xref: /openbmc/linux/arch/mips/kernel/traps.c (revision 2f828fb2)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
25 #include <linux/mm.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/bootmem.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
41 
42 #include <asm/addrspace.h>
43 #include <asm/bootinfo.h>
44 #include <asm/branch.h>
45 #include <asm/break.h>
46 #include <asm/cop2.h>
47 #include <asm/cpu.h>
48 #include <asm/cpu-type.h>
49 #include <asm/dsp.h>
50 #include <asm/fpu.h>
51 #include <asm/fpu_emulator.h>
52 #include <asm/idle.h>
53 #include <asm/mips-cps.h>
54 #include <asm/mips-r2-to-r6-emul.h>
55 #include <asm/mipsregs.h>
56 #include <asm/mipsmtregs.h>
57 #include <asm/module.h>
58 #include <asm/msa.h>
59 #include <asm/pgtable.h>
60 #include <asm/ptrace.h>
61 #include <asm/sections.h>
62 #include <asm/siginfo.h>
63 #include <asm/tlbdebug.h>
64 #include <asm/traps.h>
65 #include <linux/uaccess.h>
66 #include <asm/watch.h>
67 #include <asm/mmu_context.h>
68 #include <asm/types.h>
69 #include <asm/stacktrace.h>
70 #include <asm/uasm.h>
71 
72 extern void check_wait(void);
73 extern asmlinkage void rollback_handle_int(void);
74 extern asmlinkage void handle_int(void);
75 extern u32 handle_tlbl[];
76 extern u32 handle_tlbs[];
77 extern u32 handle_tlbm[];
78 extern asmlinkage void handle_adel(void);
79 extern asmlinkage void handle_ades(void);
80 extern asmlinkage void handle_ibe(void);
81 extern asmlinkage void handle_dbe(void);
82 extern asmlinkage void handle_sys(void);
83 extern asmlinkage void handle_bp(void);
84 extern asmlinkage void handle_ri(void);
85 extern asmlinkage void handle_ri_rdhwr_tlbp(void);
86 extern asmlinkage void handle_ri_rdhwr(void);
87 extern asmlinkage void handle_cpu(void);
88 extern asmlinkage void handle_ov(void);
89 extern asmlinkage void handle_tr(void);
90 extern asmlinkage void handle_msa_fpe(void);
91 extern asmlinkage void handle_fpe(void);
92 extern asmlinkage void handle_ftlb(void);
93 extern asmlinkage void handle_msa(void);
94 extern asmlinkage void handle_mdmx(void);
95 extern asmlinkage void handle_watch(void);
96 extern asmlinkage void handle_mt(void);
97 extern asmlinkage void handle_dsp(void);
98 extern asmlinkage void handle_mcheck(void);
99 extern asmlinkage void handle_reserved(void);
100 extern void tlb_do_page_fault_0(void);
101 
102 void (*board_be_init)(void);
103 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
104 void (*board_nmi_handler_setup)(void);
105 void (*board_ejtag_handler_setup)(void);
106 void (*board_bind_eic_interrupt)(int irq, int regset);
107 void (*board_ebase_setup)(void);
108 void(*board_cache_error_setup)(void);
109 
110 static void show_raw_backtrace(unsigned long reg29)
111 {
112 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
113 	unsigned long addr;
114 
115 	printk("Call Trace:");
116 #ifdef CONFIG_KALLSYMS
117 	printk("\n");
118 #endif
119 	while (!kstack_end(sp)) {
120 		unsigned long __user *p =
121 			(unsigned long __user *)(unsigned long)sp++;
122 		if (__get_user(addr, p)) {
123 			printk(" (Bad stack address)");
124 			break;
125 		}
126 		if (__kernel_text_address(addr))
127 			print_ip_sym(addr);
128 	}
129 	printk("\n");
130 }
131 
132 #ifdef CONFIG_KALLSYMS
133 int raw_show_trace;
134 static int __init set_raw_show_trace(char *str)
135 {
136 	raw_show_trace = 1;
137 	return 1;
138 }
139 __setup("raw_show_trace", set_raw_show_trace);
140 #endif
141 
142 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
143 {
144 	unsigned long sp = regs->regs[29];
145 	unsigned long ra = regs->regs[31];
146 	unsigned long pc = regs->cp0_epc;
147 
148 	if (!task)
149 		task = current;
150 
151 	if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
152 		show_raw_backtrace(sp);
153 		return;
154 	}
155 	printk("Call Trace:\n");
156 	do {
157 		print_ip_sym(pc);
158 		pc = unwind_stack(task, &sp, pc, &ra);
159 	} while (pc);
160 	pr_cont("\n");
161 }
162 
163 /*
164  * This routine abuses get_user()/put_user() to reference pointers
165  * with at least a bit of error checking ...
