1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle 7 * Copyright (C) 1995, 1996 Paul M. Antoine 8 * Copyright (C) 1998 Ulf Carlsson 9 * Copyright (C) 1999 Silicon Graphics, Inc. 10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki 12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved. 13 * Copyright (C) 2014, Imagination Technologies Ltd. 14 */ 15 #include <linux/bitops.h> 16 #include <linux/bug.h> 17 #include <linux/compiler.h> 18 #include <linux/context_tracking.h> 19 #include <linux/cpu_pm.h> 20 #include <linux/kexec.h> 21 #include <linux/init.h> 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/mm.h> 25 #include <linux/sched.h> 26 #include <linux/smp.h> 27 #include <linux/spinlock.h> 28 #include <linux/kallsyms.h> 29 #include <linux/bootmem.h> 30 #include <linux/interrupt.h> 31 #include <linux/ptrace.h> 32 #include <linux/kgdb.h> 33 #include <linux/kdebug.h> 34 #include <linux/kprobes.h> 35 #include <linux/notifier.h> 36 #include <linux/kdb.h> 37 #include <linux/irq.h> 38 #include <linux/perf_event.h> 39 40 #include <asm/addrspace.h> 41 #include <asm/bootinfo.h> 42 #include <asm/branch.h> 43 #include <asm/break.h> 44 #include <asm/cop2.h> 45 #include <asm/cpu.h> 46 #include <asm/cpu-type.h> 47 #include <asm/dsp.h> 48 #include <asm/fpu.h> 49 #include <asm/fpu_emulator.h> 50 #include <asm/idle.h> 51 #include <asm/mips-r2-to-r6-emul.h> 52 #include <asm/mipsregs.h> 53 #include <asm/mipsmtregs.h> 54 #include <asm/module.h> 55 #include <asm/msa.h> 56 #include <asm/pgtable.h> 57 #include <asm/ptrace.h> 58 #include <asm/sections.h> 59 #include <asm/tlbdebug.h> 60 #include <asm/traps.h> 61 #include <asm/uaccess.h> 62 #include <asm/watch.h> 63 #include <asm/mmu_context.h> 64 #include <asm/types.h> 65 #include <asm/stacktrace.h> 66 #include <asm/uasm.h> 67 68 extern void check_wait(void); 69 extern asmlinkage void rollback_handle_int(void); 70 extern asmlinkage void handle_int(void); 71 extern u32 handle_tlbl[]; 72 extern u32 handle_tlbs[]; 73 extern u32 handle_tlbm[]; 74 extern asmlinkage void handle_adel(void); 75 extern asmlinkage void handle_ades(void); 76 extern asmlinkage void handle_ibe(void); 77 extern asmlinkage void handle_dbe(void); 78 extern asmlinkage void handle_sys(void); 79 extern asmlinkage void handle_bp(void); 80 extern asmlinkage void handle_ri(void); 81 extern asmlinkage void handle_ri_rdhwr_vivt(void); 82 extern asmlinkage void handle_ri_rdhwr(void); 83 extern asmlinkage void handle_cpu(void); 84 extern asmlinkage void handle_ov(void); 85 extern asmlinkage void handle_tr(void); 86 extern asmlinkage void handle_msa_fpe(void); 87 extern asmlinkage void handle_fpe(void); 88 extern asmlinkage void handle_ftlb(void); 89 extern asmlinkage void handle_msa(void); 90 extern asmlinkage void handle_mdmx(void); 91 extern asmlinkage void handle_watch(void); 92 extern asmlinkage void handle_mt(void); 93 extern asmlinkage void handle_dsp(void); 94 extern asmlinkage void handle_mcheck(void); 95 extern asmlinkage void handle_reserved(void); 96 extern void tlb_do_page_fault_0(void); 97 98 void (*board_be_init)(void); 99 int (*board_be_handler)(struct pt_regs *regs, int is_fixup); 100 void (*board_nmi_handler_setup)(void); 101 void (*board_ejtag_handler_setup)(void); 102 void (*board_bind_eic_interrupt)(int irq, int regset); 103 void (*board_ebase_setup)(void); 104 void(*board_cache_error_setup)(void); 105 106 static void show_raw_backtrace(unsigned long reg29) 107 { 108 unsigned long *sp = (unsigned long *)(reg29 & ~3); 109 unsigned long addr; 110 111 printk("Call Trace:"); 112 #ifdef CONFIG_KALLSYMS 113 printk("\n"); 114 #endif 115 while (!kstack_end(sp)) { 116 unsigned long __user *p = 117 (unsigned long __user *)(unsigned long)sp++; 118 if (__get_user(addr, p)) { 119 printk(" (Bad stack address)"); 120 break; 121 } 122 if (__kernel_text_address(addr)) 123 print_ip_sym(addr); 124 } 125 printk("\n"); 126 } 127 128 #ifdef CONFIG_KALLSYMS 129 int raw_show_trace; 130 static int __init set_raw_show_trace(char *str) 131 { 132 raw_show_trace = 1; 133 return 1; 134 } 135 __setup("raw_show_trace", set_raw_show_trace); 136 #endif 137 138 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs) 139 { 140 unsigned long sp = regs->regs[29]; 141 unsigned long ra = regs->regs[31]; 142 unsigned long pc = regs->cp0_epc; 143 144 if (!task) 145 task = current; 146 147 if (raw_show_trace || !__kernel_text_address(pc)) { 148 show_raw_backtrace(sp); 149 return; 150 } 151 printk("Call Trace:\n"); 152 do { 153 print_ip_sym(pc); 154 pc = unwind_stack(task, &sp, pc, &ra); 155 } while (pc); 156 printk("\n"); 157 } 158 159 /* 160 * This routine abuses get_user()/put_user() to reference pointers 161 * with at least a bit of error checking ... 162 */ 163 static void show_stacktrace(struct task_struct *task, 164 const struct pt_regs *regs) 165 { 166 const int field = 2 * sizeof(unsigned long); 167 long stackdata; 168 int i; 169 unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; 170 171 printk("Stack :"); 172 i = 0; 173 while ((unsigned long) sp & (PAGE_SIZE - 1)) { 174 if (i && ((i % (64 / field)) == 0)) 175 printk("\n "); 176 if (i > 39) { 177 printk(" ..."); 178 break; 179 } 180 181 if (__get_user(stackdata, sp++)) { 182 printk(" (Bad stack address)"); 183 break; 184 } 185 186 printk(" %0*lx", field, stackdata); 187 i++; 188 } 189 printk("\n"); 190 show_backtrace(task, regs); 191 } 192 193 void show_stack(struct task_struct *task, unsigned long *sp) 194 { 195 struct pt_regs regs; 196 mm_segment_t old_fs = get_fs(); 197 if (sp) { 198 regs.regs[29] = (unsigned long)sp; 199 regs.regs[31] = 0; 200 regs.cp0_epc = 0; 201 } else { 202 if (task && task != current) { 203 regs.regs[29] = task->thread.reg29; 204 regs.regs[31] = 0; 205 regs.cp0_epc = task->thread.reg31; 206 #ifdef CONFIG_KGDB_KDB 207 } else if (atomic_read(&kgdb_active) != -1 && 208 kdb_current_regs) { 209 memcpy(®s, kdb_current_regs, sizeof(regs)); 210 #endif /* CONFIG_KGDB_KDB */ 211 } else { 212 prepare_frametrace(®s); 213 } 214 } 215 /* 216 * show_stack() deals exclusively with kernel mode, so be sure to access 217 * the stack in the kernel (not user) address space. 218 */ 219 set_fs(KERNEL_DS); 220 show_stacktrace(task, ®s); 221 set_fs(old_fs); 222 } 223 224 static void show_code(unsigned int __user *pc) 225 { 226 long i; 227 unsigned short __user *pc16 = NULL; 228 229 printk("\nCode:"); 230 231 if ((unsigned long)pc & 1) 232 pc16 = (unsigned short __user *)((unsigned long)pc & ~1); 233 for(i = -3 ; i < 6 ; i++) { 234 unsigned int insn; 235 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { 236 printk(" (Bad address in epc)\n"); 237 break; 238 } 239 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); 240 } 241 } 242 243 static void __show_regs(const struct pt_regs *regs) 244 { 245 const int field = 2 * sizeof(unsigned long); 246 unsigned int cause = regs->cp0_cause; 247 unsigned int exccode; 248 int i; 249 250 show_regs_print_info(KERN_DEFAULT); 251 252 /* 253 * Saved main processor registers 254 */ 255 for (i = 0; i < 32; ) { 256 if ((i % 4) == 0) 257 printk("$%2d :", i); 258 if (i == 0) 259 printk(" %0*lx", field, 0UL); 260 else if (i == 26 || i == 27) 261 printk(" %*s", field, ""); 262 else 263 printk(" %0*lx", field, regs->regs[i]); 264 265 i++; 266 if ((i % 4) == 0) 267 printk("\n"); 268 } 269 270 #ifdef CONFIG_CPU_HAS_SMARTMIPS 271 printk("Acx : %0*lx\n", field, regs->acx); 272 #endif 273 printk("Hi : %0*lx\n", field, regs->hi); 274 printk("Lo : %0*lx\n", field, regs->lo); 275 276 /* 277 * Saved cp0 registers 278 */ 279 printk("epc : %0*lx %pS\n", field, regs->cp0_epc, 280 (void *) regs->cp0_epc); 281 printk("ra : %0*lx %pS\n", field, regs->regs[31], 282 (void *) regs->regs[31]); 283 284 printk("Status: %08x ", (uint32_t) regs->cp0_status); 285 286 if (cpu_has_3kex) { 287 if (regs->cp0_status & ST0_KUO) 288 printk("KUo "); 289 if (regs->cp0_status & ST0_IEO) 290 printk("IEo "); 291 if (regs->cp0_status & ST0_KUP) 292 printk("KUp "); 293 if (regs->cp0_status & ST0_IEP) 294 printk("IEp "); 295 if (regs->cp0_status & ST0_KUC) 296 printk("KUc "); 297 if (regs->cp0_status & ST0_IEC) 298 printk("IEc "); 299 } else if (cpu_has_4kex) { 300 if (regs->cp0_status & ST0_KX) 301 printk("KX "); 302 if (regs->cp0_status & ST0_SX) 303 printk("SX "); 304 if (regs->cp0_status & ST0_UX) 305 printk("UX "); 306 switch (regs->cp0_status & ST0_KSU) { 307 case KSU_USER: 308 printk("USER "); 309 break; 310 case KSU_SUPERVISOR: 311 printk("SUPERVISOR "); 312 break; 313 case KSU_KERNEL: 314 printk("KERNEL "); 315 break; 316 default: 317 printk("BAD_MODE "); 318 break; 319 } 320 if (regs->cp0_status & ST0_ERL) 321 printk("ERL "); 322 if (regs->cp0_status & ST0_EXL) 323 printk("EXL "); 324 if (regs->cp0_status & ST0_IE) 325 printk("IE "); 326 } 327 printk("\n"); 328 329 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; 330 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode); 331 332 if (1 <= exccode && exccode <= 5) 333 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); 334 335 printk("PrId : %08x (%s)\n", read_c0_prid(), 336 cpu_name_string()); 337 } 338 339 /* 340 * FIXME: really the generic show_regs should take a const pointer argument. 