1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle 7 * Copyright (C) 1995, 1996 Paul M. Antoine 8 * Copyright (C) 1998 Ulf Carlsson 9 * Copyright (C) 1999 Silicon Graphics, Inc. 10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki 12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved. 13 */ 14 #include <linux/bug.h> 15 #include <linux/compiler.h> 16 #include <linux/context_tracking.h> 17 #include <linux/kexec.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/mm.h> 22 #include <linux/sched.h> 23 #include <linux/smp.h> 24 #include <linux/spinlock.h> 25 #include <linux/kallsyms.h> 26 #include <linux/bootmem.h> 27 #include <linux/interrupt.h> 28 #include <linux/ptrace.h> 29 #include <linux/kgdb.h> 30 #include <linux/kdebug.h> 31 #include <linux/kprobes.h> 32 #include <linux/notifier.h> 33 #include <linux/kdb.h> 34 #include <linux/irq.h> 35 #include <linux/perf_event.h> 36 37 #include <asm/bootinfo.h> 38 #include <asm/branch.h> 39 #include <asm/break.h> 40 #include <asm/cop2.h> 41 #include <asm/cpu.h> 42 #include <asm/cpu-type.h> 43 #include <asm/dsp.h> 44 #include <asm/fpu.h> 45 #include <asm/fpu_emulator.h> 46 #include <asm/idle.h> 47 #include <asm/mipsregs.h> 48 #include <asm/mipsmtregs.h> 49 #include <asm/module.h> 50 #include <asm/pgtable.h> 51 #include <asm/ptrace.h> 52 #include <asm/sections.h> 53 #include <asm/tlbdebug.h> 54 #include <asm/traps.h> 55 #include <asm/uaccess.h> 56 #include <asm/watch.h> 57 #include <asm/mmu_context.h> 58 #include <asm/types.h> 59 #include <asm/stacktrace.h> 60 #include <asm/uasm.h> 61 62 extern void check_wait(void); 63 extern asmlinkage void rollback_handle_int(void); 64 extern asmlinkage void handle_int(void); 65 extern u32 handle_tlbl[]; 66 extern u32 handle_tlbs[]; 67 extern u32 handle_tlbm[]; 68 extern asmlinkage void handle_adel(void); 69 extern asmlinkage void handle_ades(void); 70 extern asmlinkage void handle_ibe(void); 71 extern asmlinkage void handle_dbe(void); 72 extern asmlinkage void handle_sys(void); 73 extern asmlinkage void handle_bp(void); 74 extern asmlinkage void handle_ri(void); 75 extern asmlinkage void handle_ri_rdhwr_vivt(void); 76 extern asmlinkage void handle_ri_rdhwr(void); 77 extern asmlinkage void handle_cpu(void); 78 extern asmlinkage void handle_ov(void); 79 extern asmlinkage void handle_tr(void); 80 extern asmlinkage void handle_fpe(void); 81 extern asmlinkage void handle_ftlb(void); 82 extern asmlinkage void handle_mdmx(void); 83 extern asmlinkage void handle_watch(void); 84 extern asmlinkage void handle_mt(void); 85 extern asmlinkage void handle_dsp(void); 86 extern asmlinkage void handle_mcheck(void); 87 extern asmlinkage void handle_reserved(void); 88 89 void (*board_be_init)(void); 90 int (*board_be_handler)(struct pt_regs *regs, int is_fixup); 91 void (*board_nmi_handler_setup)(void); 92 void (*board_ejtag_handler_setup)(void); 93 void (*board_bind_eic_interrupt)(int irq, int regset); 94 void (*board_ebase_setup)(void); 95 void(*board_cache_error_setup)(void); 96 97 static void show_raw_backtrace(unsigned long reg29) 98 { 99 unsigned long *sp = (unsigned long *)(reg29 & ~3); 100 unsigned long addr; 101 102 printk("Call Trace:"); 103 #ifdef CONFIG_KALLSYMS 104 printk("\n"); 105 #endif 106 while (!kstack_end(sp)) { 107 unsigned long __user *p = 108 (unsigned long __user *)(unsigned long)sp++; 109 if (__get_user(addr, p)) { 110 printk(" (Bad stack address)"); 111 break; 112 } 113 if (__kernel_text_address(addr)) 114 print_ip_sym(addr); 115 } 116 printk("\n"); 117 } 118 119 #ifdef CONFIG_KALLSYMS 120 int raw_show_trace; 121 static int __init set_raw_show_trace(char *str) 122 { 123 raw_show_trace = 1; 124 return 1; 125 } 126 __setup("raw_show_trace", set_raw_show_trace); 127 #endif 128 129 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs) 130 { 131 unsigned long sp = regs->regs[29]; 132 unsigned long ra = regs->regs[31]; 133 unsigned long pc = regs->cp0_epc; 134 135 if (!task) 136 task = current; 137 138 if (raw_show_trace || !__kernel_text_address(pc)) { 139 show_raw_backtrace(sp); 140 return; 141 } 142 printk("Call Trace:\n"); 143 do { 144 print_ip_sym(pc); 145 pc = unwind_stack(task, &sp, pc, &ra); 146 } while (pc); 147 printk("\n"); 148 } 149 150 /* 151 * This routine abuses get_user()/put_user() to reference pointers 152 * with at least a bit of error checking ... 153 */ 154 static void show_stacktrace(struct task_struct *task, 155 const struct pt_regs *regs) 156 { 157 const int field = 2 * sizeof(unsigned long); 158 long stackdata; 159 int i; 160 unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; 161 162 printk("Stack :"); 163 i = 0; 164 while ((unsigned long) sp & (PAGE_SIZE - 1)) { 165 if (i && ((i % (64 / field)) == 0)) 166 printk("\n "); 167 if (i > 39) { 168 printk(" ..."); 169 break; 170 } 171 172 if (__get_user(stackdata, sp++)) { 173 printk(" (Bad stack address)"); 174 break; 175 } 176 177 printk(" %0*lx", field, stackdata); 178 i++; 179 } 180 printk("\n"); 181 show_backtrace(task, regs); 182 } 183 184 void show_stack(struct task_struct *task, unsigned long *sp) 185 { 186 struct pt_regs regs; 187 if (sp) { 188 regs.regs[29] = (unsigned long)sp; 189 regs.regs[31] = 0; 190 regs.cp0_epc = 0; 191 } else { 192 if (task && task != current) { 193 regs.regs[29] = task->thread.reg29; 194 regs.regs[31] = 0; 195 regs.cp0_epc = task->thread.reg31; 196 #ifdef CONFIG_KGDB_KDB 197 } else if (atomic_read(&kgdb_active) != -1 && 198 kdb_current_regs) { 199 memcpy(®s, kdb_current_regs, sizeof(regs)); 200 #endif /* CONFIG_KGDB_KDB */ 201 } else { 202 prepare_frametrace(®s); 203 } 204 } 205 show_stacktrace(task, ®s); 206 } 207 208 static void show_code(unsigned int __user *pc) 209 { 210 long i; 211 unsigned short __user *pc16 = NULL; 212 213 printk("\nCode:"); 214 215 if ((unsigned long)pc & 1) 216 pc16 = (unsigned short __user *)((unsigned long)pc & ~1); 217 for(i = -3 ; i < 6 ; i++) { 218 unsigned int insn; 219 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { 220 printk(" (Bad address in epc)\n"); 221 break; 222 } 223 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); 224 } 225 } 226 227 static void __show_regs(const struct pt_regs *regs) 228 { 229 const int field = 2 * sizeof(unsigned long); 230 unsigned int cause = regs->cp0_cause; 231 int i; 232 233 show_regs_print_info(KERN_DEFAULT); 234 235 /* 236 * Saved main processor registers 237 */ 238 for (i = 0; i < 32; ) { 239 if ((i % 4) == 0) 240 printk("$%2d :", i); 241 if (i == 0) 242 printk(" %0*lx", field, 0UL); 243 else if (i == 26 || i == 27) 244 printk(" %*s", field, ""); 245 else 246 printk(" %0*lx", field, regs->regs[i]); 247 248 i++; 249 if ((i % 4) == 0) 250 printk("\n"); 251 } 252 253 #ifdef CONFIG_CPU_HAS_SMARTMIPS 254 printk("Acx : %0*lx\n", field, regs->acx); 255 #endif 256 printk("Hi : %0*lx\n", field, regs->hi); 257 printk("Lo : %0*lx\n", field, regs->lo); 258 259 /* 260 * Saved cp0 registers 261 */ 262 printk("epc : %0*lx %pS\n", field, regs->cp0_epc, 263 (void *) regs->cp0_epc); 264 printk(" %s\n", print_tainted()); 265 printk("ra : %0*lx %pS\n", field, regs->regs[31], 266 (void *) regs->regs[31]); 267 268 printk("Status: %08x ", (uint32_t) regs->cp0_status); 269 270 if (cpu_has_3kex) { 271 if (regs->cp0_status & ST0_KUO) 272 printk("KUo "); 273 if (regs->cp0_status & ST0_IEO) 274 printk("IEo "); 275 if (regs->cp0_status & ST0_KUP) 276 printk("KUp "); 277 if (regs->cp0_status & ST0_IEP) 278 printk("IEp "); 279 if (regs->cp0_status & ST0_KUC) 280 printk("KUc "); 281 if (regs->cp0_status & ST0_IEC) 282 printk("IEc "); 283 } else if (cpu_has_4kex) { 284 if (regs->cp0_status & ST0_KX) 285 printk("KX "); 286 if (regs->cp0_status & ST0_SX) 287 printk("SX "); 288 if (regs->cp0_status & ST0_UX) 289 printk("UX "); 290 switch (regs->cp0_status & ST0_KSU) { 291 case KSU_USER: 292 printk("USER "); 293 break; 294 case KSU_SUPERVISOR: 295 printk("SUPERVISOR "); 296 break; 297 case KSU_KERNEL: 298 printk("KERNEL "); 299 break; 300 default: 301 printk("BAD_MODE "); 302 break; 303 } 304 if (regs->cp0_status & ST0_ERL) 305 printk("ERL "); 306 if (regs->cp0_status & ST0_EXL) 307 printk("EXL "); 308 if (regs->cp0_status & ST0_IE) 309 printk("IE "); 310 } 311 printk("\n"); 312 313 printk("Cause : %08x\n", cause); 314 315 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; 316 if (1 <= cause && cause <= 5) 317 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); 318 319 printk("PrId : %08x (%s)\n", read_c0_prid(), 320 cpu_name_string()); 321 } 322 323 /* 324 * FIXME: really the generic show_regs should take a const pointer argument. 325 */ 326 void show_regs(struct pt_regs *regs) 327 { 328 __show_regs((struct pt_regs *)regs); 329 } 330 331 void show_registers(struct pt_regs *regs) 332 { 333 const int field = 2 * sizeof(unsigned long); 334 mm_segment_t old_fs = get_fs(); 335 336 __show_regs(regs); 337 print_modules(); 338 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", 339 current->comm, current->pid, current_thread_info(), current, 340 field, current_thread_info()->tp_value); 341 if (cpu_has_userlocal) { 342 unsigned long tls; 343 344 tls = read_c0_userlocal(); 345 if (tls != current_thread_info()->tp_value) 346 printk("*HwTLS: %0*lx\n", field, tls); 347 } 348 349 if (!user_mode(regs)) 350 /* Necessary for getting the correct stack content */ 351 set_fs(KERNEL_DS); 352 show_stacktrace(current, regs); 353 show_code((unsigned int __user *) regs->cp0_epc); 354 printk("\n"); 355 set_fs(old_fs); 356 } 357 358 static int regs_to_trapnr(struct pt_regs *regs) 359 { 360 return (regs->cp0_cause >> 2) & 0x1f; 361 } 362 363 static DEFINE_RAW_SPINLOCK(die_lock); 364 365 void __noreturn die(const char *str, struct pt_regs *regs) 366 { 367 static int die_counter; 368 int sig = SIGSEGV; 369 #ifdef CONFIG_MIPS_MT_SMTC 370 unsigned long dvpret; 371 #endif /* CONFIG_MIPS_MT_SMTC */ 372 373 oops_enter(); 374 375 if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), 376 SIGSEGV) == NOTIFY_STOP) 377 sig = 0; 378 379 console_verbose(); 380 raw_spin_lock_irq(&die_lock); 381 #ifdef CONFIG_MIPS_MT_SMTC 382 dvpret = dvpe(); 383 #endif /* CONFIG_MIPS_MT_SMTC */ 384 bust_spinlocks(1); 385 #ifdef CONFIG_MIPS_MT_SMTC 386 mips_mt_regdump(dvpret); 387 #endif /* CONFIG_MIPS_MT_SMTC */ 388 389 printk("%s[#%d]:\n", str, ++die_counter); 390 show_registers(regs); 391 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 392 raw_spin_unlock_irq(&die_lock); 393 394 oops_exit(); 395 396 if (in_interrupt()) 397 panic("Fatal exception in interrupt"); 398 399 if (panic_on_oops) { 400 printk(KERN_EMERG "Fatal exception: panic in 5 seconds"); 401 ssleep(5); 402 panic("Fatal exception"); 403 } 404 405 if (regs && kexec_should_crash(current)) 406 crash_kexec(regs); 407 408 do_exit(sig); 409 } 410 411 extern struct exception_table_entry __start___dbe_table[]; 412 extern struct exception_table_entry __stop___dbe_table[]; 413 414 __asm__( 415 " .section __dbe_table, \"a\"\n" 416 " .previous \n"); 417 418 /* Given an address, look for it in the exception tables. */ 419 static const struct exception_table_entry *search_dbe_tables(unsigned long addr) 420 { 421 const struct exception_table_entry *e; 422 423 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr); 424 if (!e) 425 e = search_module_dbetables(addr); 426 return e; 427 } 428 429 asmlinkage void do_be(struct pt_regs *regs) 430 { 431 const int field = 2 * sizeof(unsigned long); 432 const struct exception_table_entry *fixup = NULL; 433 int data = regs->cp0_cause & 4; 434 int action = MIPS_BE_FATAL; 435 enum ctx_state prev_state; 436 437 prev_state = exception_enter(); 438 /* XXX For now. Fixme, this searches the wrong table ... */ 439 if (data && !user_mode(regs)) 440 fixup = search_dbe_tables(exception_epc(regs)); 441 442 if (fixup) 443 action = MIPS_BE_FIXUP; 444 445 if (board_be_handler) 446 action = board_be_handler(regs, fixup != NULL); 447 448 switch (action) { 449 case MIPS_BE_DISCARD: 450 goto out; 451 case MIPS_BE_FIXUP: 452 if (fixup) { 453 regs->cp0_epc = fixup->nextinsn; 454 goto out; 455 } 456 break; 457 default: 458 break; 459 } 460 461 /* 462 * Assume it would be too dangerous to continue ... 463 */ 464 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", 465 data ? "Data" : "Instruction", 466 field, regs->cp0_epc, field, regs->regs[31]); 467 if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), 468 SIGBUS) == NOTIFY_STOP) 469 goto out; 470 471 die_if_kernel("Oops", regs); 472 force_sig(SIGBUS, current); 473 474 out: 475 exception_exit(prev_state); 476 } 477 478 /* 479 * ll/sc, rdhwr, sync emulation 480 */ 481 482 #define OPCODE 0xfc000000 483 #define BASE 0x03e00000 484 #define RT 0x001f0000 485 #define OFFSET 0x0000ffff 486 #define LL 0xc0000000 487 #define SC 0xe0000000 488 #define SPEC0 0x00000000 489 #define SPEC3 0x7c000000 490 #define RD 0x0000f800 491 #define FUNC 0x0000003f 492 #define SYNC 0x0000000f 493 #define RDHWR 0x0000003b 494 495 /* microMIPS definitions */ 496 #define MM_POOL32A_FUNC 0xfc00ffff 497 #define MM_RDHWR 0x00006b3c 498 #define MM_RS 0x001f0000 499 #define MM_RT 0x03e00000 500 501 /* 502 * The ll_bit is cleared by r*_switch.S 503 */ 504 505 unsigned int ll_bit; 506 struct task_struct *ll_task; 507 508 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) 509 { 510 unsigned long value, __user *vaddr; 511 long offset; 512 513 /* 514 * analyse the ll instruction that just caused a ri exception 515 * and put the referenced address to addr. 516 */ 517 518 /* sign extend offset */ 519 offset = opcode & OFFSET; 520 offset <<= 16; 521 offset >>= 16; 522 523 vaddr = (unsigned long __user *) 524 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 525 526 if ((unsigned long)vaddr & 3) 527 return SIGBUS; 528 if (get_user(value, vaddr)) 529 return SIGSEGV; 530 531 preempt_disable(); 532 533 if (ll_task == NULL || ll_task == current) { 534 ll_bit = 1; 535 } else { 536 ll_bit = 0; 537 } 538 ll_task = current; 539 540 preempt_enable(); 541 542 regs->regs[(opcode & RT) >> 16] = value; 543 544 return 0; 545 } 546 547 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) 548 { 549 unsigned long __user *vaddr; 550 unsigned long reg; 551 long offset; 552 553 /* 554 * analyse the sc instruction that just caused a ri exception 555 * and put the referenced address to addr. 556 */ 557 558 /* sign extend offset */ 559 offset = opcode & OFFSET; 560 offset <<= 16; 561 offset >>= 16; 562 563 vaddr = (unsigned long __user *) 564 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 565 reg = (opcode & RT) >> 16; 566 567 if ((unsigned long)vaddr & 3) 568 return SIGBUS; 569 570 preempt_disable(); 571 572 if (ll_bit == 0 || ll_task != current) { 573 regs->regs[reg] = 0; 574 preempt_enable(); 575 return 0; 576 } 577 578 preempt_enable(); 579 580 if (put_user(regs->regs[reg], vaddr)) 581 return SIGSEGV; 582 583 regs->regs[reg] = 1; 584 585 return 0; 586 } 587 588 /* 589 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both 590 * opcodes are supposed to result in coprocessor unusable exceptions if 591 * executed on ll/sc-less processors. That's the theory. In practice a 592 * few processors such as NEC's VR4100 throw reserved instruction exceptions 593 * instead, so we're doing the emulation thing in both exception handlers. 