xref: /openbmc/linux/arch/mips/kernel/traps.c (revision 37be287c)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  */
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/context_tracking.h>
17 #include <linux/kexec.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/mm.h>
22 #include <linux/sched.h>
23 #include <linux/smp.h>
24 #include <linux/spinlock.h>
25 #include <linux/kallsyms.h>
26 #include <linux/bootmem.h>
27 #include <linux/interrupt.h>
28 #include <linux/ptrace.h>
29 #include <linux/kgdb.h>
30 #include <linux/kdebug.h>
31 #include <linux/kprobes.h>
32 #include <linux/notifier.h>
33 #include <linux/kdb.h>
34 #include <linux/irq.h>
35 #include <linux/perf_event.h>
36 
37 #include <asm/bootinfo.h>
38 #include <asm/branch.h>
39 #include <asm/break.h>
40 #include <asm/cop2.h>
41 #include <asm/cpu.h>
42 #include <asm/cpu-type.h>
43 #include <asm/dsp.h>
44 #include <asm/fpu.h>
45 #include <asm/fpu_emulator.h>
46 #include <asm/idle.h>
47 #include <asm/mipsregs.h>
48 #include <asm/mipsmtregs.h>
49 #include <asm/module.h>
50 #include <asm/pgtable.h>
51 #include <asm/ptrace.h>
52 #include <asm/sections.h>
53 #include <asm/tlbdebug.h>
54 #include <asm/traps.h>
55 #include <asm/uaccess.h>
56 #include <asm/watch.h>
57 #include <asm/mmu_context.h>
58 #include <asm/types.h>
59 #include <asm/stacktrace.h>
60 #include <asm/uasm.h>
61 
62 extern void check_wait(void);
63 extern asmlinkage void rollback_handle_int(void);
64 extern asmlinkage void handle_int(void);
65 extern u32 handle_tlbl[];
66 extern u32 handle_tlbs[];
67 extern u32 handle_tlbm[];
68 extern asmlinkage void handle_adel(void);
69 extern asmlinkage void handle_ades(void);
70 extern asmlinkage void handle_ibe(void);
71 extern asmlinkage void handle_dbe(void);
72 extern asmlinkage void handle_sys(void);
73 extern asmlinkage void handle_bp(void);
74 extern asmlinkage void handle_ri(void);
75 extern asmlinkage void handle_ri_rdhwr_vivt(void);
76 extern asmlinkage void handle_ri_rdhwr(void);
77 extern asmlinkage void handle_cpu(void);
78 extern asmlinkage void handle_ov(void);
79 extern asmlinkage void handle_tr(void);
80 extern asmlinkage void handle_fpe(void);
81 extern asmlinkage void handle_ftlb(void);
82 extern asmlinkage void handle_mdmx(void);
83 extern asmlinkage void handle_watch(void);
84 extern asmlinkage void handle_mt(void);
85 extern asmlinkage void handle_dsp(void);
86 extern asmlinkage void handle_mcheck(void);
87 extern asmlinkage void handle_reserved(void);
88 
89 void (*board_be_init)(void);
90 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
91 void (*board_nmi_handler_setup)(void);
92 void (*board_ejtag_handler_setup)(void);
93 void (*board_bind_eic_interrupt)(int irq, int regset);
94 void (*board_ebase_setup)(void);
95 void(*board_cache_error_setup)(void);
96 
97 static void show_raw_backtrace(unsigned long reg29)
98 {
99 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
100 	unsigned long addr;
101 
102 	printk("Call Trace:");
103 #ifdef CONFIG_KALLSYMS
104 	printk("\n");
105 #endif
106 	while (!kstack_end(sp)) {
107 		unsigned long __user *p =
108 			(unsigned long __user *)(unsigned long)sp++;
109 		if (__get_user(addr, p)) {
110 			printk(" (Bad stack address)");
111 			break;
112 		}
113 		if (__kernel_text_address(addr))
114 			print_ip_sym(addr);
115 	}
116 	printk("\n");
117 }
118 
119 #ifdef CONFIG_KALLSYMS
120 int raw_show_trace;
121 static int __init set_raw_show_trace(char *str)
122 {
123 	raw_show_trace = 1;
124 	return 1;
125 }
126 __setup("raw_show_trace", set_raw_show_trace);
127 #endif
128 
129 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
130 {
131 	unsigned long sp = regs->regs[29];
132 	unsigned long ra = regs->regs[31];
133 	unsigned long pc = regs->cp0_epc;
134 
135 	if (!task)
136 		task = current;
137 
138 	if (raw_show_trace || !__kernel_text_address(pc)) {
139 		show_raw_backtrace(sp);
140 		return;
141 	}
142 	printk("Call Trace:\n");
143 	do {
144 		print_ip_sym(pc);
145 		pc = unwind_stack(task, &sp, pc, &ra);
146 	} while (pc);
147 	printk("\n");
148 }
149 
150 /*
151  * This routine abuses get_user()/put_user() to reference pointers
152  * with at least a bit of error checking ...
153  */
154 static void show_stacktrace(struct task_struct *task,
155 	const struct pt_regs *regs)
156 {
157 	const int field = 2 * sizeof(unsigned long);
158 	long stackdata;
159 	int i;
160 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
161 
162 	printk("Stack :");
163 	i = 0;
164 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
165 		if (i && ((i % (64 / field)) == 0))
166 			printk("\n	 ");
167 		if (i > 39) {
168 			printk(" ...");
169 			break;
170 		}
171 
172 		if (__get_user(stackdata, sp++)) {
173 			printk(" (Bad stack address)");
174 			break;
175 		}
176 
177 		printk(" %0*lx", field, stackdata);
178 		i++;
179 	}
180 	printk("\n");
181 	show_backtrace(task, regs);
182 }
183 
184 void show_stack(struct task_struct *task, unsigned long *sp)
185 {
186 	struct pt_regs regs;
187 	if (sp) {
188 		regs.regs[29] = (unsigned long)sp;
189 		regs.regs[31] = 0;
190 		regs.cp0_epc = 0;
191 	} else {
192 		if (task && task != current) {
193 			regs.regs[29] = task->thread.reg29;
194 			regs.regs[31] = 0;
195 			regs.cp0_epc = task->thread.reg31;
196 #ifdef CONFIG_KGDB_KDB
197 		} else if (atomic_read(&kgdb_active) != -1 &&
198 			   kdb_current_regs) {
199 			memcpy(&regs, kdb_current_regs, sizeof(regs));
200 #endif /* CONFIG_KGDB_KDB */
201 		} else {
202 			prepare_frametrace(&regs);
203 		}
204 	}
205 	show_stacktrace(task, &regs);
206 }
207 
208 static void show_code(unsigned int __user *pc)
209 {
210 	long i;
211 	unsigned short __user *pc16 = NULL;
212 
213 	printk("\nCode:");
214 
215 	if ((unsigned long)pc & 1)
216 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
217 	for(i = -3 ; i < 6 ; i++) {
218 		unsigned int insn;
219 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
220 			printk(" (Bad address in epc)\n");
221 			break;
222 		}
223 		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
224 	}
225 }
226 
227 static void __show_regs(const struct pt_regs *regs)
228 {
229 	const int field = 2 * sizeof(unsigned long);
230 	unsigned int cause = regs->cp0_cause;
231 	int i;
232 
233 	show_regs_print_info(KERN_DEFAULT);
234 
235 	/*
236 	 * Saved main processor registers
237 	 */
238 	for (i = 0; i < 32; ) {
239 		if ((i % 4) == 0)
240 			printk("$%2d   :", i);
241 		if (i == 0)
242 			printk(" %0*lx", field, 0UL);
243 		else if (i == 26 || i == 27)
244 			printk(" %*s", field, "");
245 		else
246 			printk(" %0*lx", field, regs->regs[i]);
247 
248 		i++;
249 		if ((i % 4) == 0)
250 			printk("\n");
251 	}
252 
253 #ifdef CONFIG_CPU_HAS_SMARTMIPS
254 	printk("Acx    : %0*lx\n", field, regs->acx);
255 #endif
256 	printk("Hi    : %0*lx\n", field, regs->hi);
257 	printk("Lo    : %0*lx\n", field, regs->lo);
258 
259 	/*
260 	 * Saved cp0 registers
261 	 */
262 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
263 	       (void *) regs->cp0_epc);
264 	printk("    %s\n", print_tainted());
265 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
266 	       (void *) regs->regs[31]);
267 
268 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
269 
270 	if (cpu_has_3kex) {
271 		if (regs->cp0_status & ST0_KUO)
272 			printk("KUo ");
273 		if (regs->cp0_status & ST0_IEO)
274 			printk("IEo ");
275 		if (regs->cp0_status & ST0_KUP)
276 			printk("KUp ");
277 		if (regs->cp0_status & ST0_IEP)
278 			printk("IEp ");
279 		if (regs->cp0_status & ST0_KUC)
280 			printk("KUc ");
281 		if (regs->cp0_status & ST0_IEC)
282 			printk("IEc ");
283 	} else if (cpu_has_4kex) {
284 		if (regs->cp0_status & ST0_KX)
285 			printk("KX ");
286 		if (regs->cp0_status & ST0_SX)
287 			printk("SX ");
288 		if (regs->cp0_status & ST0_UX)
289 			printk("UX ");
290 		switch (regs->cp0_status & ST0_KSU) {
291 		case KSU_USER:
292 			printk("USER ");
293 			break;
294 		case KSU_SUPERVISOR:
295 			printk("SUPERVISOR ");
296 			break;
297 		case KSU_KERNEL:
298 			printk("KERNEL ");
299 			break;
300 		default:
301 			printk("BAD_MODE ");
302 			break;
303 		}
304 		if (regs->cp0_status & ST0_ERL)
305 			printk("ERL ");
306 		if (regs->cp0_status & ST0_EXL)
307 			printk("EXL ");
308 		if (regs->cp0_status & ST0_IE)
309 			printk("IE ");
310 	}
311 	printk("\n");
312 
313 	printk("Cause : %08x\n", cause);
314 
315 	cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
316 	if (1 <= cause && cause <= 5)
317 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
318 
319 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
320 	       cpu_name_string());
321 }
322 
323 /*
324  * FIXME: really the generic show_regs should take a const pointer argument.