341 */ 342 void show_regs(struct pt_regs *regs) 343 { 344 __show_regs((struct pt_regs *)regs); 345 } 346 347 void show_registers(struct pt_regs *regs) 348 { 349 const int field = 2 * sizeof(unsigned long); 350 mm_segment_t old_fs = get_fs(); 351 352 __show_regs(regs); 353 print_modules(); 354 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", 355 current->comm, current->pid, current_thread_info(), current, 356 field, current_thread_info()->tp_value); 357 if (cpu_has_userlocal) { 358 unsigned long tls; 359 360 tls = read_c0_userlocal(); 361 if (tls != current_thread_info()->tp_value) 362 printk("*HwTLS: %0*lx\n", field, tls); 363 } 364 365 if (!user_mode(regs)) 366 /* Necessary for getting the correct stack content */ 367 set_fs(KERNEL_DS); 368 show_stacktrace(current, regs); 369 show_code((unsigned int __user *) regs->cp0_epc); 370 printk("\n"); 371 set_fs(old_fs); 372 } 373 374 static DEFINE_RAW_SPINLOCK(die_lock); 375 376 void __noreturn die(const char *str, struct pt_regs *regs) 377 { 378 static int die_counter; 379 int sig = SIGSEGV; 380 381 oops_enter(); 382 383 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr, 384 SIGSEGV) == NOTIFY_STOP) 385 sig = 0; 386 387 console_verbose(); 388 raw_spin_lock_irq(&die_lock); 389 bust_spinlocks(1); 390 391 printk("%s[#%d]:\n", str, ++die_counter); 392 show_registers(regs); 393 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 394 raw_spin_unlock_irq(&die_lock); 395 396 oops_exit(); 397 398 if (in_interrupt()) 399 panic("Fatal exception in interrupt"); 400 401 if (panic_on_oops) { 402 printk(KERN_EMERG "Fatal exception: panic in 5 seconds"); 403 ssleep(5); 404 panic("Fatal exception"); 405 } 406 407 if (regs && kexec_should_crash(current)) 408 crash_kexec(regs); 409 410 do_exit(sig); 411 } 412 413 extern struct exception_table_entry __start___dbe_table[]; 414 extern struct exception_table_entry __stop___dbe_table[]; 415 416 __asm__( 417 " .section __dbe_table, \"a\"\n" 418 " .previous \n"); 419 420 /* Given an address, look for it in the exception tables. */ 421 static const struct exception_table_entry *search_dbe_tables(unsigned long addr) 422 { 423 const struct exception_table_entry *e; 424 425 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr); 426 if (!e) 427 e = search_module_dbetables(addr); 428 return e; 429 } 430 431 asmlinkage void do_be(struct pt_regs *regs) 432 { 433 const int field = 2 * sizeof(unsigned long); 434 const struct exception_table_entry *fixup = NULL; 435 int data = regs->cp0_cause & 4; 436 int action = MIPS_BE_FATAL; 437 enum ctx_state prev_state; 438 439 prev_state = exception_enter(); 440 /* XXX For now. Fixme, this searches the wrong table ... */ 441 if (data && !user_mode(regs)) 442 fixup = search_dbe_tables(exception_epc(regs)); 443 444 if (fixup) 445 action = MIPS_BE_FIXUP; 446 447 if (board_be_handler) 448 action = board_be_handler(regs, fixup != NULL); 449 450 switch (action) { 451 case MIPS_BE_DISCARD: 452 goto out; 453 case MIPS_BE_FIXUP: 454 if (fixup) { 455 regs->cp0_epc = fixup->nextinsn; 456 goto out; 457 } 458 break; 459 default: 460 break; 461 } 462 463 /* 464 * Assume it would be too dangerous to continue ... 465 */ 466 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", 467 data ? "Data" : "Instruction", 468 field, regs->cp0_epc, field, regs->regs[31]); 469 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr, 470 SIGBUS) == NOTIFY_STOP) 471 goto out; 472 473 die_if_kernel("Oops", regs); 474 force_sig(SIGBUS, current); 475 476 out: 477 exception_exit(prev_state); 478 } 479 480 /* 481 * ll/sc, rdhwr, sync emulation 482 */ 483 484 #define OPCODE 0xfc000000 485 #define BASE 0x03e00000 486 #define RT 0x001f0000 487 #define OFFSET 0x0000ffff 488 #define LL 0xc0000000 489 #define SC 0xe0000000 490 #define SPEC0 0x00000000 491 #define SPEC3 0x7c000000 492 #define RD 0x0000f800 493 #define FUNC 0x0000003f 494 #define SYNC 0x0000000f 495 #define RDHWR 0x0000003b 496 497 /* microMIPS definitions */ 498 #define MM_POOL32A_FUNC 0xfc00ffff 499 #define MM_RDHWR 0x00006b3c 500 #define MM_RS 0x001f0000 501 #define MM_RT 0x03e00000 502 503 /* 504 * The ll_bit is cleared by r*_switch.S 505 */ 506 507 unsigned int ll_bit; 508 struct task_struct *ll_task; 509 510 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) 511 { 512 unsigned long value, __user *vaddr; 513 long offset; 514 515 /* 516 * analyse the ll instruction that just caused a ri exception 517 * and put the referenced address to addr. 518 */ 519 520 /* sign extend offset */ 521 offset = opcode & OFFSET; 522 offset <<= 16; 523 offset >>= 16; 524 525 vaddr = (unsigned long __user *) 526 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 527 528 if ((unsigned long)vaddr & 3) 529 return SIGBUS; 530 if (get_user(value, vaddr)) 531 return SIGSEGV; 532 533 preempt_disable(); 534 535 if (ll_task == NULL || ll_task == current) { 536 ll_bit = 1; 537 } else { 538 ll_bit = 0; 539 } 540 ll_task = current; 541 542 preempt_enable(); 543 544 regs->regs[(opcode & RT) >> 16] = value; 545 546 return 0; 547 } 548 549 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) 550 { 551 unsigned long __user *vaddr; 552 unsigned long reg; 553 long offset; 554 555 /* 556 * analyse the sc instruction that just caused a ri exception 557 * and put the referenced address to addr. 558 */ 559 560 /* sign extend offset */ 561 offset = opcode & OFFSET; 562 offset <<= 16; 563 offset >>= 16; 564 565 vaddr = (unsigned long __user *) 566 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 567 reg = (opcode & RT) >> 16; 568 569 if ((unsigned long)vaddr & 3) 570 return SIGBUS; 571 572 preempt_disable(); 573 574 if (ll_bit == 0 || ll_task != current) { 575 regs->regs[reg] = 0; 576 preempt_enable(); 577 return 0; 578 } 579 580 preempt_enable(); 581 582 if (put_user(regs->regs[reg], vaddr)) 583 return SIGSEGV; 584 585 regs->regs[reg] = 1; 586 587 return 0; 588 } 589 590 /* 591 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both 592 * opcodes are supposed to result in coprocessor unusable exceptions if 593 * executed on ll/sc-less processors. That's the theory. In practice a 594 * few processors such as NEC's VR4100 throw reserved instruction exceptions 595 * instead, so we're doing the emulation thing in both exception handlers. 596 */ 597 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) 598 { 599 if ((opcode & OPCODE) == LL) { 600 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 601 1, regs, 0); 602 return simulate_ll(regs, opcode); 603 } 604 if ((opcode & OPCODE) == SC) { 605 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 606 1, regs, 0); 607 return simulate_sc(regs, opcode); 608 } 609 610 return -1; /* Must be something else ... */ 611 } 612 613 /* 614 * Simulate trapping 'rdhwr' instructions to provide user accessible 615 * registers not implemented in hardware. 