xref: /openbmc/linux/arch/mips/kernel/traps.c (revision 39c1485c8baa47aa20caefc1ec0a3410fbad6c81)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
25 #include <linux/mm.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memblock.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
41 
42 #include <asm/addrspace.h>
43 #include <asm/bootinfo.h>
44 #include <asm/branch.h>
45 #include <asm/break.h>
46 #include <asm/cop2.h>
47 #include <asm/cpu.h>
48 #include <asm/cpu-type.h>
49 #include <asm/dsp.h>
50 #include <asm/fpu.h>
51 #include <asm/fpu_emulator.h>
52 #include <asm/idle.h>
53 #include <asm/isa-rev.h>
54 #include <asm/mips-cps.h>
55 #include <asm/mips-r2-to-r6-emul.h>
56 #include <asm/mipsregs.h>
57 #include <asm/mipsmtregs.h>
58 #include <asm/module.h>
59 #include <asm/msa.h>
60 #include <asm/ptrace.h>
61 #include <asm/sections.h>
62 #include <asm/siginfo.h>
63 #include <asm/tlbdebug.h>
64 #include <asm/traps.h>
65 #include <linux/uaccess.h>
66 #include <asm/watch.h>
67 #include <asm/mmu_context.h>
68 #include <asm/types.h>
69 #include <asm/stacktrace.h>
70 #include <asm/tlbex.h>
71 #include <asm/uasm.h>
72 
73 #include <asm/mach-loongson64/cpucfg-emul.h>
74 
75 extern void check_wait(void);
76 extern asmlinkage void rollback_handle_int(void);
77 extern asmlinkage void handle_int(void);
78 extern asmlinkage void handle_adel(void);
79 extern asmlinkage void handle_ades(void);
80 extern asmlinkage void handle_ibe(void);
81 extern asmlinkage void handle_dbe(void);
82 extern asmlinkage void handle_sys(void);
83 extern asmlinkage void handle_bp(void);
84 extern asmlinkage void handle_ri(void);
85 extern asmlinkage void handle_ri_rdhwr_tlbp(void);
86 extern asmlinkage void handle_ri_rdhwr(void);
87 extern asmlinkage void handle_cpu(void);
88 extern asmlinkage void handle_ov(void);
89 extern asmlinkage void handle_tr(void);
90 extern asmlinkage void handle_msa_fpe(void);
91 extern asmlinkage void handle_fpe(void);
92 extern asmlinkage void handle_ftlb(void);
93 extern asmlinkage void handle_gsexc(void);
94 extern asmlinkage void handle_msa(void);
95 extern asmlinkage void handle_mdmx(void);
96 extern asmlinkage void handle_watch(void);
97 extern asmlinkage void handle_mt(void);
98 extern asmlinkage void handle_dsp(void);
99 extern asmlinkage void handle_mcheck(void);
100 extern asmlinkage void handle_reserved(void);
101 extern void tlb_do_page_fault_0(void);
102 
103 void (*board_be_init)(void);
104 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
105 void (*board_nmi_handler_setup)(void);
106 void (*board_ejtag_handler_setup)(void);
107 void (*board_bind_eic_interrupt)(int irq, int regset);
108 void (*board_ebase_setup)(void);
109 void(*board_cache_error_setup)(void);
110 
111 static void show_raw_backtrace(unsigned long reg29, const char *loglvl)
112 {
113 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
114 	unsigned long addr;
115 
116 	printk("%sCall Trace:", loglvl);
117 #ifdef CONFIG_KALLSYMS
118 	printk("%s\n", loglvl);
119 #endif
120 	while (!kstack_end(sp)) {
121 		unsigned long __user *p =
122 			(unsigned long __user *)(unsigned long)sp++;
123 		if (__get_user(addr, p)) {
124 			printk("%s (Bad stack address)", loglvl);
125 			break;
126 		}
127 		if (__kernel_text_address(addr))
128 			print_ip_sym(loglvl, addr);
129 	}
130 	printk("%s\n", loglvl);
131 }
132 
133 #ifdef CONFIG_KALLSYMS
134 int raw_show_trace;
135 static int __init set_raw_show_trace(char *str)
136 {
137 	raw_show_trace = 1;
138 	return 1;
139 }
140 __setup("raw_show_trace", set_raw_show_trace);
141 #endif
142 
143 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs,
144 			   const char *loglvl)
145 {
146 	unsigned long sp = regs->regs[29];
147 	unsigned long ra = regs->regs[31];
148 	unsigned long pc = regs->cp0_epc;
149 
150 	if (!task)
151 		task = current;
152 
153 	if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
154 		show_raw_backtrace(sp, loglvl);
155 		return;
156 	}
157 	printk("%sCall Trace:\n", loglvl);
158 	do {
159 		print_ip_sym(loglvl, pc);
160 		pc = unwind_stack(task, &sp, pc, &ra);
161 	} while (pc);
162 	pr_cont("\n");
163 }
164 
165 /*
166  * This routine abuses get_user()/put_user() to reference pointers
167  * with at least a bit of error checking ...
168  */
169 static void show_stacktrace(struct task_struct *task,
170 	const struct pt_regs *regs, const char *loglvl)
171 {
172 	const int field = 2 * sizeof(unsigned long);
173 	long stackdata;
174 	int i;
175 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
176 
177 	printk("%sStack :", loglvl);
178 	i = 0;
179 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
180 		if (i && ((i % (64 / field)) == 0)) {
181 			pr_cont("\n");
182 			printk("%s       ", loglvl);
183 		}
184 		if (i > 39) {
185 			pr_cont(" ...");
186 			break;
187 		}
188 
189 		if (__get_user(stackdata, sp++)) {
190 			pr_cont(" (Bad stack address)");
191 			break;
192 		}
193 
194 		pr_cont(" %0*lx", field, stackdata);
195 		i++;
196 	}
197 	pr_cont("\n");
198 	show_backtrace(task, regs, loglvl);
199 }
200 
201 void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
202 {
203 	struct pt_regs regs;
204 	mm_segment_t old_fs = get_fs();
205 
206 	regs.cp0_status = KSU_KERNEL;
207 	if (sp) {
208 		regs.regs[29] = (unsigned long)sp;
209 		regs.regs[31] = 0;
210 		regs.cp0_epc = 0;
211 	} else {
212 		if (task && task != current) {
213 			regs.regs[29] = task->thread.reg29;
214 			regs.regs[31] = 0;
215 			regs.cp0_epc = task->thread.reg31;
216 		} else {
217 			prepare_frametrace(&regs);
218 		}
219 	}
220 	/*
221 	 * show_stack() deals exclusively with kernel mode, so be sure to access
222 	 * the stack in the kernel (not user) address space.
223 	 */
224 	set_fs(KERNEL_DS);
225 	show_stacktrace(task, &regs, loglvl);
226 	set_fs(old_fs);
227 }
228 
229 static void show_code(unsigned int __user *pc)
230 {
231 	long i;
232 	unsigned short __user *pc16 = NULL;
233 
234 	printk("Code:");
235 
236 	if ((unsigned long)pc & 1)
237 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
238 	for(i = -3 ; i < 6 ; i++) {
239 		unsigned int insn;
240 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
241 			pr_cont(" (Bad address in epc)\n");
242 			break;
243 		}
244 		pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
245 	}
246 	pr_cont("\n");
247 }
248 
249 static void __show_regs(const struct pt_regs *regs)
250 {
251 	const int field = 2 * sizeof(unsigned long);
252 	unsigned int cause = regs->cp0_cause;
253 	unsigned int exccode;
254 	int i;
255 
256 	show_regs_print_info(KERN_DEFAULT);
257 
258 	/*
259 	 * Saved main processor registers
260 	 */
261 	for (i = 0; i < 32; ) {
262 		if ((i % 4) == 0)
263 			printk("$%2d   :", i);
264 		if (i == 0)
265 			pr_cont(" %0*lx", field, 0UL);
266 		else if (i == 26 || i == 27)
267 			pr_cont(" %*s", field, "");
268 		else
269 			pr_cont(" %0*lx", field, regs->regs[i]);
270 
271 		i++;
272 		if ((i % 4) == 0)
273 			pr_cont("\n");
274 	}
275 
276 #ifdef CONFIG_CPU_HAS_SMARTMIPS
277 	printk("Acx    : %0*lx\n", field, regs->acx);
278 #endif
279 	if (MIPS_ISA_REV < 6) {
280 		printk("Hi    : %0*lx\n", field, regs->hi);
281 		printk("Lo    : %0*lx\n", field, regs->lo);
282 	}
283 
284 	/*
285 	 * Saved cp0 registers
286 	 */
287 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
288 	       (void *) regs->cp0_epc);
289 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
290 	       (void *) regs->regs[31]);
291 
292 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
293 
294 	if (cpu_has_3kex) {
295 		if (regs->cp0_status & ST0_KUO)
296 			pr_cont("KUo ");
297 		if (regs->cp0_status & ST0_IEO)
298 			pr_cont("IEo ");
299 		if (regs->cp0_status & ST0_KUP)
300 			pr_cont("KUp ");
301 		if (regs->cp0_status & ST0_IEP)
302 			pr_cont("IEp ");
303 		if (regs->cp0_status & ST0_KUC)
304 			pr_cont("KUc ");
305 		if (regs->cp0_status & ST0_IEC)
306 			pr_cont("IEc ");
307 	} else if (cpu_has_4kex) {
308 		if (regs->cp0_status & ST0_KX)
309 			pr_cont("KX ");
310 		if (regs->cp0_status & ST0_SX)
311 			pr_cont("SX ");
312 		if (regs->cp0_status & ST0_UX)
313 			pr_cont("UX ");
314 		switch (regs->cp0_status & ST0_KSU) {
315 		case KSU_USER:
316 			pr_cont("USER ");
317 			break;
318 		case KSU_SUPERVISOR:
319 			pr_cont("SUPERVISOR ");
320 			break;
321 		case KSU_KERNEL:
322 			pr_cont("KERNEL ");
323 			break;
324 		default:
325 			pr_cont("BAD_MODE ");
326 			break;
327 		}
328 		if (regs->cp0_status & ST0_ERL)
329 			pr_cont("ERL ");
330 		if (regs->cp0_status & ST0_EXL)
331 			pr_cont("EXL ");
332 		if (regs->cp0_status & ST0_IE)
333 			pr_cont("IE ");
334 	}
335 	pr_cont("\n");
336 
337 	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
338 	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
339 
340 	if (1 <= exccode && exccode <= 5)
341 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
342 
343 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
344 	       cpu_name_string());
345 }
346 
347 /*
348  * FIXME: really the generic show_regs should take a const pointer argument.
