sig, current); 777 return 1; 778 } 779 } 780 781 static int simulate_fp(struct pt_regs *regs, unsigned int opcode, 782 unsigned long old_epc, unsigned long old_ra) 783 { 784 union mips_instruction inst = { .word = opcode }; 785 void __user *fault_addr; 786 unsigned long fcr31; 787 int sig; 788 789 /* If it's obviously not an FP instruction, skip it */ 790 switch (inst.i_format.opcode) { 791 case cop1_op: 792 case cop1x_op: 793 case lwc1_op: 794 case ldc1_op: 795 case swc1_op: 796 case sdc1_op: 797 break; 798 799 default: 800 return -1; 801 } 802 803 /* 804 * do_ri skipped over the instruction via compute_return_epc, undo 805 * that for the FPU emulator. 806 */ 807 regs->cp0_epc = old_epc; 808 regs->regs[31] = old_ra; 809 810 /* Save the FP context to struct thread_struct */ 811 lose_fpu(1); 812 813 /* Run the emulator */ 814 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 815 &fault_addr); 816 817 /* 818 * We can't allow the emulated instruction to leave any 819 * enabled Cause bits set in $fcr31. 820 */ 821 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); 822 current->thread.fpu.fcr31 &= ~fcr31; 823 824 /* Restore the hardware register state */ 825 own_fpu(1); 826 827 /* Send a signal if required. */ 828 process_fpemu_return(sig, fault_addr, fcr31); 829 830 return 0; 831 } 832 833 /* 834 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX 835 */ 836 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) 837 { 838 enum ctx_state prev_state; 839 void __user *fault_addr; 840 int sig; 841 842 prev_state = exception_enter(); 843 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr, 844 SIGFPE) == NOTIFY_STOP) 845 goto out; 846 847 /* Clear FCSR.Cause before enabling interrupts */ 848 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31)); 849 local_irq_enable(); 850 851 die_if_kernel("FP exception in kernel code", regs); 852 853 if (fcr31 & FPU_CSR_UNI_X) { 854 /* 855 * Unimplemented operation exception. If we've got the full 856 * software emulator on-board, let's use it... 857 * 858 * Force FPU to dump state into task/thread context. We're 859 * moving a lot of data here for what is probably a single 860 * instruction, but the alternative is to pre-decode the FP 861 * register operands before invoking the emulator, which seems 862 * a bit extreme for what should be an infrequent event. 863 */ 864 /* Ensure 'resume' not overwrite saved fp context again. */ 865 lose_fpu(1); 866 867 /* Run the emulator */ 868 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 869 &fault_addr); 870 871 /* 872 * We can't allow the emulated instruction to leave any 873 * enabled Cause bits set in $fcr31. 874 */ 875 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); 876 current->thread.fpu.fcr31 &= ~fcr31; 877 878 /* Restore the hardware register state */ 879 own_fpu(1); /* Using the FPU again. */ 880 } else { 881 sig = SIGFPE; 882 fault_addr = (void __user *) regs->cp0_epc; 883 } 884 885 /* Send a signal if required. */ 886 process_fpemu_return(sig, fault_addr, fcr31); 887 888 out: 889 exception_exit(prev_state); 890 } 891 892 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code, 893 const char *str) 894 { 895 siginfo_t info = { 0 }; 896 char b[40]; 897 898 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 899 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr, 900 SIGTRAP) == NOTIFY_STOP) 901 return; 902 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 903 904 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr, 905 SIGTRAP) == NOTIFY_STOP) 906 return; 907 908 /* 909 * A short test says that IRIX 5.3 sends SIGTRAP for all trap 910 * insns, even for trap and break codes that indicate arithmetic 911 * failures. Weird ... 912 * But should we continue the brokenness??? --macro 913 */ 914 switch (code) { 915 case BRK_OVERFLOW: 916 case BRK_DIVZERO: 917 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 918 die_if_kernel(b, regs); 919 if (code == BRK_DIVZERO) 920 info.si_code = FPE_INTDIV; 921 else 922 info.si_code = FPE_INTOVF; 923 info.si_signo = SIGFPE; 924 info.si_addr = (void __user *) regs->cp0_epc; 925 force_sig_info(SIGFPE, &info, current); 926 break; 927 case BRK_BUG: 928 die_if_kernel("Kernel bug detected", regs); 929 force_sig(SIGTRAP, current); 930 break; 931 case BRK_MEMU: 932 /* 933 * This breakpoint code is used by the FPU emulator to retake 934 * control of the CPU after executing the instruction from the 935 * delay slot of an emulated branch. 936 * 937 * Terminate if exception was recognized as a delay slot return 938 * otherwise handle as normal. 939 */ 940 if (do_dsemulret(regs)) 941 return; 942 943 die_if_kernel("Math emu break/trap", regs); 944 force_sig(SIGTRAP, current); 945 break; 946 default: 947 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 948 die_if_kernel(b, regs); 949 if (si_code) { 950 info.si_signo = SIGTRAP; 951 info.si_code = si_code; 952 force_sig_info(SIGTRAP, &info, current); 953 } else { 954 force_sig(SIGTRAP, current); 955 } 956 } 957 } 958 959 asmlinkage void do_bp(struct pt_regs *regs) 960 { 961 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 962 unsigned int opcode, bcode; 963 enum ctx_state prev_state; 964 mm_segment_t seg; 965 966 seg = get_fs(); 967 if (!user_mode(regs)) 968 set_fs(KERNEL_DS); 969 970 prev_state = exception_enter(); 971 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 972 if (get_isa16_mode(regs->cp0_epc)) { 973 u16 instr[2]; 974 975 if (__get_user(instr[0], (u16 __user *)epc)) 976 goto out_sigsegv; 977 978 if (!cpu_has_mmips) { 979 /* MIPS16e mode */ 980 bcode = (instr[0] >> 5) & 0x3f; 981 } else if (mm_insn_16bit(instr[0])) { 982 /* 16-bit microMIPS BREAK */ 983 bcode = instr[0] & 0xf; 984 } else { 985 /* 32-bit microMIPS BREAK */ 986 if (__get_user(instr[1], (u16 __user *)(epc + 2))) 987 goto out_sigsegv; 988 opcode = (instr[0] << 16) | instr[1]; 989 bcode = (opcode >> 6) & ((1 << 20) - 1); 990 } 991 } else { 992 if (__get_user(opcode, (unsigned int __user *)epc)) 993 goto out_sigsegv; 994 bcode = (opcode >> 6) & ((1 << 20) - 1); 995 } 996 997 /* 998 * There is the ancient bug in the MIPS assemblers that the break 999 * code starts left to bit 16 instead to bit 6 in the opcode. 