594 */ 595 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) 596 { 597 if ((opcode & OPCODE) == LL) { 598 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 599 1, regs, 0); 600 return simulate_ll(regs, opcode); 601 } 602 if ((opcode & OPCODE) == SC) { 603 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 604 1, regs, 0); 605 return simulate_sc(regs, opcode); 606 } 607 608 return -1; /* Must be something else ... */ 609 } 610 611 /* 612 * Simulate trapping 'rdhwr' instructions to provide user accessible 613 * registers not implemented in hardware. 614 */ 615 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt) 616 { 617 struct thread_info *ti = task_thread_info(current); 618 619 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 620 1, regs, 0); 621 switch (rd) { 622 case 0: /* CPU number */ 623 regs->regs[rt] = smp_processor_id(); 624 return 0; 625 case 1: /* SYNCI length */ 626 regs->regs[rt] = min(current_cpu_data.dcache.linesz, 627 current_cpu_data.icache.linesz); 628 return 0; 629 case 2: /* Read count register */ 630 regs->regs[rt] = read_c0_count(); 631 return 0; 632 case 3: /* Count register resolution */ 633 switch (current_cpu_type()) { 634 case CPU_20KC: 635 case CPU_25KF: 636 regs->regs[rt] = 1; 637 break; 638 default: 639 regs->regs[rt] = 2; 640 } 641 return 0; 642 case 29: 643 regs->regs[rt] = ti->tp_value; 644 return 0; 645 default: 646 return -1; 647 } 648 } 649 650 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode) 651 { 652 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { 653 int rd = (opcode & RD) >> 11; 654 int rt = (opcode & RT) >> 16; 655 656 simulate_rdhwr(regs, rd, rt); 657 return 0; 658 } 659 660 /* Not ours. */ 661 return -1; 662 } 663 664 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode) 665 { 666 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) { 667 int rd = (opcode & MM_RS) >> 16; 668 int rt = (opcode & MM_RT) >> 21; 669 simulate_rdhwr(regs, rd, rt); 670 return 0; 671 } 672 673 /* Not ours. */ 674 return -1; 675 } 676 677 static int simulate_sync(struct pt_regs *regs, unsigned int opcode) 678 { 679 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) { 680 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 681 1, regs, 0); 682 return 0; 683 } 684 685 return -1; /* Must be something else ... */ 686 } 687 688 asmlinkage void do_ov(struct pt_regs *regs) 689 { 690 enum ctx_state prev_state; 691 siginfo_t info; 692 693 prev_state = exception_enter(); 694 die_if_kernel("Integer overflow", regs); 695 696 info.si_code = FPE_INTOVF; 697 info.si_signo = SIGFPE; 698 info.si_errno = 0; 699 info.si_addr = (void __user *) regs->cp0_epc; 700 force_sig_info(SIGFPE, &info, current); 701 exception_exit(prev_state); 702 } 703 704 int process_fpemu_return(int sig, void __user *fault_addr) 705 { 706 if (sig == SIGSEGV || sig == SIGBUS) { 707 struct siginfo si = {0}; 708 si.si_addr = fault_addr; 709 si.si_signo = sig; 710 if (sig == SIGSEGV) { 711 if (find_vma(current->mm, (unsigned long)fault_addr)) 712 si.si_code = SEGV_ACCERR; 713 else 714 si.si_code = SEGV_MAPERR; 715 } else { 716 si.si_code = BUS_ADRERR; 717 } 718 force_sig_info(sig, &si, current); 719 return 1; 720 } else if (sig) { 721 force_sig(sig, current); 722 return 1; 723 } else { 724 return 0; 725 } 726 } 727 728 /* 729 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX 730 */ 731 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) 732 { 733 enum ctx_state prev_state; 734 siginfo_t info = {0}; 735 736 prev_state = exception_enter(); 737 if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), 738 SIGFPE) == NOTIFY_STOP) 739 goto out; 740 die_if_kernel("FP exception in kernel code", regs); 741 742 if (fcr31 & FPU_CSR_UNI_X) { 743 int sig; 744 void __user *fault_addr = NULL; 745 746 /* 747 * Unimplemented operation exception. If we've got the full 748 * software emulator on-board, let's use it... 749 * 750 * Force FPU to dump state into task/thread context. We're 751 * moving a lot of data here for what is probably a single 752 * instruction, but the alternative is to pre-decode the FP 753 * register operands before invoking the emulator, which seems 754 * a bit extreme for what should be an infrequent event. 755 */ 756 /* Ensure 'resume' not overwrite saved fp context again. */ 757 lose_fpu(1); 758 759 /* Run the emulator */ 760 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 761 &fault_addr); 762 763 /* 764 * We can't allow the emulated instruction to leave any of 765 * the cause bit set in $fcr31. 766 */ 767 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 768 769 /* Restore the hardware register state */ 770 own_fpu(1); /* Using the FPU again. */ 771 772 /* If something went wrong, signal */ 773 process_fpemu_return(sig, fault_addr); 774 775 goto out; 776 } else if (fcr31 & FPU_CSR_INV_X) 777 info.si_code = FPE_FLTINV; 778 else if (fcr31 & FPU_CSR_DIV_X) 779 info.si_code = FPE_FLTDIV; 780 else if (fcr31 & FPU_CSR_OVF_X) 781 info.si_code = FPE_FLTOVF; 782 else if (fcr31 & FPU_CSR_UDF_X) 783 info.si_code = FPE_FLTUND; 784 else if (fcr31 & FPU_CSR_INE_X) 785 info.si_code = FPE_FLTRES; 786 else 787 info.si_code = __SI_FAULT; 788 info.si_signo = SIGFPE; 789 info.si_errno = 0; 790 info.si_addr = (void __user *) regs->cp0_epc; 791 force_sig_info(SIGFPE, &info, current); 792 793 out: 794 exception_exit(prev_state); 795 } 796 797 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code, 798 const char *str) 799 { 800 siginfo_t info; 801 char b[40]; 802 803 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 804 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 805 return; 806 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 807 808 if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), 809 SIGTRAP) == NOTIFY_STOP) 810 return; 811 812 /* 813 * A short test says that IRIX 5.3 sends SIGTRAP for all trap 814 * insns, even for trap and break codes that indicate arithmetic 815 * failures. Weird ... 