325  */
326 void show_regs(struct pt_regs *regs)
327 {
328 	__show_regs((struct pt_regs *)regs);
329 }
330 
331 void show_registers(struct pt_regs *regs)
332 {
333 	const int field = 2 * sizeof(unsigned long);
334 	mm_segment_t old_fs = get_fs();
335 
336 	__show_regs(regs);
337 	print_modules();
338 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
339 	       current->comm, current->pid, current_thread_info(), current,
340 	      field, current_thread_info()->tp_value);
341 	if (cpu_has_userlocal) {
342 		unsigned long tls;
343 
344 		tls = read_c0_userlocal();
345 		if (tls != current_thread_info()->tp_value)
346 			printk("*HwTLS: %0*lx\n", field, tls);
347 	}
348 
349 	if (!user_mode(regs))
350 		/* Necessary for getting the correct stack content */
351 		set_fs(KERNEL_DS);
352 	show_stacktrace(current, regs);
353 	show_code((unsigned int __user *) regs->cp0_epc);
354 	printk("\n");
355 	set_fs(old_fs);
356 }
357 
358 static int regs_to_trapnr(struct pt_regs *regs)
359 {
360 	return (regs->cp0_cause >> 2) & 0x1f;
361 }
362 
363 static DEFINE_RAW_SPINLOCK(die_lock);
364 
365 void __noreturn die(const char *str, struct pt_regs *regs)
366 {
367 	static int die_counter;
368 	int sig = SIGSEGV;
369 #ifdef CONFIG_MIPS_MT_SMTC
370 	unsigned long dvpret;
371 #endif /* CONFIG_MIPS_MT_SMTC */
372 
373 	oops_enter();
374 
375 	if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs),
376 		       SIGSEGV) == NOTIFY_STOP)
377 		sig = 0;
378 
379 	console_verbose();
380 	raw_spin_lock_irq(&die_lock);
381 #ifdef CONFIG_MIPS_MT_SMTC
382 	dvpret = dvpe();
383 #endif /* CONFIG_MIPS_MT_SMTC */
384 	bust_spinlocks(1);
385 #ifdef CONFIG_MIPS_MT_SMTC
386 	mips_mt_regdump(dvpret);
387 #endif /* CONFIG_MIPS_MT_SMTC */
388 
389 	printk("%s[#%d]:\n", str, ++die_counter);
390 	show_registers(regs);
391 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
392 	raw_spin_unlock_irq(&die_lock);
393 
394 	oops_exit();
395 
396 	if (in_interrupt())
397 		panic("Fatal exception in interrupt");
398 
399 	if (panic_on_oops) {
400 		printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
401 		ssleep(5);
402 		panic("Fatal exception");
403 	}
404 
405 	if (regs && kexec_should_crash(current))
406 		crash_kexec(regs);
407 
408 	do_exit(sig);
409 }
410 
411 extern struct exception_table_entry __start___dbe_table[];
412 extern struct exception_table_entry __stop___dbe_table[];
413 
414 __asm__(
415 "	.section	__dbe_table, \"a\"\n"
416 "	.previous			\n");
417 
418 /* Given an address, look for it in the exception tables. */
419 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
420 {
421 	const struct exception_table_entry *e;
422 
423 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
424 	if (!e)
425 		e = search_module_dbetables(addr);
426 	return e;
427 }
428 
429 asmlinkage void do_be(struct pt_regs *regs)
430 {
431 	const int field = 2 * sizeof(unsigned long);
432 	const struct exception_table_entry *fixup = NULL;
433 	int data = regs->cp0_cause & 4;
434 	int action = MIPS_BE_FATAL;
435 	enum ctx_state prev_state;
436 
437 	prev_state = exception_enter();
438 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
439 	if (data && !user_mode(regs))
440 		fixup = search_dbe_tables(exception_epc(regs));
441 
442 	if (fixup)
443 		action = MIPS_BE_FIXUP;
444 
445 	if (board_be_handler)
446 		action = board_be_handler(regs, fixup != NULL);
447 
448 	switch (action) {
449 	case MIPS_BE_DISCARD:
450 		goto out;
451 	case MIPS_BE_FIXUP:
452 		if (fixup) {
453 			regs->cp0_epc = fixup->nextinsn;
454 			goto out;
455 		}
456 		break;
457 	default:
458 		break;
459 	}
460 
461 	/*
462 	 * Assume it would be too dangerous to continue ...
463 	 */
464 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
465 	       data ? "Data" : "Instruction",
466 	       field, regs->cp0_epc, field, regs->regs[31]);
467 	if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs),
468 		       SIGBUS) == NOTIFY_STOP)
469 		goto out;
470 
471 	die_if_kernel("Oops", regs);
472 	force_sig(SIGBUS, current);
473 
474 out:
475 	exception_exit(prev_state);
476 }
477 
478 /*
479  * ll/sc, rdhwr, sync emulation
480  */
481 
482 #define OPCODE 0xfc000000
483 #define BASE   0x03e00000
484 #define RT     0x001f0000
485 #define OFFSET 0x0000ffff
486 #define LL     0xc0000000
487 #define SC     0xe0000000
488 #define SPEC0  0x00000000
489 #define SPEC3  0x7c000000
490 #define RD     0x0000f800
491 #define FUNC   0x0000003f
492 #define SYNC   0x0000000f
493 #define RDHWR  0x0000003b
494 
495 /*  microMIPS definitions   */
496 #define MM_POOL32A_FUNC 0xfc00ffff
497 #define MM_RDHWR        0x00006b3c
498 #define MM_RS           0x001f0000
499 #define MM_RT           0x03e00000
500 
501 /*
502  * The ll_bit is cleared by r*_switch.S
503  */
504 
505 unsigned int ll_bit;
506 struct task_struct *ll_task;
507 
508 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
509 {
510 	unsigned long value, __user *vaddr;
511 	long offset;
512 
513 	/*
514 	 * analyse the ll instruction that just caused a ri exception
515 	 * and put the referenced address to addr.
516 	 */
517 
518 	/* sign extend offset */
519 	offset = opcode & OFFSET;
520 	offset <<= 16;
521 	offset >>= 16;
522 
523 	vaddr = (unsigned long __user *)
524 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
525 
526 	if ((unsigned long)vaddr & 3)
527 		return SIGBUS;
528 	if (get_user(value, vaddr))
529 		return SIGSEGV;
530 
531 	preempt_disable();
532 
533 	if (ll_task == NULL || ll_task == current) {
534 		ll_bit = 1;
535 	} else {
536 		ll_bit = 0;
537 	}
538 	ll_task = current;
539 
540 	preempt_enable();
541 
542 	regs->regs[(opcode & RT) >> 16] = value;
543 
544 	return 0;
545 }
546 
547 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
548 {
549 	unsigned long __user *vaddr;
550 	unsigned long reg;
551 	long offset;
552 
553 	/*
554 	 * analyse the sc instruction that just caused a ri exception
555 	 * and put the referenced address to addr.