616 */ 617 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt) 618 { 619 struct thread_info *ti = task_thread_info(current); 620 621 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 622 1, regs, 0); 623 switch (rd) { 624 case 0: /* CPU number */ 625 regs->regs[rt] = smp_processor_id(); 626 return 0; 627 case 1: /* SYNCI length */ 628 regs->regs[rt] = min(current_cpu_data.dcache.linesz, 629 current_cpu_data.icache.linesz); 630 return 0; 631 case 2: /* Read count register */ 632 regs->regs[rt] = read_c0_count(); 633 return 0; 634 case 3: /* Count register resolution */ 635 switch (current_cpu_type()) { 636 case CPU_20KC: 637 case CPU_25KF: 638 regs->regs[rt] = 1; 639 break; 640 default: 641 regs->regs[rt] = 2; 642 } 643 return 0; 644 case 29: 645 regs->regs[rt] = ti->tp_value; 646 return 0; 647 default: 648 return -1; 649 } 650 } 651 652 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode) 653 { 654 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { 655 int rd = (opcode & RD) >> 11; 656 int rt = (opcode & RT) >> 16; 657 658 simulate_rdhwr(regs, rd, rt); 659 return 0; 660 } 661 662 /* Not ours. */ 663 return -1; 664 } 665 666 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode) 667 { 668 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) { 669 int rd = (opcode & MM_RS) >> 16; 670 int rt = (opcode & MM_RT) >> 21; 671 simulate_rdhwr(regs, rd, rt); 672 return 0; 673 } 674 675 /* Not ours. */ 676 return -1; 677 } 678 679 static int simulate_sync(struct pt_regs *regs, unsigned int opcode) 680 { 681 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) { 682 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 683 1, regs, 0); 684 return 0; 685 } 686 687 return -1; /* Must be something else ... */ 688 } 689 690 asmlinkage void do_ov(struct pt_regs *regs) 691 { 692 enum ctx_state prev_state; 693 siginfo_t info = { 694 .si_signo = SIGFPE, 695 .si_code = FPE_INTOVF, 696 .si_addr = (void __user *)regs->cp0_epc, 697 }; 698 699 prev_state = exception_enter(); 700 die_if_kernel("Integer overflow", regs); 701 702 force_sig_info(SIGFPE, &info, current); 703 exception_exit(prev_state); 704 } 705 706 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31) 707 { 708 struct siginfo si = { 0 }; 709 710 switch (sig) { 711 case 0: 712 return 0; 713 714 case SIGFPE: 715 si.si_addr = fault_addr; 716 si.si_signo = sig; 717 /* 718 * Inexact can happen together with Overflow or Underflow. 719 * Respect the mask to deliver the correct exception. 720 */ 721 fcr31 &= (fcr31 & FPU_CSR_ALL_E) << 722 (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E)); 723 if (fcr31 & FPU_CSR_INV_X) 724 si.si_code = FPE_FLTINV; 725 else if (fcr31 & FPU_CSR_DIV_X) 726 si.si_code = FPE_FLTDIV; 727 else if (fcr31 & FPU_CSR_OVF_X) 728 si.si_code = FPE_FLTOVF; 729 else if (fcr31 & FPU_CSR_UDF_X) 730 si.si_code = FPE_FLTUND; 731 else if (fcr31 & FPU_CSR_INE_X) 732 si.si_code = FPE_FLTRES; 733 else 734 si.si_code = __SI_FAULT; 735 force_sig_info(sig, &si, current); 736 return 1; 737 738 case SIGBUS: 739 si.si_addr = fault_addr; 740 si.si_signo = sig; 741 si.si_code = BUS_ADRERR; 742 force_sig_info(sig, &si, current); 743 return 1; 744 745 case SIGSEGV: 746 si.si_addr = fault_addr; 747 si.si_signo = sig; 748 down_read(¤t->mm->mmap_sem); 749 if (find_vma(current->mm, (unsigned long)fault_addr)) 750 si.si_code = SEGV_ACCERR; 751 else 752 si.si_code = SEGV_MAPERR; 753 up_read(¤t->mm->mmap_sem); 754 force_sig_info(sig, &si, current); 755 return 1; 756 757 default: 758 force_sig(sig, current); 759 return 1; 760 } 761 } 762 763 static int simulate_fp(struct pt_regs *regs, unsigned int opcode, 764 unsigned long old_epc, unsigned long old_ra) 765 { 766 union mips_instruction inst = { .word = opcode }; 767 void __user *fault_addr; 768 unsigned long fcr31; 769 int sig; 770 771 /* If it's obviously not an FP instruction, skip it */ 772 switch (inst.i_format.opcode) { 773 case cop1_op: 774 case cop1x_op: 775 case lwc1_op: 776 case ldc1_op: 777 case swc1_op: 778 case sdc1_op: 779 break; 780 781 default: 782 return -1; 783 } 784 785 /* 786 * do_ri skipped over the instruction via compute_return_epc, undo 787 * that for the FPU emulator. 788 */ 789 regs->cp0_epc = old_epc; 790 regs->regs[31] = old_ra; 791 792 /* Save the FP context to struct thread_struct */ 793 lose_fpu(1); 794 795 /* Run the emulator */ 796 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 797 &fault_addr); 798 fcr31 = current->thread.fpu.fcr31; 799 800 /* 801 * We can't allow the emulated instruction to leave any of 802 * the cause bits set in $fcr31. 803 */ 804 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 805 806 /* Restore the hardware register state */ 807 own_fpu(1); 808 809 /* Send a signal if required. */ 810 process_fpemu_return(sig, fault_addr, fcr31); 811 812 return 0; 813 } 814 815 /* 816 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX 817 */ 818 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) 819 { 820 enum ctx_state prev_state; 821 void __user *fault_addr; 822 int sig; 823 824 prev_state = exception_enter(); 825 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr, 826 SIGFPE) == NOTIFY_STOP) 827 goto out; 828 829 /* Clear FCSR.Cause before enabling interrupts */ 830 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X); 831 local_irq_enable(); 832 833 die_if_kernel("FP exception in kernel code", regs); 834 835 if (fcr31 & FPU_CSR_UNI_X) { 836 /* 837 * Unimplemented operation exception. If we've got the full 838 * software emulator on-board, let's use it... 839 * 840 * Force FPU to dump state into task/thread context. We're 841 * moving a lot of data here for what is probably a single 842 * instruction, but the alternative is to pre-decode the FP 843 * register operands before invoking the emulator, which seems 844 * a bit extreme for what should be an infrequent event. 845 */ 846 /* Ensure 'resume' not overwrite saved fp context again. */ 847 lose_fpu(1); 848 849 /* Run the emulator */ 850 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 851 &fault_addr); 852 fcr31 = current->thread.fpu.fcr31; 853 854 /* 855 * We can't allow the emulated instruction to leave any of 856 * the cause bits set in $fcr31. 857 */ 858 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 859 860 /* Restore the hardware register state */ 861 own_fpu(1); /* Using the FPU again. */ 862 } else { 863 sig = SIGFPE; 864 fault_addr = (void __user *) regs->cp0_epc; 865 } 866 867 /* Send a signal if required. */ 868 process_fpemu_return(sig, fault_addr, fcr31); 869 870 out: 871 exception_exit(prev_state); 872 } 873 874 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, 875 const char *str) 876 { 877 siginfo_t info = { 0 }; 878 char b[40]; 879 880 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 881 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr, 882 SIGTRAP) == NOTIFY_STOP) 883 return; 884 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 885 886 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr, 887 SIGTRAP) == NOTIFY_STOP) 888 return; 889 890 /* 891 * A short test says that IRIX 5.3 sends SIGTRAP for all trap 892 * insns, even for trap and break codes that indicate arithmetic 893 * failures. Weird ... 894 * But should we continue the brokenness??? --macro 895 */ 896 switch (code) { 897 case BRK_OVERFLOW: 898 case BRK_DIVZERO: 899 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 900 die_if_kernel(b, regs); 901 if (code == BRK_DIVZERO) 902 info.si_code = FPE_INTDIV; 903 else 904 info.si_code = FPE_INTOVF; 905 info.si_signo = SIGFPE; 906 info.si_addr = (void __user *) regs->cp0_epc; 907 force_sig_info(SIGFPE, &info, current); 908 break; 909 case BRK_BUG: 910 die_if_kernel("Kernel bug detected", regs); 911 force_sig(SIGTRAP, current); 912 break; 913 case BRK_MEMU: 914 /* 915 * This breakpoint code is used by the FPU emulator to retake 916 * control of the CPU after executing the instruction from the 917 * delay slot of an emulated branch. 918 * 919 * Terminate if exception was recognized as a delay slot return 920 * otherwise handle as normal. 