816 * But should we continue the brokenness??? --macro 817 */ 818 switch (code) { 819 case BRK_OVERFLOW: 820 case BRK_DIVZERO: 821 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 822 die_if_kernel(b, regs); 823 if (code == BRK_DIVZERO) 824 info.si_code = FPE_INTDIV; 825 else 826 info.si_code = FPE_INTOVF; 827 info.si_signo = SIGFPE; 828 info.si_errno = 0; 829 info.si_addr = (void __user *) regs->cp0_epc; 830 force_sig_info(SIGFPE, &info, current); 831 break; 832 case BRK_BUG: 833 die_if_kernel("Kernel bug detected", regs); 834 force_sig(SIGTRAP, current); 835 break; 836 case BRK_MEMU: 837 /* 838 * Address errors may be deliberately induced by the FPU 839 * emulator to retake control of the CPU after executing the 840 * instruction in the delay slot of an emulated branch. 841 * 842 * Terminate if exception was recognized as a delay slot return 843 * otherwise handle as normal. 844 */ 845 if (do_dsemulret(regs)) 846 return; 847 848 die_if_kernel("Math emu break/trap", regs); 849 force_sig(SIGTRAP, current); 850 break; 851 default: 852 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 853 die_if_kernel(b, regs); 854 force_sig(SIGTRAP, current); 855 } 856 } 857 858 asmlinkage void do_bp(struct pt_regs *regs) 859 { 860 unsigned int opcode, bcode; 861 enum ctx_state prev_state; 862 unsigned long epc; 863 u16 instr[2]; 864 865 prev_state = exception_enter(); 866 if (get_isa16_mode(regs->cp0_epc)) { 867 /* Calculate EPC. */ 868 epc = exception_epc(regs); 869 if (cpu_has_mmips) { 870 if ((__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc)) || 871 (__get_user(instr[1], (u16 __user *)msk_isa16_mode(epc + 2))))) 872 goto out_sigsegv; 873 opcode = (instr[0] << 16) | instr[1]; 874 } else { 875 /* MIPS16e mode */ 876 if (__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc))) 877 goto out_sigsegv; 878 bcode = (instr[0] >> 6) & 0x3f; 879 do_trap_or_bp(regs, bcode, "Break"); 880 goto out; 881 } 882 } else { 883 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs))) 884 goto out_sigsegv; 885 } 886 887 /* 888 * There is the ancient bug in the MIPS assemblers that the break 889 * code starts left to bit 16 instead to bit 6 in the opcode. 890 * Gas is bug-compatible, but not always, grrr... 891 * We handle both cases with a simple heuristics. --macro 892 */ 893 bcode = ((opcode >> 6) & ((1 << 20) - 1)); 894 if (bcode >= (1 << 10)) 895 bcode >>= 10; 896 897 /* 898 * notify the kprobe handlers, if instruction is likely to 899 * pertain to them. 900 */ 901 switch (bcode) { 902 case BRK_KPROBE_BP: 903 if (notify_die(DIE_BREAK, "debug", regs, bcode, 904 regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 905 goto out; 906 else 907 break; 908 case BRK_KPROBE_SSTEPBP: 909 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, 910 regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 911 goto out; 912 else 913 break; 914 default: 915 break; 916 } 917 918 do_trap_or_bp(regs, bcode, "Break"); 919 920 out: 921 exception_exit(prev_state); 922 return; 923 924 out_sigsegv: 925 force_sig(SIGSEGV, current); 926 goto out; 927 } 928 929 asmlinkage void do_tr(struct pt_regs *regs) 930 { 931 u32 opcode, tcode = 0; 932 enum ctx_state prev_state; 933 u16 instr[2]; 934 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 935 936 prev_state = exception_enter(); 937 if (get_isa16_mode(regs->cp0_epc)) { 938 if (__get_user(instr[0], (u16 __user *)(epc + 0)) || 939 __get_user(instr[1], (u16 __user *)(epc + 2))) 940 goto out_sigsegv; 941 opcode = (instr[0] << 16) | instr[1]; 942 /* Immediate versions don't provide a code. */ 943 if (!(opcode & OPCODE)) 944 tcode = (opcode >> 12) & ((1 << 4) - 1); 945 } else { 946 if (__get_user(opcode, (u32 __user *)epc)) 947 goto out_sigsegv; 948 /* Immediate versions don't provide a code. */ 949 if (!(opcode & OPCODE)) 950 tcode = (opcode >> 6) & ((1 << 10) - 1); 951 } 952 953 do_trap_or_bp(regs, tcode, "Trap"); 954 955 out: 956 exception_exit(prev_state); 957 return; 958 959 out_sigsegv: 960 force_sig(SIGSEGV, current); 961 goto out; 962 } 963 964 asmlinkage void do_ri(struct pt_regs *regs) 965 { 966 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); 967 unsigned long old_epc = regs->cp0_epc; 968 unsigned long old31 = regs->regs[31]; 969 enum ctx_state prev_state; 970 unsigned int opcode = 0; 971 int status = -1; 972 973 prev_state = exception_enter(); 974 if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), 975 SIGILL) == NOTIFY_STOP) 976 goto out; 977 978 die_if_kernel("Reserved instruction in kernel code", regs); 979 980 if (unlikely(compute_return_epc(regs) < 0)) 981 goto out; 982 983 if (get_isa16_mode(regs->cp0_epc)) { 984 unsigned short mmop[2] = { 0 }; 985 986 if (unlikely(get_user(mmop[0], epc) < 0)) 987 status = SIGSEGV; 988 if (unlikely(get_user(mmop[1], epc) < 0)) 989 status = SIGSEGV; 990 opcode = (mmop[0] << 16) | mmop[1]; 991 992 if (status < 0) 993 status = simulate_rdhwr_mm(regs, opcode); 994 } else { 995 if (unlikely(get_user(opcode, epc) < 0)) 996 status = SIGSEGV; 997 998 if (!cpu_has_llsc && status < 0) 999 status = simulate_llsc(regs, opcode); 1000 1001 if (status < 0) 1002 status = simulate_rdhwr_normal(regs, opcode); 1003 1004 if (status < 0) 1005 status = simulate_sync(regs, opcode); 1006 } 1007 1008 if (status < 0) 1009 status = SIGILL; 1010 1011 if (unlikely(status > 0)) { 1012 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1013 regs->regs[31] = old31; 1014 force_sig(status, current); 1015 } 1016 1017 out: 1018 exception_exit(prev_state); 1019 } 1020 1021 /* 1022 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've 1023 * emulated more than some threshold number of instructions, force migration to 1024 * a "CPU" that has FP support. 1025 */ 1026 static void mt_ase_fp_affinity(void) 1027 { 1028 #ifdef CONFIG_MIPS_MT_FPAFF 1029 if (mt_fpemul_threshold > 0 && 1030 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { 1031 /* 1032 * If there's no FPU present, or if the application has already 1033 * restricted the allowed set to exclude any CPUs with FPUs, 1034 * we'll skip the procedure. 1035 */ 1036 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) { 1037 cpumask_t tmask; 1038 1039 current->thread.user_cpus_allowed 1040 = current->cpus_allowed; 1041 cpus_and(tmask, current->cpus_allowed, 1042 mt_fpu_cpumask); 1043 set_cpus_allowed_ptr(current, &tmask); 1044 set_thread_flag(TIF_FPUBOUND); 1045 } 1046 } 1047 #endif /* CONFIG_MIPS_MT_FPAFF */ 1048 } 1049 1050 /* 1051 * No lock; only written during early bootup by CPU 0. 