349  */
350 void show_regs(struct pt_regs *regs)
351 {
352 	__show_regs(regs);
353 	dump_stack();
354 }
355 
356 void show_registers(struct pt_regs *regs)
357 {
358 	const int field = 2 * sizeof(unsigned long);
359 	mm_segment_t old_fs = get_fs();
360 
361 	__show_regs(regs);
362 	print_modules();
363 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
364 	       current->comm, current->pid, current_thread_info(), current,
365 	      field, current_thread_info()->tp_value);
366 	if (cpu_has_userlocal) {
367 		unsigned long tls;
368 
369 		tls = read_c0_userlocal();
370 		if (tls != current_thread_info()->tp_value)
371 			printk("*HwTLS: %0*lx\n", field, tls);
372 	}
373 
374 	if (!user_mode(regs))
375 		/* Necessary for getting the correct stack content */
376 		set_fs(KERNEL_DS);
377 	show_stacktrace(current, regs, KERN_DEFAULT);
378 	show_code((unsigned int __user *) regs->cp0_epc);
379 	printk("\n");
380 	set_fs(old_fs);
381 }
382 
383 static DEFINE_RAW_SPINLOCK(die_lock);
384 
385 void __noreturn die(const char *str, struct pt_regs *regs)
386 {
387 	static int die_counter;
388 	int sig = SIGSEGV;
389 
390 	oops_enter();
391 
392 	if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
393 		       SIGSEGV) == NOTIFY_STOP)
394 		sig = 0;
395 
396 	console_verbose();
397 	raw_spin_lock_irq(&die_lock);
398 	bust_spinlocks(1);
399 
400 	printk("%s[#%d]:\n", str, ++die_counter);
401 	show_registers(regs);
402 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
403 	raw_spin_unlock_irq(&die_lock);
404 
405 	oops_exit();
406 
407 	if (in_interrupt())
408 		panic("Fatal exception in interrupt");
409 
410 	if (panic_on_oops)
411 		panic("Fatal exception");
412 
413 	if (regs && kexec_should_crash(current))
414 		crash_kexec(regs);
415 
416 	do_exit(sig);
417 }
418 
419 extern struct exception_table_entry __start___dbe_table[];
420 extern struct exception_table_entry __stop___dbe_table[];
421 
422 __asm__(
423 "	.section	__dbe_table, \"a\"\n"
424 "	.previous			\n");
425 
426 /* Given an address, look for it in the exception tables. */
427 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
428 {
429 	const struct exception_table_entry *e;
430 
431 	e = search_extable(__start___dbe_table,
432 			   __stop___dbe_table - __start___dbe_table, addr);
433 	if (!e)
434 		e = search_module_dbetables(addr);
435 	return e;
436 }
437 
438 asmlinkage void do_be(struct pt_regs *regs)
439 {
440 	const int field = 2 * sizeof(unsigned long);
441 	const struct exception_table_entry *fixup = NULL;
442 	int data = regs->cp0_cause & 4;
443 	int action = MIPS_BE_FATAL;
444 	enum ctx_state prev_state;
445 
446 	prev_state = exception_enter();
447 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
448 	if (data && !user_mode(regs))
449 		fixup = search_dbe_tables(exception_epc(regs));
450 
451 	if (fixup)
452 		action = MIPS_BE_FIXUP;
453 
454 	if (board_be_handler)
455 		action = board_be_handler(regs, fixup != NULL);
456 	else
457 		mips_cm_error_report();
458 
459 	switch (action) {
460 	case MIPS_BE_DISCARD:
461 		goto out;
462 	case MIPS_BE_FIXUP:
463 		if (fixup) {
464 			regs->cp0_epc = fixup->nextinsn;
465 			goto out;
466 		}
467 		break;
468 	default:
469 		break;
470 	}
471 
472 	/*
473 	 * Assume it would be too dangerous to continue ...
474 	 */
475 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
476 	       data ? "Data" : "Instruction",
477 	       field, regs->cp0_epc, field, regs->regs[31]);
478 	if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
479 		       SIGBUS) == NOTIFY_STOP)
480 		goto out;
481 
482 	die_if_kernel("Oops", regs);
483 	force_sig(SIGBUS);
484 
485 out:
486 	exception_exit(prev_state);
487 }
488 
489 /*
490  * ll/sc, rdhwr, sync emulation
491  */
492 
493 #define OPCODE 0xfc000000
494 #define BASE   0x03e00000
495 #define RT     0x001f0000
496 #define OFFSET 0x0000ffff
497 #define LL     0xc0000000
498 #define SC     0xe0000000
499 #define SPEC0  0x00000000
500 #define SPEC3  0x7c000000
501 #define RD     0x0000f800
502 #define FUNC   0x0000003f
503 #define SYNC   0x0000000f
504 #define RDHWR  0x0000003b
505 
506 /*  microMIPS definitions   */
507 #define MM_POOL32A_FUNC 0xfc00ffff
508 #define MM_RDHWR        0x00006b3c
509 #define MM_RS           0x001f0000
510 #define MM_RT           0x03e00000
511 
512 /*
513  * The ll_bit is cleared by r*_switch.S
514  */
515 
516 unsigned int ll_bit;
517 struct task_struct *ll_task;
518 
519 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
520 {
521 	unsigned long value, __user *vaddr;
522 	long offset;
523 
524 	/*
525 	 * analyse the ll instruction that just caused a ri exception
526 	 * and put the referenced address to addr.
527 	 */
528 
529 	/* sign extend offset */
530 	offset = opcode & OFFSET;
531 	offset <<= 16;
532 	offset >>= 16;
533 
534 	vaddr = (unsigned long __user *)
535 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
536 
537 	if ((unsigned long)vaddr & 3)
538 		return SIGBUS;
539 	if (get_user(value, vaddr))
540 		return SIGSEGV;
541 
542 	preempt_disable();
543 
544 	if (ll_task == NULL || ll_task == current) {
545 		ll_bit = 1;
546 	} else {
547 		ll_bit = 0;
548 	}
549 	ll_task = current;
550 
551 	preempt_enable();
552 
553 	regs->regs[(opcode & RT) >> 16] = value;
554 
555 	return 0;
556 }
557 
558 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
559 {
560 	unsigned long __user *vaddr;
561 	unsigned long reg;
562 	long offset;
563 
564 	/*
565 	 * analyse the sc instruction that just caused a ri exception
566 	 * and put the referenced address to addr.
567 	 */
568 
569 	/* sign extend offset */
570 	offset = opcode & OFFSET;
571 	offset <<= 16;
572 	offset >>= 16;
573 
574 	vaddr = (unsigned long __user *)
575 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
576 	reg = (opcode & RT) >> 16;
577 
578 	if ((unsigned long)vaddr & 3)
579 		return SIGBUS;
580 
581 	preempt_disable();
582 
583 	if (ll_bit == 0 || ll_task != current) {
584 		regs->regs[reg] = 0;
585 		preempt_enable();
586 		return 0;
587 	}
588 
589 	preempt_enable();
590 
591 	if (put_user(regs->regs[reg], vaddr))
592 		return SIGSEGV;
593 
594 	regs->regs[reg] = 1;
595 
596 	return 0;
597 }
598 
599 /*
600  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
601  * opcodes are supposed to result in coprocessor unusable exceptions if
602  * executed on ll/sc-less processors.  That's the theory.  In practice a
603  * few processors such as NEC's VR4100 throw reserved instruction exceptions
604  * instead, so we're doing the emulation thing in both exception handlers.
605  */
606 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
607 {
608 	if ((opcode & OPCODE) == LL) {
609 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
610 				1, regs, 0);
611 		return simulate_ll(regs, opcode);
612 	}
613 	if ((opcode & OPCODE) == SC) {
614 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
615 				1, regs, 0);
616 		return simulate_sc(regs, opcode);
617 	}
618 
619 	return -1;			/* Must be something else ... */
620 }
621 
622 /*
623  * Simulate trapping 'rdhwr' instructions to provide user accessible
624  * registers not implemented in hardware.