1000 * Gas is bug-compatible, but not always, grrr... 1001 * We handle both cases with a simple heuristics. --macro 1002 */ 1003 if (bcode >= (1 << 10)) 1004 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10); 1005 1006 /* 1007 * notify the kprobe handlers, if instruction is likely to 1008 * pertain to them. 1009 */ 1010 switch (bcode) { 1011 case BRK_UPROBE: 1012 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode, 1013 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1014 goto out; 1015 else 1016 break; 1017 case BRK_UPROBE_XOL: 1018 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode, 1019 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1020 goto out; 1021 else 1022 break; 1023 case BRK_KPROBE_BP: 1024 if (notify_die(DIE_BREAK, "debug", regs, bcode, 1025 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1026 goto out; 1027 else 1028 break; 1029 case BRK_KPROBE_SSTEPBP: 1030 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, 1031 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1032 goto out; 1033 else 1034 break; 1035 default: 1036 break; 1037 } 1038 1039 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break"); 1040 1041 out: 1042 set_fs(seg); 1043 exception_exit(prev_state); 1044 return; 1045 1046 out_sigsegv: 1047 force_sig(SIGSEGV, current); 1048 goto out; 1049 } 1050 1051 asmlinkage void do_tr(struct pt_regs *regs) 1052 { 1053 u32 opcode, tcode = 0; 1054 enum ctx_state prev_state; 1055 u16 instr[2]; 1056 mm_segment_t seg; 1057 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 1058 1059 seg = get_fs(); 1060 if (!user_mode(regs)) 1061 set_fs(get_ds()); 1062 1063 prev_state = exception_enter(); 1064 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1065 if (get_isa16_mode(regs->cp0_epc)) { 1066 if (__get_user(instr[0], (u16 __user *)(epc + 0)) || 1067 __get_user(instr[1], (u16 __user *)(epc + 2))) 1068 goto out_sigsegv; 1069 opcode = (instr[0] << 16) | instr[1]; 1070 /* Immediate versions don't provide a code. */ 1071 if (!(opcode & OPCODE)) 1072 tcode = (opcode >> 12) & ((1 << 4) - 1); 1073 } else { 1074 if (__get_user(opcode, (u32 __user *)epc)) 1075 goto out_sigsegv; 1076 /* Immediate versions don't provide a code. */ 1077 if (!(opcode & OPCODE)) 1078 tcode = (opcode >> 6) & ((1 << 10) - 1); 1079 } 1080 1081 do_trap_or_bp(regs, tcode, 0, "Trap"); 1082 1083 out: 1084 set_fs(seg); 1085 exception_exit(prev_state); 1086 return; 1087 1088 out_sigsegv: 1089 force_sig(SIGSEGV, current); 1090 goto out; 1091 } 1092 1093 asmlinkage void do_ri(struct pt_regs *regs) 1094 { 1095 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); 1096 unsigned long old_epc = regs->cp0_epc; 1097 unsigned long old31 = regs->regs[31]; 1098 enum ctx_state prev_state; 1099 unsigned int opcode = 0; 1100 int status = -1; 1101 1102 /* 1103 * Avoid any kernel code. Just emulate the R2 instruction 1104 * as quickly as possible. 1105 */ 1106 if (mipsr2_emulation && cpu_has_mips_r6 && 1107 likely(user_mode(regs)) && 1108 likely(get_user(opcode, epc) >= 0)) { 1109 unsigned long fcr31 = 0; 1110 1111 status = mipsr2_decoder(regs, opcode, &fcr31); 1112 switch (status) { 1113 case 0: 1114 case SIGEMT: 1115 return; 1116 case SIGILL: 1117 goto no_r2_instr; 1118 default: 1119 process_fpemu_return(status, 1120 ¤t->thread.cp0_baduaddr, 1121 fcr31); 1122 return; 1123 } 1124 } 1125 1126 no_r2_instr: 1127 1128 prev_state = exception_enter(); 1129 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1130 1131 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr, 1132 SIGILL) == NOTIFY_STOP) 1133 goto out; 1134 1135 die_if_kernel("Reserved instruction in kernel code", regs); 1136 1137 if (unlikely(compute_return_epc(regs) < 0)) 1138 goto out; 1139 1140 if (!get_isa16_mode(regs->cp0_epc)) { 1141 if (unlikely(get_user(opcode, epc) < 0)) 1142 status = SIGSEGV; 1143 1144 if (!cpu_has_llsc && status < 0) 1145 status = simulate_llsc(regs, opcode); 1146 1147 if (status < 0) 1148 status = simulate_rdhwr_normal(regs, opcode); 1149 1150 if (status < 0) 1151 status = simulate_sync(regs, opcode); 1152 1153 if (status < 0) 1154 status = simulate_fp(regs, opcode, old_epc, old31); 1155 } else if (cpu_has_mmips) { 1156 unsigned short mmop[2] = { 0 }; 1157 1158 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0)) 1159 status = SIGSEGV; 1160 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0)) 1161 status = SIGSEGV; 1162 opcode = mmop[0]; 1163 opcode = (opcode << 16) | mmop[1]; 1164 1165 if (status < 0) 1166 status = simulate_rdhwr_mm(regs, opcode); 1167 } 1168 1169 if (status < 0) 1170 status = SIGILL; 1171 1172 if (unlikely(status > 0)) { 1173 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1174 regs->regs[31] = old31; 1175 force_sig(status, current); 1176 } 1177 1178 out: 1179 exception_exit(prev_state); 1180 } 1181 1182 /* 1183 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've 1184 * emulated more than some threshold number of instructions, force migration to 1185 * a "CPU" that has FP support. 1186 */ 1187 static void mt_ase_fp_affinity(void) 1188 { 1189 #ifdef CONFIG_MIPS_MT_FPAFF 1190 if (mt_fpemul_threshold > 0 && 1191 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { 1192 /* 1193 * If there's no FPU present, or if the application has already 1194 * restricted the allowed set to exclude any CPUs with FPUs, 1195 * we'll skip the procedure. 1196 */ 1197 if (cpumask_intersects(¤t->cpus_allowed, &mt_fpu_cpumask)) { 1198 cpumask_t tmask; 1199 1200 current->thread.user_cpus_allowed 1201 = current->cpus_allowed; 1202 cpumask_and(&tmask, ¤t->cpus_allowed, 1203 &mt_fpu_cpumask); 1204 set_cpus_allowed_ptr(current, &tmask); 1205 set_thread_flag(TIF_FPUBOUND); 1206 } 1207 } 1208 #endif /* CONFIG_MIPS_MT_FPAFF */ 1209 } 1210 1211 /* 1212 * No lock; only written during early bootup by CPU 0. 