166  */
167 static void show_stacktrace(struct task_struct *task,
168 	const struct pt_regs *regs)
169 {
170 	const int field = 2 * sizeof(unsigned long);
171 	long stackdata;
172 	int i;
173 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
174 
175 	printk("Stack :");
176 	i = 0;
177 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
178 		if (i && ((i % (64 / field)) == 0)) {
179 			pr_cont("\n");
180 			printk("       ");
181 		}
182 		if (i > 39) {
183 			pr_cont(" ...");
184 			break;
185 		}
186 
187 		if (__get_user(stackdata, sp++)) {
188 			pr_cont(" (Bad stack address)");
189 			break;
190 		}
191 
192 		pr_cont(" %0*lx", field, stackdata);
193 		i++;
194 	}
195 	pr_cont("\n");
196 	show_backtrace(task, regs);
197 }
198 
199 void show_stack(struct task_struct *task, unsigned long *sp)
200 {
201 	struct pt_regs regs;
202 	mm_segment_t old_fs = get_fs();
203 
204 	regs.cp0_status = KSU_KERNEL;
205 	if (sp) {
206 		regs.regs[29] = (unsigned long)sp;
207 		regs.regs[31] = 0;
208 		regs.cp0_epc = 0;
209 	} else {
210 		if (task && task != current) {
211 			regs.regs[29] = task->thread.reg29;
212 			regs.regs[31] = 0;
213 			regs.cp0_epc = task->thread.reg31;
214 #ifdef CONFIG_KGDB_KDB
215 		} else if (atomic_read(&kgdb_active) != -1 &&
216 			   kdb_current_regs) {
217 			memcpy(&regs, kdb_current_regs, sizeof(regs));
218 #endif /* CONFIG_KGDB_KDB */
219 		} else {
220 			prepare_frametrace(&regs);
221 		}
222 	}
223 	/*
224 	 * show_stack() deals exclusively with kernel mode, so be sure to access
225 	 * the stack in the kernel (not user) address space.
226 	 */
227 	set_fs(KERNEL_DS);
228 	show_stacktrace(task, &regs);
229 	set_fs(old_fs);
230 }
231 
232 static void show_code(unsigned int __user *pc)
233 {
234 	long i;
235 	unsigned short __user *pc16 = NULL;
236 
237 	printk("Code:");
238 
239 	if ((unsigned long)pc & 1)
240 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
241 	for(i = -3 ; i < 6 ; i++) {
242 		unsigned int insn;
243 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
244 			pr_cont(" (Bad address in epc)\n");
245 			break;
246 		}
247 		pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
248 	}
249 	pr_cont("\n");
250 }
251 
252 static void __show_regs(const struct pt_regs *regs)
253 {
254 	const int field = 2 * sizeof(unsigned long);
255 	unsigned int cause = regs->cp0_cause;
256 	unsigned int exccode;
257 	int i;
258 
259 	show_regs_print_info(KERN_DEFAULT);
260 
261 	/*
262 	 * Saved main processor registers
263 	 */
264 	for (i = 0; i < 32; ) {
265 		if ((i % 4) == 0)
266 			printk("$%2d   :", i);
267 		if (i == 0)
268 			pr_cont(" %0*lx", field, 0UL);
269 		else if (i == 26 || i == 27)
270 			pr_cont(" %*s", field, "");
271 		else
272 			pr_cont(" %0*lx", field, regs->regs[i]);
273 
274 		i++;
275 		if ((i % 4) == 0)
276 			pr_cont("\n");
277 	}
278 
279 #ifdef CONFIG_CPU_HAS_SMARTMIPS
280 	printk("Acx    : %0*lx\n", field, regs->acx);
281 #endif
282 	printk("Hi    : %0*lx\n", field, regs->hi);
283 	printk("Lo    : %0*lx\n", field, regs->lo);
284 
285 	/*
286 	 * Saved cp0 registers
287 	 */
288 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
289 	       (void *) regs->cp0_epc);