625  */
626 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
627 {
628 	struct thread_info *ti = task_thread_info(current);
629 
630 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
631 			1, regs, 0);
632 	switch (rd) {
633 	case MIPS_HWR_CPUNUM:		/* CPU number */
634 		regs->regs[rt] = smp_processor_id();
635 		return 0;
636 	case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
637 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
638 				     current_cpu_data.icache.linesz);
639 		return 0;
640 	case MIPS_HWR_CC:		/* Read count register */
641 		regs->regs[rt] = read_c0_count();
642 		return 0;
643 	case MIPS_HWR_CCRES:		/* Count register resolution */
644 		switch (current_cpu_type()) {
645 		case CPU_20KC:
646 		case CPU_25KF:
647 			regs->regs[rt] = 1;
648 			break;
649 		default:
650 			regs->regs[rt] = 2;
651 		}
652 		return 0;
653 	case MIPS_HWR_ULR:		/* Read UserLocal register */
654 		regs->regs[rt] = ti->tp_value;
655 		return 0;
656 	default:
657 		return -1;
658 	}
659 }
660 
661 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
662 {
663 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
664 		int rd = (opcode & RD) >> 11;
665 		int rt = (opcode & RT) >> 16;
666 
667 		simulate_rdhwr(regs, rd, rt);
668 		return 0;
669 	}
670 
671 	/* Not ours.  */
672 	return -1;
673 }
674 
675 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
676 {
677 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
678 		int rd = (opcode & MM_RS) >> 16;
679 		int rt = (opcode & MM_RT) >> 21;
680 		simulate_rdhwr(regs, rd, rt);
681 		return 0;
682 	}
683 
684 	/* Not ours.  */
685 	return -1;
686 }
687 
688 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
689 {
690 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
691 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
692 				1, regs, 0);
693 		return 0;
694 	}
695 
696 	return -1;			/* Must be something else ... */
697 }
698 
699 /*
700  * Loongson-3 CSR instructions emulation
701  */
702 
703 #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
704 
705 #define LWC2             0xc8000000
706 #define RS               BASE
707 #define CSR_OPCODE2      0x00000118
708 #define CSR_OPCODE2_MASK 0x000007ff
709 #define CSR_FUNC_MASK    RT
710 #define CSR_FUNC_CPUCFG  0x8
711 
712 static int simulate_loongson3_cpucfg(struct pt_regs *regs,
713 				     unsigned int opcode)
714 {
715 	int op = opcode & OPCODE;
716 	int op2 = opcode & CSR_OPCODE2_MASK;
717 	int csr_func = (opcode & CSR_FUNC_MASK) >> 16;
718 
719 	if (op == LWC2 && op2 == CSR_OPCODE2 && csr_func == CSR_FUNC_CPUCFG) {
720 		int rd = (opcode & RD) >> 11;
721 		int rs = (opcode & RS) >> 21;
722 		__u64 sel = regs->regs[rs];
723 
724 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
725 
726 		/* Do not emulate on unsupported core models. */
727 		if (!loongson3_cpucfg_emulation_enabled(&current_cpu_data))
728 			return -1;
729 
730 		regs->regs[rd] = loongson3_cpucfg_read_synthesized(
731 			&current_cpu_data, sel);
732 
733 		return 0;
734 	}
735 
736 	/* Not ours.  */
737 	return -1;
738 }
739 #endif /* CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION */
740 
741 asmlinkage void do_ov(struct pt_regs *regs)
742 {
743 	enum ctx_state prev_state;
744 
745 	prev_state = exception_enter();
746 	die_if_kernel("Integer overflow", regs);
747 
748 	force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
749 	exception_exit(prev_state);
750 }
751 
752 #ifdef CONFIG_MIPS_FP_SUPPORT
753 
754 /*
755  * Send SIGFPE according to FCSR Cause bits, which must have already
756  * been masked against Enable bits.  This is impotant as Inexact can
757  * happen together with Overflow or Underflow, and `ptrace' can set
758  * any bits.
759  */
760 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
761 		     struct task_struct *tsk)
762 {
763 	int si_code = FPE_FLTUNK;
764 
765 	if (fcr31 & FPU_CSR_INV_X)
766 		si_code = FPE_FLTINV;
767 	else if (fcr31 & FPU_CSR_DIV_X)
768 		si_code = FPE_FLTDIV;
769 	else if (fcr31 & FPU_CSR_OVF_X)
770 		si_code = FPE_FLTOVF;
771 	else if (fcr31 & FPU_CSR_UDF_X)
772 		si_code = FPE_FLTUND;
773 	else if (fcr31 & FPU_CSR_INE_X)
774 		si_code = FPE_FLTRES;
775 
776 	force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
777 }
778 
779 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
780 {
781 	int si_code;
782 	struct vm_area_struct *vma;
783 
784 	switch (sig) {
785 	case 0:
786 		return 0;
787 
788 	case SIGFPE:
789 		force_fcr31_sig(fcr31, fault_addr, current);
790 		return 1;
791 
792 	case SIGBUS:
793 		force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
794 		return 1;
795 
796 	case SIGSEGV:
797 		mmap_read_lock(current->mm);
798 		vma = find_vma(current->mm, (unsigned long)fault_addr);
799 		if (vma && (vma->vm_start <= (unsigned long)fault_addr))
800 			si_code = SEGV_ACCERR;
801 		else
802 			si_code = SEGV_MAPERR;
803 		mmap_read_unlock(current->mm);
804 		force_sig_fault(SIGSEGV, si_code, fault_addr);
805 		return 1;
806 
807 	default:
808 		force_sig(sig);
809 		return 1;
810 	}
811 }
812 
813 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
814 		       unsigned long old_epc, unsigned long old_ra)
815 {
816 	union mips_instruction inst = { .word = opcode };
817 	void __user *fault_addr;
818 	unsigned long fcr31;
819 	int sig;
820 
821 	/* If it's obviously not an FP instruction, skip it */
822 	switch (inst.i_format.opcode) {
823 	case cop1_op:
824 	case cop1x_op:
825 	case lwc1_op:
826 	case ldc1_op:
827 	case swc1_op:
828 	case sdc1_op:
829 		break;
830 
831 	default:
832 		return -1;
833 	}
834 
835 	/*
836 	 * do_ri skipped over the instruction via compute_return_epc, undo
837 	 * that for the FPU emulator.
838 	 */
839 	regs->cp0_epc = old_epc;
840 	regs->regs[31] = old_ra;
841 
842 	/* Run the emulator */
843 	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
844 				       &fault_addr);
845 
846 	/*
847 	 * We can't allow the emulated instruction to leave any
848 	 * enabled Cause bits set in $fcr31.
849 	 */
850 	fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
851 	current->thread.fpu.fcr31 &= ~fcr31;
852 
853 	/* Restore the hardware register state */
854 	own_fpu(1);
855 
856 	/* Send a signal if required.  */
857 	process_fpemu_return(sig, fault_addr, fcr31);
858 
859 	return 0;
860 }
861 
862 /*
863  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
864  */
865 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
866 {
867 	enum ctx_state prev_state;
868 	void __user *fault_addr;
869 	int sig;
870 
871 	prev_state = exception_enter();
872 	if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
873 		       SIGFPE) == NOTIFY_STOP)
874 		goto out;
875 
876 	/* Clear FCSR.Cause before enabling interrupts */
877 	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
878 	local_irq_enable();
879 
880 	die_if_kernel("FP exception in kernel code", regs);
881 
882 	if (fcr31 & FPU_CSR_UNI_X) {
883 		/*
884 		 * Unimplemented operation exception.  If we've got the full
885 		 * software emulator on-board, let's use it...
886 		 *
887 		 * Force FPU to dump state into task/thread context.  We're
888 		 * moving a lot of data here for what is probably a single
889 		 * instruction, but the alternative is to pre-decode the FP
890 		 * register operands before invoking the emulator, which seems
891 		 * a bit extreme for what should be an infrequent event.
892 		 */
893 
894 		/* Run the emulator */
895 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
896 					       &fault_addr);
897 
898 		/*
899 		 * We can't allow the emulated instruction to leave any
900 		 * enabled Cause bits set in $fcr31.
901 		 */
902 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
903 		current->thread.fpu.fcr31 &= ~fcr31;
904 
905 		/* Restore the hardware register state */
906 		own_fpu(1);	/* Using the FPU again.	 */
907 	} else {
908 		sig = SIGFPE;
909 		fault_addr = (void __user *) regs->cp0_epc;
910 	}
911 
912 	/* Send a signal if required.  */
913 	process_fpemu_return(sig, fault_addr, fcr31);
914 
915 out:
916 	exception_exit(prev_state);
917 }
918 
919 /*
920  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
921  * emulated more than some threshold number of instructions, force migration to
922  * a "CPU" that has FP support.
923  */
924 static void mt_ase_fp_affinity(void)
925 {
926 #ifdef CONFIG_MIPS_MT_FPAFF
927 	if (mt_fpemul_threshold > 0 &&
928 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
929 		/*
930 		 * If there's no FPU present, or if the application has already
931 		 * restricted the allowed set to exclude any CPUs with FPUs,
932 		 * we'll skip the procedure.
933 		 */
934 		if (cpumask_intersects(&current->cpus_mask, &mt_fpu_cpumask)) {
935 			cpumask_t tmask;
936 
937 			current->thread.user_cpus_allowed
938 				= current->cpus_mask;
939 			cpumask_and(&tmask, &current->cpus_mask,
940 				    &mt_fpu_cpumask);
941 			set_cpus_allowed_ptr(current, &tmask);
942 			set_thread_flag(TIF_FPUBOUND);
943 		}
944 	}
945 #endif /* CONFIG_MIPS_MT_FPAFF */
946 }
947 
948 #else /* !CONFIG_MIPS_FP_SUPPORT */
949 
950 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
951 		       unsigned long old_epc, unsigned long old_ra)
952 {
953 	return -1;
954 }
955 
956 #endif /* !CONFIG_MIPS_FP_SUPPORT */
957 
958 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
959 	const char *str)
960 {
961 	char b[40];
962 
963 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
964 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
965 			 SIGTRAP) == NOTIFY_STOP)
966 		return;
967 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
968 
969 	if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
970 		       SIGTRAP) == NOTIFY_STOP)
971 		return;
972 
973 	/*
974 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
975 	 * insns, even for trap and break codes that indicate arithmetic
976 	 * failures.  Weird ...
977 	 * But should we continue the brokenness???  --macro
978 	 */
979 	switch (code) {
980 	case BRK_OVERFLOW:
981 	case BRK_DIVZERO:
982 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
983 		die_if_kernel(b, regs);
984 		force_sig_fault(SIGFPE,
985 				code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
986 				(void __user *) regs->cp0_epc);
987 		break;
988 	case BRK_BUG:
989 		die_if_kernel("Kernel bug detected", regs);
990 		force_sig(SIGTRAP);
991 		break;
992 	case BRK_MEMU:
993 		/*
994 		 * This breakpoint code is used by the FPU emulator to retake
995 		 * control of the CPU after executing the instruction from the
996 		 * delay slot of an emulated branch.
997 		 *
998 		 * Terminate if exception was recognized as a delay slot return
999 		 * otherwise handle as normal.