921 */ 922 if (do_dsemulret(regs)) 923 return; 924 925 die_if_kernel("Math emu break/trap", regs); 926 force_sig(SIGTRAP, current); 927 break; 928 default: 929 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 930 die_if_kernel(b, regs); 931 force_sig(SIGTRAP, current); 932 } 933 } 934 935 asmlinkage void do_bp(struct pt_regs *regs) 936 { 937 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 938 unsigned int opcode, bcode; 939 enum ctx_state prev_state; 940 mm_segment_t seg; 941 942 seg = get_fs(); 943 if (!user_mode(regs)) 944 set_fs(KERNEL_DS); 945 946 prev_state = exception_enter(); 947 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 948 if (get_isa16_mode(regs->cp0_epc)) { 949 u16 instr[2]; 950 951 if (__get_user(instr[0], (u16 __user *)epc)) 952 goto out_sigsegv; 953 954 if (!cpu_has_mmips) { 955 /* MIPS16e mode */ 956 bcode = (instr[0] >> 5) & 0x3f; 957 } else if (mm_insn_16bit(instr[0])) { 958 /* 16-bit microMIPS BREAK */ 959 bcode = instr[0] & 0xf; 960 } else { 961 /* 32-bit microMIPS BREAK */ 962 if (__get_user(instr[1], (u16 __user *)(epc + 2))) 963 goto out_sigsegv; 964 opcode = (instr[0] << 16) | instr[1]; 965 bcode = (opcode >> 6) & ((1 << 20) - 1); 966 } 967 } else { 968 if (__get_user(opcode, (unsigned int __user *)epc)) 969 goto out_sigsegv; 970 bcode = (opcode >> 6) & ((1 << 20) - 1); 971 } 972 973 /* 974 * There is the ancient bug in the MIPS assemblers that the break 975 * code starts left to bit 16 instead to bit 6 in the opcode. 976 * Gas is bug-compatible, but not always, grrr... 977 * We handle both cases with a simple heuristics. --macro 978 */ 979 if (bcode >= (1 << 10)) 980 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10); 981 982 /* 983 * notify the kprobe handlers, if instruction is likely to 984 * pertain to them. 985 */ 986 switch (bcode) { 987 case BRK_UPROBE: 988 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode, 989 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 990 goto out; 991 else 992 break; 993 case BRK_UPROBE_XOL: 994 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode, 995 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 996 goto out; 997 else 998 break; 999 case BRK_KPROBE_BP: 1000 if (notify_die(DIE_BREAK, "debug", regs, bcode, 1001 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1002 goto out; 1003 else 1004 break; 1005 case BRK_KPROBE_SSTEPBP: 1006 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, 1007 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1008 goto out; 1009 else 1010 break; 1011 default: 1012 break; 1013 } 1014 1015 do_trap_or_bp(regs, bcode, "Break"); 1016 1017 out: 1018 set_fs(seg); 1019 exception_exit(prev_state); 1020 return; 1021 1022 out_sigsegv: 1023 force_sig(SIGSEGV, current); 1024 goto out; 1025 } 1026 1027 asmlinkage void do_tr(struct pt_regs *regs) 1028 { 1029 u32 opcode, tcode = 0; 1030 enum ctx_state prev_state; 1031 u16 instr[2]; 1032 mm_segment_t seg; 1033 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 1034 1035 seg = get_fs(); 1036 if (!user_mode(regs)) 1037 set_fs(get_ds()); 1038 1039 prev_state = exception_enter(); 1040 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1041 if (get_isa16_mode(regs->cp0_epc)) { 1042 if (__get_user(instr[0], (u16 __user *)(epc + 0)) || 1043 __get_user(instr[1], (u16 __user *)(epc + 2))) 1044 goto out_sigsegv; 1045 opcode = (instr[0] << 16) | instr[1]; 1046 /* Immediate versions don't provide a code. */ 1047 if (!(opcode & OPCODE)) 1048 tcode = (opcode >> 12) & ((1 << 4) - 1); 1049 } else { 1050 if (__get_user(opcode, (u32 __user *)epc)) 1051 goto out_sigsegv; 1052 /* Immediate versions don't provide a code. */ 1053 if (!(opcode & OPCODE)) 1054 tcode = (opcode >> 6) & ((1 << 10) - 1); 1055 } 1056 1057 do_trap_or_bp(regs, tcode, "Trap"); 1058 1059 out: 1060 set_fs(seg); 1061 exception_exit(prev_state); 1062 return; 1063 1064 out_sigsegv: 1065 force_sig(SIGSEGV, current); 1066 goto out; 1067 } 1068 1069 asmlinkage void do_ri(struct pt_regs *regs) 1070 { 1071 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); 1072 unsigned long old_epc = regs->cp0_epc; 1073 unsigned long old31 = regs->regs[31]; 1074 enum ctx_state prev_state; 1075 unsigned int opcode = 0; 1076 int status = -1; 1077 1078 /* 1079 * Avoid any kernel code. Just emulate the R2 instruction 1080 * as quickly as possible. 1081 */ 1082 if (mipsr2_emulation && cpu_has_mips_r6 && 1083 likely(user_mode(regs)) && 1084 likely(get_user(opcode, epc) >= 0)) { 1085 unsigned long fcr31 = 0; 1086 1087 status = mipsr2_decoder(regs, opcode, &fcr31); 1088 switch (status) { 1089 case 0: 1090 case SIGEMT: 1091 task_thread_info(current)->r2_emul_return = 1; 1092 return; 1093 case SIGILL: 1094 goto no_r2_instr; 1095 default: 1096 process_fpemu_return(status, 1097 ¤t->thread.cp0_baduaddr, 1098 fcr31); 1099 task_thread_info(current)->r2_emul_return = 1; 1100 return; 1101 } 1102 } 1103 1104 no_r2_instr: 1105 1106 prev_state = exception_enter(); 1107 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1108 1109 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr, 1110 SIGILL) == NOTIFY_STOP) 1111 goto out; 1112 1113 die_if_kernel("Reserved instruction in kernel code", regs); 1114 1115 if (unlikely(compute_return_epc(regs) < 0)) 1116 goto out; 1117 1118 if (get_isa16_mode(regs->cp0_epc)) { 1119 unsigned short mmop[2] = { 0 }; 1120 1121 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0)) 1122 status = SIGSEGV; 1123 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0)) 1124 status = SIGSEGV; 1125 opcode = mmop[0]; 1126 opcode = (opcode << 16) | mmop[1]; 1127 1128 if (status < 0) 1129 status = simulate_rdhwr_mm(regs, opcode); 1130 } else { 1131 if (unlikely(get_user(opcode, epc) < 0)) 1132 status = SIGSEGV; 1133 1134 if (!cpu_has_llsc && status < 0) 1135 status = simulate_llsc(regs, opcode); 1136 1137 if (status < 0) 1138 status = simulate_rdhwr_normal(regs, opcode); 1139 1140 if (status < 0) 1141 status = simulate_sync(regs, opcode); 1142 1143 if (status < 0) 1144 status = simulate_fp(regs, opcode, old_epc, old31); 1145 } 1146 1147 if (status < 0) 1148 status = SIGILL; 1149 1150 if (unlikely(status > 0)) { 1151 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1152 regs->regs[31] = old31; 1153 force_sig(status, current); 1154 } 1155 1156 out: 1157 exception_exit(prev_state); 1158 } 1159 1160 /* 1161 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've 1162 * emulated more than some threshold number of instructions, force migration to 1163 * a "CPU" that has FP support. 1164 */ 1165 static void mt_ase_fp_affinity(void) 1166 { 1167 #ifdef CONFIG_MIPS_MT_FPAFF 1168 if (mt_fpemul_threshold > 0 && 1169 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { 1170 /* 1171 * If there's no FPU present, or if the application has already 1172 * restricted the allowed set to exclude any CPUs with FPUs, 1173 * we'll skip the procedure. 1174 */ 1175 if (cpumask_intersects(¤t->cpus_allowed, &mt_fpu_cpumask)) { 1176 cpumask_t tmask; 1177 1178 current->thread.user_cpus_allowed 1179 = current->cpus_allowed; 1180 cpumask_and(&tmask, ¤t->cpus_allowed, 1181 &mt_fpu_cpumask); 1182 set_cpus_allowed_ptr(current, &tmask); 1183 set_thread_flag(TIF_FPUBOUND); 1184 } 1185 } 1186 #endif /* CONFIG_MIPS_MT_FPAFF */ 1187 } 1188 1189 /* 1190 * No lock; only written during early bootup by CPU 0. 1191 */ 1192 static RAW_NOTIFIER_HEAD(cu2_chain); 1193 1194 int __ref register_cu2_notifier(struct notifier_block *nb) 1195 { 1196 return raw_notifier_chain_register(&cu2_chain, nb); 1197 } 1198 1199 int cu2_notifier_call_chain(unsigned long val, void *v) 1200 { 1201 return raw_notifier_call_chain(&cu2_chain, val, v); 1202 } 1203 1204 static int default_cu2_call(struct notifier_block *nfb, unsigned long action, 1205 void *data) 1206 { 1207 struct pt_regs *regs = data; 1208 1209 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid " 1210 "instruction", regs); 1211 force_sig(SIGILL, current); 1212 1213 return NOTIFY_OK; 1214 } 1215 1216 static int wait_on_fp_mode_switch(atomic_t *p) 1217 { 1218 /* 1219 * The FP mode for this task is currently being switched. That may 1220 * involve modifications to the format of this tasks FP context which 1221 * make it unsafe to proceed with execution for the moment. Instead, 1222 * schedule some other task. 1223 */ 1224 schedule(); 1225 return 0; 1226 } 1227 1228 static int enable_restore_fp_context(int msa) 1229 { 1230 int err, was_fpu_owner, prior_msa; 1231 1232 /* 1233 * If an FP mode switch is currently underway, wait for it to 1234 * complete before proceeding. 