556 	 */
557 
558 	/* sign extend offset */
559 	offset = opcode & OFFSET;
560 	offset <<= 16;
561 	offset >>= 16;
562 
563 	vaddr = (unsigned long __user *)
564 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
565 	reg = (opcode & RT) >> 16;
566 
567 	if ((unsigned long)vaddr & 3)
568 		return SIGBUS;
569 
570 	preempt_disable();
571 
572 	if (ll_bit == 0 || ll_task != current) {
573 		regs->regs[reg] = 0;
574 		preempt_enable();
575 		return 0;
576 	}
577 
578 	preempt_enable();
579 
580 	if (put_user(regs->regs[reg], vaddr))
581 		return SIGSEGV;
582 
583 	regs->regs[reg] = 1;
584 
585 	return 0;
586 }
587 
588 /*
589  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
590  * opcodes are supposed to result in coprocessor unusable exceptions if
591  * executed on ll/sc-less processors.  That's the theory.  In practice a
592  * few processors such as NEC's VR4100 throw reserved instruction exceptions
593  * instead, so we're doing the emulation thing in both exception handlers.
594  */
595 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
596 {
597 	if ((opcode & OPCODE) == LL) {
598 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
599 				1, regs, 0);
600 		return simulate_ll(regs, opcode);
601 	}
602 	if ((opcode & OPCODE) == SC) {
603 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
604 				1, regs, 0);
605 		return simulate_sc(regs, opcode);
606 	}
607 
608 	return -1;			/* Must be something else ... */
609 }
610 
611 /*
612  * Simulate trapping 'rdhwr' instructions to provide user accessible
613  * registers not implemented in hardware.
614  */
615 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
616 {
617 	struct thread_info *ti = task_thread_info(current);
618 
619 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
620 			1, regs, 0);
621 	switch (rd) {
622 	case 0:		/* CPU number */
623 		regs->regs[rt] = smp_processor_id();
624 		return 0;
625 	case 1:		/* SYNCI length */
626 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
627 				     current_cpu_data.icache.linesz);
628 		return 0;
629 	case 2:		/* Read count register */
630 		regs->regs[rt] = read_c0_count();
631 		return 0;
632 	case 3:		/* Count register resolution */
633 		switch (current_cpu_type()) {
634 		case CPU_20KC:
635 		case CPU_25KF:
636 			regs->regs[rt] = 1;
637 			break;
638 		default:
639 			regs->regs[rt] = 2;
640 		}
641 		return 0;
642 	case 29:
643 		regs->regs[rt] = ti->tp_value;
644 		return 0;
645 	default:
646 		return -1;
647 	}
648 }
649 
650 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
651 {
652 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
653 		int rd = (opcode & RD) >> 11;
654 		int rt = (opcode & RT) >> 16;
655 
656 		simulate_rdhwr(regs, rd, rt);
657 		return 0;
658 	}
659 
660 	/* Not ours.  */
661 	return -1;
662 }
663 
664 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
665 {
666 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
667 		int rd = (opcode & MM_RS) >> 16;
668 		int rt = (opcode & MM_RT) >> 21;
669 		simulate_rdhwr(regs, rd, rt);
670 		return 0;
671 	}
672 
673 	/* Not ours.  */
674 	return -1;
675 }
676 
677 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
678 {
679 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
680 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
681 				1, regs, 0);
682 		return 0;
683 	}
684 
685 	return -1;			/* Must be something else ... */
686 }
687 
688 asmlinkage void do_ov(struct pt_regs *regs)
689 {
690 	enum ctx_state prev_state;
691 	siginfo_t info;
692 
693 	prev_state = exception_enter();
694 	die_if_kernel("Integer overflow", regs);
695 
696 	info.si_code = FPE_INTOVF;
697 	info.si_signo = SIGFPE;
698 	info.si_errno = 0;
699 	info.si_addr = (void __user *) regs->cp0_epc;
700 	force_sig_info(SIGFPE, &info, current);
701 	exception_exit(prev_state);
702 }
703 
704 int process_fpemu_return(int sig, void __user *fault_addr)
705 {
706 	if (sig == SIGSEGV || sig == SIGBUS) {
707 		struct siginfo si = {0};
708 		si.si_addr = fault_addr;
709 		si.si_signo = sig;
710 		if (sig == SIGSEGV) {
711 			if (find_vma(current->mm, (unsigned long)fault_addr))
712 				si.si_code = SEGV_ACCERR;
713 			else
714 				si.si_code = SEGV_MAPERR;
715 		} else {
716 			si.si_code = BUS_ADRERR;
717 		}
718 		force_sig_info(sig, &si, current);
719 		return 1;
720 	} else if (sig) {
721 		force_sig(sig, current);
722 		return 1;
723 	} else {
724 		return 0;
725 	}
726 }
727 
728 /*
729  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
730  */
731 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
732 {
733 	enum ctx_state prev_state;
734 	siginfo_t info = {0};
735 
736 	prev_state = exception_enter();
737 	if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs),
738 		       SIGFPE) == NOTIFY_STOP)
739 		goto out;
740 	die_if_kernel("FP exception in kernel code", regs);
741 
742 	if (fcr31 & FPU_CSR_UNI_X) {
743 		int sig;
744 		void __user *fault_addr = NULL;
745 
746 		/*
747 		 * Unimplemented operation exception.  If we've got the full
748 		 * software emulator on-board, let's use it...
749 		 *
750 		 * Force FPU to dump state into task/thread context.  We're
751 		 * moving a lot of data here for what is probably a single
752 		 * instruction, but the alternative is to pre-decode the FP
753 		 * register operands before invoking the emulator, which seems
754 		 * a bit extreme for what should be an infrequent event.
755 		 */
756 		/* Ensure 'resume' not overwrite saved fp context again. */
757 		lose_fpu(1);
758 
759 		/* Run the emulator */
760 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
761 					       &fault_addr);
762 
763 		/*
764 		 * We can't allow the emulated instruction to leave any of
765 		 * the cause bit set in $fcr31.
766 		 */
767 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
768 
769 		/* Restore the hardware register state */
770 		own_fpu(1);	/* Using the FPU again.	 */
771 
772 		/* If something went wrong, signal */
773 		process_fpemu_return(sig, fault_addr);
774 
775 		goto out;
776 	} else if (fcr31 & FPU_CSR_INV_X)
777 		info.si_code = FPE_FLTINV;
778 	else if (fcr31 & FPU_CSR_DIV_X)
779 		info.si_code = FPE_FLTDIV;
780 	else if (fcr31 & FPU_CSR_OVF_X)
781 		info.si_code = FPE_FLTOVF;
782 	else if (fcr31 & FPU_CSR_UDF_X)
783 		info.si_code = FPE_FLTUND;
784 	else if (fcr31 & FPU_CSR_INE_X)
785 		info.si_code = FPE_FLTRES;
786 	else
787 		info.si_code = __SI_FAULT;
788 	info.si_signo = SIGFPE;
789 	info.si_errno = 0;
790 	info.si_addr = (void __user *) regs->cp0_epc;
791 	force_sig_info(SIGFPE, &info, current);
792 
793 out:
794 	exception_exit(prev_state);
795 }
796 
797 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
798 	const char *str)
799 {
800 	siginfo_t info;
801 	char b[40];
802 
803 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
804 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
805 		return;
806 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
807 
808 	if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs),
809 		       SIGTRAP) == NOTIFY_STOP)
810 		return;
811 
812 	/*
813 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
814 	 * insns, even for trap and break codes that indicate arithmetic
815 	 * failures.  Weird ...
816 	 * But should we continue the brokenness???  --macro
817 	 */
818 	switch (code) {
819 	case BRK_OVERFLOW:
820 	case BRK_DIVZERO:
821 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
822 		die_if_kernel(b, regs);
823 		if (code == BRK_DIVZERO)
824 			info.si_code = FPE_INTDIV;
825 		else
826 			info.si_code = FPE_INTOVF;
827 		info.si_signo = SIGFPE;
828 		info.si_errno = 0;
829 		info.si_addr = (void __user *) regs->cp0_epc;
830 		force_sig_info(SIGFPE, &info, current);
831 		break;
832 	case BRK_BUG:
833 		die_if_kernel("Kernel bug detected", regs);
834 		force_sig(SIGTRAP, current);
835 		break;
836 	case BRK_MEMU:
837 		/*
838 		 * Address errors may be deliberately induced by the FPU
839 		 * emulator to retake control of the CPU after executing the
840 		 * instruction in the delay slot of an emulated branch.