1000 		 */
1001 		if (do_dsemulret(regs))
1002 			return;
1003 
1004 		die_if_kernel("Math emu break/trap", regs);
1005 		force_sig(SIGTRAP);
1006 		break;
1007 	default:
1008 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
1009 		die_if_kernel(b, regs);
1010 		if (si_code) {
1011 			force_sig_fault(SIGTRAP, si_code, NULL);
1012 		} else {
1013 			force_sig(SIGTRAP);
1014 		}
1015 	}
1016 }
1017 
1018 asmlinkage void do_bp(struct pt_regs *regs)
1019 {
1020 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1021 	unsigned int opcode, bcode;
1022 	enum ctx_state prev_state;
1023 	mm_segment_t seg;
1024 
1025 	seg = get_fs();
1026 	if (!user_mode(regs))
1027 		set_fs(KERNEL_DS);
1028 
1029 	prev_state = exception_enter();
1030 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1031 	if (get_isa16_mode(regs->cp0_epc)) {
1032 		u16 instr[2];
1033 
1034 		if (__get_user(instr[0], (u16 __user *)epc))
1035 			goto out_sigsegv;
1036 
1037 		if (!cpu_has_mmips) {
1038 			/* MIPS16e mode */
1039 			bcode = (instr[0] >> 5) & 0x3f;
1040 		} else if (mm_insn_16bit(instr[0])) {
1041 			/* 16-bit microMIPS BREAK */
1042 			bcode = instr[0] & 0xf;
1043 		} else {
1044 			/* 32-bit microMIPS BREAK */
1045 			if (__get_user(instr[1], (u16 __user *)(epc + 2)))
1046 				goto out_sigsegv;
1047 			opcode = (instr[0] << 16) | instr[1];
1048 			bcode = (opcode >> 6) & ((1 << 20) - 1);
1049 		}
1050 	} else {
1051 		if (__get_user(opcode, (unsigned int __user *)epc))
1052 			goto out_sigsegv;
1053 		bcode = (opcode >> 6) & ((1 << 20) - 1);
1054 	}
1055 
1056 	/*
1057 	 * There is the ancient bug in the MIPS assemblers that the break
1058 	 * code starts left to bit 16 instead to bit 6 in the opcode.
1059 	 * Gas is bug-compatible, but not always, grrr...
1060 	 * We handle both cases with a simple heuristics.  --macro
1061 	 */
1062 	if (bcode >= (1 << 10))
1063 		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1064 
1065 	/*
1066 	 * notify the kprobe handlers, if instruction is likely to
1067 	 * pertain to them.
1068 	 */
1069 	switch (bcode) {
1070 	case BRK_UPROBE:
1071 		if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1072 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1073 			goto out;
1074 		else
1075 			break;
1076 	case BRK_UPROBE_XOL:
1077 		if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1078 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1079 			goto out;
1080 		else
1081 			break;
1082 	case BRK_KPROBE_BP:
1083 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
1084 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1085 			goto out;
1086 		else
1087 			break;
1088 	case BRK_KPROBE_SSTEPBP:
1089 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1090 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1091 			goto out;
1092 		else
1093 			break;
1094 	default:
1095 		break;
1096 	}
1097 
1098 	do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1099 
1100 out:
1101 	set_fs(seg);
1102 	exception_exit(prev_state);
1103 	return;
1104 
1105 out_sigsegv:
1106 	force_sig(SIGSEGV);
1107 	goto out;
1108 }
1109 
1110 asmlinkage void do_tr(struct pt_regs *regs)
1111 {
1112 	u32 opcode, tcode = 0;
1113 	enum ctx_state prev_state;
1114 	u16 instr[2];
1115 	mm_segment_t seg;
1116 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1117 
1118 	seg = get_fs();
1119 	if (!user_mode(regs))
1120 		set_fs(KERNEL_DS);
1121 
1122 	prev_state = exception_enter();
1123 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1124 	if (get_isa16_mode(regs->cp0_epc)) {
1125 		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1126 		    __get_user(instr[1], (u16 __user *)(epc + 2)))
1127 			goto out_sigsegv;
1128 		opcode = (instr[0] << 16) | instr[1];
1129 		/* Immediate versions don't provide a code.  */
1130 		if (!(opcode & OPCODE))
1131 			tcode = (opcode >> 12) & ((1 << 4) - 1);
1132 	} else {
1133 		if (__get_user(opcode, (u32 __user *)epc))
1134 			goto out_sigsegv;
1135 		/* Immediate versions don't provide a code.  */
1136 		if (!(opcode & OPCODE))
1137 			tcode = (opcode >> 6) & ((1 << 10) - 1);
1138 	}
1139 
1140 	do_trap_or_bp(regs, tcode, 0, "Trap");
1141 
1142 out:
1143 	set_fs(seg);
1144 	exception_exit(prev_state);
1145 	return;
1146 
1147 out_sigsegv:
1148 	force_sig(SIGSEGV);
1149 	goto out;
1150 }
1151 
1152 asmlinkage void do_ri(struct pt_regs *regs)
1153 {
1154 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1155 	unsigned long old_epc = regs->cp0_epc;
1156 	unsigned long old31 = regs->regs[31];
1157 	enum ctx_state prev_state;
1158 	unsigned int opcode = 0;
1159 	int status = -1;
1160 
1161 	/*
1162 	 * Avoid any kernel code. Just emulate the R2 instruction
1163 	 * as quickly as possible.
1164 	 */
1165 	if (mipsr2_emulation && cpu_has_mips_r6 &&
1166 	    likely(user_mode(regs)) &&
1167 	    likely(get_user(opcode, epc) >= 0)) {
1168 		unsigned long fcr31 = 0;
1169 
1170 		status = mipsr2_decoder(regs, opcode, &fcr31);
1171 		switch (status) {
1172 		case 0:
1173 		case SIGEMT:
1174 			return;
1175 		case SIGILL:
1176 			goto no_r2_instr;
1177 		default:
1178 			process_fpemu_return(status,
1179 					     &current->thread.cp0_baduaddr,
1180 					     fcr31);
1181 			return;
1182 		}
1183 	}
1184 
1185 no_r2_instr:
1186 
1187 	prev_state = exception_enter();
1188 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1189 
1190 	if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1191 		       SIGILL) == NOTIFY_STOP)
1192 		goto out;
1193 
1194 	die_if_kernel("Reserved instruction in kernel code", regs);
1195 
1196 	if (unlikely(compute_return_epc(regs) < 0))
1197 		goto out;
1198 
1199 	if (!get_isa16_mode(regs->cp0_epc)) {
1200 		if (unlikely(get_user(opcode, epc) < 0))
1201 			status = SIGSEGV;
1202 
1203 		if (!cpu_has_llsc && status < 0)
1204 			status = simulate_llsc(regs, opcode);
1205 
1206 		if (status < 0)
1207 			status = simulate_rdhwr_normal(regs, opcode);
1208 
1209 		if (status < 0)
1210 			status = simulate_sync(regs, opcode);
1211 
1212 		if (status < 0)
1213 			status = simulate_fp(regs, opcode, old_epc, old31);
1214 
1215 #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
1216 		if (status < 0)
1217 			status = simulate_loongson3_cpucfg(regs, opcode);
1218 #endif
1219 	} else if (cpu_has_mmips) {
1220 		unsigned short mmop[2] = { 0 };
1221 
1222 		if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1223 			status = SIGSEGV;
1224 		if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1225 			status = SIGSEGV;
1226 		opcode = mmop[0];
1227 		opcode = (opcode << 16) | mmop[1];
1228 
1229 		if (status < 0)
1230 			status = simulate_rdhwr_mm(regs, opcode);
1231 	}
1232 
1233 	if (status < 0)
1234 		status = SIGILL;
1235 
1236 	if (unlikely(status > 0)) {
1237 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1238 		regs->regs[31] = old31;
1239 		force_sig(status);
1240 	}
1241 
1242 out:
1243 	exception_exit(prev_state);
1244 }
1245 
1246 /*
1247  * No lock; only written during early bootup by CPU 0.
1248  */
1249 static RAW_NOTIFIER_HEAD(cu2_chain);
1250 
1251 int __ref register_cu2_notifier(struct notifier_block *nb)
1252 {
1253 	return raw_notifier_chain_register(&cu2_chain, nb);
1254 }
1255 
1256 int cu2_notifier_call_chain(unsigned long val, void *v)
1257 {
1258 	return raw_notifier_call_chain(&cu2_chain, val, v);
1259 }
1260 
1261 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1262 	void *data)
1263 {
1264 	struct pt_regs *regs = data;
1265 
1266 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1267 			      "instruction", regs);
1268 	force_sig(SIGILL);
1269 
1270 	return NOTIFY_OK;
1271 }
1272 
1273 #ifdef CONFIG_MIPS_FP_SUPPORT
1274 
1275 static int enable_restore_fp_context(int msa)
1276 {
1277 	int err, was_fpu_owner, prior_msa;
1278 	bool first_fp;
1279 
1280 	/* Initialize context if it hasn't been used already */
1281 	first_fp = init_fp_ctx(current);
1282 
1283 	if (first_fp) {
1284 		preempt_disable();
1285 		err = own_fpu_inatomic(1);
1286 		if (msa && !err) {
1287 			enable_msa();
1288 			set_thread_flag(TIF_USEDMSA);
1289 			set_thread_flag(TIF_MSA_CTX_LIVE);
1290 		}
1291 		preempt_enable();
1292 		return err;
1293 	}
1294 
1295 	/*
1296 	 * This task has formerly used the FP context.
1297 	 *
1298 	 * If this thread has no live MSA vector context then we can simply
1299 	 * restore the scalar FP context. If it has live MSA vector context
1300 	 * (that is, it has or may have used MSA since last performing a
1301 	 * function call) then we'll need to restore the vector context. This
1302 	 * applies even if we're currently only executing a scalar FP
1303 	 * instruction. This is because if we were to later execute an MSA
1304 	 * instruction then we'd either have to:
1305 	 *
1306 	 *  - Restore the vector context & clobber any registers modified by
1307 	 *    scalar FP instructions between now & then.
1308 	 *
1309 	 * or
1310 	 *
1311 	 *  - Not restore the vector context & lose the most significant bits
1312 	 *    of all vector registers.
1313 	 *
1314 	 * Neither of those options is acceptable. We cannot restore the least
1315 	 * significant bits of the registers now & only restore the most
1316 	 * significant bits later because the most significant bits of any
1317 	 * vector registers whose aliased FP register is modified now will have
1318 	 * been zeroed. We'd have no way to know that when restoring the vector
1319 	 * context & thus may load an outdated value for the most significant
1320 	 * bits of a vector register.
1321 	 */
1322 	if (!msa && !thread_msa_context_live())
1323 		return own_fpu(1);
1324 
1325 	/*
1326 	 * This task is using or has previously used MSA. Thus we require
1327 	 * that Status.FR == 1.