1052 */ 1053 static RAW_NOTIFIER_HEAD(cu2_chain); 1054 1055 int __ref register_cu2_notifier(struct notifier_block *nb) 1056 { 1057 return raw_notifier_chain_register(&cu2_chain, nb); 1058 } 1059 1060 int cu2_notifier_call_chain(unsigned long val, void *v) 1061 { 1062 return raw_notifier_call_chain(&cu2_chain, val, v); 1063 } 1064 1065 static int default_cu2_call(struct notifier_block *nfb, unsigned long action, 1066 void *data) 1067 { 1068 struct pt_regs *regs = data; 1069 1070 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid " 1071 "instruction", regs); 1072 force_sig(SIGILL, current); 1073 1074 return NOTIFY_OK; 1075 } 1076 1077 asmlinkage void do_cpu(struct pt_regs *regs) 1078 { 1079 enum ctx_state prev_state; 1080 unsigned int __user *epc; 1081 unsigned long old_epc, old31; 1082 unsigned int opcode; 1083 unsigned int cpid; 1084 int status, err; 1085 unsigned long __maybe_unused flags; 1086 1087 prev_state = exception_enter(); 1088 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; 1089 1090 if (cpid != 2) 1091 die_if_kernel("do_cpu invoked from kernel context!", regs); 1092 1093 switch (cpid) { 1094 case 0: 1095 epc = (unsigned int __user *)exception_epc(regs); 1096 old_epc = regs->cp0_epc; 1097 old31 = regs->regs[31]; 1098 opcode = 0; 1099 status = -1; 1100 1101 if (unlikely(compute_return_epc(regs) < 0)) 1102 goto out; 1103 1104 if (get_isa16_mode(regs->cp0_epc)) { 1105 unsigned short mmop[2] = { 0 }; 1106 1107 if (unlikely(get_user(mmop[0], epc) < 0)) 1108 status = SIGSEGV; 1109 if (unlikely(get_user(mmop[1], epc) < 0)) 1110 status = SIGSEGV; 1111 opcode = (mmop[0] << 16) | mmop[1]; 1112 1113 if (status < 0) 1114 status = simulate_rdhwr_mm(regs, opcode); 1115 } else { 1116 if (unlikely(get_user(opcode, epc) < 0)) 1117 status = SIGSEGV; 1118 1119 if (!cpu_has_llsc && status < 0) 1120 status = simulate_llsc(regs, opcode); 1121 1122 if (status < 0) 1123 status = simulate_rdhwr_normal(regs, opcode); 1124 } 1125 1126 if (status < 0) 1127 status = SIGILL; 1128 1129 if (unlikely(status > 0)) { 1130 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1131 regs->regs[31] = old31; 1132 force_sig(status, current); 1133 } 1134 1135 goto out; 1136 1137 case 3: 1138 /* 1139 * Old (MIPS I and MIPS II) processors will set this code 1140 * for COP1X opcode instructions that replaced the original 1141 * COP3 space. We don't limit COP1 space instructions in 1142 * the emulator according to the CPU ISA, so we want to 1143 * treat COP1X instructions consistently regardless of which 1144 * code the CPU chose. Therefore we redirect this trap to 1145 * the FP emulator too. 1146 * 1147 * Then some newer FPU-less processors use this code 1148 * erroneously too, so they are covered by this choice 1149 * as well. 1150 */ 1151 if (raw_cpu_has_fpu) 1152 break; 1153 /* Fall through. */ 1154 1155 case 1: 1156 if (used_math()) /* Using the FPU again. */ 1157 err = own_fpu(1); 1158 else { /* First time FPU user. */ 1159 err = init_fpu(); 1160 set_used_math(); 1161 } 1162 1163 if (!raw_cpu_has_fpu || err) { 1164 int sig; 1165 void __user *fault_addr = NULL; 1166 sig = fpu_emulator_cop1Handler(regs, 1167 ¤t->thread.fpu, 1168 0, &fault_addr); 1169 if (!process_fpemu_return(sig, fault_addr) && !err) 1170 mt_ase_fp_affinity(); 1171 } 1172 1173 goto out; 1174 1175 case 2: 1176 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); 1177 goto out; 1178 } 1179 1180 force_sig(SIGILL, current); 1181 1182 out: 1183 exception_exit(prev_state); 1184 } 1185 1186 asmlinkage void do_mdmx(struct pt_regs *regs) 1187 { 1188 enum ctx_state prev_state; 1189 1190 prev_state = exception_enter(); 1191 force_sig(SIGILL, current); 1192 exception_exit(prev_state); 1193 } 1194 1195 /* 1196 * Called with interrupts disabled. 1197 */ 1198 asmlinkage void do_watch(struct pt_regs *regs) 1199 { 1200 enum ctx_state prev_state; 1201 u32 cause; 1202 1203 prev_state = exception_enter(); 1204 /* 1205 * Clear WP (bit 22) bit of cause register so we don't loop 1206 * forever. 1207 */ 1208 cause = read_c0_cause(); 1209 cause &= ~(1 << 22); 1210 write_c0_cause(cause); 1211 1212 /* 1213 * If the current thread has the watch registers loaded, save 1214 * their values and send SIGTRAP. Otherwise another thread 1215 * left the registers set, clear them and continue. 1216 */ 1217 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { 1218 mips_read_watch_registers(); 1219 local_irq_enable(); 1220 force_sig(SIGTRAP, current); 1221 } else { 1222 mips_clear_watch_registers(); 1223 local_irq_enable(); 1224 } 1225 exception_exit(prev_state); 1226 } 1227 1228 asmlinkage void do_mcheck(struct pt_regs *regs) 1229 { 1230 const int field = 2 * sizeof(unsigned long); 1231 int multi_match = regs->cp0_status & ST0_TS; 1232 enum ctx_state prev_state; 1233 1234 prev_state = exception_enter(); 1235 show_regs(regs); 1236 1237 if (multi_match) { 1238 printk("Index : %0x\n", read_c0_index()); 1239 printk("Pagemask: %0x\n", read_c0_pagemask()); 1240 printk("EntryHi : %0*lx\n", field, read_c0_entryhi()); 1241 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0()); 1242 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1()); 1243 printk("\n"); 1244 dump_tlb_all(); 1245 } 1246 1247 show_code((unsigned int __user *) regs->cp0_epc); 1248 1249 /* 1250 * Some chips may have other causes of machine check (e.g. SB1 1251 * graduation timer) 1252 */ 1253 panic("Caught Machine Check exception - %scaused by multiple " 1254 "matching entries in the TLB.", 1255 (multi_match) ? "" : "not "); 1256 } 1257 1258 asmlinkage void do_mt(struct pt_regs *regs) 1259 { 1260 int subcode; 1261 1262 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) 1263 >> VPECONTROL_EXCPT_SHIFT; 1264 switch (subcode) { 1265 case 0: 1266 printk(KERN_DEBUG "Thread Underflow\n"); 1267 break; 1268 case 1: 1269 printk(KERN_DEBUG "Thread Overflow\n"); 1270 break; 1271 case 2: 1272 printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); 1273 break; 1274 case 3: 1275 printk(KERN_DEBUG "Gating Storage Exception\n"); 1276 break; 1277 case 4: 1278 printk(KERN_DEBUG "YIELD Scheduler Exception\n"); 1279 break; 1280 case 5: 1281 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n"); 1282 break; 1283 default: 1284 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", 1285 subcode); 1286 break; 1287 } 1288 die_if_kernel("MIPS MT Thread exception in kernel", regs); 1289 1290 force_sig(SIGILL, current); 1291 } 1292 1293 1294 asmlinkage void do_dsp(struct pt_regs *regs) 1295 { 1296 if (cpu_has_dsp) 1297 panic("Unexpected DSP exception"); 1298 1299 force_sig(SIGILL, current); 1300 } 1301 1302 asmlinkage void do_reserved(struct pt_regs *regs) 1303 { 1304 /* 1305 * Game over - no way to handle this if it ever occurs. Most probably 1306 * caused by a new unknown cpu type or after another deadly 1307 * hard/software error. 1308 */ 1309 show_regs(regs); 1310 panic("Caught reserved exception %ld - should not happen.", 1311 (regs->cp0_cause & 0x7f) >> 2); 1312 } 1313 1314 static int __initdata l1parity = 1; 1315 static int __init nol1parity(char *s) 1316 { 1317 l1parity = 0; 1318 return 1; 1319 } 1320 __setup("nol1par", nol1parity); 1321 static int __initdata l2parity = 1; 1322 static int __init nol2parity(char *s) 1323 { 1324 l2parity = 0; 1325 return 1; 1326 } 1327 __setup("nol2par", nol2parity); 1328 1329 /* 1330 * Some MIPS CPUs can enable/disable for cache parity detection, but do 1331 * it different ways. 1332 */ 1333 static inline void parity_protection_init(void) 1334 { 1335 switch (current_cpu_type()) { 1336 case CPU_24K: 1337 case CPU_34K: 1338 case CPU_74K: 1339 case CPU_1004K: 1340 case CPU_INTERAPTIV: 1341 case CPU_PROAPTIV: 1342 { 1343 #define ERRCTL_PE 0x80000000 1344 #define ERRCTL_L2P 0x00800000 1345 unsigned long errctl; 1346 unsigned int l1parity_present, l2parity_present; 1347 1348 errctl = read_c0_ecc(); 1349 errctl &= ~(ERRCTL_PE|ERRCTL_L2P); 1350 1351 /* probe L1 parity support */ 1352 write_c0_ecc(errctl | ERRCTL_PE); 1353 back_to_back_c0_hazard(); 1354 l1parity_present = (read_c0_ecc() & ERRCTL_PE); 1355 1356 /* probe L2 parity support */ 1357 write_c0_ecc(errctl|ERRCTL_L2P); 1358 back_to_back_c0_hazard(); 1359 l2parity_present = (read_c0_ecc() & ERRCTL_L2P); 1360 1361 if (l1parity_present && l2parity_present) { 1362 if (l1parity) 1363 errctl |= ERRCTL_PE; 1364 if (l1parity ^ l2parity) 1365 errctl |= ERRCTL_L2P; 1366 } else if (l1parity_present) { 1367 if (l1parity) 1368 errctl |= ERRCTL_PE; 1369 } else if (l2parity_present) { 1370 if (l2parity) 1371 errctl |= ERRCTL_L2P; 1372 } else { 1373 /* No parity available */ 1374 } 1375 1376 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); 1377 1378 write_c0_ecc(errctl); 1379 back_to_back_c0_hazard(); 1380 errctl = read_c0_ecc(); 1381 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); 1382 1383 if (l1parity_present) 1384 printk(KERN_INFO "Cache parity protection %sabled\n", 1385 (errctl & ERRCTL_PE) ? "en" : "dis"); 1386 1387 if (l2parity_present) { 1388 if (l1parity_present && l1parity) 1389 errctl ^= ERRCTL_L2P; 1390 printk(KERN_INFO "L2 cache parity protection %sabled\n", 1391 (errctl & ERRCTL_L2P) ? "en" : "dis"); 1392 } 1393 } 1394 break; 1395 1396 case CPU_5KC: 1397 case CPU_5KE: 1398 case CPU_LOONGSON1: 1399 write_c0_ecc(0x80000000); 1400 back_to_back_c0_hazard(); 1401 /* Set the PE bit (bit 31) in the c0_errctl register. */ 1402 printk(KERN_INFO "Cache parity protection %sabled\n", 1403 (read_c0_ecc() & 0x80000000) ? "en" : "dis"); 1404 break; 1405 case CPU_20KC: 1406 case CPU_25KF: 1407 /* Clear the DE bit (bit 16) in the c0_status register. */ 1408 printk(KERN_INFO "Enable cache parity protection for " 1409 "MIPS 20KC/25KF CPUs.\n"); 1410 clear_c0_status(ST0_DE); 1411 break; 1412 default: 1413 break; 1414 } 1415 } 1416 1417 asmlinkage void cache_parity_error(void) 1418 { 1419 const int field = 2 * sizeof(unsigned long); 1420 unsigned int reg_val; 1421 1422 /* For the moment, report the problem and hang. */ 1423 printk("Cache error exception:\n"); 1424 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1425 reg_val = read_c0_cacheerr(); 1426 printk("c0_cacheerr == %08x\n", reg_val); 1427 1428 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1429 reg_val & (1<<30) ? "secondary" : "primary", 1430 reg_val & (1<<31) ? "data" : "insn"); 1431 if (cpu_has_mips_r2 && 1432 ((current_cpu_data.processor_id && 0xff0000) == PRID_COMP_MIPS)) { 1433 pr_err("Error bits: %s%s%s%s%s%s%s%s\n", 1434 reg_val & (1<<29) ? "ED " : "", 1435 reg_val & (1<<28) ? "ET " : "", 1436 reg_val & (1<<27) ? "ES " : "", 1437 reg_val & (1<<26) ? "EE " : "", 1438 reg_val & (1<<25) ? "EB " : "", 1439 reg_val & (1<<24) ? "EI " : "", 1440 reg_val & (1<<23) ? "E1 " : "", 1441 reg_val & (1<<22) ? "E0 " : ""); 1442 } else { 1443 pr_err("Error bits: %s%s%s%s%s%s%s\n", 1444 reg_val & (1<<29) ? "ED " : "", 1445 reg_val & (1<<28) ? "ET " : "", 1446 reg_val & (1<<26) ? "EE " : "", 1447 reg_val & (1<<25) ? "EB " : "", 1448 reg_val & (1<<24) ? "EI " : "", 1449 reg_val & (1<<23) ? "E1 " : "", 1450 reg_val & (1<<22) ? "E0 " : ""); 1451 } 1452 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); 1453 1454 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) 1455 if (reg_val & (1<<22)) 1456 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); 1457 1458 if (reg_val & (1<<23)) 1459 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); 1460 #endif 1461 1462 panic("Can't handle the cache error!"); 1463 } 1464 1465 asmlinkage void do_ftlb(void) 1466 { 1467 const int field = 2 * sizeof(unsigned long); 1468 unsigned int reg_val; 1469 1470 /* For the moment, report the problem and hang. */ 1471 if (cpu_has_mips_r2 && 1472 ((current_cpu_data.processor_id && 0xff0000) == PRID_COMP_MIPS)) { 1473 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n", 1474 read_c0_ecc()); 1475 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1476 reg_val = read_c0_cacheerr(); 1477 pr_err("c0_cacheerr == %08x\n", reg_val); 1478 1479 if ((reg_val & 0xc0000000) == 0xc0000000) { 1480 pr_err("Decoded c0_cacheerr: FTLB parity error\n"); 1481 } else { 1482 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1483 reg_val & (1<<30) ? "secondary" : "primary", 1484 reg_val & (1<<31) ? "data" : "insn"); 1485 } 1486 } else { 1487 pr_err("FTLB error exception\n"); 1488 } 1489 /* Just print the cacheerr bits for now */ 1490 cache_parity_error(); 1491 } 1492 1493 /* 1494 * SDBBP EJTAG debug exception handler. 1495 * We skip the instruction and return to the next instruction. 1496 */ 1497 void ejtag_exception_handler(struct pt_regs *regs) 1498 { 1499 const int field = 2 * sizeof(unsigned long); 1500 unsigned long depc, old_epc, old_ra; 1501 unsigned int debug; 1502 1503 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); 1504 depc = read_c0_depc(); 1505 debug = read_c0_debug(); 1506 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); 1507 if (debug & 0x80000000) { 1508 /* 1509 * In branch delay slot. 1510 * We cheat a little bit here and use EPC to calculate the 1511 * debug return address (DEPC). EPC is restored after the 1512 * calculation. 1513 */ 1514 old_epc = regs->cp0_epc; 1515 old_ra = regs->regs[31]; 1516 regs->cp0_epc = depc; 1517 compute_return_epc(regs); 1518 depc = regs->cp0_epc; 1519 regs->cp0_epc = old_epc; 1520 regs->regs[31] = old_ra; 1521 } else 1522 depc += 4; 1523 write_c0_depc(depc); 1524 1525 #if 0 1526 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); 1527 write_c0_debug(debug | 0x100); 1528 #endif 1529 } 1530 1531 /* 1532 * NMI exception handler. 1533 * No lock; only written during early bootup by CPU 0. 1534 */ 1535 static RAW_NOTIFIER_HEAD(nmi_chain); 1536 1537 int register_nmi_notifier(struct notifier_block *nb) 1538 { 1539 return raw_notifier_chain_register(&nmi_chain, nb); 1540 } 1541 1542 void __noreturn nmi_exception_handler(struct pt_regs *regs) 1543 { 1544 char str[100]; 1545 1546 raw_notifier_call_chain(&nmi_chain, 0, regs); 1547 bust_spinlocks(1); 1548 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n", 1549 smp_processor_id(), regs->cp0_epc); 1550 regs->cp0_epc = read_c0_errorepc(); 1551 die(str, regs); 1552 } 1553 1554 #define VECTORSPACING 0x100 /* for EI/VI mode */ 1555 1556 unsigned long ebase; 1557 unsigned long exception_handlers[32]; 1558 unsigned long vi_handlers[64]; 1559 1560 void __init *set_except_vector(int n, void *addr) 1561 { 1562 unsigned long handler = (unsigned long) addr; 1563 unsigned long old_handler; 1564 1565 #ifdef CONFIG_CPU_MICROMIPS 1566 /* 1567 * Only the TLB handlers are cache aligned with an even 1568 * address. All other handlers are on an odd address and 1569 * require no modification. Otherwise, MIPS32 mode will 1570 * be entered when handling any TLB exceptions. That 1571 * would be bad...since we must stay in microMIPS mode. 1572 */ 1573 if (!