1235 */ 1236 wait_on_atomic_t(¤t->mm->context.fp_mode_switching, 1237 wait_on_fp_mode_switch, TASK_KILLABLE); 1238 1239 if (!used_math()) { 1240 /* First time FP context user. */ 1241 preempt_disable(); 1242 err = init_fpu(); 1243 if (msa && !err) { 1244 enable_msa(); 1245 _init_msa_upper(); 1246 set_thread_flag(TIF_USEDMSA); 1247 set_thread_flag(TIF_MSA_CTX_LIVE); 1248 } 1249 preempt_enable(); 1250 if (!err) 1251 set_used_math(); 1252 return err; 1253 } 1254 1255 /* 1256 * This task has formerly used the FP context. 1257 * 1258 * If this thread has no live MSA vector context then we can simply 1259 * restore the scalar FP context. If it has live MSA vector context 1260 * (that is, it has or may have used MSA since last performing a 1261 * function call) then we'll need to restore the vector context. This 1262 * applies even if we're currently only executing a scalar FP 1263 * instruction. This is because if we were to later execute an MSA 1264 * instruction then we'd either have to: 1265 * 1266 * - Restore the vector context & clobber any registers modified by 1267 * scalar FP instructions between now & then. 1268 * 1269 * or 1270 * 1271 * - Not restore the vector context & lose the most significant bits 1272 * of all vector registers. 1273 * 1274 * Neither of those options is acceptable. We cannot restore the least 1275 * significant bits of the registers now & only restore the most 1276 * significant bits later because the most significant bits of any 1277 * vector registers whose aliased FP register is modified now will have 1278 * been zeroed. We'd have no way to know that when restoring the vector 1279 * context & thus may load an outdated value for the most significant 1280 * bits of a vector register. 1281 */ 1282 if (!msa && !thread_msa_context_live()) 1283 return own_fpu(1); 1284 1285 /* 1286 * This task is using or has previously used MSA. Thus we require 1287 * that Status.FR == 1. 1288 */ 1289 preempt_disable(); 1290 was_fpu_owner = is_fpu_owner(); 1291 err = own_fpu_inatomic(0); 1292 if (err) 1293 goto out; 1294 1295 enable_msa(); 1296 write_msa_csr(current->thread.fpu.msacsr); 1297 set_thread_flag(TIF_USEDMSA); 1298 1299 /* 1300 * If this is the first time that the task is using MSA and it has 1301 * previously used scalar FP in this time slice then we already nave 1302 * FP context which we shouldn't clobber. We do however need to clear 1303 * the upper 64b of each vector register so that this task has no 1304 * opportunity to see data left behind by another. 1305 */ 1306 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE); 1307 if (!prior_msa && was_fpu_owner) { 1308 _init_msa_upper(); 1309 1310 goto out; 1311 } 1312 1313 if (!prior_msa) { 1314 /* 1315 * Restore the least significant 64b of each vector register 1316 * from the existing scalar FP context. 1317 */ 1318 _restore_fp(current); 1319 1320 /* 1321 * The task has not formerly used MSA, so clear the upper 64b 1322 * of each vector register such that it cannot see data left 1323 * behind by another task. 1324 */ 1325 _init_msa_upper(); 1326 } else { 1327 /* We need to restore the vector context. */ 1328 restore_msa(current); 1329 1330 /* Restore the scalar FP control & status register */ 1331 if (!was_fpu_owner) 1332 write_32bit_cp1_register(CP1_STATUS, 1333 current->thread.fpu.fcr31); 1334 } 1335 1336 out: 1337 preempt_enable(); 1338 1339 return 0; 1340 } 1341 1342 asmlinkage void do_cpu(struct pt_regs *regs) 1343 { 1344 enum ctx_state prev_state; 1345 unsigned int __user *epc; 1346 unsigned long old_epc, old31; 1347 void __user *fault_addr; 1348 unsigned int opcode; 1349 unsigned long fcr31; 1350 unsigned int cpid; 1351 int status, err; 1352 unsigned long __maybe_unused flags; 1353 int sig; 1354 1355 prev_state = exception_enter(); 1356 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; 1357 1358 if (cpid != 2) 1359 die_if_kernel("do_cpu invoked from kernel context!", regs); 1360 1361 switch (cpid) { 1362 case 0: 1363 epc = (unsigned int __user *)exception_epc(regs); 1364 old_epc = regs->cp0_epc; 1365 old31 = regs->regs[31]; 1366 opcode = 0; 1367 status = -1; 1368 1369 if (unlikely(compute_return_epc(regs) < 0)) 1370 break; 1371 1372 if (!get_isa16_mode(regs->cp0_epc)) { 1373 if (unlikely(get_user(opcode, epc) < 0)) 1374 status = SIGSEGV; 1375 1376 if (!cpu_has_llsc && status < 0) 1377 status = simulate_llsc(regs, opcode); 1378 } 1379 1380 if (status < 0) 1381 status = SIGILL; 1382 1383 if (unlikely(status > 0)) { 1384 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1385 regs->regs[31] = old31; 1386 force_sig(status, current); 1387 } 1388 1389 break; 1390 1391 case 3: 1392 /* 1393 * The COP3 opcode space and consequently the CP0.Status.CU3 1394 * bit and the CP0.Cause.CE=3 encoding have been removed as 1395 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs 1396 * up the space has been reused for COP1X instructions, that 1397 * are enabled by the CP0.Status.CU1 bit and consequently 1398 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable 1399 * exceptions. Some FPU-less processors that implement one 1400 * of these ISAs however use this code erroneously for COP1X 1401 * instructions. Therefore we redirect this trap to the FP 1402 * emulator too. 1403 */ 1404 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) { 1405 force_sig(SIGILL, current); 1406 break; 1407 } 1408 /* Fall through. */ 1409 1410 case 1: 1411 err = enable_restore_fp_context(0); 1412 1413 if (raw_cpu_has_fpu && !err) 1414 break; 1415 1416 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0, 1417 &fault_addr); 1418 fcr31 = current->thread.fpu.fcr31; 1419 1420 /* 1421 * We can't allow the emulated instruction to leave 1422 * any of the cause bits set in $fcr31. 1423 */ 1424 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 1425 1426 /* Send a signal if required. */ 1427 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err) 1428 mt_ase_fp_affinity(); 1429 1430 break; 1431 1432 case 2: 1433 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); 1434 break; 1435 } 1436 1437 exception_exit(prev_state); 1438 } 1439 1440 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr) 1441 { 1442 enum ctx_state prev_state; 1443 1444 prev_state = exception_enter(); 1445 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1446 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0, 1447 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP) 1448 goto out; 1449 1450 /* Clear MSACSR.Cause before enabling interrupts */ 1451 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF); 1452 local_irq_enable(); 1453 1454 die_if_kernel("do_msa_fpe invoked from kernel context!", regs); 1455 force_sig(SIGFPE, current); 1456 out: 1457 exception_exit(prev_state); 1458 } 1459 1460 asmlinkage void do_msa(struct pt_regs *regs) 1461 { 1462 enum ctx_state prev_state; 1463 int err; 1464 1465 prev_state = exception_enter(); 1466 1467 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) { 1468 force_sig(SIGILL, current); 1469 goto out; 1470 } 1471 1472 die_if_kernel("do_msa invoked from kernel context!", regs); 1473 1474 err = enable_restore_fp_context(1); 1475 if (err) 1476 force_sig(SIGILL, current); 1477 out: 1478 exception_exit(prev_state); 1479 } 1480 1481 asmlinkage void do_mdmx(struct pt_regs *regs) 1482 { 1483 enum ctx_state prev_state; 1484 1485 prev_state = exception_enter(); 1486 force_sig(SIGILL, current); 1487 exception_exit(prev_state); 1488 } 1489 1490 /* 1491 * Called with interrupts disabled. 1492 */ 1493 asmlinkage void do_watch(struct pt_regs *regs) 1494 { 1495 enum ctx_state prev_state; 1496 u32 cause; 1497 1498 prev_state = exception_enter(); 1499 /* 1500 * Clear WP (bit 22) bit of cause register so we don't loop 1501 * forever. 1502 */ 1503 cause = read_c0_cause(); 1504 cause &= ~(1 << 22); 1505 write_c0_cause(cause); 1506 1507 /* 1508 * If the current thread has the watch registers loaded, save 1509 * their values and send SIGTRAP. Otherwise another thread 1510 * left the registers set, clear them and continue. 