841 		 *
842 		 * Terminate if exception was recognized as a delay slot return
843 		 * otherwise handle as normal.
844 		 */
845 		if (do_dsemulret(regs))
846 			return;
847 
848 		die_if_kernel("Math emu break/trap", regs);
849 		force_sig(SIGTRAP, current);
850 		break;
851 	default:
852 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
853 		die_if_kernel(b, regs);
854 		force_sig(SIGTRAP, current);
855 	}
856 }
857 
858 asmlinkage void do_bp(struct pt_regs *regs)
859 {
860 	unsigned int opcode, bcode;
861 	enum ctx_state prev_state;
862 	unsigned long epc;
863 	u16 instr[2];
864 
865 	prev_state = exception_enter();
866 	if (get_isa16_mode(regs->cp0_epc)) {
867 		/* Calculate EPC. */
868 		epc = exception_epc(regs);
869 		if (cpu_has_mmips) {
870 			if ((__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc)) ||
871 			    (__get_user(instr[1], (u16 __user *)msk_isa16_mode(epc + 2)))))
872 				goto out_sigsegv;
873 		    opcode = (instr[0] << 16) | instr[1];
874 		} else {
875 		    /* MIPS16e mode */
876 		    if (__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc)))
877 				goto out_sigsegv;
878 		    bcode = (instr[0] >> 6) & 0x3f;
879 		    do_trap_or_bp(regs, bcode, "Break");
880 		    goto out;
881 		}
882 	} else {
883 		if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
884 			goto out_sigsegv;
885 	}
886 
887 	/*
888 	 * There is the ancient bug in the MIPS assemblers that the break
889 	 * code starts left to bit 16 instead to bit 6 in the opcode.
890 	 * Gas is bug-compatible, but not always, grrr...
891 	 * We handle both cases with a simple heuristics.  --macro
892 	 */
893 	bcode = ((opcode >> 6) & ((1 << 20) - 1));
894 	if (bcode >= (1 << 10))
895 		bcode >>= 10;
896 
897 	/*
898 	 * notify the kprobe handlers, if instruction is likely to
899 	 * pertain to them.
900 	 */
901 	switch (bcode) {
902 	case BRK_KPROBE_BP:
903 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
904 			       regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
905 			goto out;
906 		else
907 			break;
908 	case BRK_KPROBE_SSTEPBP:
909 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
910 			       regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
911 			goto out;
912 		else
913 			break;
914 	default:
915 		break;
916 	}
917 
918 	do_trap_or_bp(regs, bcode, "Break");
919 
920 out:
921 	exception_exit(prev_state);
922 	return;
923 
924 out_sigsegv:
925 	force_sig(SIGSEGV, current);
926 	goto out;
927 }
928 
929 asmlinkage void do_tr(struct pt_regs *regs)
930 {
931 	u32 opcode, tcode = 0;
932 	enum ctx_state prev_state;
933 	u16 instr[2];
934 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
935 
936 	prev_state = exception_enter();
937 	if (get_isa16_mode(regs->cp0_epc)) {
938 		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
939 		    __get_user(instr[1], (u16 __user *)(epc + 2)))
940 			goto out_sigsegv;
941 		opcode = (instr[0] << 16) | instr[1];
942 		/* Immediate versions don't provide a code.  */
943 		if (!(opcode & OPCODE))
944 			tcode = (opcode >> 12) & ((1 << 4) - 1);
945 	} else {
946 		if (__get_user(opcode, (u32 __user *)epc))
947 			goto out_sigsegv;
948 		/* Immediate versions don't provide a code.  */
949 		if (!(opcode & OPCODE))
950 			tcode = (opcode >> 6) & ((1 << 10) - 1);
951 	}
952 
953 	do_trap_or_bp(regs, tcode, "Trap");
954 
955 out:
956 	exception_exit(prev_state);
957 	return;
958 
959 out_sigsegv:
960 	force_sig(SIGSEGV, current);
961 	goto out;
962 }
963 
964 asmlinkage void do_ri(struct pt_regs *regs)
965 {
966 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
967 	unsigned long old_epc = regs->cp0_epc;
968 	unsigned long old31 = regs->regs[31];
969 	enum ctx_state prev_state;
970 	unsigned int opcode = 0;
971 	int status = -1;
972 
973 	prev_state = exception_enter();
974 	if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs),
975 		       SIGILL) == NOTIFY_STOP)
976 		goto out;
977 
978 	die_if_kernel("Reserved instruction in kernel code", regs);
979 
980 	if (unlikely(compute_return_epc(regs) < 0))
981 		goto out;
982 
983 	if (get_isa16_mode(regs->cp0_epc)) {
984 		unsigned short mmop[2] = { 0 };
985 
986 		if (unlikely(get_user(mmop[0], epc) < 0))
987 			status = SIGSEGV;
988 		if (unlikely(get_user(mmop[1], epc) < 0))
989 			status = SIGSEGV;
990 		opcode = (mmop[0] << 16) | mmop[1];
991 
992 		if (status < 0)
993 			status = simulate_rdhwr_mm(regs, opcode);
994 	} else {
995 		if (unlikely(get_user(opcode, epc) < 0))
996 			status = SIGSEGV;
997 
998 		if (!cpu_has_llsc && status < 0)
999 			status = simulate_llsc(regs, opcode);
1000 
1001 		if (status < 0)
1002 			status = simulate_rdhwr_normal(regs, opcode);
1003 
1004 		if (status < 0)
1005 			status = simulate_sync(regs, opcode);
1006 	}
1007 
1008 	if (status < 0)
1009 		status = SIGILL;
1010 
1011 	if (unlikely(status > 0)) {
1012 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1013 		regs->regs[31] = old31;
1014 		force_sig(status, current);
1015 	}
1016 
1017 out:
1018 	exception_exit(prev_state);
1019 }
1020 
1021 /*
1022  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1023  * emulated more than some threshold number of instructions, force migration to
1024  * a "CPU" that has FP support.
1025  */
1026 static void mt_ase_fp_affinity(void)
1027 {
1028 #ifdef CONFIG_MIPS_MT_FPAFF
1029 	if (mt_fpemul_threshold > 0 &&
1030 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1031 		/*
1032 		 * If there's no FPU present, or if the application has already
1033 		 * restricted the allowed set to exclude any CPUs with FPUs,
1034 		 * we'll skip the procedure.
1035 		 */
1036 		if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
1037 			cpumask_t tmask;
1038 
1039 			current->thread.user_cpus_allowed
1040 				= current->cpus_allowed;
1041 			cpus_and(tmask, current->cpus_allowed,
1042 				mt_fpu_cpumask);
1043 			set_cpus_allowed_ptr(current, &tmask);
1044 			set_thread_flag(TIF_FPUBOUND);
1045 		}
1046 	}
1047 #endif /* CONFIG_MIPS_MT_FPAFF */
1048 }
1049 
1050 /*
1051  * No lock; only written during early bootup by CPU 0.