1213 */ 1214 static RAW_NOTIFIER_HEAD(cu2_chain); 1215 1216 int __ref register_cu2_notifier(struct notifier_block *nb) 1217 { 1218 return raw_notifier_chain_register(&cu2_chain, nb); 1219 } 1220 1221 int cu2_notifier_call_chain(unsigned long val, void *v) 1222 { 1223 return raw_notifier_call_chain(&cu2_chain, val, v); 1224 } 1225 1226 static int default_cu2_call(struct notifier_block *nfb, unsigned long action, 1227 void *data) 1228 { 1229 struct pt_regs *regs = data; 1230 1231 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid " 1232 "instruction", regs); 1233 force_sig(SIGILL, current); 1234 1235 return NOTIFY_OK; 1236 } 1237 1238 static int wait_on_fp_mode_switch(atomic_t *p) 1239 { 1240 /* 1241 * The FP mode for this task is currently being switched. That may 1242 * involve modifications to the format of this tasks FP context which 1243 * make it unsafe to proceed with execution for the moment. Instead, 1244 * schedule some other task. 1245 */ 1246 schedule(); 1247 return 0; 1248 } 1249 1250 static int enable_restore_fp_context(int msa) 1251 { 1252 int err, was_fpu_owner, prior_msa; 1253 1254 /* 1255 * If an FP mode switch is currently underway, wait for it to 1256 * complete before proceeding. 1257 */ 1258 wait_on_atomic_t(¤t->mm->context.fp_mode_switching, 1259 wait_on_fp_mode_switch, TASK_KILLABLE); 1260 1261 if (!used_math()) { 1262 /* First time FP context user. */ 1263 preempt_disable(); 1264 err = init_fpu(); 1265 if (msa && !err) { 1266 enable_msa(); 1267 init_msa_upper(); 1268 set_thread_flag(TIF_USEDMSA); 1269 set_thread_flag(TIF_MSA_CTX_LIVE); 1270 } 1271 preempt_enable(); 1272 if (!err) 1273 set_used_math(); 1274 return err; 1275 } 1276 1277 /* 1278 * This task has formerly used the FP context. 1279 * 1280 * If this thread has no live MSA vector context then we can simply 1281 * restore the scalar FP context. If it has live MSA vector context 1282 * (that is, it has or may have used MSA since last performing a 1283 * function call) then we'll need to restore the vector context. This 1284 * applies even if we're currently only executing a scalar FP 1285 * instruction. This is because if we were to later execute an MSA 1286 * instruction then we'd either have to: 1287 * 1288 * - Restore the vector context & clobber any registers modified by 1289 * scalar FP instructions between now & then. 1290 * 1291 * or 1292 * 1293 * - Not restore the vector context & lose the most significant bits 1294 * of all vector registers. 1295 * 1296 * Neither of those options is acceptable. We cannot restore the least 1297 * significant bits of the registers now & only restore the most 1298 * significant bits later because the most significant bits of any 1299 * vector registers whose aliased FP register is modified now will have 1300 * been zeroed. We'd have no way to know that when restoring the vector 1301 * context & thus may load an outdated value for the most significant 1302 * bits of a vector register. 1303 */ 1304 if (!msa && !thread_msa_context_live()) 1305 return own_fpu(1); 1306 1307 /* 1308 * This task is using or has previously used MSA. Thus we require 1309 * that Status.FR == 1. 1310 */ 1311 preempt_disable(); 1312 was_fpu_owner = is_fpu_owner(); 1313 err = own_fpu_inatomic(0); 1314 if (err) 1315 goto out; 1316 1317 enable_msa(); 1318 write_msa_csr(current->thread.fpu.msacsr); 1319 set_thread_flag(TIF_USEDMSA); 1320 1321 /* 1322 * If this is the first time that the task is using MSA and it has 1323 * previously used scalar FP in this time slice then we already nave 1324 * FP context which we shouldn't clobber. We do however need to clear 1325 * the upper 64b of each vector register so that this task has no 1326 * opportunity to see data left behind by another. 1327 */ 1328 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE); 1329 if (!prior_msa && was_fpu_owner) { 1330 init_msa_upper(); 1331 1332 goto out; 1333 } 1334 1335 if (!prior_msa) { 1336 /* 1337 * Restore the least significant 64b of each vector register 1338 * from the existing scalar FP context. 1339 */ 1340 _restore_fp(current); 1341 1342 /* 1343 * The task has not formerly used MSA, so clear the upper 64b 1344 * of each vector register such that it cannot see data left 1345 * behind by another task. 1346 */ 1347 init_msa_upper(); 1348 } else { 1349 /* We need to restore the vector context. */ 1350 restore_msa(current); 1351 1352 /* Restore the scalar FP control & status register */ 1353 if (!was_fpu_owner) 1354 write_32bit_cp1_register(CP1_STATUS, 1355 current->thread.fpu.fcr31); 1356 } 1357 1358 out: 1359 preempt_enable(); 1360 1361 return 0; 1362 } 1363 1364 asmlinkage void do_cpu(struct pt_regs *regs) 1365 { 1366 enum ctx_state prev_state; 1367 unsigned int __user *epc; 1368 unsigned long old_epc, old31; 1369 void __user *fault_addr; 1370 unsigned int opcode; 1371 unsigned long fcr31; 1372 unsigned int cpid; 1373 int status, err; 1374 int sig; 1375 1376 prev_state = exception_enter(); 1377 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; 1378 1379 if (cpid != 2) 1380 die_if_kernel("do_cpu invoked from kernel context!", regs); 1381 1382 switch (cpid) { 1383 case 0: 1384 epc = (unsigned int __user *)exception_epc(regs); 1385 old_epc = regs->cp0_epc; 1386 old31 = regs->regs[31]; 1387 opcode = 0; 1388 status = -1; 1389 1390 if (unlikely(compute_return_epc(regs) < 0)) 1391 break; 1392 1393 if (!get_isa16_mode(regs->cp0_epc)) { 1394 if (unlikely(get_user(opcode, epc) < 0)) 1395 status = SIGSEGV; 1396 1397 if (!cpu_has_llsc && status < 0) 1398 status = simulate_llsc(regs, opcode); 1399 } 1400 1401 if (status < 0) 1402 status = SIGILL; 1403 1404 if (unlikely(status > 0)) { 1405 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1406 regs->regs[31] = old31; 1407 force_sig(status, current); 1408 } 1409 1410 break; 1411 1412 case 3: 1413 /* 1414 * The COP3 opcode space and consequently the CP0.Status.CU3 1415 * bit and the CP0.Cause.CE=3 encoding have been removed as 1416 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs 1417 * up the space has been reused for COP1X instructions, that 1418 * are enabled by the CP0.Status.CU1 bit and consequently 1419 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable 1420 * exceptions. Some FPU-less processors that implement one 1421 * of these ISAs however use this code erroneously for COP1X 1422 * instructions. Therefore we redirect this trap to the FP 1423 * emulator too. 1424 */ 1425 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) { 1426 force_sig(SIGILL, current); 1427 break; 1428 } 1429 /* Fall through. */ 1430 1431 case 1: 1432 err = enable_restore_fp_context(0); 1433 1434 if (raw_cpu_has_fpu && !err) 1435 break; 1436 1437 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0, 1438 &fault_addr); 1439 1440 /* 1441 * We can't allow the emulated instruction to leave 1442 * any enabled Cause bits set in $fcr31. 