1511 */ 1512 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { 1513 mips_read_watch_registers(); 1514 local_irq_enable(); 1515 force_sig(SIGTRAP, current); 1516 } else { 1517 mips_clear_watch_registers(); 1518 local_irq_enable(); 1519 } 1520 exception_exit(prev_state); 1521 } 1522 1523 asmlinkage void do_mcheck(struct pt_regs *regs) 1524 { 1525 int multi_match = regs->cp0_status & ST0_TS; 1526 enum ctx_state prev_state; 1527 mm_segment_t old_fs = get_fs(); 1528 1529 prev_state = exception_enter(); 1530 show_regs(regs); 1531 1532 if (multi_match) { 1533 dump_tlb_regs(); 1534 pr_info("\n"); 1535 dump_tlb_all(); 1536 } 1537 1538 if (!user_mode(regs)) 1539 set_fs(KERNEL_DS); 1540 1541 show_code((unsigned int __user *) regs->cp0_epc); 1542 1543 set_fs(old_fs); 1544 1545 /* 1546 * Some chips may have other causes of machine check (e.g. SB1 1547 * graduation timer) 1548 */ 1549 panic("Caught Machine Check exception - %scaused by multiple " 1550 "matching entries in the TLB.", 1551 (multi_match) ? "" : "not "); 1552 } 1553 1554 asmlinkage void do_mt(struct pt_regs *regs) 1555 { 1556 int subcode; 1557 1558 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) 1559 >> VPECONTROL_EXCPT_SHIFT; 1560 switch (subcode) { 1561 case 0: 1562 printk(KERN_DEBUG "Thread Underflow\n"); 1563 break; 1564 case 1: 1565 printk(KERN_DEBUG "Thread Overflow\n"); 1566 break; 1567 case 2: 1568 printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); 1569 break; 1570 case 3: 1571 printk(KERN_DEBUG "Gating Storage Exception\n"); 1572 break; 1573 case 4: 1574 printk(KERN_DEBUG "YIELD Scheduler Exception\n"); 1575 break; 1576 case 5: 1577 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n"); 1578 break; 1579 default: 1580 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", 1581 subcode); 1582 break; 1583 } 1584 die_if_kernel("MIPS MT Thread exception in kernel", regs); 1585 1586 force_sig(SIGILL, current); 1587 } 1588 1589 1590 asmlinkage void do_dsp(struct pt_regs *regs) 1591 { 1592 if (cpu_has_dsp) 1593 panic("Unexpected DSP exception"); 1594 1595 force_sig(SIGILL, current); 1596 } 1597 1598 asmlinkage void do_reserved(struct pt_regs *regs) 1599 { 1600 /* 1601 * Game over - no way to handle this if it ever occurs. Most probably 1602 * caused by a new unknown cpu type or after another deadly 1603 * hard/software error. 1604 */ 1605 show_regs(regs); 1606 panic("Caught reserved exception %ld - should not happen.", 1607 (regs->cp0_cause & 0x7f) >> 2); 1608 } 1609 1610 static int __initdata l1parity = 1; 1611 static int __init nol1parity(char *s) 1612 { 1613 l1parity = 0; 1614 return 1; 1615 } 1616 __setup("nol1par", nol1parity); 1617 static int __initdata l2parity = 1; 1618 static int __init nol2parity(char *s) 1619 { 1620 l2parity = 0; 1621 return 1; 1622 } 1623 __setup("nol2par", nol2parity); 1624 1625 /* 1626 * Some MIPS CPUs can enable/disable for cache parity detection, but do 1627 * it different ways. 1628 */ 1629 static inline void parity_protection_init(void) 1630 { 1631 switch (current_cpu_type()) { 1632 case CPU_24K: 1633 case CPU_34K: 1634 case CPU_74K: 1635 case CPU_1004K: 1636 case CPU_1074K: 1637 case CPU_INTERAPTIV: 1638 case CPU_PROAPTIV: 1639 case CPU_P5600: 1640 case CPU_QEMU_GENERIC: 1641 case CPU_I6400: 1642 { 1643 #define ERRCTL_PE 0x80000000 1644 #define ERRCTL_L2P 0x00800000 1645 unsigned long errctl; 1646 unsigned int l1parity_present, l2parity_present; 1647 1648 errctl = read_c0_ecc(); 1649 errctl &= ~(ERRCTL_PE|ERRCTL_L2P); 1650 1651 /* probe L1 parity support */ 1652 write_c0_ecc(errctl | ERRCTL_PE); 1653 back_to_back_c0_hazard(); 1654 l1parity_present = (read_c0_ecc() & ERRCTL_PE); 1655 1656 /* probe L2 parity support */ 1657 write_c0_ecc(errctl|ERRCTL_L2P); 1658 back_to_back_c0_hazard(); 1659 l2parity_present = (read_c0_ecc() & ERRCTL_L2P); 1660 1661 if (l1parity_present && l2parity_present) { 1662 if (l1parity) 1663 errctl |= ERRCTL_PE; 1664 if (l1parity ^ l2parity) 1665 errctl |= ERRCTL_L2P; 1666 } else if (l1parity_present) { 1667 if (l1parity) 1668 errctl |= ERRCTL_PE; 1669 } else if (l2parity_present) { 1670 if (l2parity) 1671 errctl |= ERRCTL_L2P; 1672 } else { 1673 /* No parity available */ 1674 } 1675 1676 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); 1677 1678 write_c0_ecc(errctl); 1679 back_to_back_c0_hazard(); 1680 errctl = read_c0_ecc(); 1681 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); 1682 1683 if (l1parity_present) 1684 printk(KERN_INFO "Cache parity protection %sabled\n", 1685 (errctl & ERRCTL_PE) ? "en" : "dis"); 1686 1687 if (l2parity_present) { 1688 if (l1parity_present && l1parity) 1689 errctl ^= ERRCTL_L2P; 1690 printk(KERN_INFO "L2 cache parity protection %sabled\n", 1691 (errctl & ERRCTL_L2P) ? "en" : "dis"); 1692 } 1693 } 1694 break; 1695 1696 case CPU_5KC: 1697 case CPU_5KE: 1698 case CPU_LOONGSON1: 1699 write_c0_ecc(0x80000000); 1700 back_to_back_c0_hazard(); 1701 /* Set the PE bit (bit 31) in the c0_errctl register. */ 1702 printk(KERN_INFO "Cache parity protection %sabled\n", 1703 (read_c0_ecc() & 0x80000000) ? "en" : "dis"); 1704 break; 1705 case CPU_20KC: 1706 case CPU_25KF: 1707 /* Clear the DE bit (bit 16) in the c0_status register. */ 1708 printk(KERN_INFO "Enable cache parity protection for " 1709 "MIPS 20KC/25KF CPUs.\n"); 1710 clear_c0_status(ST0_DE); 1711 break; 1712 default: 1713 break; 1714 } 1715 } 1716 1717 asmlinkage void cache_parity_error(void) 1718 { 1719 const int field = 2 * sizeof(unsigned long); 1720 unsigned int reg_val; 1721 1722 /* For the moment, report the problem and hang. */ 1723 printk("Cache error exception:\n"); 1724 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1725 reg_val = read_c0_cacheerr(); 1726 printk("c0_cacheerr == %08x\n", reg_val); 1727 1728 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1729 reg_val & (1<<30) ? "secondary" : "primary", 1730 reg_val & (1<<31) ? "data" : "insn"); 1731 if ((cpu_has_mips_r2_r6) && 1732 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { 1733 pr_err("Error bits: %s%s%s%s%s%s%s%s\n", 1734 reg_val & (1<<29) ? "ED " : "", 1735 reg_val & (1<<28) ? "ET " : "", 1736 reg_val & (1<<27) ? "ES " : "", 1737 reg_val & (1<<26) ? "EE " : "", 1738 reg_val & (1<<25) ? "EB " : "", 1739 reg_val & (1<<24) ? "EI " : "", 1740 reg_val & (1<<23) ? "E1 " : "", 1741 reg_val & (1<<22) ? "E0 " : ""); 1742 } else { 1743 pr_err("Error bits: %s%s%s%s%s%s%s\n", 1744 reg_val & (1<<29) ? "ED " : "", 1745 reg_val & (1<<28) ? "ET " : "", 1746 reg_val & (1<<26) ? "EE " : "", 1747 reg_val & (1<<25) ? "EB " : "", 1748 reg_val & (1<<24) ? "EI " : "", 1749 reg_val & (1<<23) ? "E1 " : "", 1750 reg_val & (1<<22) ? "E0 " : ""); 1751 } 1752 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); 1753 1754 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) 1755 if (reg_val & (1<<22)) 1756 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); 1757 1758 if (reg_val & (1<<23)) 1759 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); 1760 #endif 1761 1762 panic("Can't handle the cache error!"); 1763 } 1764 1765 asmlinkage void do_ftlb(void) 1766 { 1767 const int field = 2 * sizeof(unsigned long); 1768 unsigned int reg_val; 1769 1770 /* For the moment, report the problem and hang. */ 1771 if ((cpu_has_mips_r2_r6) && 1772 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { 1773 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n", 1774 read_c0_ecc()); 1775 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1776 reg_val = read_c0_cacheerr(); 1777 pr_err("c0_cacheerr == %08x\n", reg_val); 1778 1779 if ((reg_val & 0xc0000000) == 0xc0000000) { 1780 pr_err("Decoded c0_cacheerr: FTLB parity error\n"); 1781 } else { 1782 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1783 reg_val & (1<<30) ? "secondary" : "primary", 1784 reg_val & (1<<31) ? "data" : "insn"); 1785 } 1786 } else { 1787 pr_err("FTLB error exception\n"); 1788 } 1789 /* Just print the cacheerr bits for now */ 1790 cache_parity_error(); 1791 } 1792 1793 /* 1794 * SDBBP EJTAG debug exception handler. 1795 * We skip the instruction and return to the next instruction. 1796 */ 1797 void ejtag_exception_handler(struct pt_regs *regs) 1798 { 1799 const int field = 2 * sizeof(unsigned long); 1800 unsigned long depc, old_epc, old_ra; 1801 unsigned int debug; 1802 1803 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); 1804 depc = read_c0_depc(); 1805 debug = read_c0_debug(); 1806 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); 1807 if (debug & 0x80000000) { 1808 /* 1809 * In branch delay slot. 1810 * We cheat a little bit here and use EPC to calculate the 1811 * debug return address (DEPC). EPC is restored after the 1812 * calculation. 