1052  */
1053 static RAW_NOTIFIER_HEAD(cu2_chain);
1054 
1055 int __ref register_cu2_notifier(struct notifier_block *nb)
1056 {
1057 	return raw_notifier_chain_register(&cu2_chain, nb);
1058 }
1059 
1060 int cu2_notifier_call_chain(unsigned long val, void *v)
1061 {
1062 	return raw_notifier_call_chain(&cu2_chain, val, v);
1063 }
1064 
1065 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1066 	void *data)
1067 {
1068 	struct pt_regs *regs = data;
1069 
1070 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1071 			      "instruction", regs);
1072 	force_sig(SIGILL, current);
1073 
1074 	return NOTIFY_OK;
1075 }
1076 
1077 asmlinkage void do_cpu(struct pt_regs *regs)
1078 {
1079 	enum ctx_state prev_state;
1080 	unsigned int __user *epc;
1081 	unsigned long old_epc, old31;
1082 	unsigned int opcode;
1083 	unsigned int cpid;
1084 	int status, err;
1085 	unsigned long __maybe_unused flags;
1086 
1087 	prev_state = exception_enter();
1088 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1089 
1090 	if (cpid != 2)
1091 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1092 
1093 	switch (cpid) {
1094 	case 0:
1095 		epc = (unsigned int __user *)exception_epc(regs);
1096 		old_epc = regs->cp0_epc;
1097 		old31 = regs->regs[31];
1098 		opcode = 0;
1099 		status = -1;
1100 
1101 		if (unlikely(compute_return_epc(regs) < 0))
1102 			goto out;
1103 
1104 		if (get_isa16_mode(regs->cp0_epc)) {
1105 			unsigned short mmop[2] = { 0 };
1106 
1107 			if (unlikely(get_user(mmop[0], epc) < 0))
1108 				status = SIGSEGV;
1109 			if (unlikely(get_user(mmop[1], epc) < 0))
1110 				status = SIGSEGV;
1111 			opcode = (mmop[0] << 16) | mmop[1];
1112 
1113 			if (status < 0)
1114 				status = simulate_rdhwr_mm(regs, opcode);
1115 		} else {
1116 			if (unlikely(get_user(opcode, epc) < 0))
1117 				status = SIGSEGV;
1118 
1119 			if (!cpu_has_llsc && status < 0)
1120 				status = simulate_llsc(regs, opcode);
1121 
1122 			if (status < 0)
1123 				status = simulate_rdhwr_normal(regs, opcode);
1124 		}
1125 
1126 		if (status < 0)
1127 			status = SIGILL;
1128 
1129 		if (unlikely(status > 0)) {
1130 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1131 			regs->regs[31] = old31;
1132 			force_sig(status, current);
1133 		}
1134 
1135 		goto out;
1136 
1137 	case 3:
1138 		/*
1139 		 * Old (MIPS I and MIPS II) processors will set this code
1140 		 * for COP1X opcode instructions that replaced the original
1141 		 * COP3 space.	We don't limit COP1 space instructions in
1142 		 * the emulator according to the CPU ISA, so we want to
1143 		 * treat COP1X instructions consistently regardless of which
1144 		 * code the CPU chose.	Therefore we redirect this trap to
1145 		 * the FP emulator too.
1146 		 *
1147 		 * Then some newer FPU-less processors use this code
1148 		 * erroneously too, so they are covered by this choice
1149 		 * as well.
1150 		 */
1151 		if (raw_cpu_has_fpu)
1152 			break;
1153 		/* Fall through.  */
1154 
1155 	case 1:
1156 		if (used_math())	/* Using the FPU again.	 */
1157 			err = own_fpu(1);
1158 		else {			/* First time FPU user.	 */
1159 			err = init_fpu();
1160 			set_used_math();
1161 		}
1162 
1163 		if (!raw_cpu_has_fpu || err) {
1164 			int sig;
1165 			void __user *fault_addr = NULL;
1166 			sig = fpu_emulator_cop1Handler(regs,
1167 						       &current->thread.fpu,
1168 						       0, &fault_addr);
1169 			if (!process_fpemu_return(sig, fault_addr) && !err)
1170 				mt_ase_fp_affinity();
1171 		}
1172 
1173 		goto out;
1174 
1175 	case 2:
1176 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1177 		goto out;
1178 	}
1179 
1180 	force_sig(SIGILL, current);
1181 
1182 out:
1183 	exception_exit(prev_state);
1184 }
1185 
1186 asmlinkage void do_mdmx(struct pt_regs *regs)
1187 {
1188 	enum ctx_state prev_state;
1189 
1190 	prev_state = exception_enter();
1191 	force_sig(SIGILL, current);
1192 	exception_exit(prev_state);
1193 }
1194 
1195 /*
1196  * Called with interrupts disabled.
1197  */
1198 asmlinkage void do_watch(struct pt_regs *regs)
1199 {
1200 	enum ctx_state prev_state;
1201 	u32 cause;
1202 
1203 	prev_state = exception_enter();
1204 	/*
1205 	 * Clear WP (bit 22) bit of cause register so we don't loop
1206 	 * forever.
1207 	 */
1208 	cause = read_c0_cause();
1209 	cause &= ~(1 << 22);
1210 	write_c0_cause(cause);
1211 
1212 	/*
1213 	 * If the current thread has the watch registers loaded, save
1214 	 * their values and send SIGTRAP.  Otherwise another thread
1215 	 * left the registers set, clear them and continue.
1216 	 */
1217 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1218 		mips_read_watch_registers();
1219 		local_irq_enable();
1220 		force_sig(SIGTRAP, current);
1221 	} else {
1222 		mips_clear_watch_registers();
1223 		local_irq_enable();
1224 	}
1225 	exception_exit(prev_state);
1226 }
1227 
1228 asmlinkage void do_mcheck(struct pt_regs *regs)
1229 {
1230 	const int field = 2 * sizeof(unsigned long);
1231 	int multi_match = regs->cp0_status & ST0_TS;
1232 	enum ctx_state prev_state;
1233 
1234 	prev_state = exception_enter();
1235 	show_regs(regs);
1236 
1237 	if (multi_match) {
1238 		printk("Index	: %0x\n", read_c0_index());
1239 		printk("Pagemask: %0x\n", read_c0_pagemask());
1240 		printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1241 		printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1242 		printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1243 		printk("\n");
1244 		dump_tlb_all();
1245 	}
1246 
1247 	show_code((unsigned int __user *) regs->cp0_epc);
1248 
1249 	/*
1250 	 * Some chips may have other causes of machine check (e.g. SB1
1251 	 * graduation timer)
1252 	 */
1253 	panic("Caught Machine Check exception - %scaused by multiple "
1254 	      "matching entries in the TLB.",
1255 	      (multi_match) ? "" : "not ");
1256 }
1257 
1258 asmlinkage void do_mt(struct pt_regs *regs)
1259 {
1260 	int subcode;
1261 
1262 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1263 			>> VPECONTROL_EXCPT_SHIFT;
1264 	switch (subcode) {
1265 	case 0:
1266 		printk(KERN_DEBUG "Thread Underflow\n");
1267 		break;
1268 	case 1:
1269 		printk(KERN_DEBUG "Thread Overflow\n");
1270 		break;
1271 	case 2:
1272 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1273 		break;
1274 	case 3:
1275 		printk(KERN_DEBUG "Gating Storage Exception\n");
1276 		break;
1277 	case 4:
1278 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1279 		break;
1280 	case 5:
1281 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1282 		break;
1283 	default:
1284 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1285 			subcode);
1286 		break;
1287 	}
1288 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1289 
1290 	force_sig(SIGILL, current);
1291 }
1292 
1293 
1294 asmlinkage void do_dsp(struct pt_regs *regs)
1295 {
1296 	if (cpu_has_dsp)
1297 		panic("Unexpected DSP exception");
1298 
1299 	force_sig(SIGILL, current);
1300 }
1301 
1302 asmlinkage void do_reserved(struct pt_regs *regs)
1303 {
1304 	/*
1305 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1306 	 * caused by a new unknown cpu type or after another deadly
1307 	 * hard/software error.
1308 	 */
1309 	show_regs(regs);
1310 	panic("Caught reserved exception %ld - should not happen.",
1311 	      (regs->cp0_cause & 0x7f) >> 2);
1312 }
1313 
1314 static int __initdata l1parity = 1;
1315 static int __init nol1parity(char *s)
1316 {
1317 	l1parity = 0;
1318 	return 1;
1319 }
1320 __setup("nol1par", nol1parity);
1321 static int __initdata l2parity = 1;
1322 static int __init nol2parity(char *s)
1323 {
1324 	l2parity = 0;
1325 	return 1;
1326 }
1327 __setup("nol2par", nol2parity);
1328 
1329 /*
1330  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1331  * it different ways.