1443 */ 1444 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); 1445 current->thread.fpu.fcr31 &= ~fcr31; 1446 1447 /* Send a signal if required. */ 1448 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err) 1449 mt_ase_fp_affinity(); 1450 1451 break; 1452 1453 case 2: 1454 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); 1455 break; 1456 } 1457 1458 exception_exit(prev_state); 1459 } 1460 1461 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr) 1462 { 1463 enum ctx_state prev_state; 1464 1465 prev_state = exception_enter(); 1466 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1467 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0, 1468 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP) 1469 goto out; 1470 1471 /* Clear MSACSR.Cause before enabling interrupts */ 1472 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF); 1473 local_irq_enable(); 1474 1475 die_if_kernel("do_msa_fpe invoked from kernel context!", regs); 1476 force_sig(SIGFPE, current); 1477 out: 1478 exception_exit(prev_state); 1479 } 1480 1481 asmlinkage void do_msa(struct pt_regs *regs) 1482 { 1483 enum ctx_state prev_state; 1484 int err; 1485 1486 prev_state = exception_enter(); 1487 1488 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) { 1489 force_sig(SIGILL, current); 1490 goto out; 1491 } 1492 1493 die_if_kernel("do_msa invoked from kernel context!", regs); 1494 1495 err = enable_restore_fp_context(1); 1496 if (err) 1497 force_sig(SIGILL, current); 1498 out: 1499 exception_exit(prev_state); 1500 } 1501 1502 asmlinkage void do_mdmx(struct pt_regs *regs) 1503 { 1504 enum ctx_state prev_state; 1505 1506 prev_state = exception_enter(); 1507 force_sig(SIGILL, current); 1508 exception_exit(prev_state); 1509 } 1510 1511 /* 1512 * Called with interrupts disabled. 1513 */ 1514 asmlinkage void do_watch(struct pt_regs *regs) 1515 { 1516 siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT }; 1517 enum ctx_state prev_state; 1518 1519 prev_state = exception_enter(); 1520 /* 1521 * Clear WP (bit 22) bit of cause register so we don't loop 1522 * forever. 1523 */ 1524 clear_c0_cause(CAUSEF_WP); 1525 1526 /* 1527 * If the current thread has the watch registers loaded, save 1528 * their values and send SIGTRAP. Otherwise another thread 1529 * left the registers set, clear them and continue. 1530 */ 1531 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { 1532 mips_read_watch_registers(); 1533 local_irq_enable(); 1534 force_sig_info(SIGTRAP, &info, current); 1535 } else { 1536 mips_clear_watch_registers(); 1537 local_irq_enable(); 1538 } 1539 exception_exit(prev_state); 1540 } 1541 1542 asmlinkage void do_mcheck(struct pt_regs *regs) 1543 { 1544 int multi_match = regs->cp0_status & ST0_TS; 1545 enum ctx_state prev_state; 1546 mm_segment_t old_fs = get_fs(); 1547 1548 prev_state = exception_enter(); 1549 show_regs(regs); 1550 1551 if (multi_match) { 1552 dump_tlb_regs(); 1553 pr_info("\n"); 1554 dump_tlb_all(); 1555 } 1556 1557 if (!user_mode(regs)) 1558 set_fs(KERNEL_DS); 1559 1560 show_code((unsigned int __user *) regs->cp0_epc); 1561 1562 set_fs(old_fs); 1563 1564 /* 1565 * Some chips may have other causes of machine check (e.g. SB1 1566 * graduation timer) 1567 */ 1568 panic("Caught Machine Check exception - %scaused by multiple " 1569 "matching entries in the TLB.", 1570 (multi_match) ? "" : "not "); 1571 } 1572 1573 asmlinkage void do_mt(struct pt_regs *regs) 1574 { 1575 int subcode; 1576 1577 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) 1578 >> VPECONTROL_EXCPT_SHIFT; 1579 switch (subcode) { 1580 case 0: 1581 printk(KERN_DEBUG "Thread Underflow\n"); 1582 break; 1583 case 1: 1584 printk(KERN_DEBUG "Thread Overflow\n"); 1585 break; 1586 case 2: 1587 printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); 1588 break; 1589 case 3: 1590 printk(KERN_DEBUG "Gating Storage Exception\n"); 1591 break; 1592 case 4: 1593 printk(KERN_DEBUG "YIELD Scheduler Exception\n"); 1594 break; 1595 case 5: 1596 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n"); 1597 break; 1598 default: 1599 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", 1600 subcode); 1601 break; 1602 } 1603 die_if_kernel("MIPS MT Thread exception in kernel", regs); 1604 1605 force_sig(SIGILL, current); 1606 } 1607 1608 1609 asmlinkage void do_dsp(struct pt_regs *regs) 1610 { 1611 if (cpu_has_dsp) 1612 panic("Unexpected DSP exception"); 1613 1614 force_sig(SIGILL, current); 1615 } 1616 1617 asmlinkage void do_reserved(struct pt_regs *regs) 1618 { 1619 /* 1620 * Game over - no way to handle this if it ever occurs. Most probably 1621 * caused by a new unknown cpu type or after another deadly 1622 * hard/software error. 1623 */ 1624 show_regs(regs); 1625 panic("Caught reserved exception %ld - should not happen.", 1626 (regs->cp0_cause & 0x7f) >> 2); 1627 } 1628 1629 static int __initdata l1parity = 1; 1630 static int __init nol1parity(char *s) 1631 { 1632 l1parity = 0; 1633 return 1; 1634 } 1635 __setup("nol1par", nol1parity); 1636 static int __initdata l2parity = 1; 1637 static int __init nol2parity(char *s) 1638 { 1639 l2parity = 0; 1640 return 1; 1641 } 1642 __setup("nol2par", nol2parity); 1643 1644 /* 1645 * Some MIPS CPUs can enable/disable for cache parity detection, but do 1646 * it different ways. 1647 */ 1648 static inline void parity_protection_init(void) 1649 { 1650 #define ERRCTL_PE 0x80000000 1651 #define ERRCTL_L2P 0x00800000 1652 1653 if (mips_cm_revision() >= CM_REV_CM3) { 1654 ulong gcr_ectl, cp0_ectl; 1655 1656 /* 1657 * With CM3 systems we need to ensure that the L1 & L2 1658 * parity enables are set to the same value, since this 1659 * is presumed by the hardware engineers. 