290 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
291 	       (void *) regs->regs[31]);
292 
293 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
294 
295 	if (cpu_has_3kex) {
296 		if (regs->cp0_status & ST0_KUO)
297 			pr_cont("KUo ");
298 		if (regs->cp0_status & ST0_IEO)
299 			pr_cont("IEo ");
300 		if (regs->cp0_status & ST0_KUP)
301 			pr_cont("KUp ");
302 		if (regs->cp0_status & ST0_IEP)
303 			pr_cont("IEp ");
304 		if (regs->cp0_status & ST0_KUC)
305 			pr_cont("KUc ");
306 		if (regs->cp0_status & ST0_IEC)
307 			pr_cont("IEc ");
308 	} else if (cpu_has_4kex) {
309 		if (regs->cp0_status & ST0_KX)
310 			pr_cont("KX ");
311 		if (regs->cp0_status & ST0_SX)
312 			pr_cont("SX ");
313 		if (regs->cp0_status & ST0_UX)
314 			pr_cont("UX ");
315 		switch (regs->cp0_status & ST0_KSU) {
316 		case KSU_USER:
317 			pr_cont("USER ");
318 			break;
319 		case KSU_SUPERVISOR:
320 			pr_cont("SUPERVISOR ");
321 			break;
322 		case KSU_KERNEL:
323 			pr_cont("KERNEL ");
324 			break;
325 		default:
326 			pr_cont("BAD_MODE ");
327 			break;
328 		}
329 		if (regs->cp0_status & ST0_ERL)
330 			pr_cont("ERL ");
331 		if (regs->cp0_status & ST0_EXL)
332 			pr_cont("EXL ");
333 		if (regs->cp0_status & ST0_IE)
334 			pr_cont("IE ");
335 	}
336 	pr_cont("\n");
337 
338 	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
339 	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
340 
341 	if (1 <= exccode && exccode <= 5)
342 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
343 
344 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
345 	       cpu_name_string());
346 }
347 
348 /*
349  * FIXME: really the generic show_regs should take a const pointer argument.
350  */
351 void show_regs(struct pt_regs *regs)
352 {
353 	__show_regs((struct pt_regs *)regs);
354 }
355 
356 void show_registers(struct pt_regs *regs)
357 {
358 	const int field = 2 * sizeof(unsigned long);
359 	mm_segment_t old_fs = get_fs();
360 
361 	__show_regs(regs);
362 	print_modules();
363 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
364 	       current->comm, current->pid, current_thread_info(), current,
365 	      field, current_thread_info()->tp_value);
366 	if (cpu_has_userlocal) {
367 		unsigned long tls;
368 
369 		tls = read_c0_userlocal();
370 		if (tls != current_thread_info()->tp_value)
371 			printk("*HwTLS: %0*lx\n", field, tls);
372 	}
373 
374 	if (!user_mode(regs))
375 		/* Necessary for getting the correct stack content */
376 		set_fs(KERNEL_DS);
377 	show_stacktrace(current, regs);
378 	show_code((unsigned int __user *) regs->cp0_epc);
379 	printk("\n");
380 	set_fs(old_fs);
381 }
382 
383 static DEFINE_RAW_SPINLOCK(die_lock);
384 
385 void __noreturn die(const char *str, struct pt_regs *regs)
386 {
387 	static int die_counter;
388 	int sig = SIGSEGV;
389 
390 	oops_enter();
391 
392 	if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
393 		       SIGSEGV) == NOTIFY_STOP)
394 		sig = 0;
395 
396 	console_verbose();
397 	raw_spin_lock_irq(&die_lock);
398 	bust_spinlocks(1);
399 
400 	printk("%s[#%d]:\n", str, ++die_counter);
401 	show_registers(regs);
402 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