1332  */
1333 static inline void parity_protection_init(void)
1334 {
1335 	switch (current_cpu_type()) {
1336 	case CPU_24K:
1337 	case CPU_34K:
1338 	case CPU_74K:
1339 	case CPU_1004K:
1340 	case CPU_INTERAPTIV:
1341 	case CPU_PROAPTIV:
1342 		{
1343 #define ERRCTL_PE	0x80000000
1344 #define ERRCTL_L2P	0x00800000
1345 			unsigned long errctl;
1346 			unsigned int l1parity_present, l2parity_present;
1347 
1348 			errctl = read_c0_ecc();
1349 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1350 
1351 			/* probe L1 parity support */
1352 			write_c0_ecc(errctl | ERRCTL_PE);
1353 			back_to_back_c0_hazard();
1354 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1355 
1356 			/* probe L2 parity support */
1357 			write_c0_ecc(errctl|ERRCTL_L2P);
1358 			back_to_back_c0_hazard();
1359 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1360 
1361 			if (l1parity_present && l2parity_present) {
1362 				if (l1parity)
1363 					errctl |= ERRCTL_PE;
1364 				if (l1parity ^ l2parity)
1365 					errctl |= ERRCTL_L2P;
1366 			} else if (l1parity_present) {
1367 				if (l1parity)
1368 					errctl |= ERRCTL_PE;
1369 			} else if (l2parity_present) {
1370 				if (l2parity)
1371 					errctl |= ERRCTL_L2P;
1372 			} else {
1373 				/* No parity available */
1374 			}
1375 
1376 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1377 
1378 			write_c0_ecc(errctl);
1379 			back_to_back_c0_hazard();
1380 			errctl = read_c0_ecc();
1381 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1382 
1383 			if (l1parity_present)
1384 				printk(KERN_INFO "Cache parity protection %sabled\n",
1385 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1386 
1387 			if (l2parity_present) {
1388 				if (l1parity_present && l1parity)
1389 					errctl ^= ERRCTL_L2P;
1390 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1391 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1392 			}
1393 		}
1394 		break;
1395 
1396 	case CPU_5KC:
1397 	case CPU_5KE:
1398 	case CPU_LOONGSON1:
1399 		write_c0_ecc(0x80000000);
1400 		back_to_back_c0_hazard();
1401 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1402 		printk(KERN_INFO "Cache parity protection %sabled\n",
1403 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1404 		break;
1405 	case CPU_20KC:
1406 	case CPU_25KF:
1407 		/* Clear the DE bit (bit 16) in the c0_status register. */
1408 		printk(KERN_INFO "Enable cache parity protection for "
1409 		       "MIPS 20KC/25KF CPUs.\n");
1410 		clear_c0_status(ST0_DE);
1411 		break;
1412 	default:
1413 		break;
1414 	}
1415 }
1416 
1417 asmlinkage void cache_parity_error(void)
1418 {
1419 	const int field = 2 * sizeof(unsigned long);
1420 	unsigned int reg_val;
1421 
1422 	/* For the moment, report the problem and hang. */
1423 	printk("Cache error exception:\n");
1424 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1425 	reg_val = read_c0_cacheerr();
1426 	printk("c0_cacheerr == %08x\n", reg_val);
1427 
1428 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1429 	       reg_val & (1<<30) ? "secondary" : "primary",
1430 	       reg_val & (1<<31) ? "data" : "insn");
1431 	if (cpu_has_mips_r2 &&
1432 	    ((current_cpu_data.processor_id && 0xff0000) == PRID_COMP_MIPS)) {
1433 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1434 			reg_val & (1<<29) ? "ED " : "",
1435 			reg_val & (1<<28) ? "ET " : "",
1436 			reg_val & (1<<27) ? "ES " : "",
1437 			reg_val & (1<<26) ? "EE " : "",
1438 			reg_val & (1<<25) ? "EB " : "",
1439 			reg_val & (1<<24) ? "EI " : "",
1440 			reg_val & (1<<23) ? "E1 " : "",
1441 			reg_val & (1<<22) ? "E0 " : "");
1442 	} else {
1443 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1444 			reg_val & (1<<29) ? "ED " : "",
1445 			reg_val & (1<<28) ? "ET " : "",
1446 			reg_val & (1<<26) ? "EE " : "",
1447 			reg_val & (1<<25) ? "EB " : "",
1448 			reg_val & (1<<24) ? "EI " : "",
1449 			reg_val & (1<<23) ? "E1 " : "",
1450 			reg_val & (1<<22) ? "E0 " : "");
1451 	}
1452 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1453 
1454 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1455 	if (reg_val & (1<<22))
1456 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1457 
1458 	if (reg_val & (1<<23))
1459 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1460 #endif
1461 
1462 	panic("Can't handle the cache error!");
1463 }
1464 
1465 asmlinkage void do_ftlb(void)
1466 {
1467 	const int field = 2 * sizeof(unsigned long);
1468 	unsigned int reg_val;
1469 
1470 	/* For the moment, report the problem and hang. */
1471 	if (cpu_has_mips_r2 &&
1472 	    ((current_cpu_data.processor_id && 0xff0000) == PRID_COMP_MIPS)) {
1473 		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1474 		       read_c0_ecc());
1475 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1476 		reg_val = read_c0_cacheerr();
1477 		pr_err("c0_cacheerr == %08x\n", reg_val);
1478 
1479 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1480 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1481 		} else {
1482 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1483 			       reg_val & (1<<30) ? "secondary" : "primary",
1484 			       reg_val & (1<<31) ? "data" : "insn");
1485 		}
1486 	} else {
1487 		pr_err("FTLB error exception\n");
1488 	}
1489 	/* Just print the cacheerr bits for now */
1490 	cache_parity_error();
1491 }
1492 
1493 /*
1494  * SDBBP EJTAG debug exception handler.
1495  * We skip the instruction and return to the next instruction.
1496  */
1497 void ejtag_exception_handler(struct pt_regs *regs)
1498 {
1499 	const int field = 2 * sizeof(unsigned long);
1500 	unsigned long depc, old_epc, old_ra;
1501 	unsigned int debug;
1502 
1503 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1504 	depc = read_c0_depc();
1505 	debug = read_c0_debug();
1506 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1507 	if (debug & 0x80000000) {
1508 		/*
1509 		 * In branch delay slot.
1510 		 * We cheat a little bit here and use EPC to calculate the
1511 		 * debug return address (DEPC). EPC is restored after the
1512 		 * calculation.
1513 		 */
1514 		old_epc = regs->cp0_epc;
1515 		old_ra = regs->regs[31];
1516 		regs->cp0_epc = depc;
1517 		compute_return_epc(regs);
1518 		depc = regs->cp0_epc;
1519 		regs->cp0_epc = old_epc;
1520 		regs->regs[31] = old_ra;
1521 	} else
1522 		depc += 4;
1523 	write_c0_depc(depc);
1524 
1525 #if 0
1526 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1527 	write_c0_debug(debug | 0x100);
1528 #endif
1529 }
1530 
1531 /*
1532  * NMI exception handler.
1533  * No lock; only written during early bootup by CPU 0.
1534  */
1535 static RAW_NOTIFIER_HEAD(nmi_chain);
1536 
1537 int register_nmi_notifier(struct notifier_block *nb)
1538 {
1539 	return raw_notifier_chain_register(&nmi_chain, nb);
1540 }
1541 
1542 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1543 {
1544 	char str[100];
1545 
1546 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1547 	bust_spinlocks(1);
1548 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1549 		 smp_processor_id(), regs->cp0_epc);
1550 	regs->cp0_epc = read_c0_errorepc();
1551 	die(str, regs);
1552 }
1553 
1554 #define VECTORSPACING 0x100	/* for EI/VI mode */
1555 
1556 unsigned long ebase;
1557 unsigned long exception_handlers[32];
1558 unsigned long vi_handlers[64];
1559 
1560 void __init *set_except_vector(int n, void *addr)
1561 {
1562 	unsigned long handler = (unsigned long) addr;
1563 	unsigned long old_handler;
1564 
1565 #ifdef CONFIG_CPU_MICROMIPS
1566 	/*
1567 	 * Only the TLB handlers are cache aligned with an even
1568 	 * address. All other handlers are on an odd address and
1569 	 * require no modification. Otherwise, MIPS32 mode will
1570 	 * be entered when handling any TLB exceptions. That
1571 	 * would be bad...since we must stay in microMIPS mode.