1660 * 1661 * If the user disabled either of L1 or L2 ECC checking, 1662 * disable both. 1663 */ 1664 l1parity &= l2parity; 1665 l2parity &= l1parity; 1666 1667 /* Probe L1 ECC support */ 1668 cp0_ectl = read_c0_ecc(); 1669 write_c0_ecc(cp0_ectl | ERRCTL_PE); 1670 back_to_back_c0_hazard(); 1671 cp0_ectl = read_c0_ecc(); 1672 1673 /* Probe L2 ECC support */ 1674 gcr_ectl = read_gcr_err_control(); 1675 1676 if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT_MSK) || 1677 !(cp0_ectl & ERRCTL_PE)) { 1678 /* 1679 * One of L1 or L2 ECC checking isn't supported, 1680 * so we cannot enable either. 1681 */ 1682 l1parity = l2parity = 0; 1683 } 1684 1685 /* Configure L1 ECC checking */ 1686 if (l1parity) 1687 cp0_ectl |= ERRCTL_PE; 1688 else 1689 cp0_ectl &= ~ERRCTL_PE; 1690 write_c0_ecc(cp0_ectl); 1691 back_to_back_c0_hazard(); 1692 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity); 1693 1694 /* Configure L2 ECC checking */ 1695 if (l2parity) 1696 gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK; 1697 else 1698 gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK; 1699 write_gcr_err_control(gcr_ectl); 1700 gcr_ectl = read_gcr_err_control(); 1701 gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK; 1702 WARN_ON(!!gcr_ectl != l2parity); 1703 1704 pr_info("Cache parity protection %sabled\n", 1705 l1parity ? "en" : "dis"); 1706 return; 1707 } 1708 1709 switch (current_cpu_type()) { 1710 case CPU_24K: 1711 case CPU_34K: 1712 case CPU_74K: 1713 case CPU_1004K: 1714 case CPU_1074K: 1715 case CPU_INTERAPTIV: 1716 case CPU_PROAPTIV: 1717 case CPU_P5600: 1718 case CPU_QEMU_GENERIC: 1719 case CPU_P6600: 1720 { 1721 unsigned long errctl; 1722 unsigned int l1parity_present, l2parity_present; 1723 1724 errctl = read_c0_ecc(); 1725 errctl &= ~(ERRCTL_PE|ERRCTL_L2P); 1726 1727 /* probe L1 parity support */ 1728 write_c0_ecc(errctl | ERRCTL_PE); 1729 back_to_back_c0_hazard(); 1730 l1parity_present = (read_c0_ecc() & ERRCTL_PE); 1731 1732 /* probe L2 parity support */ 1733 write_c0_ecc(errctl|ERRCTL_L2P); 1734 back_to_back_c0_hazard(); 1735 l2parity_present = (read_c0_ecc() & ERRCTL_L2P); 1736 1737 if (l1parity_present && l2parity_present) { 1738 if (l1parity) 1739 errctl |= ERRCTL_PE; 1740 if (l1parity ^ l2parity) 1741 errctl |= ERRCTL_L2P; 1742 } else if (l1parity_present) { 1743 if (l1parity) 1744 errctl |= ERRCTL_PE; 1745 } else if (l2parity_present) { 1746 if (l2parity) 1747 errctl |= ERRCTL_L2P; 1748 } else { 1749 /* No parity available */ 1750 } 1751 1752 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); 1753 1754 write_c0_ecc(errctl); 1755 back_to_back_c0_hazard(); 1756 errctl = read_c0_ecc(); 1757 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); 1758 1759 if (l1parity_present) 1760 printk(KERN_INFO "Cache parity protection %sabled\n", 1761 (errctl & ERRCTL_PE) ? "en" : "dis"); 1762 1763 if (l2parity_present) { 1764 if (l1parity_present && l1parity) 1765 errctl ^= ERRCTL_L2P; 1766 printk(KERN_INFO "L2 cache parity protection %sabled\n", 1767 (errctl & ERRCTL_L2P) ? "en" : "dis"); 1768 } 1769 } 1770 break; 1771 1772 case CPU_5KC: 1773 case CPU_5KE: 1774 case CPU_LOONGSON1: 1775 write_c0_ecc(0x80000000); 1776 back_to_back_c0_hazard(); 1777 /* Set the PE bit (bit 31) in the c0_errctl register. */ 1778 printk(KERN_INFO "Cache parity protection %sabled\n", 1779 (read_c0_ecc() & 0x80000000) ? "en" : "dis"); 1780 break; 1781 case CPU_20KC: 1782 case CPU_25KF: 1783 /* Clear the DE bit (bit 16) in the c0_status register. */ 1784 printk(KERN_INFO "Enable cache parity protection for " 1785 "MIPS 20KC/25KF CPUs.\n"); 1786 clear_c0_status(ST0_DE); 1787 break; 1788 default: 1789 break; 1790 } 1791 } 1792 1793 asmlinkage void cache_parity_error(void) 1794 { 1795 const int field = 2 * sizeof(unsigned long); 1796 unsigned int reg_val; 1797 1798 /* For the moment, report the problem and hang. */ 1799 printk("Cache error exception:\n"); 1800 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1801 reg_val = read_c0_cacheerr(); 1802 printk("c0_cacheerr == %08x\n", reg_val); 1803 1804 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1805 reg_val & (1<<30) ? "secondary" : "primary", 1806 reg_val & (1<<31) ? "data" : "insn"); 1807 if ((cpu_has_mips_r2_r6) && 1808 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { 1809 pr_err("Error bits: %s%s%s%s%s%s%s%s\n", 1810 reg_val & (1<<29) ? "ED " : "", 1811 reg_val & (1<<28) ? "ET " : "", 1812 reg_val & (1<<27) ? "ES " : "", 1813 reg_val & (1<<26) ? "EE " : "", 1814 reg_val & (1<<25) ? "EB " : "", 1815 reg_val & (1<<24) ? "EI " : "", 1816 reg_val & (1<<23) ? "E1 " : "", 1817 reg_val & (1<<22) ? "E0 " : ""); 1818 } else { 1819 pr_err("Error bits: %s%s%s%s%s%s%s\n", 1820 reg_val & (1<<29) ? "ED " : "", 1821 reg_val & (1<<28) ? "ET " : "", 1822 reg_val & (1<<26) ? "EE " : "", 1823 reg_val & (1<<25) ? "EB " : "", 1824 reg_val & (1<<24) ? "EI " : "", 1825 reg_val & (1<<23) ? "E1 " : "", 1826 reg_val & (1<<22) ? "E0 " : ""); 1827 } 1828 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); 1829 1830 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) 1831 if (reg_val & (1<<22)) 1832 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); 1833 1834 if (reg_val & (1<<23)) 1835 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); 1836 #endif 1837 1838 panic("Can't handle the cache error!"); 1839 } 1840 1841 asmlinkage void do_ftlb(void) 1842 { 1843 const int field = 2 * sizeof(unsigned long); 1844 unsigned int reg_val; 1845 1846 /* For the moment, report the problem and hang. */ 1847 if ((cpu_has_mips_r2_r6) && 1848 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) || 1849 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) { 1850 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n", 1851 read_c0_ecc()); 1852 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1853 reg_val = read_c0_cacheerr(); 1854 pr_err("c0_cacheerr == %08x\n", reg_val); 1855 1856 if ((reg_val & 0xc0000000) == 0xc0000000) { 1857 pr_err("Decoded c0_cacheerr: FTLB parity error\n"); 1858 } else { 1859 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1860 reg_val & (1<<30) ? "secondary" : "primary", 1861 reg_val & (1<<31) ? "data" : "insn"); 1862 } 1863 } else { 1864 pr_err("FTLB error exception\n"); 1865 } 1866 /* Just print the cacheerr bits for now */ 1867 cache_parity_error(); 1868 } 1869 1870 /* 1871 * SDBBP EJTAG debug exception handler. 1872 * We skip the instruction and return to the next instruction. 