403 	raw_spin_unlock_irq(&die_lock);
404 
405 	oops_exit();
406 
407 	if (in_interrupt())
408 		panic("Fatal exception in interrupt");
409 
410 	if (panic_on_oops)
411 		panic("Fatal exception");
412 
413 	if (regs && kexec_should_crash(current))
414 		crash_kexec(regs);
415 
416 	do_exit(sig);
417 }
418 
419 extern struct exception_table_entry __start___dbe_table[];
420 extern struct exception_table_entry __stop___dbe_table[];
421 
422 __asm__(
423 "	.section	__dbe_table, \"a\"\n"
424 "	.previous			\n");
425 
426 /* Given an address, look for it in the exception tables. */
427 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
428 {
429 	const struct exception_table_entry *e;
430 
431 	e = search_extable(__start___dbe_table,
432 			   __stop___dbe_table - __start___dbe_table, addr);
433 	if (!e)
434 		e = search_module_dbetables(addr);
435 	return e;
436 }
437 
438 asmlinkage void do_be(struct pt_regs *regs)
439 {
440 	const int field = 2 * sizeof(unsigned long);
441 	const struct exception_table_entry *fixup = NULL;
442 	int data = regs->cp0_cause & 4;
443 	int action = MIPS_BE_FATAL;
444 	enum ctx_state prev_state;
445 
446 	prev_state = exception_enter();
447 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
448 	if (data && !user_mode(regs))
449 		fixup = search_dbe_tables(exception_epc(regs));
450 
451 	if (fixup)
452 		action = MIPS_BE_FIXUP;
453 
454 	if (board_be_handler)
455 		action = board_be_handler(regs, fixup != NULL);
456 	else
457 		mips_cm_error_report();
458 
459 	switch (action) {
460 	case MIPS_BE_DISCARD:
461 		goto out;
462 	case MIPS_BE_FIXUP:
463 		if (fixup) {
464 			regs->cp0_epc = fixup->nextinsn;
465 			goto out;
466 		}
467 		break;
468 	default:
469 		break;
470 	}
471 
472 	/*
473 	 * Assume it would be too dangerous to continue ...
474 	 */
475 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
476 	       data ? "Data" : "Instruction",
477 	       field, regs->cp0_epc, field, regs->regs[31]);
478 	if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
479 		       SIGBUS) == NOTIFY_STOP)
480 		goto out;
481 
482 	die_if_kernel("Oops", regs);
483 	force_sig(SIGBUS, current);
484 
485 out:
486 	exception_exit(prev_state);
487 }
488 
489 /*
490  * ll/sc, rdhwr, sync emulation
491  */
492 
493 #define OPCODE 0xfc000000
494 #define BASE   0x03e00000
495 #define RT     0x001f0000
496 #define OFFSET 0x0000ffff
497 #define LL     0xc0000000
498 #define SC     0xe0000000
499 #define SPEC0  0x00000000
500 #define SPEC3  0x7c000000
501 #define RD     0x0000f800
502 #define FUNC   0x0000003f
503 #define SYNC   0x0000000f
504 #define RDHWR  0x0000003b
505 
506 /*  microMIPS definitions   */
507 #define MM_POOL32A_FUNC 0xfc00ffff
508 #define MM_RDHWR        0x00006b3c
509 #define MM_RS           0x001f0000
510 #define MM_RT           0x03e00000
511 
512 /*
513  * The ll_bit is cleared by r*_switch.S
514  */
515 
516 unsigned int ll_bit;
517 struct task_struct *ll_task;
518 
519 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
520 {
521 	unsigned long value, __user *vaddr;
522 	long offset;
523 
524 	/*
525 	 * analyse the ll instruction that just caused a ri exception
526 	 * and put the referenced address to addr.