1813 */ 1814 old_epc = regs->cp0_epc; 1815 old_ra = regs->regs[31]; 1816 regs->cp0_epc = depc; 1817 compute_return_epc(regs); 1818 depc = regs->cp0_epc; 1819 regs->cp0_epc = old_epc; 1820 regs->regs[31] = old_ra; 1821 } else 1822 depc += 4; 1823 write_c0_depc(depc); 1824 1825 #if 0 1826 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); 1827 write_c0_debug(debug | 0x100); 1828 #endif 1829 } 1830 1831 /* 1832 * NMI exception handler. 1833 * No lock; only written during early bootup by CPU 0. 1834 */ 1835 static RAW_NOTIFIER_HEAD(nmi_chain); 1836 1837 int register_nmi_notifier(struct notifier_block *nb) 1838 { 1839 return raw_notifier_chain_register(&nmi_chain, nb); 1840 } 1841 1842 void __noreturn nmi_exception_handler(struct pt_regs *regs) 1843 { 1844 char str[100]; 1845 1846 nmi_enter(); 1847 raw_notifier_call_chain(&nmi_chain, 0, regs); 1848 bust_spinlocks(1); 1849 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n", 1850 smp_processor_id(), regs->cp0_epc); 1851 regs->cp0_epc = read_c0_errorepc(); 1852 die(str, regs); 1853 nmi_exit(); 1854 } 1855 1856 #define VECTORSPACING 0x100 /* for EI/VI mode */ 1857 1858 unsigned long ebase; 1859 unsigned long exception_handlers[32]; 1860 unsigned long vi_handlers[64]; 1861 1862 void __init *set_except_vector(int n, void *addr) 1863 { 1864 unsigned long handler = (unsigned long) addr; 1865 unsigned long old_handler; 1866 1867 #ifdef CONFIG_CPU_MICROMIPS 1868 /* 1869 * Only the TLB handlers are cache aligned with an even 1870 * address. All other handlers are on an odd address and 1871 * require no modification. Otherwise, MIPS32 mode will 1872 * be entered when handling any TLB exceptions. That 1873 * would be bad...since we must stay in microMIPS mode. 1874 */ 1875 if (!(handler & 0x1)) 1876 handler |= 1; 1877 #endif 1878 old_handler = xchg(&exception_handlers[n], handler); 1879 1880 if (n == 0 && cpu_has_divec) { 1881 #ifdef CONFIG_CPU_MICROMIPS 1882 unsigned long jump_mask = ~((1 << 27) - 1); 1883 #else 1884 unsigned long jump_mask = ~((1 << 28) - 1); 1885 #endif 1886 u32 *buf = (u32 *)(ebase + 0x200); 1887 unsigned int k0 = 26; 1888 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { 1889 uasm_i_j(&buf, handler & ~jump_mask); 1890 uasm_i_nop(&buf); 1891 } else { 1892 UASM_i_LA(&buf, k0, handler); 1893 uasm_i_jr(&buf, k0); 1894 uasm_i_nop(&buf); 1895 } 1896 local_flush_icache_range(ebase + 0x200, (unsigned long)buf); 1897 } 1898 return (void *)old_handler; 1899 } 1900 1901 static void do_default_vi(void) 1902 { 1903 show_regs(get_irq_regs()); 1904 panic("Caught unexpected vectored interrupt."); 1905 } 1906 1907 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) 1908 { 1909 unsigned long handler; 1910 unsigned long old_handler = vi_handlers[n]; 1911 int srssets = current_cpu_data.srsets; 1912 u16 *h; 1913 unsigned char *b; 1914 1915 BUG_ON(!cpu_has_veic && !cpu_has_vint); 1916 1917 if (addr == NULL) { 1918 handler = (unsigned long) do_default_vi; 1919 srs = 0; 1920 } else 1921 handler = (unsigned long) addr; 1922 vi_handlers[n] = handler; 1923 1924 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); 1925 1926 if (srs >= srssets) 1927 panic("Shadow register set %d not supported", srs); 1928 1929 if (cpu_has_veic) { 1930 if (board_bind_eic_interrupt) 1931 board_bind_eic_interrupt(n, srs); 1932 } else if (cpu_has_vint) { 1933 /* SRSMap is only defined if shadow sets are implemented */ 1934 if (srssets > 1) 1935 change_c0_srsmap(0xf << n*4, srs << n*4); 1936 } 1937 1938 if (srs == 0) { 1939 /* 1940 * If no shadow set is selected then use the default handler 1941 * that does normal register saving and standard interrupt exit 1942 */ 1943 extern char except_vec_vi, except_vec_vi_lui; 1944 extern char except_vec_vi_ori, except_vec_vi_end; 1945 extern char rollback_except_vec_vi; 1946 char *vec_start = using_rollback_handler() ? 1947 &rollback_except_vec_vi : &except_vec_vi; 1948 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN) 1949 const int lui_offset = &except_vec_vi_lui - vec_start + 2; 1950 const int ori_offset = &except_vec_vi_ori - vec_start + 2; 1951 #else 1952 const int lui_offset = &except_vec_vi_lui - vec_start; 1953 const int ori_offset = &except_vec_vi_ori - vec_start; 1954 #endif 1955 const int handler_len = &except_vec_vi_end - vec_start; 1956 1957 if (handler_len > VECTORSPACING) { 1958 /* 1959 * Sigh... panicing won't help as the console 1960 * is probably not configured :( 1961 */ 1962 panic("VECTORSPACING too small"); 1963 } 1964 1965 set_handler(((unsigned long)b - ebase), vec_start, 1966 #ifdef CONFIG_CPU_MICROMIPS 1967 (handler_len - 1)); 1968 #else 1969 handler_len); 1970 #endif 1971 h = (u16 *)(b + lui_offset); 1972 *h = (handler >> 16) & 0xffff; 1973 h = (u16 *)(b + ori_offset); 1974 *h = (handler & 0xffff); 1975 local_flush_icache_range((unsigned long)b, 1976 (unsigned long)(b+handler_len)); 1977 } 1978 else { 1979 /* 1980 * In other cases jump directly to the interrupt handler. It 1981 * is the handler's responsibility to save registers if required 1982 * (eg hi/lo) and return from the exception using "eret". 1983 */ 1984 u32 insn; 1985 1986 h = (u16 *)b; 1987 /* j handler */ 1988 #ifdef CONFIG_CPU_MICROMIPS 1989 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1); 1990 #else 1991 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2); 1992 #endif 1993 h[0] = (insn >> 16) & 0xffff; 1994 h[1] = insn & 0xffff; 1995 h[2] = 0; 1996 h[3] = 0; 1997 local_flush_icache_range((unsigned long)b, 1998 (unsigned long)(b+8)); 1999 } 2000 2001 return (void *)old_handler; 2002 } 2003 2004 void *set_vi_handler(int n, vi_handler_t addr) 2005 { 2006 return set_vi_srs_handler(n, addr, 0); 2007 } 2008 2009 extern void tlb_init(void); 2010 2011 /* 2012 * Timer interrupt 2013 */ 2014 int cp0_compare_irq; 2015 EXPORT_SYMBOL_GPL(cp0_compare_irq); 2016 int cp0_compare_irq_shift; 2017 2018 /* 2019 * Performance counter IRQ or -1 if shared with timer 2020 */ 2021 int cp0_perfcount_irq; 2022 EXPORT_SYMBOL_GPL(cp0_perfcount_irq); 2023 2024 /* 2025 * Fast debug channel IRQ or -1 if not present 2026 */ 2027 int cp0_fdc_irq; 2028 EXPORT_SYMBOL_GPL(cp0_fdc_irq); 2029 2030 static int noulri; 2031 2032 static int __init ulri_disable(char *s) 2033 { 2034 pr_info("Disabling ulri\n"); 2035 noulri = 1; 2036 2037 return 1; 2038 } 2039 __setup("noulri", ulri_disable); 2040 2041 /* configure STATUS register */ 2042 static void configure_status(void) 2043 { 2044 /* 2045 * Disable coprocessors and select 32-bit or 64-bit addressing 2046 * and the 16/32 or 32/32 FPR register model. Reset the BEV 2047 * flag that some firmware may have left set and the TS bit (for 2048 * IP27). Set XX for ISA IV code to work. 2049 */ 2050 unsigned int status_set = ST0_CU0; 2051 #ifdef CONFIG_64BIT 2052 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; 2053 #endif 2054 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV) 2055 status_set |= ST0_XX; 2056 if (cpu_has_dsp) 2057 status_set |= ST0_MX; 2058 2059 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, 2060 status_set); 2061 } 2062 2063 /* configure HWRENA register */ 2064 static void configure_hwrena(void) 2065 { 2066 unsigned int hwrena = cpu_hwrena_impl_bits; 2067 2068 if (cpu_has_mips_r2_r6) 2069 hwrena |= 0x0000000f; 2070 2071 if (!noulri && cpu_has_userlocal) 2072 hwrena |= (1 << 29); 2073 2074 if (hwrena) 2075 write_c0_hwrena(hwrena); 2076 } 2077 2078 static void configure_exception_vector(void) 2079 { 2080 if (cpu_has_veic || cpu_has_vint) { 2081 unsigned long sr = set_c0_status(ST0_BEV); 2082 write_c0_ebase(ebase); 2083 write_c0_status(sr); 2084 /* Setting vector spacing enables EI/VI mode */ 2085 change_c0_intctl(0x3e0, VECTORSPACING); 2086 } 2087 if (cpu_has_divec) { 2088 if (cpu_has_mipsmt) { 2089 unsigned int vpflags = dvpe(); 2090 set_c0_cause(CAUSEF_IV); 2091 evpe(vpflags); 2092 } else 2093 set_c0_cause(CAUSEF_IV); 2094 } 2095 } 2096 2097 void per_cpu_trap_init(bool