(handler & 0x1)) 1574 handler |= 1; 1575 #endif 1576 old_handler = xchg(&exception_handlers[n], handler); 1577 1578 if (n == 0 && cpu_has_divec) { 1579 #ifdef CONFIG_CPU_MICROMIPS 1580 unsigned long jump_mask = ~((1 << 27) - 1); 1581 #else 1582 unsigned long jump_mask = ~((1 << 28) - 1); 1583 #endif 1584 u32 *buf = (u32 *)(ebase + 0x200); 1585 unsigned int k0 = 26; 1586 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { 1587 uasm_i_j(&buf, handler & ~jump_mask); 1588 uasm_i_nop(&buf); 1589 } else { 1590 UASM_i_LA(&buf, k0, handler); 1591 uasm_i_jr(&buf, k0); 1592 uasm_i_nop(&buf); 1593 } 1594 local_flush_icache_range(ebase + 0x200, (unsigned long)buf); 1595 } 1596 return (void *)old_handler; 1597 } 1598 1599 static void do_default_vi(void) 1600 { 1601 show_regs(get_irq_regs()); 1602 panic("Caught unexpected vectored interrupt."); 1603 } 1604 1605 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) 1606 { 1607 unsigned long handler; 1608 unsigned long old_handler = vi_handlers[n]; 1609 int srssets = current_cpu_data.srsets; 1610 u16 *h; 1611 unsigned char *b; 1612 1613 BUG_ON(!cpu_has_veic && !cpu_has_vint); 1614 1615 if (addr == NULL) { 1616 handler = (unsigned long) do_default_vi; 1617 srs = 0; 1618 } else 1619 handler = (unsigned long) addr; 1620 vi_handlers[n] = handler; 1621 1622 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); 1623 1624 if (srs >= srssets) 1625 panic("Shadow register set %d not supported", srs); 1626 1627 if (cpu_has_veic) { 1628 if (board_bind_eic_interrupt) 1629 board_bind_eic_interrupt(n, srs); 1630 } else if (cpu_has_vint) { 1631 /* SRSMap is only defined if shadow sets are implemented */ 1632 if (srssets > 1) 1633 change_c0_srsmap(0xf << n*4, srs << n*4); 1634 } 1635 1636 if (srs == 0) { 1637 /* 1638 * If no shadow set is selected then use the default handler 1639 * that does normal register saving and standard interrupt exit 1640 */ 1641 extern char except_vec_vi, except_vec_vi_lui; 1642 extern char except_vec_vi_ori, except_vec_vi_end; 1643 extern char rollback_except_vec_vi; 1644 char *vec_start = using_rollback_handler() ? 1645 &rollback_except_vec_vi : &except_vec_vi; 1646 #ifdef CONFIG_MIPS_MT_SMTC 1647 /* 1648 * We need to provide the SMTC vectored interrupt handler 1649 * not only with the address of the handler, but with the 1650 * Status.IM bit to be masked before going there. 1651 */ 1652 extern char except_vec_vi_mori; 1653 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN) 1654 const int mori_offset = &except_vec_vi_mori - vec_start + 2; 1655 #else 1656 const int mori_offset = &except_vec_vi_mori - vec_start; 1657 #endif 1658 #endif /* CONFIG_MIPS_MT_SMTC */ 1659 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN) 1660 const int lui_offset = &except_vec_vi_lui - vec_start + 2; 1661 const int ori_offset = &except_vec_vi_ori - vec_start + 2; 1662 #else 1663 const int lui_offset = &except_vec_vi_lui - vec_start; 1664 const int ori_offset = &except_vec_vi_ori - vec_start; 1665 #endif 1666 const int handler_len = &except_vec_vi_end - vec_start; 1667 1668 if (handler_len > VECTORSPACING) { 1669 /* 1670 * Sigh... panicing won't help as the console 1671 * is probably not configured :( 1672 */ 1673 panic("VECTORSPACING too small"); 1674 } 1675 1676 set_handler(((unsigned long)b - ebase), vec_start, 1677 #ifdef CONFIG_CPU_MICROMIPS 1678 (handler_len - 1)); 1679 #else 1680 handler_len); 1681 #endif 1682 #ifdef CONFIG_MIPS_MT_SMTC 1683 BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */ 1684 1685 h = (u16 *)(b + mori_offset); 1686 *h = (0x100 << n); 1687 #endif /* CONFIG_MIPS_MT_SMTC */ 1688 h = (u16 *)(b + lui_offset); 1689 *h = (handler >> 16) & 0xffff; 1690 h = (u16 *)(b + ori_offset); 1691 *h = (handler & 0xffff); 1692 local_flush_icache_range((unsigned long)b, 1693 (unsigned long)(b+handler_len)); 1694 } 1695 else { 1696 /* 1697 * In other cases jump directly to the interrupt handler. It 1698 * is the handler's responsibility to save registers if required 1699 * (eg hi/lo) and return from the exception using "eret". 1700 */ 1701 u32 insn; 1702 1703 h = (u16 *)b; 1704 /* j handler */ 1705 #ifdef CONFIG_CPU_MICROMIPS 1706 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1); 1707 #else 1708 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2); 1709 #endif 1710 h[0] = (insn >> 16) & 0xffff; 1711 h[1] = insn & 0xffff; 1712 h[2] = 0; 1713 h[3] = 0; 1714 local_flush_icache_range((unsigned long)b, 1715 (unsigned long)(b+8)); 1716 } 1717 1718 return (void *)old_handler; 1719 } 1720 1721 void *set_vi_handler(int n, vi_handler_t addr) 1722 { 1723 return set_vi_srs_handler(n, addr, 0); 1724 } 1725 1726 extern void tlb_init(void); 1727 1728 /* 1729 * Timer interrupt 1730 */ 1731 int cp0_compare_irq; 1732 EXPORT_SYMBOL_GPL(cp0_compare_irq); 1733 int cp0_compare_irq_shift; 1734 1735 /* 1736 * Performance counter IRQ or -1 if shared with timer 1737 */ 1738 int cp0_perfcount_irq; 1739 EXPORT_SYMBOL_GPL(cp0_perfcount_irq); 1740 1741 static int noulri; 1742 1743 static int __init ulri_disable(char *s) 1744 { 1745 pr_info("Disabling ulri\n"); 1746 noulri = 1; 1747 1748 return 1; 1749 } 1750 __setup("noulri", ulri_disable); 1751 1752 void per_cpu_trap_init(bool is_boot_cpu) 1753 { 1754 unsigned int cpu = smp_processor_id(); 1755 unsigned int status_set = ST0_CU0; 1756 unsigned int hwrena = cpu_hwrena_impl_bits; 1757 #ifdef CONFIG_MIPS_MT_SMTC 1758 int secondaryTC = 0; 1759 int bootTC = (cpu == 0); 1760 1761 /* 1762 * Only do per_cpu_trap_init() for first TC of Each VPE. 1763 * Note that this hack assumes that the SMTC init code 1764 * assigns TCs consecutively and in ascending order. 1765 */ 1766 1767 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) && 1768 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id)) 1769 secondaryTC = 1; 1770 #endif /* CONFIG_MIPS_MT_SMTC */ 1771 1772 /* 1773 * Disable coprocessors and select 32-bit or 64-bit addressing 1774 * and the 16/32 or 32/32 FPR register model. Reset the BEV 1775 * flag that some firmware may have left set and the TS bit (for 1776 * IP27). Set XX for ISA IV code to work. 1777 */ 1778 #ifdef CONFIG_64BIT 1779 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; 1780 #endif 1781 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV) 1782 status_set |= ST0_XX; 1783 if (cpu_has_dsp) 1784 status_set |= ST0_MX; 1785 1786 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, 1787 status_set); 1788 1789 if (cpu_has_mips_r2) 1790 hwrena |= 0x0000000f; 1791 1792 if (!noulri && cpu_has_userlocal) 1793 hwrena |= (1 << 29); 1794 1795 if (hwrena) 1796 write_c0_hwrena(hwrena); 1797 1798 #ifdef CONFIG_MIPS_MT_SMTC 1799 if (!secondaryTC) { 1800 #endif /* CONFIG_MIPS_MT_SMTC */ 1801 1802 if (cpu_has_veic || cpu_has_vint) { 1803 unsigned long sr = set_c0_status(ST0_BEV); 1804 write_c0_ebase(ebase); 1805 write_c0_status(sr); 1806 /* Setting vector spacing enables EI/VI mode */ 1807 change_c0_intctl(0x3e0, VECTORSPACING); 1808 } 1809 if (cpu_has_divec) { 1810 if (cpu_has_mipsmt) { 1811 unsigned int vpflags = dvpe(); 1812 set_c0_cause(CAUSEF_IV); 1813 evpe(vpflags); 1814 } else 1815 set_c0_cause(CAUSEF_IV); 1816 } 1817 1818 /* 1819 * Before R2 both interrupt numbers were fixed to 7, so on R2 only: 1820 * 1821 * o read IntCtl.IPTI to determine the timer interrupt 1822 * o read IntCtl.IPPCI to determine the performance counter interrupt 1823 */ 1824 if (cpu_has_mips_r2) { 