527 	 */
528 
529 	/* sign extend offset */
530 	offset = opcode & OFFSET;
531 	offset <<= 16;
532 	offset >>= 16;
533 
534 	vaddr = (unsigned long __user *)
535 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
536 
537 	if ((unsigned long)vaddr & 3)
538 		return SIGBUS;
539 	if (get_user(value, vaddr))
540 		return SIGSEGV;
541 
542 	preempt_disable();
543 
544 	if (ll_task == NULL || ll_task == current) {
545 		ll_bit = 1;
546 	} else {
547 		ll_bit = 0;
548 	}
549 	ll_task = current;
550 
551 	preempt_enable();
552 
553 	regs->regs[(opcode & RT) >> 16] = value;
554 
555 	return 0;
556 }
557 
558 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
559 {
560 	unsigned long __user *vaddr;
561 	unsigned long reg;
562 	long offset;
563 
564 	/*
565 	 * analyse the sc instruction that just caused a ri exception
566 	 * and put the referenced address to addr.
567 	 */
568 
569 	/* sign extend offset */
570 	offset = opcode & OFFSET;
571 	offset <<= 16;
572 	offset >>= 16;
573 
574 	vaddr = (unsigned long __user *)
575 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
576 	reg = (opcode & RT) >> 16;
577 
578 	if ((unsigned long)vaddr & 3)
579 		return SIGBUS;
580 
581 	preempt_disable();
582 
583 	if (ll_bit == 0 || ll_task != current) {
584 		regs->regs[reg] = 0;
585 		preempt_enable();
586 		return 0;
587 	}
588 
589 	preempt_enable();
590 
591 	if (put_user(regs->regs[reg], vaddr))
592 		return SIGSEGV;
593 
594 	regs->regs[reg] = 1;
595 
596 	return 0;
597 }
598 
599 /*
600  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
601  * opcodes are supposed to result in coprocessor unusable exceptions if
602  * executed on ll/sc-less processors.  That's the theory.  In practice a
603  * few processors such as NEC's VR4100 throw reserved instruction exceptions
604  * instead, so we're doing the emulation thing in both exception handlers.
605  */
606 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
607 {
608 	if ((opcode & OPCODE) == LL) {
609 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
610 				1, regs, 0);
611 		return simulate_ll(regs, opcode);
612 	}
613 	if ((opcode & OPCODE) == SC) {
614 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
615 				1, regs, 0);
616 		return simulate_sc(regs, opcode);
617 	}
618 
619 	return -1;			/* Must be something else ... */
620 }
621 
622 /*
623  * Simulate trapping 'rdhwr' instructions to provide user accessible
624  * registers not implemented in hardware.
625  */
626 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
627 {
628 	struct thread_info *ti = task_thread_info(current);
629 
630 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
631 			1, regs, 0);
632 	switch (rd) {
633 	case MIPS_HWR_CPUNUM:		/* CPU number */
634 		regs->regs[rt] = smp_processor_id();
635 		return 0;
636 	case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
637 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
638 				     current_cpu_data.icache.linesz);
639 		return 0;
640 	case MIPS_HWR_CC:		/* Read count register */
641 		regs->regs[rt] = read_c0_count();
642 		return 0;
643 	case MIPS_HWR_CCRES:		/* Count register resolution */
644 		switch (current_cpu_type()) {
645 		case CPU_20KC:
646 		case CPU_25KF:
647 			regs->regs[rt] = 1;
648 			break;
649 		default:
650 			regs->regs[rt] = 2;
651 		}
652 		return 0;
653 	case MIPS_HWR_ULR:		/* Read UserLocal register */
654 		regs->regs[rt] = ti->tp_value;
655 		return 0;
656 	default:
657 		return -1;
658 	}
659 }
660 
661 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
662 {
663 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
664 		int rd = (opcode & RD) >> 11;
665 		int rt = (opcode & RT) >> 16;
666 
667 		simulate_rdhwr(regs, rd, rt);
668 		return 0;
669 	}
670 
671 	/* Not ours.  */
672 	return -1;
673 }
674 
675 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
676 {
677 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
678 		int rd = (opcode & MM_RS) >> 16;
679 		int rt = (opcode & MM_RT) >> 21;
680 		simulate_rdhwr(regs, rd, rt);
681 		return 0;
682 	}
683 
684 	/* Not ours.  */
685 	return -1;
686 }
687 
688 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
689 {
690 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
691 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
692 				1, regs, 0);
693 		return 0;
694 	}
695 
696 	return -1;			/* Must be something else ... */
697 }
698 
699 asmlinkage void do_ov(struct pt_regs *regs)
700 {
701 	enum ctx_state prev_state;
702 	siginfo_t info = {
703 		.si_signo = SIGFPE,
704 		.si_code = FPE_INTOVF,
705 		.si_addr = (void __user *)regs->cp0_epc,
706 	};
707 
708 	prev_state = exception_enter();
709 	die_if_kernel("Integer overflow", regs);
710 
711 	force_sig_info(SIGFPE, &info, current);
712 	exception_exit(prev_state);
713 }
714 
715 /*
716  * Send SIGFPE according to FCSR Cause bits, which must have already
717  * been masked against Enable bits.  This is impotant as Inexact can
718  * happen together with Overflow or Underflow, and `ptrace' can set
719  * any bits.