1873 */ 1874 void ejtag_exception_handler(struct pt_regs *regs) 1875 { 1876 const int field = 2 * sizeof(unsigned long); 1877 unsigned long depc, old_epc, old_ra; 1878 unsigned int debug; 1879 1880 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); 1881 depc = read_c0_depc(); 1882 debug = read_c0_debug(); 1883 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); 1884 if (debug & 0x80000000) { 1885 /* 1886 * In branch delay slot. 1887 * We cheat a little bit here and use EPC to calculate the 1888 * debug return address (DEPC). EPC is restored after the 1889 * calculation. 1890 */ 1891 old_epc = regs->cp0_epc; 1892 old_ra = regs->regs[31]; 1893 regs->cp0_epc = depc; 1894 compute_return_epc(regs); 1895 depc = regs->cp0_epc; 1896 regs->cp0_epc = old_epc; 1897 regs->regs[31] = old_ra; 1898 } else 1899 depc += 4; 1900 write_c0_depc(depc); 1901 1902 #if 0 1903 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); 1904 write_c0_debug(debug | 0x100); 1905 #endif 1906 } 1907 1908 /* 1909 * NMI exception handler. 1910 * No lock; only written during early bootup by CPU 0. 1911 */ 1912 static RAW_NOTIFIER_HEAD(nmi_chain); 1913 1914 int register_nmi_notifier(struct notifier_block *nb) 1915 { 1916 return raw_notifier_chain_register(&nmi_chain, nb); 1917 } 1918 1919 void __noreturn nmi_exception_handler(struct pt_regs *regs) 1920 { 1921 char str[100]; 1922 1923 nmi_enter(); 1924 raw_notifier_call_chain(&nmi_chain, 0, regs); 1925 bust_spinlocks(1); 1926 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n", 1927 smp_processor_id(), regs->cp0_epc); 1928 regs->cp0_epc = read_c0_errorepc(); 1929 die(str, regs); 1930 nmi_exit(); 1931 } 1932 1933 #define VECTORSPACING 0x100 /* for EI/VI mode */ 1934 1935 unsigned long ebase; 1936 EXPORT_SYMBOL_GPL(ebase); 1937 unsigned long exception_handlers[32]; 1938 unsigned long vi_handlers[64]; 1939 1940 void __init *set_except_vector(int n, void *addr) 1941 { 1942 unsigned long handler = (unsigned long) addr; 1943 unsigned long old_handler; 1944 1945 #ifdef CONFIG_CPU_MICROMIPS 1946 /* 1947 * Only the TLB handlers are cache aligned with an even 1948 * address. All other handlers are on an odd address and 1949 * require no modification. Otherwise, MIPS32 mode will 1950 * be entered when handling any TLB exceptions. That 1951 * would be bad...since we must stay in microMIPS mode. 1952 */ 1953 if (!(handler & 0x1)) 1954 handler |= 1; 1955 #endif 1956 old_handler = xchg(&exception_handlers[n], handler); 1957 1958 if (n == 0 && cpu_has_divec) { 1959 #ifdef CONFIG_CPU_MICROMIPS 1960 unsigned long jump_mask = ~((1 << 27) - 1); 1961 #else 1962 unsigned long jump_mask = ~((1 << 28) - 1); 1963 #endif 1964 u32 *buf = (u32 *)(ebase + 0x200); 1965 unsigned int k0 = 26; 1966 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { 1967 uasm_i_j(&buf, handler & ~jump_mask); 1968 uasm_i_nop(&buf); 1969 } else { 1970 UASM_i_LA(&buf, k0, handler); 1971 uasm_i_jr(&buf, k0); 1972 uasm_i_nop(&buf); 1973 } 1974 local_flush_icache_range(ebase + 0x200, (unsigned long)buf); 1975 } 1976 return (void *)old_handler; 1977 } 1978 1979 static void do_default_vi(void) 1980 { 1981 show_regs(get_irq_regs()); 1982 panic("Caught unexpected vectored interrupt."); 1983 } 1984 1985 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) 1986 { 1987 unsigned long handler; 1988 unsigned long old_handler = vi_handlers[n]; 1989 int srssets = current_cpu_data.srsets; 1990 u16 *h; 1991 unsigned char *b; 1992 1993 BUG_ON(!cpu_has_veic && !cpu_has_vint); 1994 1995 if (addr == NULL) { 1996 handler = (unsigned long) do_default_vi; 1997 srs = 0; 1998 } else 1999 handler = (unsigned long) addr; 2000 vi_handlers[n] = handler; 2001 2002 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); 2003 2004 if (srs >= srssets) 2005 panic("Shadow register set %d not supported", srs); 2006 2007 if (cpu_has_veic) { 2008 if (board_bind_eic_interrupt) 2009 board_bind_eic_interrupt(n, srs); 2010 } else if (cpu_has_vint) { 2011 /* SRSMap is only defined if shadow sets are implemented */ 2012 if (srssets > 1) 2013 change_c0_srsmap(0xf << n*4, srs << n*4); 2014 } 2015 2016 if (srs == 0) { 2017 /* 2018 * If no shadow set is selected then use the default handler 2019 * that does normal register saving and standard interrupt exit 2020 */ 2021 extern char except_vec_vi, except_vec_vi_lui; 2022 extern char except_vec_vi_ori, except_vec_vi_end; 2023 extern char rollback_except_vec_vi; 2024 char *vec_start = using_rollback_handler() ? 2025 &rollback_except_vec_vi : &except_vec_vi; 2026 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN) 2027 const int lui_offset = &except_vec_vi_lui - vec_start + 2; 2028 const int ori_offset = &except_vec_vi_ori - vec_start + 2; 2029 #else 2030 const int lui_offset = &except_vec_vi_lui - vec_start; 2031 const int ori_offset = &except_vec_vi_ori - vec_start; 2032 #endif 2033 const int handler_len = &except_vec_vi_end - vec_start; 2034 2035 if (handler_len > VECTORSPACING) { 2036 /* 2037 * Sigh... panicing won't help as the console 2038 * is probably not configured :( 2039 */ 2040 panic("VECTORSPACING too small"); 2041 } 2042 2043 set_handler(((unsigned long)b - ebase), vec_start, 2044 #ifdef CONFIG_CPU_MICROMIPS 2045 (handler_len - 1)); 2046 #else 2047 handler_len); 2048 #endif 2049 h = (u16 *)(b + lui_offset); 2050 *h = (handler >> 16) & 0xffff; 2051 h = (u16 *)(b + ori_offset); 2052 *h = (handler & 0xffff); 2053 local_flush_icache_range((unsigned long)b, 2054 (unsigned long)(b+handler_len)); 2055 } 2056 else { 2057 /* 2058 * In other cases jump directly to the interrupt handler. It 2059 * is the handler's responsibility to save registers if required 2060 * (eg hi/lo) and return from the exception using "eret". 