1572 	 */
1573 	if (!(handler & 0x1))
1574 		handler |= 1;
1575 #endif
1576 	old_handler = xchg(&exception_handlers[n], handler);
1577 
1578 	if (n == 0 && cpu_has_divec) {
1579 #ifdef CONFIG_CPU_MICROMIPS
1580 		unsigned long jump_mask = ~((1 << 27) - 1);
1581 #else
1582 		unsigned long jump_mask = ~((1 << 28) - 1);
1583 #endif
1584 		u32 *buf = (u32 *)(ebase + 0x200);
1585 		unsigned int k0 = 26;
1586 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1587 			uasm_i_j(&buf, handler & ~jump_mask);
1588 			uasm_i_nop(&buf);
1589 		} else {
1590 			UASM_i_LA(&buf, k0, handler);
1591 			uasm_i_jr(&buf, k0);
1592 			uasm_i_nop(&buf);
1593 		}
1594 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1595 	}
1596 	return (void *)old_handler;
1597 }
1598 
1599 static void do_default_vi(void)
1600 {
1601 	show_regs(get_irq_regs());
1602 	panic("Caught unexpected vectored interrupt.");
1603 }
1604 
1605 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1606 {
1607 	unsigned long handler;
1608 	unsigned long old_handler = vi_handlers[n];
1609 	int srssets = current_cpu_data.srsets;
1610 	u16 *h;
1611 	unsigned char *b;
1612 
1613 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1614 
1615 	if (addr == NULL) {
1616 		handler = (unsigned long) do_default_vi;
1617 		srs = 0;
1618 	} else
1619 		handler = (unsigned long) addr;
1620 	vi_handlers[n] = handler;
1621 
1622 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1623 
1624 	if (srs >= srssets)
1625 		panic("Shadow register set %d not supported", srs);
1626 
1627 	if (cpu_has_veic) {
1628 		if (board_bind_eic_interrupt)
1629 			board_bind_eic_interrupt(n, srs);
1630 	} else if (cpu_has_vint) {
1631 		/* SRSMap is only defined if shadow sets are implemented */
1632 		if (srssets > 1)
1633 			change_c0_srsmap(0xf << n*4, srs << n*4);
1634 	}
1635 
1636 	if (srs == 0) {
1637 		/*
1638 		 * If no shadow set is selected then use the default handler
1639 		 * that does normal register saving and standard interrupt exit
1640 		 */
1641 		extern char except_vec_vi, except_vec_vi_lui;
1642 		extern char except_vec_vi_ori, except_vec_vi_end;
1643 		extern char rollback_except_vec_vi;
1644 		char *vec_start = using_rollback_handler() ?
1645 			&rollback_except_vec_vi : &except_vec_vi;
1646 #ifdef CONFIG_MIPS_MT_SMTC
1647 		/*
1648 		 * We need to provide the SMTC vectored interrupt handler
1649 		 * not only with the address of the handler, but with the
1650 		 * Status.IM bit to be masked before going there.
1651 		 */
1652 		extern char except_vec_vi_mori;
1653 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1654 		const int mori_offset = &except_vec_vi_mori - vec_start + 2;
1655 #else
1656 		const int mori_offset = &except_vec_vi_mori - vec_start;
1657 #endif
1658 #endif /* CONFIG_MIPS_MT_SMTC */
1659 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1660 		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1661 		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1662 #else
1663 		const int lui_offset = &except_vec_vi_lui - vec_start;
1664 		const int ori_offset = &except_vec_vi_ori - vec_start;
1665 #endif
1666 		const int handler_len = &except_vec_vi_end - vec_start;
1667 
1668 		if (handler_len > VECTORSPACING) {
1669 			/*
1670 			 * Sigh... panicing won't help as the console
1671 			 * is probably not configured :(
1672 			 */
1673 			panic("VECTORSPACING too small");
1674 		}
1675 
1676 		set_handler(((unsigned long)b - ebase), vec_start,
1677 #ifdef CONFIG_CPU_MICROMIPS
1678 				(handler_len - 1));
1679 #else
1680 				handler_len);
1681 #endif
1682 #ifdef CONFIG_MIPS_MT_SMTC
1683 		BUG_ON(n > 7);	/* Vector index %d exceeds SMTC maximum. */
1684 
1685 		h = (u16 *)(b + mori_offset);
1686 		*h = (0x100 << n);
1687 #endif /* CONFIG_MIPS_MT_SMTC */
1688 		h = (u16 *)(b + lui_offset);
1689 		*h = (handler >> 16) & 0xffff;
1690 		h = (u16 *)(b + ori_offset);
1691 		*h = (handler & 0xffff);
1692 		local_flush_icache_range((unsigned long)b,
1693 					 (unsigned long)(b+handler_len));
1694 	}
1695 	else {
1696 		/*
1697 		 * In other cases jump directly to the interrupt handler. It
1698 		 * is the handler's responsibility to save registers if required
1699 		 * (eg hi/lo) and return from the exception using "eret".
1700 		 */
1701 		u32 insn;
1702 
1703 		h = (u16 *)b;
1704 		/* j handler */
1705 #ifdef CONFIG_CPU_MICROMIPS
1706 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
1707 #else
1708 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
1709 #endif
1710 		h[0] = (insn >> 16) & 0xffff;
1711 		h[1] = insn & 0xffff;
1712 		h[2] = 0;
1713 		h[3] = 0;
1714 		local_flush_icache_range((unsigned long)b,
1715 					 (unsigned long)(b+8));
1716 	}
1717 
1718 	return (void *)old_handler;
1719 }
1720 
1721 void *set_vi_handler(int n, vi_handler_t addr)
1722 {
1723 	return set_vi_srs_handler(n, addr, 0);
1724 }
1725 
1726 extern void tlb_init(void);
1727 
1728 /*
1729  * Timer interrupt
1730  */
1731 int cp0_compare_irq;
1732 EXPORT_SYMBOL_GPL(cp0_compare_irq);
1733 int cp0_compare_irq_shift;
1734 
1735 /*
1736  * Performance counter IRQ or -1 if shared with timer
1737  */
1738 int cp0_perfcount_irq;
1739 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1740 
1741 static int noulri;
1742 
1743 static int __init ulri_disable(char *s)
1744 {
1745 	pr_info("Disabling ulri\n");
1746 	noulri = 1;
1747 
1748 	return 1;
1749 }
1750 __setup("noulri", ulri_disable);
1751 
1752 void per_cpu_trap_init(bool is_boot_cpu)
1753 {
1754 	unsigned int cpu = smp_processor_id();
1755 	unsigned int status_set = ST0_CU0;
1756 	unsigned int hwrena = cpu_hwrena_impl_bits;
1757 #ifdef CONFIG_MIPS_MT_SMTC
1758 	int secondaryTC = 0;
1759 	int bootTC = (cpu == 0);
1760 
1761 	/*
1762 	 * Only do per_cpu_trap_init() for first TC of Each VPE.
1763 	 * Note that this hack assumes that the SMTC init code
1764 	 * assigns TCs consecutively and in ascending order.
1765 	 */
1766 
1767 	if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1768 	    ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1769 		secondaryTC = 1;
1770 #endif /* CONFIG_MIPS_MT_SMTC */
1771 
1772 	/*
1773 	 * Disable coprocessors and select 32-bit or 64-bit addressing
1774 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
1775 	 * flag that some firmware may have left set and the TS bit (for
1776 	 * IP27).  Set XX for ISA IV code to work.
1777 	 */
1778 #ifdef CONFIG_64BIT
1779 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1780 #endif
1781 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
1782 		status_set |= ST0_XX;
1783 	if (cpu_has_dsp)
1784 		status_set |= ST0_MX;
1785 
1786 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1787 			 status_set);
1788 
1789 	if (cpu_has_mips_r2)
1790 		hwrena |= 0x0000000f;
1791 
1792 	if (!noulri && cpu_has_userlocal)
1793 		hwrena |= (1 << 29);
1794 
1795 	if (hwrena)
1796 		write_c0_hwrena(hwrena);
1797 
1798 #ifdef CONFIG_MIPS_MT_SMTC
1799 	if (!secondaryTC) {
1800 #endif /* CONFIG_MIPS_MT_SMTC */
1801 
1802 	if (cpu_has_veic || cpu_has_vint) {
1803 		unsigned long sr = set_c0_status(ST0_BEV);
1804 		write_c0_ebase(ebase);
1805 		write_c0_status(sr);
1806 		/* Setting vector spacing enables EI/VI mode  */
1807 		change_c0_intctl(0x3e0, VECTORSPACING);
1808 	}
1809 	if (cpu_has_divec) {
1810 		if (cpu_has_mipsmt) {
1811 			unsigned int vpflags = dvpe();
1812 			set_c0_cause(CAUSEF_IV);
1813 			evpe(vpflags);
1814 		} else
1815 			set_c0_cause(CAUSEF_IV);
1816 	}
1817 
1818 	/*
1819 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1820 	 *
1821 	 *  o read IntCtl.IPTI to determine the timer interrupt
1822 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
1823 	 */
1824 	if (cpu_has_mips_r2) {
1825 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1826 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1827 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1828 		if (cp0_perfcount_irq == cp0_compare_irq)
1829 			cp0_perfcount_irq = -1;
1830 	} else {
1831 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1832 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
1833 		cp0_perfcount_irq = -1;
1834 	}
1835 
1836 #ifdef CONFIG_MIPS_MT_SMTC
1837 	}
1838 #endif /* CONFIG_MIPS_MT_SMTC */
1839 
1840 	if (!cpu_data[cpu].asid_cache)
1841 		cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1842 
1843 	atomic_inc(&init_mm.mm_count);
1844 	current->active_mm = &init_mm;
1845 	BUG_ON(current->mm);
1846 	enter_lazy_tlb(&init_mm, current);
1847 
1848 #ifdef CONFIG_MIPS_MT_SMTC
1849 	if (bootTC) {
1850 #endif /* CONFIG_MIPS_MT_SMTC */
1851 		/* Boot CPU's cache setup in setup_arch(). */
1852 		if (!is_boot_cpu)
1853 			cpu_cache_init();
1854 		tlb_init();
1855 #ifdef CONFIG_MIPS_MT_SMTC
1856 	} else if (!secondaryTC) {
1857 		/*
1858 		 * First TC in non-boot VPE must do subset of tlb_init()
1859 		 * for MMU countrol registers.