1328 	 */
1329 	preempt_disable();
1330 	was_fpu_owner = is_fpu_owner();
1331 	err = own_fpu_inatomic(0);
1332 	if (err)
1333 		goto out;
1334 
1335 	enable_msa();
1336 	write_msa_csr(current->thread.fpu.msacsr);
1337 	set_thread_flag(TIF_USEDMSA);
1338 
1339 	/*
1340 	 * If this is the first time that the task is using MSA and it has
1341 	 * previously used scalar FP in this time slice then we already nave
1342 	 * FP context which we shouldn't clobber. We do however need to clear
1343 	 * the upper 64b of each vector register so that this task has no
1344 	 * opportunity to see data left behind by another.
1345 	 */
1346 	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1347 	if (!prior_msa && was_fpu_owner) {
1348 		init_msa_upper();
1349 
1350 		goto out;
1351 	}
1352 
1353 	if (!prior_msa) {
1354 		/*
1355 		 * Restore the least significant 64b of each vector register
1356 		 * from the existing scalar FP context.
1357 		 */
1358 		_restore_fp(current);
1359 
1360 		/*
1361 		 * The task has not formerly used MSA, so clear the upper 64b
1362 		 * of each vector register such that it cannot see data left
1363 		 * behind by another task.
1364 		 */
1365 		init_msa_upper();
1366 	} else {
1367 		/* We need to restore the vector context. */
1368 		restore_msa(current);
1369 
1370 		/* Restore the scalar FP control & status register */
1371 		if (!was_fpu_owner)
1372 			write_32bit_cp1_register(CP1_STATUS,
1373 						 current->thread.fpu.fcr31);
1374 	}
1375 
1376 out:
1377 	preempt_enable();
1378 
1379 	return 0;
1380 }
1381 
1382 #else /* !CONFIG_MIPS_FP_SUPPORT */
1383 
1384 static int enable_restore_fp_context(int msa)
1385 {
1386 	return SIGILL;
1387 }
1388 
1389 #endif /* CONFIG_MIPS_FP_SUPPORT */
1390 
1391 asmlinkage void do_cpu(struct pt_regs *regs)
1392 {
1393 	enum ctx_state prev_state;
1394 	unsigned int __user *epc;
1395 	unsigned long old_epc, old31;
1396 	unsigned int opcode;
1397 	unsigned int cpid;
1398 	int status;
1399 
1400 	prev_state = exception_enter();
1401 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1402 
1403 	if (cpid != 2)
1404 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1405 
1406 	switch (cpid) {
1407 	case 0:
1408 		epc = (unsigned int __user *)exception_epc(regs);
1409 		old_epc = regs->cp0_epc;
1410 		old31 = regs->regs[31];
1411 		opcode = 0;
1412 		status = -1;
1413 
1414 		if (unlikely(compute_return_epc(regs) < 0))
1415 			break;
1416 
1417 		if (!get_isa16_mode(regs->cp0_epc)) {
1418 			if (unlikely(get_user(opcode, epc) < 0))
1419 				status = SIGSEGV;
1420 
1421 			if (!cpu_has_llsc && status < 0)
1422 				status = simulate_llsc(regs, opcode);
1423 		}
1424 
1425 		if (status < 0)
1426 			status = SIGILL;
1427 
1428 		if (unlikely(status > 0)) {
1429 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1430 			regs->regs[31] = old31;
1431 			force_sig(status);
1432 		}
1433 
1434 		break;
1435 
1436 #ifdef CONFIG_MIPS_FP_SUPPORT
1437 	case 3:
1438 		/*
1439 		 * The COP3 opcode space and consequently the CP0.Status.CU3
1440 		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1441 		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1442 		 * up the space has been reused for COP1X instructions, that
1443 		 * are enabled by the CP0.Status.CU1 bit and consequently
1444 		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1445 		 * exceptions.  Some FPU-less processors that implement one
1446 		 * of these ISAs however use this code erroneously for COP1X
1447 		 * instructions.  Therefore we redirect this trap to the FP
1448 		 * emulator too.
1449 		 */
1450 		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1451 			force_sig(SIGILL);
1452 			break;
1453 		}
1454 		fallthrough;
1455 	case 1: {
1456 		void __user *fault_addr;
1457 		unsigned long fcr31;
1458 		int err, sig;
1459 
1460 		err = enable_restore_fp_context(0);
1461 
1462 		if (raw_cpu_has_fpu && !err)
1463 			break;
1464 
1465 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1466 					       &fault_addr);
1467 
1468 		/*
1469 		 * We can't allow the emulated instruction to leave
1470 		 * any enabled Cause bits set in $fcr31.
1471 		 */
1472 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1473 		current->thread.fpu.fcr31 &= ~fcr31;
1474 
1475 		/* Send a signal if required.  */
1476 		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1477 			mt_ase_fp_affinity();
1478 
1479 		break;
1480 	}
1481 #else /* CONFIG_MIPS_FP_SUPPORT */
1482 	case 1:
1483 	case 3:
1484 		force_sig(SIGILL);
1485 		break;
1486 #endif /* CONFIG_MIPS_FP_SUPPORT */
1487 
1488 	case 2:
1489 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1490 		break;
1491 	}
1492 
1493 	exception_exit(prev_state);
1494 }
1495 
1496 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1497 {
1498 	enum ctx_state prev_state;
1499 
1500 	prev_state = exception_enter();
1501 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1502 	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1503 		       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1504 		goto out;
1505 
1506 	/* Clear MSACSR.Cause before enabling interrupts */
1507 	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1508 	local_irq_enable();
1509 
1510 	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1511 	force_sig(SIGFPE);
1512 out:
1513 	exception_exit(prev_state);
1514 }
1515 
1516 asmlinkage void do_msa(struct pt_regs *regs)
1517 {
1518 	enum ctx_state prev_state;
1519 	int err;
1520 
1521 	prev_state = exception_enter();
1522 
1523 	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1524 		force_sig(SIGILL);
1525 		goto out;
1526 	}
1527 
1528 	die_if_kernel("do_msa invoked from kernel context!", regs);
1529 
1530 	err = enable_restore_fp_context(1);
1531 	if (err)
1532 		force_sig(SIGILL);
1533 out:
1534 	exception_exit(prev_state);
1535 }
1536 
1537 asmlinkage void do_mdmx(struct pt_regs *regs)
1538 {
1539 	enum ctx_state prev_state;
1540 
1541 	prev_state = exception_enter();
1542 	force_sig(SIGILL);
1543 	exception_exit(prev_state);
1544 }
1545 
1546 /*
1547  * Called with interrupts disabled.
1548  */
1549 asmlinkage void do_watch(struct pt_regs *regs)
1550 {
1551 	enum ctx_state prev_state;
1552 
1553 	prev_state = exception_enter();
1554 	/*
1555 	 * Clear WP (bit 22) bit of cause register so we don't loop
1556 	 * forever.
1557 	 */
1558 	clear_c0_cause(CAUSEF_WP);
1559 
1560 	/*
1561 	 * If the current thread has the watch registers loaded, save
1562 	 * their values and send SIGTRAP.  Otherwise another thread
1563 	 * left the registers set, clear them and continue.
1564 	 */
1565 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1566 		mips_read_watch_registers();
1567 		local_irq_enable();
1568 		force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
1569 	} else {
1570 		mips_clear_watch_registers();
1571 		local_irq_enable();
1572 	}
1573 	exception_exit(prev_state);
1574 }
1575 
1576 asmlinkage void do_mcheck(struct pt_regs *regs)
1577 {
1578 	int multi_match = regs->cp0_status & ST0_TS;
1579 	enum ctx_state prev_state;
1580 	mm_segment_t old_fs = get_fs();
1581 
1582 	prev_state = exception_enter();
1583 	show_regs(regs);
1584 
1585 	if (multi_match) {
1586 		dump_tlb_regs();
1587 		pr_info("\n");
1588 		dump_tlb_all();
1589 	}
1590 
1591 	if (!user_mode(regs))
1592 		set_fs(KERNEL_DS);
1593 
1594 	show_code((unsigned int __user *) regs->cp0_epc);
1595 
1596 	set_fs(old_fs);
1597 
1598 	/*
1599 	 * Some chips may have other causes of machine check (e.g. SB1
1600 	 * graduation timer)
1601 	 */
1602 	panic("Caught Machine Check exception - %scaused by multiple "
1603 	      "matching entries in the TLB.",
1604 	      (multi_match) ? "" : "not ");
1605 }
1606 
1607 asmlinkage void do_mt(struct pt_regs *regs)
1608 {
1609 	int subcode;
1610 
1611 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1612 			>> VPECONTROL_EXCPT_SHIFT;
1613 	switch (subcode) {
1614 	case 0:
1615 		printk(KERN_DEBUG "Thread Underflow\n");
1616 		break;
1617 	case 1:
1618 		printk(KERN_DEBUG "Thread Overflow\n");
1619 		break;
1620 	case 2:
1621 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1622 		break;
1623 	case 3:
1624 		printk(KERN_DEBUG "Gating Storage Exception\n");
1625 		break;
1626 	case 4:
1627 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1628 		break;
1629 	case 5:
1630 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1631 		break;
1632 	default:
1633 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1634 			subcode);
1635 		break;
1636 	}
1637 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1638 
1639 	force_sig(SIGILL);
1640 }
1641 
1642 
1643 asmlinkage void do_dsp(struct pt_regs *regs)
1644 {
1645 	if (cpu_has_dsp)
1646 		panic("Unexpected DSP exception");
1647 
1648 	force_sig(SIGILL);
1649 }
1650 
1651 asmlinkage void do_reserved(struct pt_regs *regs)
1652 {
1653 	/*
1654 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1655 	 * caused by a new unknown cpu type or after another deadly
1656 	 * hard/software error.
1657 	 */
1658 	show_regs(regs);
1659 	panic("Caught reserved exception %ld - should not happen.",
1660 	      (regs->cp0_cause & 0x7f) >> 2);
1661 }
1662 
1663 static int __initdata l1parity = 1;
1664 static int __init nol1parity(char *s)
1665 {
1666 	l1parity = 0;
1667 	return 1;
1668 }
1669 __setup("nol1par", nol1parity);
1670 static int __initdata l2parity = 1;
1671 static int __init nol2parity(char *s)
1672 {
1673 	l2parity = 0;
1674 	return 1;
1675 }
1676 __setup("nol2par", nol2parity);
1677 
1678 /*
1679  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1680  * it different ways.