2061 */ 2062 u32 insn; 2063 2064 h = (u16 *)b; 2065 /* j handler */ 2066 #ifdef CONFIG_CPU_MICROMIPS 2067 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1); 2068 #else 2069 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2); 2070 #endif 2071 h[0] = (insn >> 16) & 0xffff; 2072 h[1] = insn & 0xffff; 2073 h[2] = 0; 2074 h[3] = 0; 2075 local_flush_icache_range((unsigned long)b, 2076 (unsigned long)(b+8)); 2077 } 2078 2079 return (void *)old_handler; 2080 } 2081 2082 void *set_vi_handler(int n, vi_handler_t addr) 2083 { 2084 return set_vi_srs_handler(n, addr, 0); 2085 } 2086 2087 extern void tlb_init(void); 2088 2089 /* 2090 * Timer interrupt 2091 */ 2092 int cp0_compare_irq; 2093 EXPORT_SYMBOL_GPL(cp0_compare_irq); 2094 int cp0_compare_irq_shift; 2095 2096 /* 2097 * Performance counter IRQ or -1 if shared with timer 2098 */ 2099 int cp0_perfcount_irq; 2100 EXPORT_SYMBOL_GPL(cp0_perfcount_irq); 2101 2102 /* 2103 * Fast debug channel IRQ or -1 if not present 2104 */ 2105 int cp0_fdc_irq; 2106 EXPORT_SYMBOL_GPL(cp0_fdc_irq); 2107 2108 static int noulri; 2109 2110 static int __init ulri_disable(char *s) 2111 { 2112 pr_info("Disabling ulri\n"); 2113 noulri = 1; 2114 2115 return 1; 2116 } 2117 __setup("noulri", ulri_disable); 2118 2119 /* configure STATUS register */ 2120 static void configure_status(void) 2121 { 2122 /* 2123 * Disable coprocessors and select 32-bit or 64-bit addressing 2124 * and the 16/32 or 32/32 FPR register model. Reset the BEV 2125 * flag that some firmware may have left set and the TS bit (for 2126 * IP27). Set XX for ISA IV code to work. 2127 */ 2128 unsigned int status_set = ST0_CU0; 2129 #ifdef CONFIG_64BIT 2130 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; 2131 #endif 2132 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV) 2133 status_set |= ST0_XX; 2134 if (cpu_has_dsp) 2135 status_set |= ST0_MX; 2136 2137 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, 2138 status_set); 2139 } 2140 2141 unsigned int hwrena; 2142 EXPORT_SYMBOL_GPL(hwrena); 2143 2144 /* configure HWRENA register */ 2145 static void configure_hwrena(void) 2146 { 2147 hwrena = cpu_hwrena_impl_bits; 2148 2149 if (cpu_has_mips_r2_r6) 2150 hwrena |= MIPS_HWRENA_CPUNUM | 2151 MIPS_HWRENA_SYNCISTEP | 2152 MIPS_HWRENA_CC | 2153 MIPS_HWRENA_CCRES; 2154 2155 if (!noulri && cpu_has_userlocal) 2156 hwrena |= MIPS_HWRENA_ULR; 2157 2158 if (hwrena) 2159 write_c0_hwrena(hwrena); 2160 } 2161 2162 static void configure_exception_vector(void) 2163 { 2164 if (cpu_has_veic || cpu_has_vint) { 2165 unsigned long sr = set_c0_status(ST0_BEV); 2166 /* If available, use WG to set top bits of EBASE */ 2167 if (cpu_has_ebase_wg) { 2168 #ifdef CONFIG_64BIT 2169 write_c0_ebase_64(ebase | MIPS_EBASE_WG); 2170 #else 2171 write_c0_ebase(ebase | MIPS_EBASE_WG); 2172 #endif 2173 } 2174 write_c0_ebase(ebase); 2175 write_c0_status(sr); 2176 /* Setting vector spacing enables EI/VI mode */ 2177 change_c0_intctl(0x3e0, VECTORSPACING); 2178 } 2179 if (cpu_has_divec) { 2180 if (cpu_has_mipsmt) { 2181 unsigned int vpflags = dvpe(); 2182 set_c0_cause(CAUSEF_IV); 2183 evpe(vpflags); 2184 } else 2185 set_c0_cause(CAUSEF_IV); 2186 } 2187 } 2188 2189 void per_cpu_trap_init(bool is_boot_cpu) 2190 { 2191 unsigned int cpu = smp_processor_id(); 2192 2193 configure_status(); 2194 configure_hwrena(); 2195 2196 configure_exception_vector(); 2197 2198 /* 2199 * Before R2 both interrupt numbers were fixed to 7, so on R2 only: 2200 * 2201 * o read IntCtl.IPTI to determine the timer interrupt 2202 * o read IntCtl.IPPCI to determine the performance counter interrupt 2203 * o read IntCtl.IPFDC to determine the fast debug channel interrupt 2204 */ 2205 if (cpu_has_mips_r2_r6) { 2206 /* 2207 * We shouldn't trust a secondary core has a sane EBASE register 2208 * so use the one calculated by the boot CPU. 2209 */ 2210 if (!is_boot_cpu) { 2211 /* If available, use WG to set top bits of EBASE */ 2212 if (cpu_has_ebase_wg) { 2213 #ifdef CONFIG_64BIT 2214 write_c0_ebase_64(ebase | MIPS_EBASE_WG); 2215 #else 2216 write_c0_ebase(ebase | MIPS_EBASE_WG); 2217 #endif 2218 } 2219 write_c0_ebase(ebase); 2220 } 2221 2222 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; 2223 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; 2224 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; 2225 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7; 2226 if (!cp0_fdc_irq) 2227 cp0_fdc_irq = -1; 2228 2229 } else { 2230 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; 2231 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ; 2232 cp0_perfcount_irq = -1; 2233 cp0_fdc_irq = -1; 2234 } 2235 2236 if (!cpu_data[cpu].asid_cache) 2237 cpu_data[cpu].asid_cache = asid_first_version(cpu); 2238 2239 mmgrab(&init_mm); 2240 current->active_mm = &init_mm; 2241 BUG_ON(current->mm); 2242 enter_lazy_tlb(&init_mm, current); 2243 2244 /* Boot CPU's cache setup in setup_arch(). */ 2245 if (!is_boot_cpu) 2246 cpu_cache_init(); 2247 tlb_init(); 2248 TLBMISS_HANDLER_SETUP(); 2249 } 2250 2251 /* Install CPU exception handler */ 2252 void set_handler(unsigned long offset, void *addr, unsigned long size) 2253 { 2254 #ifdef CONFIG_CPU_MICROMIPS 2255 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size); 2256 #else 2257 memcpy((void *)(ebase + offset), addr, size); 2258 #endif 2259 local_flush_icache_range(ebase + offset, ebase + offset + size); 2260 } 2261 2262 static const char panic_null_cerr[] = 2263 "Trying to set NULL cache error exception handler\n"; 2264 2265 /* 2266 * Install uncached CPU exception handler. 2267 * This is suitable only for the cache error exception which is the only 2268 * exception handler that is being run uncached. 2269 */ 2270 void set_uncached_handler(unsigned long offset, void *addr, 2271 unsigned long size) 2272 { 2273 unsigned long uncached_ebase = CKSEG1ADDR(ebase); 2274 2275 if (!addr) 2276 panic(panic_null_cerr); 2277 2278 memcpy((void *)(uncached_ebase + offset), addr, size); 2279 } 2280 2281 static int __initdata rdhwr_noopt; 2282 static int __init set_rdhwr_noopt(char *str) 2283 { 2284 rdhwr_noopt = 1; 2285 return 1; 2286 } 2287 2288 __setup("rdhwr_noopt", set_rdhwr_noopt); 2289 2290 void __init trap_init(void) 2291 { 2292 extern char except_vec3_generic; 2293 extern char except_vec4; 2294 extern char except_vec3_r4000; 2295 unsigned long i; 2296 2297 check_wait(); 2298 2299 if (cpu_has_veic || cpu_has_vint) { 2300 unsigned long size = 0x200 + VECTORSPACING*64; 2301 phys_addr_t ebase_pa; 2302 2303 ebase = (unsigned long) 2304 __alloc_bootmem(size, 1 << fls(size), 0); 2305 2306 /* 2307 * Try to ensure ebase resides in KSeg0 if possible. 