1860 		 */
1861 		write_c0_pagemask(PM_DEFAULT_MASK);
1862 		write_c0_wired(0);
1863 	}
1864 #endif /* CONFIG_MIPS_MT_SMTC */
1865 	TLBMISS_HANDLER_SETUP();
1866 }
1867 
1868 /* Install CPU exception handler */
1869 void set_handler(unsigned long offset, void *addr, unsigned long size)
1870 {
1871 #ifdef CONFIG_CPU_MICROMIPS
1872 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
1873 #else
1874 	memcpy((void *)(ebase + offset), addr, size);
1875 #endif
1876 	local_flush_icache_range(ebase + offset, ebase + offset + size);
1877 }
1878 
1879 static char panic_null_cerr[] =
1880 	"Trying to set NULL cache error exception handler";
1881 
1882 /*
1883  * Install uncached CPU exception handler.
1884  * This is suitable only for the cache error exception which is the only
1885  * exception handler that is being run uncached.
1886  */
1887 void set_uncached_handler(unsigned long offset, void *addr,
1888 	unsigned long size)
1889 {
1890 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
1891 
1892 	if (!addr)
1893 		panic(panic_null_cerr);
1894 
1895 	memcpy((void *)(uncached_ebase + offset), addr, size);
1896 }
1897 
1898 static int __initdata rdhwr_noopt;
1899 static int __init set_rdhwr_noopt(char *str)
1900 {
1901 	rdhwr_noopt = 1;
1902 	return 1;
1903 }
1904 
1905 __setup("rdhwr_noopt", set_rdhwr_noopt);
1906 
1907 void __init trap_init(void)
1908 {
1909 	extern char except_vec3_generic;
1910 	extern char except_vec4;
1911 	extern char except_vec3_r4000;
1912 	unsigned long i;
1913 
1914 	check_wait();
1915 
1916 #if defined(CONFIG_KGDB)
1917 	if (kgdb_early_setup)
1918 		return; /* Already done */
1919 #endif
1920 
1921 	if (cpu_has_veic || cpu_has_vint) {
1922 		unsigned long size = 0x200 + VECTORSPACING*64;
1923 		ebase = (unsigned long)
1924 			__alloc_bootmem(size, 1 << fls(size), 0);
1925 	} else {
1926 #ifdef CONFIG_KVM_GUEST
1927 #define KVM_GUEST_KSEG0     0x40000000
1928         ebase = KVM_GUEST_KSEG0;
1929 #else
1930         ebase = CKSEG0;
1931 #endif
1932 		if (cpu_has_mips_r2)
1933 			ebase += (read_c0_ebase() & 0x3ffff000);
1934 	}
1935 
1936 	if (cpu_has_mmips) {
1937 		unsigned int config3 = read_c0_config3();
1938 
1939 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
1940 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
1941 		else
1942 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
1943 	}
1944 
1945 	if (board_ebase_setup)
1946 		board_ebase_setup();
1947 	per_cpu_trap_init(true);
1948 
1949 	/*
1950 	 * Copy the generic exception handlers to their final destination.
1951 	 * This will be overriden later as suitable for a particular
1952 	 * configuration.
1953 	 */
1954 	set_handler(0x180, &except_vec3_generic, 0x80);
1955 
1956 	/*
1957 	 * Setup default vectors
1958 	 */
1959 	for (i = 0; i <= 31; i++)
1960 		set_except_vector(i, handle_reserved);
1961 
1962 	/*
1963 	 * Copy the EJTAG debug exception vector handler code to it's final
1964 	 * destination.
1965 	 */
1966 	if (cpu_has_ejtag && board_ejtag_handler_setup)
1967 		board_ejtag_handler_setup();
1968 
1969 	/*
1970 	 * Only some CPUs have the watch exceptions.
1971 	 */
1972 	if (cpu_has_watch)
1973 		set_except_vector(23, handle_watch);
1974 
1975 	/*
1976 	 * Initialise interrupt handlers
1977 	 */
1978 	if (cpu_has_veic || cpu_has_vint) {
1979 		int nvec = cpu_has_veic ? 64 : 8;
1980 		for (i = 0; i < nvec; i++)
1981 			set_vi_handler(i, NULL);
1982 	}
1983 	else if (cpu_has_divec)
1984 		set_handler(0x200, &except_vec4, 0x8);
1985 
1986 	/*
1987 	 * Some CPUs can enable/disable for cache parity detection, but does
1988 	 * it different ways.
1989 	 */
1990 	parity_protection_init();
1991 
1992 	/*
1993 	 * The Data Bus Errors / Instruction Bus Errors are signaled
1994 	 * by external hardware.  Therefore these two exceptions
1995 	 * may have board specific handlers.
1996 	 */
1997 	if (board_be_init)
1998 		board_be_init();
1999 
2000 	set_except_vector(0, using_rollback_handler() ? rollback_handle_int
2001 						      : handle_int);
2002 	set_except_vector(1, handle_tlbm);
2003 	set_except_vector(2, handle_tlbl);
2004 	set_except_vector(3, handle_tlbs);
2005 
2006 	set_except_vector(4, handle_adel);
2007 	set_except_vector(5, handle_ades);
2008 
2009 	set_except_vector(6, handle_ibe);
2010 	set_except_vector(7, handle_dbe);
2011 
2012 	set_except_vector(8, handle_sys);
2013 	set_except_vector(9, handle_bp);
2014 	set_except_vector(10, rdhwr_noopt ? handle_ri :
2015 			  (cpu_has_vtag_icache ?
2016 			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2017 	set_except_vector(11, handle_cpu);
2018 	set_except_vector(12, handle_ov);
2019 	set_except_vector(13, handle_tr);
2020 
2021 	if (current_cpu_type() == CPU_R6000 ||
2022 	    current_cpu_type() == CPU_R6000A) {
2023 		/*
2024 		 * The R6000 is the only R-series CPU that features a machine
2025 		 * check exception (similar to the R4000 cache error) and
2026 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
2027 		 * written yet.	 Well, anyway there is no R6000 machine on the
2028 		 * current list of targets for Linux/MIPS.
2029 		 * (Duh, crap, there is someone with a triple R6k machine)
2030 		 */
2031 		//set_except_vector(14, handle_mc);
2032 		//set_except_vector(15, handle_ndc);
2033 	}
2034 
2035 
2036 	if (board_nmi_handler_setup)
2037 		board_nmi_handler_setup();
2038 
2039 	if (cpu_has_fpu && !cpu_has_nofpuex)
2040 		set_except_vector(15, handle_fpe);
2041 
2042 	set_except_vector(16, handle_ftlb);
2043 	set_except_vector(22, handle_mdmx);
2044 
2045 	if (cpu_has_mcheck)
2046 		set_except_vector(24, handle_mcheck);
2047 
2048 	if (cpu_has_mipsmt)
2049 		set_except_vector(25, handle_mt);
2050 
2051 	set_except_vector(26, handle_dsp);
2052 
2053 	if (board_cache_error_setup)
2054 		board_cache_error_setup();
2055 
2056 	if (cpu_has_vce)
2057 		/* Special exception: R4[04]00 uses also the divec space. */
2058 		set_handler(0x180, &except_vec3_r4000, 0x100);
2059 	else if (cpu_has_4kex)
2060 		set_handler(0x180, &except_vec3_generic, 0x80);
2061 	else
2062 		set_handler(0x080, &except_vec3_generic, 0x80);
2063 
2064 	local_flush_icache_range(ebase, ebase + 0x400);
2065 
2066 	sort_extable(__start___dbe_table, __stop___dbe_table);
2067 
2068 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2069 }
2070