1825 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; 1826 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; 1827 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; 1828 if (cp0_perfcount_irq == cp0_compare_irq) 1829 cp0_perfcount_irq = -1; 1830 } else { 1831 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; 1832 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ; 1833 cp0_perfcount_irq = -1; 1834 } 1835 1836 #ifdef CONFIG_MIPS_MT_SMTC 1837 } 1838 #endif /* CONFIG_MIPS_MT_SMTC */ 1839 1840 if (!cpu_data[cpu].asid_cache) 1841 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION; 1842 1843 atomic_inc(&init_mm.mm_count); 1844 current->active_mm = &init_mm; 1845 BUG_ON(current->mm); 1846 enter_lazy_tlb(&init_mm, current); 1847 1848 #ifdef CONFIG_MIPS_MT_SMTC 1849 if (bootTC) { 1850 #endif /* CONFIG_MIPS_MT_SMTC */ 1851 /* Boot CPU's cache setup in setup_arch(). */ 1852 if (!is_boot_cpu) 1853 cpu_cache_init(); 1854 tlb_init(); 1855 #ifdef CONFIG_MIPS_MT_SMTC 1856 } else if (!secondaryTC) { 1857 /* 1858 * First TC in non-boot VPE must do subset of tlb_init() 1859 * for MMU countrol registers. 1860 */ 1861 write_c0_pagemask(PM_DEFAULT_MASK); 1862 write_c0_wired(0); 1863 } 1864 #endif /* CONFIG_MIPS_MT_SMTC */ 1865 TLBMISS_HANDLER_SETUP(); 1866 } 1867 1868 /* Install CPU exception handler */ 1869 void set_handler(unsigned long offset, void *addr, unsigned long size) 1870 { 1871 #ifdef CONFIG_CPU_MICROMIPS 1872 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size); 1873 #else 1874 memcpy((void *)(ebase + offset), addr, size); 1875 #endif 1876 local_flush_icache_range(ebase + offset, ebase + offset + size); 1877 } 1878 1879 static char panic_null_cerr[] = 1880 "Trying to set NULL cache error exception handler"; 1881 1882 /* 1883 * Install uncached CPU exception handler. 1884 * This is suitable only for the cache error exception which is the only 1885 * exception handler that is being run uncached. 1886 */ 1887 void set_uncached_handler(unsigned long offset, void *addr, 1888 unsigned long size) 1889 { 1890 unsigned long uncached_ebase = CKSEG1ADDR(ebase); 1891 1892 if (!addr) 1893 panic(panic_null_cerr); 1894 1895 memcpy((void *)(uncached_ebase + offset), addr, size); 1896 } 1897 1898 static int __initdata rdhwr_noopt; 1899 static int __init set_rdhwr_noopt(char *str) 1900 { 1901 rdhwr_noopt = 1; 1902 return 1; 1903 } 1904 1905 __setup("rdhwr_noopt", set_rdhwr_noopt); 1906 1907 void __init trap_init(void) 1908 { 1909 extern char except_vec3_generic; 1910 extern char except_vec4; 1911 extern char except_vec3_r4000; 1912 unsigned long i; 1913 1914 check_wait(); 1915 1916 #if defined(CONFIG_KGDB) 1917 if (kgdb_early_setup) 1918 return; /* Already done */ 1919 #endif 1920 1921 if (cpu_has_veic || cpu_has_vint) { 1922 unsigned long size = 0x200 + VECTORSPACING*64; 1923 ebase = (unsigned long) 1924 __alloc_bootmem(size, 1 << fls(size), 0); 1925 } else { 1926 #ifdef CONFIG_KVM_GUEST 1927 #define KVM_GUEST_KSEG0 0x40000000 1928 ebase = KVM_GUEST_KSEG0; 1929 #else 1930 ebase = CKSEG0; 1931 #endif 1932 if (cpu_has_mips_r2) 1933 ebase += (read_c0_ebase() & 0x3ffff000); 1934 } 1935 1936 if (cpu_has_mmips) { 1937 unsigned int config3 = read_c0_config3(); 1938 1939 if (IS_ENABLED(CONFIG_CPU_MICROMIPS)) 1940 write_c0_config3(config3 | MIPS_CONF3_ISA_OE); 1941 else 1942 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE); 1943 } 1944 1945 if (board_ebase_setup) 1946 board_ebase_setup(); 1947 per_cpu_trap_init(true); 1948 1949 /* 1950 * Copy the generic exception handlers to their final destination. 1951 * This will be overriden later as suitable for a particular 1952 * configuration. 1953 */ 1954 set_handler(0x180, &except_vec3_generic, 0x80); 1955 1956 /* 1957 * Setup default vectors 1958 */ 1959 for (i = 0; i <= 31; i++) 1960 set_except_vector(i, handle_reserved); 1961 1962 /* 1963 * Copy the EJTAG debug exception vector handler code to it's final 1964 * destination. 1965 */ 1966 if (cpu_has_ejtag && board_ejtag_handler_setup) 1967 board_ejtag_handler_setup(); 1968 1969 /* 1970 * Only some CPUs have the watch exceptions. 1971 */ 1972 if (cpu_has_watch) 1973 set_except_vector(23, handle_watch); 1974 1975 /* 1976 * Initialise interrupt handlers 1977 */ 1978 if (cpu_has_veic || cpu_has_vint) { 1979 int nvec = cpu_has_veic ? 64 : 8; 1980 for (i = 0; i < nvec; i++) 1981 set_vi_handler(i, NULL); 1982 } 1983 else if (cpu_has_divec) 1984 set_handler(0x200, &except_vec4, 0x8); 1985 1986 /* 1987 * Some CPUs can enable/disable for cache parity detection, but does 1988 * it different ways. 1989 */ 1990 parity_protection_init(); 1991 1992 /* 1993 * The Data Bus Errors / Instruction Bus Errors are signaled 1994 * by external hardware. Therefore these two exceptions 1995 * may have board specific handlers. 1996 */ 1997 if (board_be_init) 1998 board_be_init(); 1999 2000 set_except_vector(0, using_rollback_handler() ? rollback_handle_int 2001 : handle_int); 2002 set_except_vector(1, handle_tlbm); 2003 set_except_vector(2, handle_tlbl); 2004 set_except_vector(3, handle_tlbs); 2005 2006 set_except_vector(4, handle_adel); 2007 set_except_vector(5, handle_ades); 2008 2009 set_except_vector(6, handle_ibe); 2010 set_except_vector(7, handle_dbe); 2011 2012 set_except_vector(8, handle_sys); 2013 set_except_vector(9, handle_bp); 2014 set_except_vector(10, rdhwr_noopt ? handle_ri : 2015 (cpu_has_vtag_icache ? 2016 handle_ri_rdhwr_vivt : handle_ri_rdhwr)); 2017 set_except_vector(11, handle_cpu); 2018 set_except_vector(12, handle_ov); 2019 set_except_vector(13, handle_tr); 2020 2021 if (current_cpu_type() == CPU_R6000 || 2022 current_cpu_type() == CPU_R6000A) { 2023 /* 2024 * The R6000 is the only R-series CPU that features a machine 2025 * check exception (similar to the R4000 cache error) and 2026 * unaligned ldc1/sdc1 exception. The handlers have not been 2027 * written yet. Well, anyway there is no R6000 machine on the 2028 * current list of targets for Linux/MIPS. 2029 * (Duh, crap, there is someone with a triple R6k machine) 2030 */ 2031 //set_except_vector(14, handle_mc); 2032 //set_except_vector(15, handle_ndc); 2033 } 2034 2035 2036 if (board_nmi_handler_setup) 2037 board_nmi_handler_setup(); 2038 2039 if (cpu_has_fpu && !cpu_has_nofpuex) 2040 set_except_vector(15, handle_fpe); 2041 2042 set_except_vector(16, handle_ftlb); 2043 set_except_vector(22, handle_mdmx); 2044 2045 if (cpu_has_mcheck) 2046 set_except_vector(24, handle_mcheck); 2047 2048 if (cpu_has_mipsmt) 2049 set_except_vector(25, handle_mt); 2050 2051 set_except_vector(26, handle_dsp); 2052 2053 if (board_cache_error_setup) 2054 board_cache_error_setup(); 2055 2056 if (cpu_has_vce) 2057 /* Special exception: R4[04]00 uses also the divec space. */ 2058 set_handler(0x180, &except_vec3_r4000, 0x100); 2059 else if (cpu_has_4kex) 2060 set_handler(0x180, &except_vec3_generic, 0x80); 2061 else 2062 set_handler(0x080, &except_vec3_generic, 0x80); 2063 2064 local_flush_icache_range(ebase, ebase + 0x400); 2065 2066 sort_extable(__start___dbe_table, __stop___dbe_table); 2067 2068 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */ 2069 } 2070