is_boot_cpu) 2098 { 2099 unsigned int cpu = smp_processor_id(); 2100 2101 configure_status(); 2102 configure_hwrena(); 2103 2104 configure_exception_vector(); 2105 2106 /* 2107 * Before R2 both interrupt numbers were fixed to 7, so on R2 only: 2108 * 2109 * o read IntCtl.IPTI to determine the timer interrupt 2110 * o read IntCtl.IPPCI to determine the performance counter interrupt 2111 * o read IntCtl.IPFDC to determine the fast debug channel interrupt 2112 */ 2113 if (cpu_has_mips_r2_r6) { 2114 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; 2115 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; 2116 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; 2117 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7; 2118 if (!cp0_fdc_irq) 2119 cp0_fdc_irq = -1; 2120 2121 } else { 2122 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; 2123 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ; 2124 cp0_perfcount_irq = -1; 2125 cp0_fdc_irq = -1; 2126 } 2127 2128 if (!cpu_data[cpu].asid_cache) 2129 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION; 2130 2131 atomic_inc(&init_mm.mm_count); 2132 current->active_mm = &init_mm; 2133 BUG_ON(current->mm); 2134 enter_lazy_tlb(&init_mm, current); 2135 2136 /* Boot CPU's cache setup in setup_arch(). */ 2137 if (!is_boot_cpu) 2138 cpu_cache_init(); 2139 tlb_init(); 2140 TLBMISS_HANDLER_SETUP(); 2141 } 2142 2143 /* Install CPU exception handler */ 2144 void set_handler(unsigned long offset, void *addr, unsigned long size) 2145 { 2146 #ifdef CONFIG_CPU_MICROMIPS 2147 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size); 2148 #else 2149 memcpy((void *)(ebase + offset), addr, size); 2150 #endif 2151 local_flush_icache_range(ebase + offset, ebase + offset + size); 2152 } 2153 2154 static char panic_null_cerr[] = 2155 "Trying to set NULL cache error exception handler"; 2156 2157 /* 2158 * Install uncached CPU exception handler. 2159 * This is suitable only for the cache error exception which is the only 2160 * exception handler that is being run uncached. 2161 */ 2162 void set_uncached_handler(unsigned long offset, void *addr, 2163 unsigned long size) 2164 { 2165 unsigned long uncached_ebase = CKSEG1ADDR(ebase); 2166 2167 if (!addr) 2168 panic(panic_null_cerr); 2169 2170 memcpy((void *)(uncached_ebase + offset), addr, size); 2171 } 2172 2173 static int __initdata rdhwr_noopt; 2174 static int __init set_rdhwr_noopt(char *str) 2175 { 2176 rdhwr_noopt = 1; 2177 return 1; 2178 } 2179 2180 __setup("rdhwr_noopt", set_rdhwr_noopt); 2181 2182 void __init trap_init(void) 2183 { 2184 extern char except_vec3_generic; 2185 extern char except_vec4; 2186 extern char except_vec3_r4000; 2187 unsigned long i; 2188 2189 check_wait(); 2190 2191 if (cpu_has_veic || cpu_has_vint) { 2192 unsigned long size = 0x200 + VECTORSPACING*64; 2193 ebase = (unsigned long) 2194 __alloc_bootmem(size, 1 << fls(size), 0); 2195 } else { 2196 ebase = CAC_BASE; 2197 2198 if (cpu_has_mips_r2_r6) 2199 ebase += (read_c0_ebase() & 0x3ffff000); 2200 } 2201 2202 if (cpu_has_mmips) { 2203 unsigned int config3 = read_c0_config3(); 2204 2205 if (IS_ENABLED(CONFIG_CPU_MICROMIPS)) 2206 write_c0_config3(config3 | MIPS_CONF3_ISA_OE); 2207 else 2208 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE); 2209 } 2210 2211 if (board_ebase_setup) 2212 board_ebase_setup(); 2213 per_cpu_trap_init(true); 2214 2215 /* 2216 * Copy the generic exception handlers to their final destination. 2217 * This will be overriden later as suitable for a particular 2218 * configuration. 2219 */ 2220 set_handler(0x180, &except_vec3_generic, 0x80); 2221 2222 /* 2223 * Setup default vectors 2224 */ 2225 for (i = 0; i <= 31; i++) 2226 set_except_vector(i, handle_reserved); 2227 2228 /* 2229 * Copy the EJTAG debug exception vector handler code to it's final 2230 * destination. 2231 */ 2232 if (cpu_has_ejtag && board_ejtag_handler_setup) 2233 board_ejtag_handler_setup(); 2234 2235 /* 2236 * Only some CPUs have the watch exceptions. 2237 */ 2238 if (cpu_has_watch) 2239 set_except_vector(EXCCODE_WATCH, handle_watch); 2240 2241 /* 2242 * Initialise interrupt handlers 2243 */ 2244 if (cpu_has_veic || cpu_has_vint) { 2245 int nvec = cpu_has_veic ? 64 : 8; 2246 for (i = 0; i < nvec; i++) 2247 set_vi_handler(i, NULL); 2248 } 2249 else if (cpu_has_divec) 2250 set_handler(0x200, &except_vec4, 0x8); 2251 2252 /* 2253 * Some CPUs can enable/disable for cache parity detection, but does 2254 * it different ways. 2255 */ 2256 parity_protection_init(); 2257 2258 /* 2259 * The Data Bus Errors / Instruction Bus Errors are signaled 2260 * by external hardware. Therefore these two exceptions 2261 * may have board specific handlers. 2262 */ 2263 if (board_be_init) 2264 board_be_init(); 2265 2266 set_except_vector(EXCCODE_INT, using_rollback_handler() ? 2267 rollback_handle_int : handle_int); 2268 set_except_vector(EXCCODE_MOD, handle_tlbm); 2269 set_except_vector(EXCCODE_TLBL, handle_tlbl); 2270 set_except_vector(EXCCODE_TLBS, handle_tlbs); 2271 2272 set_except_vector(EXCCODE_ADEL, handle_adel); 2273 set_except_vector(EXCCODE_ADES, handle_ades); 2274 2275 set_except_vector(EXCCODE_IBE, handle_ibe); 2276 set_except_vector(EXCCODE_DBE, handle_dbe); 2277 2278 set_except_vector(EXCCODE_SYS, handle_sys); 2279 set_except_vector(EXCCODE_BP, handle_bp); 2280 set_except_vector(EXCCODE_RI, rdhwr_noopt ? handle_ri : 2281 (cpu_has_vtag_icache ? 2282 handle_ri_rdhwr_vivt : handle_ri_rdhwr)); 2283 set_except_vector(EXCCODE_CPU, handle_cpu); 2284 set_except_vector(EXCCODE_OV, handle_ov); 2285 set_except_vector(EXCCODE_TR, handle_tr); 2286 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe); 2287 2288 if (current_cpu_type() == CPU_R6000 || 2289 current_cpu_type() == CPU_R6000A) { 2290 /* 2291 * The R6000 is the only R-series CPU that features a machine 2292 * check exception (similar to the R4000 cache error) and 2293 * unaligned ldc1/sdc1 exception. The handlers have not been 2294 * written yet. Well, anyway there is no R6000 machine on the 2295 * current list of targets for Linux/MIPS. 2296 * (Duh, crap, there is someone with a triple R6k machine) 2297 */ 2298 //set_except_vector(14, handle_mc); 2299 //set_except_vector(15, handle_ndc); 2300 } 2301 2302 2303 if (board_nmi_handler_setup) 2304 board_nmi_handler_setup(); 2305 2306 if (cpu_has_fpu && !cpu_has_nofpuex) 2307 set_except_vector(EXCCODE_FPE, handle_fpe); 2308 2309 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb); 2310 2311 if (cpu_has_rixiex) { 2312 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0); 2313 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0); 2314 } 2315 2316 set_except_vector(EXCCODE_MSADIS, handle_msa); 2317 set_except_vector(EXCCODE_MDMX, handle_mdmx); 2318 2319 if (cpu_has_mcheck) 2320 set_except_vector(EXCCODE_MCHECK, handle_mcheck); 2321 2322 if (cpu_has_mipsmt) 2323 set_except_vector(EXCCODE_THREAD, handle_mt); 2324 2325 set_except_vector(EXCCODE_DSPDIS, handle_dsp); 2326 2327 if (board_cache_error_setup) 2328 board_cache_error_setup(); 2329 2330 if (cpu_has_vce) 2331 /* Special exception: R4[04]00 uses also the divec space. */ 2332 set_handler(0x180, &except_vec3_r4000, 0x100); 2333 else if (cpu_has_4kex) 2334 set_handler(0x180, &except_vec3_generic, 0x80); 2335 else 2336 set_handler(0x080, &except_vec3_generic, 0x80); 2337 2338 local_flush_icache_range(ebase, ebase + 0x400); 2339 2340 sort_extable(__start___dbe_table, __stop___dbe_table); 2341 2342 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */ 2343 } 2344 2345 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd, 2346 void *v) 2347 { 2348 switch (cmd) { 2349 case CPU_PM_ENTER_FAILED: 2350 case CPU_PM_EXIT: 2351 configure_status(); 2352 configure_hwrena(); 2353 configure_exception_vector(); 2354 2355 /* Restore register with CPU number for TLB handlers */ 2356 TLBMISS_HANDLER_RESTORE(); 2357 2358 break; 2359 } 2360 2361 return NOTIFY_OK; 2362 } 2363 2364 static struct notifier_block trap_pm_notifier_block = { 2365 .notifier_call = trap_pm_notifier, 2366 }; 2367 2368 static int __init trap_pm_init(void) 2369 { 2370 return cpu_pm_register_notifier(&trap_pm_notifier_block); 2371 } 2372 arch_initcall(trap_pm_init); 2373