1681  */
1682 static inline __init void parity_protection_init(void)
1683 {
1684 #define ERRCTL_PE	0x80000000
1685 #define ERRCTL_L2P	0x00800000
1686 
1687 	if (mips_cm_revision() >= CM_REV_CM3) {
1688 		ulong gcr_ectl, cp0_ectl;
1689 
1690 		/*
1691 		 * With CM3 systems we need to ensure that the L1 & L2
1692 		 * parity enables are set to the same value, since this
1693 		 * is presumed by the hardware engineers.
1694 		 *
1695 		 * If the user disabled either of L1 or L2 ECC checking,
1696 		 * disable both.
1697 		 */
1698 		l1parity &= l2parity;
1699 		l2parity &= l1parity;
1700 
1701 		/* Probe L1 ECC support */
1702 		cp0_ectl = read_c0_ecc();
1703 		write_c0_ecc(cp0_ectl | ERRCTL_PE);
1704 		back_to_back_c0_hazard();
1705 		cp0_ectl = read_c0_ecc();
1706 
1707 		/* Probe L2 ECC support */
1708 		gcr_ectl = read_gcr_err_control();
1709 
1710 		if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1711 		    !(cp0_ectl & ERRCTL_PE)) {
1712 			/*
1713 			 * One of L1 or L2 ECC checking isn't supported,
1714 			 * so we cannot enable either.
1715 			 */
1716 			l1parity = l2parity = 0;
1717 		}
1718 
1719 		/* Configure L1 ECC checking */
1720 		if (l1parity)
1721 			cp0_ectl |= ERRCTL_PE;
1722 		else
1723 			cp0_ectl &= ~ERRCTL_PE;
1724 		write_c0_ecc(cp0_ectl);
1725 		back_to_back_c0_hazard();
1726 		WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1727 
1728 		/* Configure L2 ECC checking */
1729 		if (l2parity)
1730 			gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1731 		else
1732 			gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1733 		write_gcr_err_control(gcr_ectl);
1734 		gcr_ectl = read_gcr_err_control();
1735 		gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1736 		WARN_ON(!!gcr_ectl != l2parity);
1737 
1738 		pr_info("Cache parity protection %sabled\n",
1739 			l1parity ? "en" : "dis");
1740 		return;
1741 	}
1742 
1743 	switch (current_cpu_type()) {
1744 	case CPU_24K:
1745 	case CPU_34K:
1746 	case CPU_74K:
1747 	case CPU_1004K:
1748 	case CPU_1074K:
1749 	case CPU_INTERAPTIV:
1750 	case CPU_PROAPTIV:
1751 	case CPU_P5600:
1752 	case CPU_QEMU_GENERIC:
1753 	case CPU_P6600:
1754 		{
1755 			unsigned long errctl;
1756 			unsigned int l1parity_present, l2parity_present;
1757 
1758 			errctl = read_c0_ecc();
1759 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1760 
1761 			/* probe L1 parity support */
1762 			write_c0_ecc(errctl | ERRCTL_PE);
1763 			back_to_back_c0_hazard();
1764 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1765 
1766 			/* probe L2 parity support */
1767 			write_c0_ecc(errctl|ERRCTL_L2P);
1768 			back_to_back_c0_hazard();
1769 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1770 
1771 			if (l1parity_present && l2parity_present) {
1772 				if (l1parity)
1773 					errctl |= ERRCTL_PE;
1774 				if (l1parity ^ l2parity)
1775 					errctl |= ERRCTL_L2P;
1776 			} else if (l1parity_present) {
1777 				if (l1parity)
1778 					errctl |= ERRCTL_PE;
1779 			} else if (l2parity_present) {
1780 				if (l2parity)
1781 					errctl |= ERRCTL_L2P;
1782 			} else {
1783 				/* No parity available */
1784 			}
1785 
1786 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1787 
1788 			write_c0_ecc(errctl);
1789 			back_to_back_c0_hazard();
1790 			errctl = read_c0_ecc();
1791 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1792 
1793 			if (l1parity_present)
1794 				printk(KERN_INFO "Cache parity protection %sabled\n",
1795 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1796 
1797 			if (l2parity_present) {
1798 				if (l1parity_present && l1parity)
1799 					errctl ^= ERRCTL_L2P;
1800 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1801 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1802 			}
1803 		}
1804 		break;
1805 
1806 	case CPU_5KC:
1807 	case CPU_5KE:
1808 	case CPU_LOONGSON32:
1809 		write_c0_ecc(0x80000000);
1810 		back_to_back_c0_hazard();
1811 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1812 		printk(KERN_INFO "Cache parity protection %sabled\n",
1813 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1814 		break;
1815 	case CPU_20KC:
1816 	case CPU_25KF:
1817 		/* Clear the DE bit (bit 16) in the c0_status register. */
1818 		printk(KERN_INFO "Enable cache parity protection for "
1819 		       "MIPS 20KC/25KF CPUs.\n");
1820 		clear_c0_status(ST0_DE);
1821 		break;
1822 	default:
1823 		break;
1824 	}
1825 }
1826 
1827 asmlinkage void cache_parity_error(void)
1828 {
1829 	const int field = 2 * sizeof(unsigned long);
1830 	unsigned int reg_val;
1831 
1832 	/* For the moment, report the problem and hang. */
1833 	printk("Cache error exception:\n");
1834 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1835 	reg_val = read_c0_cacheerr();
1836 	printk("c0_cacheerr == %08x\n", reg_val);
1837 
1838 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1839 	       reg_val & (1<<30) ? "secondary" : "primary",
1840 	       reg_val & (1<<31) ? "data" : "insn");
1841 	if ((cpu_has_mips_r2_r6) &&
1842 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1843 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1844 			reg_val & (1<<29) ? "ED " : "",
1845 			reg_val & (1<<28) ? "ET " : "",
1846 			reg_val & (1<<27) ? "ES " : "",
1847 			reg_val & (1<<26) ? "EE " : "",
1848 			reg_val & (1<<25) ? "EB " : "",
1849 			reg_val & (1<<24) ? "EI " : "",
1850 			reg_val & (1<<23) ? "E1 " : "",
1851 			reg_val & (1<<22) ? "E0 " : "");
1852 	} else {
1853 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1854 			reg_val & (1<<29) ? "ED " : "",
1855 			reg_val & (1<<28) ? "ET " : "",
1856 			reg_val & (1<<26) ? "EE " : "",
1857 			reg_val & (1<<25) ? "EB " : "",
1858 			reg_val & (1<<24) ? "EI " : "",
1859 			reg_val & (1<<23) ? "E1 " : "",
1860 			reg_val & (1<<22) ? "E0 " : "");
1861 	}
1862 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1863 
1864 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1865 	if (reg_val & (1<<22))
1866 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1867 
1868 	if (reg_val & (1<<23))
1869 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1870 #endif
1871 
1872 	panic("Can't handle the cache error!");
1873 }
1874 
1875 asmlinkage void do_ftlb(void)
1876 {
1877 	const int field = 2 * sizeof(unsigned long);
1878 	unsigned int reg_val;
1879 
1880 	/* For the moment, report the problem and hang. */
1881 	if ((cpu_has_mips_r2_r6) &&
1882 	    (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1883 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1884 		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1885 		       read_c0_ecc());
1886 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1887 		reg_val = read_c0_cacheerr();
1888 		pr_err("c0_cacheerr == %08x\n", reg_val);
1889 
1890 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1891 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1892 		} else {
1893 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1894 			       reg_val & (1<<30) ? "secondary" : "primary",
1895 			       reg_val & (1<<31) ? "data" : "insn");
1896 		}
1897 	} else {
1898 		pr_err("FTLB error exception\n");
1899 	}
1900 	/* Just print the cacheerr bits for now */
1901 	cache_parity_error();
1902 }
1903 
1904 asmlinkage void do_gsexc(struct pt_regs *regs, u32 diag1)
1905 {
1906 	u32 exccode = (diag1 & LOONGSON_DIAG1_EXCCODE) >>
1907 			LOONGSON_DIAG1_EXCCODE_SHIFT;
1908 	enum ctx_state prev_state;
1909 
1910 	prev_state = exception_enter();
1911 
1912 	switch (exccode) {
1913 	case 0x08:
1914 		/* Undocumented exception, will trigger on certain
1915 		 * also-undocumented instructions accessible from userspace.
1916 		 * Processor state is not otherwise corrupted, but currently
1917 		 * we don't know how to proceed. Maybe there is some
1918 		 * undocumented control flag to enable the instructions?
1919 		 */
1920 		force_sig(SIGILL);
1921 		break;
1922 
1923 	default:
1924 		/* None of the other exceptions, documented or not, have
1925 		 * further details given; none are encountered in the wild
1926 		 * either. Panic in case some of them turn out to be fatal.
1927 		 */
1928 		show_regs(regs);
1929 		panic("Unhandled Loongson exception - GSCause = %08x", diag1);
1930 	}
1931 
1932 	exception_exit(prev_state);
1933 }
1934 
1935 /*
1936  * SDBBP EJTAG debug exception handler.
1937  * We skip the instruction and return to the next instruction.
1938  */
1939 void ejtag_exception_handler(struct pt_regs *regs)
1940 {
1941 	const int field = 2 * sizeof(unsigned long);
1942 	unsigned long depc, old_epc, old_ra;
1943 	unsigned int debug;
1944 
1945 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1946 	depc = read_c0_depc();
1947 	debug = read_c0_debug();
1948 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1949 	if (debug & 0x80000000) {
1950 		/*
1951 		 * In branch delay slot.
1952 		 * We cheat a little bit here and use EPC to calculate the
1953 		 * debug return address (DEPC). EPC is restored after the
1954 		 * calculation.