2308 * 2309 * It shouldn't generally be in XKPhys on MIPS64 to avoid 2310 * hitting a poorly defined exception base for Cache Errors. 2311 * The allocation is likely to be in the low 512MB of physical, 2312 * in which case we should be able to convert to KSeg0. 2313 * 2314 * EVA is special though as it allows segments to be rearranged 2315 * and to become uncached during cache error handling. 2316 */ 2317 ebase_pa = __pa(ebase); 2318 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000)) 2319 ebase = CKSEG0ADDR(ebase_pa); 2320 } else { 2321 ebase = CAC_BASE; 2322 2323 if (cpu_has_mips_r2_r6) { 2324 if (cpu_has_ebase_wg) { 2325 #ifdef CONFIG_64BIT 2326 ebase = (read_c0_ebase_64() & ~0xfff); 2327 #else 2328 ebase = (read_c0_ebase() & ~0xfff); 2329 #endif 2330 } else { 2331 ebase += (read_c0_ebase() & 0x3ffff000); 2332 } 2333 } 2334 } 2335 2336 if (cpu_has_mmips) { 2337 unsigned int config3 = read_c0_config3(); 2338 2339 if (IS_ENABLED(CONFIG_CPU_MICROMIPS)) 2340 write_c0_config3(config3 | MIPS_CONF3_ISA_OE); 2341 else 2342 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE); 2343 } 2344 2345 if (board_ebase_setup) 2346 board_ebase_setup(); 2347 per_cpu_trap_init(true); 2348 2349 /* 2350 * Copy the generic exception handlers to their final destination. 2351 * This will be overridden later as suitable for a particular 2352 * configuration. 2353 */ 2354 set_handler(0x180, &except_vec3_generic, 0x80); 2355 2356 /* 2357 * Setup default vectors 2358 */ 2359 for (i = 0; i <= 31; i++) 2360 set_except_vector(i, handle_reserved); 2361 2362 /* 2363 * Copy the EJTAG debug exception vector handler code to it's final 2364 * destination. 2365 */ 2366 if (cpu_has_ejtag && board_ejtag_handler_setup) 2367 board_ejtag_handler_setup(); 2368 2369 /* 2370 * Only some CPUs have the watch exceptions. 2371 */ 2372 if (cpu_has_watch) 2373 set_except_vector(EXCCODE_WATCH, handle_watch); 2374 2375 /* 2376 * Initialise interrupt handlers 2377 */ 2378 if (cpu_has_veic || cpu_has_vint) { 2379 int nvec = cpu_has_veic ? 64 : 8; 2380 for (i = 0; i < nvec; i++) 2381 set_vi_handler(i, NULL); 2382 } 2383 else if (cpu_has_divec) 2384 set_handler(0x200, &except_vec4, 0x8); 2385 2386 /* 2387 * Some CPUs can enable/disable for cache parity detection, but does 2388 * it different ways. 2389 */ 2390 parity_protection_init(); 2391 2392 /* 2393 * The Data Bus Errors / Instruction Bus Errors are signaled 2394 * by external hardware. Therefore these two exceptions 2395 * may have board specific handlers. 2396 */ 2397 if (board_be_init) 2398 board_be_init(); 2399 2400 set_except_vector(EXCCODE_INT, using_rollback_handler() ? 2401 rollback_handle_int : handle_int); 2402 set_except_vector(EXCCODE_MOD, handle_tlbm); 2403 set_except_vector(EXCCODE_TLBL, handle_tlbl); 2404 set_except_vector(EXCCODE_TLBS, handle_tlbs); 2405 2406 set_except_vector(EXCCODE_ADEL, handle_adel); 2407 set_except_vector(EXCCODE_ADES, handle_ades); 2408 2409 set_except_vector(EXCCODE_IBE, handle_ibe); 2410 set_except_vector(EXCCODE_DBE, handle_dbe); 2411 2412 set_except_vector(EXCCODE_SYS, handle_sys); 2413 set_except_vector(EXCCODE_BP, handle_bp); 2414 2415 if (rdhwr_noopt) 2416 set_except_vector(EXCCODE_RI, handle_ri); 2417 else { 2418 if (cpu_has_vtag_icache) 2419 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp); 2420 else if (current_cpu_type() == CPU_LOONGSON3) 2421 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp); 2422 else 2423 set_except_vector(EXCCODE_RI, handle_ri_rdhwr); 2424 } 2425 2426 set_except_vector(EXCCODE_CPU, handle_cpu); 2427 set_except_vector(EXCCODE_OV, handle_ov); 2428 set_except_vector(EXCCODE_TR, handle_tr); 2429 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe); 2430 2431 if (current_cpu_type() == CPU_R6000 || 2432 current_cpu_type() == CPU_R6000A) { 2433 /* 2434 * The R6000 is the only R-series CPU that features a machine 2435 * check exception (similar to the R4000 cache error) and 2436 * unaligned ldc1/sdc1 exception. The handlers have not been 2437 * written yet. Well, anyway there is no R6000 machine on the 2438 * current list of targets for Linux/MIPS. 2439 * (Duh, crap, there is someone with a triple R6k machine) 2440 */ 2441 //set_except_vector(14, handle_mc); 2442 //set_except_vector(15, handle_ndc); 2443 } 2444 2445 2446 if (board_nmi_handler_setup) 2447 board_nmi_handler_setup(); 2448 2449 if (cpu_has_fpu && !cpu_has_nofpuex) 2450 set_except_vector(EXCCODE_FPE, handle_fpe); 2451 2452 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb); 2453 2454 if (cpu_has_rixiex) { 2455 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0); 2456 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0); 2457 } 2458 2459 set_except_vector(EXCCODE_MSADIS, handle_msa); 2460 set_except_vector(EXCCODE_MDMX, handle_mdmx); 2461 2462 if (cpu_has_mcheck) 2463 set_except_vector(EXCCODE_MCHECK, handle_mcheck); 2464 2465 if (cpu_has_mipsmt) 2466 set_except_vector(EXCCODE_THREAD, handle_mt); 2467 2468 set_except_vector(EXCCODE_DSPDIS, handle_dsp); 2469 2470 if (board_cache_error_setup) 2471 board_cache_error_setup(); 2472 2473 if (cpu_has_vce) 2474 /* Special exception: R4[04]00 uses also the divec space. */ 2475 set_handler(0x180, &except_vec3_r4000, 0x100); 2476 else if (cpu_has_4kex) 2477 set_handler(0x180, &except_vec3_generic, 0x80); 2478 else 2479 set_handler(0x080, &except_vec3_generic, 0x80); 2480 2481 local_flush_icache_range(ebase, ebase + 0x400); 2482 2483 sort_extable(__start___dbe_table, __stop___dbe_table); 2484 2485 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */ 2486 } 2487 2488 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd, 2489 void *v) 2490 { 2491 switch (cmd) { 2492 case CPU_PM_ENTER_FAILED: 2493 case CPU_PM_EXIT: 2494 configure_status(); 2495 configure_hwrena(); 2496 configure_exception_vector(); 2497 2498 /* Restore register with CPU number for TLB handlers */ 2499 TLBMISS_HANDLER_RESTORE(); 2500 2501 break; 2502 } 2503 2504 return NOTIFY_OK; 2505 } 2506 2507 static struct notifier_block trap_pm_notifier_block = { 2508 .notifier_call = trap_pm_notifier, 2509 }; 2510 2511 static int __init trap_pm_init(void) 2512 { 2513 return cpu_pm_register_notifier(&trap_pm_notifier_block); 2514 } 2515 arch_initcall(trap_pm_init); 2516