1955 		 */
1956 		old_epc = regs->cp0_epc;
1957 		old_ra = regs->regs[31];
1958 		regs->cp0_epc = depc;
1959 		compute_return_epc(regs);
1960 		depc = regs->cp0_epc;
1961 		regs->cp0_epc = old_epc;
1962 		regs->regs[31] = old_ra;
1963 	} else
1964 		depc += 4;
1965 	write_c0_depc(depc);
1966 
1967 #if 0
1968 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1969 	write_c0_debug(debug | 0x100);
1970 #endif
1971 }
1972 
1973 /*
1974  * NMI exception handler.
1975  * No lock; only written during early bootup by CPU 0.
1976  */
1977 static RAW_NOTIFIER_HEAD(nmi_chain);
1978 
1979 int register_nmi_notifier(struct notifier_block *nb)
1980 {
1981 	return raw_notifier_chain_register(&nmi_chain, nb);
1982 }
1983 
1984 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1985 {
1986 	char str[100];
1987 
1988 	nmi_enter();
1989 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1990 	bust_spinlocks(1);
1991 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1992 		 smp_processor_id(), regs->cp0_epc);
1993 	regs->cp0_epc = read_c0_errorepc();
1994 	die(str, regs);
1995 	nmi_exit();
1996 }
1997 
1998 #define VECTORSPACING 0x100	/* for EI/VI mode */
1999 
2000 unsigned long ebase;
2001 EXPORT_SYMBOL_GPL(ebase);
2002 unsigned long exception_handlers[32];
2003 unsigned long vi_handlers[64];
2004 
2005 void __init *set_except_vector(int n, void *addr)
2006 {
2007 	unsigned long handler = (unsigned long) addr;
2008 	unsigned long old_handler;
2009 
2010 #ifdef CONFIG_CPU_MICROMIPS
2011 	/*
2012 	 * Only the TLB handlers are cache aligned with an even
2013 	 * address. All other handlers are on an odd address and
2014 	 * require no modification. Otherwise, MIPS32 mode will
2015 	 * be entered when handling any TLB exceptions. That
2016 	 * would be bad...since we must stay in microMIPS mode.
2017 	 */
2018 	if (!(handler & 0x1))
2019 		handler |= 1;
2020 #endif
2021 	old_handler = xchg(&exception_handlers[n], handler);
2022 
2023 	if (n == 0 && cpu_has_divec) {
2024 #ifdef CONFIG_CPU_MICROMIPS
2025 		unsigned long jump_mask = ~((1 << 27) - 1);
2026 #else
2027 		unsigned long jump_mask = ~((1 << 28) - 1);
2028 #endif
2029 		u32 *buf = (u32 *)(ebase + 0x200);
2030 		unsigned int k0 = 26;
2031 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
2032 			uasm_i_j(&buf, handler & ~jump_mask);
2033 			uasm_i_nop(&buf);
2034 		} else {
2035 			UASM_i_LA(&buf, k0, handler);
2036 			uasm_i_jr(&buf, k0);
2037 			uasm_i_nop(&buf);
2038 		}
2039 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
2040 	}
2041 	return (void *)old_handler;
2042 }
2043 
2044 static void do_default_vi(void)
2045 {
2046 	show_regs(get_irq_regs());
2047 	panic("Caught unexpected vectored interrupt.");
2048 }
2049 
2050 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
2051 {
2052 	unsigned long handler;
2053 	unsigned long old_handler = vi_handlers[n];
2054 	int srssets = current_cpu_data.srsets;
2055 	u16 *h;
2056 	unsigned char *b;
2057 
2058 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
2059 
2060 	if (addr == NULL) {
2061 		handler = (unsigned long) do_default_vi;
2062 		srs = 0;
2063 	} else
2064 		handler = (unsigned long) addr;
2065 	vi_handlers[n] = handler;
2066 
2067 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2068 
2069 	if (srs >= srssets)
2070 		panic("Shadow register set %d not supported", srs);
2071 
2072 	if (cpu_has_veic) {
2073 		if (board_bind_eic_interrupt)
2074 			board_bind_eic_interrupt(n, srs);
2075 	} else if (cpu_has_vint) {
2076 		/* SRSMap is only defined if shadow sets are implemented */
2077 		if (srssets > 1)
2078 			change_c0_srsmap(0xf << n*4, srs << n*4);
2079 	}
2080 
2081 	if (srs == 0) {
2082 		/*
2083 		 * If no shadow set is selected then use the default handler
2084 		 * that does normal register saving and standard interrupt exit
2085 		 */
2086 		extern char except_vec_vi, except_vec_vi_lui;
2087 		extern char except_vec_vi_ori, except_vec_vi_end;
2088 		extern char rollback_except_vec_vi;
2089 		char *vec_start = using_rollback_handler() ?
2090 			&rollback_except_vec_vi : &except_vec_vi;
2091 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2092 		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2093 		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2094 #else
2095 		const int lui_offset = &except_vec_vi_lui - vec_start;
2096 		const int ori_offset = &except_vec_vi_ori - vec_start;
2097 #endif
2098 		const int handler_len = &except_vec_vi_end - vec_start;
2099 
2100 		if (handler_len > VECTORSPACING) {
2101 			/*
2102 			 * Sigh... panicing won't help as the console
2103 			 * is probably not configured :(
2104 			 */
2105 			panic("VECTORSPACING too small");
2106 		}
2107 
2108 		set_handler(((unsigned long)b - ebase), vec_start,
2109 #ifdef CONFIG_CPU_MICROMIPS
2110 				(handler_len - 1));
2111 #else
2112 				handler_len);
2113 #endif
2114 		h = (u16 *)(b + lui_offset);
2115 		*h = (handler >> 16) & 0xffff;
2116 		h = (u16 *)(b + ori_offset);
2117 		*h = (handler & 0xffff);
2118 		local_flush_icache_range((unsigned long)b,
2119 					 (unsigned long)(b+handler_len));
2120 	}
2121 	else {
2122 		/*
2123 		 * In other cases jump directly to the interrupt handler. It
2124 		 * is the handler's responsibility to save registers if required
2125 		 * (eg hi/lo) and return from the exception using "eret".
2126 		 */
2127 		u32 insn;
2128 
2129 		h = (u16 *)b;
2130 		/* j handler */
2131 #ifdef CONFIG_CPU_MICROMIPS
2132 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2133 #else
2134 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2135 #endif
2136 		h[0] = (insn >> 16) & 0xffff;
2137 		h[1] = insn & 0xffff;
2138 		h[2] = 0;
2139 		h[3] = 0;
2140 		local_flush_icache_range((unsigned long)b,
2141 					 (unsigned long)(b+8));
2142 	}
2143 
2144 	return (void *)old_handler;
2145 }
2146 
2147 void *set_vi_handler(int n, vi_handler_t addr)
2148 {
2149 	return set_vi_srs_handler(n, addr, 0);
2150 }
2151 
2152 extern void tlb_init(void);
2153 
2154 /*
2155  * Timer interrupt
2156  */
2157 int cp0_compare_irq;
2158 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2159 int cp0_compare_irq_shift;
2160 
2161 /*
2162  * Performance counter IRQ or -1 if shared with timer
2163  */
2164 int cp0_perfcount_irq;
2165 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2166 
2167 /*
2168  * Fast debug channel IRQ or -1 if not present
2169  */
2170 int cp0_fdc_irq;
2171 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2172 
2173 static int noulri;
2174 
2175 static int __init ulri_disable(char *s)
2176 {
2177 	pr_info("Disabling ulri\n");
2178 	noulri = 1;
2179 
2180 	return 1;
2181 }
2182 __setup("noulri", ulri_disable);
2183 
2184 /* configure STATUS register */
2185 static void configure_status(void)
2186 {
2187 	/*
2188 	 * Disable coprocessors and select 32-bit or 64-bit addressing
2189 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2190 	 * flag that some firmware may have left set and the TS bit (for
2191 	 * IP27).  Set XX for ISA IV code to work.
2192 	 */
2193 	unsigned int status_set = ST0_CU0;
2194 #ifdef CONFIG_64BIT
2195 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2196 #endif
2197 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2198 		status_set |= ST0_XX;
2199 	if (cpu_has_dsp)
2200 		status_set |= ST0_MX;
2201 
2202 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2203 			 status_set);
2204 }
2205 
2206 unsigned int hwrena;
2207 EXPORT_SYMBOL_GPL(hwrena);
2208 
2209 /* configure HWRENA register */
2210 static void configure_hwrena(void)
2211 {
2212 	hwrena = cpu_hwrena_impl_bits;
2213 
2214 	if (cpu_has_mips_r2_r6)
2215 		hwrena |= MIPS_HWRENA_CPUNUM |
2216 			  MIPS_HWRENA_SYNCISTEP |
2217 			  MIPS_HWRENA_CC |
2218 			  MIPS_HWRENA_CCRES;
2219 
2220 	if (!noulri && cpu_has_userlocal)
2221 		hwrena |= MIPS_HWRENA_ULR;
2222 
2223 	if (hwrena)
2224 		write_c0_hwrena(hwrena);
2225 }
2226 
2227 static void configure_exception_vector(void)
2228 {
2229 	if (cpu_has_mips_r2_r6) {
2230 		unsigned long sr = set_c0_status(ST0_BEV);
2231 		/* If available, use WG to set top bits of EBASE */
2232 		if (cpu_has_ebase_wg) {
2233 #ifdef CONFIG_64BIT
2234 			write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2235 #else
2236 			write_c0_ebase(ebase | MIPS_EBASE_WG);
2237 #endif
2238 		}
2239 		write_c0_ebase(ebase);
2240 		write_c0_status(sr);
2241 	}
2242 	if (cpu_has_veic || cpu_has_vint) {
2243 		/* Setting vector spacing enables EI/VI mode  */
2244 		change_c0_intctl(0x3e0, VECTORSPACING);
2245 	}
2246 	if (cpu_has_divec) {
2247 		if (cpu_has_mipsmt) {
2248 			unsigned int vpflags = dvpe();
2249 			set_c0_cause(CAUSEF_IV);
2250 			evpe(vpflags);
2251 		} else
2252 			set_c0_cause(CAUSEF_IV);
2253 	}
2254 }
2255 
2256 void per_cpu_trap_init(bool is_boot_cpu)
2257 {
2258 	unsigned int cpu = smp_processor_id();
2259 
2260 	configure_status();
2261 	configure_hwrena();
2262 
2263 	configure_exception_vector();
2264 
2265 	/*
2266 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2267 	 *
2268 	 *  o read IntCtl.IPTI to determine the timer interrupt
2269 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2270 	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2271 	 */
2272 	if (cpu_has_mips_r2_r6) {
2273 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2274 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2275 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2276 		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2277 		if (!cp0_fdc_irq)
2278 			cp0_fdc_irq = -1;
2279 
2280 	} else {
2281 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2282 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2283 		cp0_perfcount_irq = -1;
2284 		cp0_fdc_irq = -1;
2285 	}
2286 
2287 	if (cpu_has_mmid)
2288 		cpu_data[cpu].asid_cache = 0;
2289 	else if (!cpu_data[cpu].asid_cache)
2290 		cpu_data[cpu].asid_cache = asid_first_version(cpu);
2291 
2292 	mmgrab(&init_mm);
2293 	current->active_mm = &init_mm;
2294 	BUG_ON(current->mm);
2295 	enter_lazy_tlb(&init_mm, current);
2296 
2297 	/* Boot CPU's cache setup in setup_arch(). */
2298 	if (!is_boot_cpu)
2299 		cpu_cache_init();
2300 	tlb_init();
2301 	TLBMISS_HANDLER_SETUP();
2302 }
2303 
2304 /* Install CPU exception handler */
2305 void set_handler(unsigned long offset, void *addr, unsigned long size)
2306 {
2307 #ifdef CONFIG_CPU_MICROMIPS
2308 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2309 #else
2310 	memcpy((void *)(ebase + offset), addr, size);
2311 #endif
2312 	local_flush_icache_range(ebase + offset, ebase + offset + size);
2313 }
2314 
2315 static const char panic_null_cerr[] =
2316 	"Trying to set NULL cache error exception handler\n";
2317 
2318 /*
2319  * Install uncached CPU exception handler.
2320  * This is suitable only for the cache error exception which is the only
2321  * exception handler that is being run uncached.
2322  */
2323 void set_uncached_handler(unsigned long offset, void *addr,
2324 	unsigned long size)
2325 {
2326 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2327 
2328 	if (!addr)
2329 		panic(panic_null_cerr);
2330 
2331 	memcpy((void *)(uncached_ebase + offset), addr, size);
2332 }
2333 
2334 static int __initdata rdhwr_noopt;
2335 static int __init set_rdhwr_noopt(char *str)
2336 {
2337 	rdhwr_noopt = 1;
2338 	return 1;
2339 }
2340 
2341 __setup("rdhwr_noopt", set_rdhwr_noopt);
2342 
2343 void __init trap_init(void)
2344 {
2345 	extern char except_vec3_generic;
2346 	extern char except_vec4;
2347 	extern char except_vec3_r4000;
2348 	unsigned long i, vec_size;
2349 	phys_addr_t ebase_pa;
2350 
2351 	check_wait();
2352 
2353 	if (!cpu_has_mips_r2_r6) {
2354 		ebase = CAC_BASE;
2355 		ebase_pa = virt_to_phys((void *)ebase);
2356 		vec_size = 0x400;
2357 
2358 		memblock_reserve(ebase_pa, vec_size);
2359 	} else {
2360 		if (cpu_has_veic || cpu_has_vint)
2361 			vec_size = 0x200 + VECTORSPACING*64;
2362 		else
2363 			vec_size = PAGE_SIZE;
2364 
2365 		ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
2366 		if (!ebase_pa)
2367 			panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2368 			      __func__, vec_size, 1 << fls(vec_size));
2369 
2370 		/*
2371 		 * Try to ensure ebase resides in KSeg0 if possible.
2372 		 *
2373 		 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2374 		 * hitting a poorly defined exception base for Cache Errors.
2375 		 * The allocation is likely to be in the low 512MB of physical,
2376 		 * in which case we should be able to convert to KSeg0.
2377 		 *
2378 		 * EVA is special though as it allows segments to be rearranged
2379 		 * and to become uncached during cache error handling.
2380 		 */
2381 		if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2382 			ebase = CKSEG0ADDR(ebase_pa);
2383 		else
2384 			ebase = (unsigned long)phys_to_virt(ebase_pa);
2385 	}
2386 
2387 	if (cpu_has_mmips) {
2388 		unsigned int config3 = read_c0_config3();
2389 
2390 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2391 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2392 		else
2393 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2394 	}
2395 
2396 	if (board_ebase_setup)
2397 		board_ebase_setup();
2398 	per_cpu_trap_init(true);
2399 	memblock_set_bottom_up(false);
2400 
2401 	/*
2402 	 * Copy the generic exception handlers to their final destination.
2403 	 * This will be overridden later as suitable for a particular
2404 	 * configuration.
2405 	 */
2406 	set_handler(0x180, &except_vec3_generic, 0x80);
2407 
2408 	/*
2409 	 * Setup default vectors
2410 	 */
2411 	for (i = 0; i <= 31; i++)
2412 		set_except_vector(i, handle_reserved);
2413 
2414 	/*
2415 	 * Copy the EJTAG debug exception vector handler code to it's final
2416 	 * destination.
2417 	 */
2418 	if (cpu_has_ejtag && board_ejtag_handler_setup)
2419 		board_ejtag_handler_setup();
2420 
2421 	/*
2422 	 * Only some CPUs have the watch exceptions.
2423 	 */
2424 	if (cpu_has_watch)
2425 		set_except_vector(EXCCODE_WATCH, handle_watch);
2426 
2427 	/*
2428 	 * Initialise interrupt handlers
2429 	 */
2430 	if (cpu_has_veic || cpu_has_vint) {
2431 		int nvec = cpu_has_veic ? 64 : 8;
2432 		for (i = 0; i < nvec; i++)
2433 			set_vi_handler(i, NULL);
2434 	}
2435 	else if (cpu_has_divec)
2436 		set_handler(0x200, &except_vec4, 0x8);
2437 
2438 	/*
2439 	 * Some CPUs can enable/disable for cache parity detection, but does
2440 	 * it different ways.
2441 	 */
2442 	parity_protection_init();
2443 
2444 	/*
2445 	 * The Data Bus Errors / Instruction Bus Errors are signaled
2446 	 * by external hardware.  Therefore these two exceptions
2447 	 * may have board specific handlers.
2448 	 */
2449 	if (board_be_init)
2450 		board_be_init();
2451 
2452 	set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2453 					rollback_handle_int : handle_int);
2454 	set_except_vector(EXCCODE_MOD, handle_tlbm);
2455 	set_except_vector(EXCCODE_TLBL, handle_tlbl);
2456 	set_except_vector(EXCCODE_TLBS, handle_tlbs);
2457 
2458 	set_except_vector(EXCCODE_ADEL, handle_adel);
2459 	set_except_vector(EXCCODE_ADES, handle_ades);
2460 
2461 	set_except_vector(EXCCODE_IBE, handle_ibe);
2462 	set_except_vector(EXCCODE_DBE, handle_dbe);
2463 
2464 	set_except_vector(EXCCODE_SYS, handle_sys);
2465 	set_except_vector(EXCCODE_BP, handle_bp);
2466 
2467 	if (rdhwr_noopt)
2468 		set_except_vector(EXCCODE_RI, handle_ri);
2469 	else {
2470 		if (cpu_has_vtag_icache)
2471 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2472 		else if (current_cpu_type() == CPU_LOONGSON64)
2473 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2474 		else
2475 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2476 	}
2477 
2478 	set_except_vector(EXCCODE_CPU, handle_cpu);
2479 	set_except_vector(EXCCODE_OV, handle_ov);
2480 	set_except_vector(EXCCODE_TR, handle_tr);
2481 	set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2482 
2483 	if (board_nmi_handler_setup)
2484 		board_nmi_handler_setup();
2485 
2486 	if (cpu_has_fpu && !cpu_has_nofpuex)
2487 		set_except_vector(EXCCODE_FPE, handle_fpe);
2488 
2489 	if (cpu_has_ftlbparex)
2490 		set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2491 
2492 	if (cpu_has_gsexcex)
2493 		set_except_vector(LOONGSON_EXCCODE_GSEXC, handle_gsexc);
2494 
2495 	if (cpu_has_rixiex) {
2496 		set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2497 		set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2498 	}
2499 
2500 	set_except_vector(EXCCODE_MSADIS, handle_msa);
2501 	set_except_vector(EXCCODE_MDMX, handle_mdmx);
2502 
2503 	if (cpu_has_mcheck)
2504 		set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2505 
2506 	if (cpu_has_mipsmt)
2507 		set_except_vector(EXCCODE_THREAD, handle_mt);
2508 
2509 	set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2510 
2511 	if (board_cache_error_setup)
2512 		board_cache_error_setup();
2513 
2514 	if (cpu_has_vce)
2515 		/* Special exception: R4[04]00 uses also the divec space. */
2516 		set_handler(0x180, &except_vec3_r4000, 0x100);
2517 	else if (cpu_has_4kex)
2518 		set_handler(0x180, &except_vec3_generic, 0x80);
2519 	else
2520 		set_handler(0x080, &except_vec3_generic, 0x80);
2521 
2522 	local_flush_icache_range(ebase, ebase + vec_size);
2523 
2524 	sort_extable(__start___dbe_table, __stop___dbe_table);
2525 
2526 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2527 }
2528 
2529 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2530 			    void *v)
2531 {
2532 	switch (cmd) {
2533 	case CPU_PM_ENTER_FAILED:
2534 	case CPU_PM_EXIT:
2535 		configure_status();
2536 		configure_hwrena();
2537 		configure_exception_vector();
2538 
2539 		/* Restore register with CPU number for TLB handlers */
2540 		TLBMISS_HANDLER_RESTORE();
2541 
2542 		break;
2543 	}
2544 
2545 	return NOTIFY_OK;
2546 }
2547 
2548 static struct notifier_block trap_pm_notifier_block = {
2549 	.notifier_call = trap_pm_notifier,
2550 };
2551 
2552 static int __init trap_pm_init(void)
2553 {
2554 	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2555 }
2556 arch_initcall(trap_pm_init);
2557