720  */
721 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
722 		     struct task_struct *tsk)
723 {
724 	struct siginfo si = { .si_addr = fault_addr, .si_signo = SIGFPE };
725 
726 	if (fcr31 & FPU_CSR_INV_X)
727 		si.si_code = FPE_FLTINV;
728 	else if (fcr31 & FPU_CSR_DIV_X)
729 		si.si_code = FPE_FLTDIV;
730 	else if (fcr31 & FPU_CSR_OVF_X)
731 		si.si_code = FPE_FLTOVF;
732 	else if (fcr31 & FPU_CSR_UDF_X)
733 		si.si_code = FPE_FLTUND;
734 	else if (fcr31 & FPU_CSR_INE_X)
735 		si.si_code = FPE_FLTRES;
736 
737 	force_sig_info(SIGFPE, &si, tsk);
738 }
739 
740 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
741 {
742 	struct siginfo si = { 0 };
743 	struct vm_area_struct *vma;
744 
745 	switch (sig) {
746 	case 0:
747 		return 0;
748 
749 	case SIGFPE:
750 		force_fcr31_sig(fcr31, fault_addr, current);
751 		return 1;
752 
753 	case SIGBUS:
754 		si.si_addr = fault_addr;
755 		si.si_signo = sig;
756 		si.si_code = BUS_ADRERR;
757 		force_sig_info(sig, &si, current);
758 		return 1;
759 
760 	case SIGSEGV:
761 		si.si_addr = fault_addr;
762 		si.si_signo = sig;
763 		down_read(&current->mm->mmap_sem);
764 		vma = find_vma(current->mm, (unsigned long)fault_addr);
765 		if (vma && (vma->vm_start <= (unsigned long)fault_addr))
766 			si.si_code = SEGV_ACCERR;
767 		else
768 			si.si_code = SEGV_MAPERR;
769 		up_read(&current->mm->mmap_sem);
770 		force_sig_info(sig, &si, current);
771 		return 1;
772 
773 	default:
774 		force_sig(sig, current);
775 		return 1;
776 	}
777 }
778 
779 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
780 		       unsigned long old_epc, unsigned long old_ra)
781 {
782 	union mips_instruction inst = { .word = opcode };
783 	void __user *fault_addr;
784 	unsigned long fcr31;
785 	int sig;
786 
787 	/* If it's obviously not an FP instruction, skip it */
788 	switch (inst.i_format.opcode) {
789 	case cop1_op:
790 	case cop1x_op:
791 	case lwc1_op:
792 	case ldc1_op:
793 	case swc1_op:
794 	case sdc1_op:
795 		break;
796 
797 	default:
798 		return -1;
799 	}
800 
801 	/*
802 	 * do_ri skipped over the instruction via compute_return_epc, undo
803 	 * that for the FPU emulator.
804 	 */
805 	regs->cp0_epc = old_epc;
806 	regs->regs[31] = old_ra;
807 
808 	/* Save the FP context to struct thread_struct */
809 	lose_fpu(1);
810 
811 	/* Run the emulator */
812 	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
813 				       &fault_addr);
814 
815 	/*
816 	 * We can't allow the emulated instruction to leave any
817 	 * enabled Cause bits set in $fcr31.
818 	 */
819 	fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
820 	current->thread.fpu.fcr31 &= ~fcr31;
821 
822 	/* Restore the hardware register state */
823 	own_fpu(1);
824 
825 	/* Send a signal if required.  */
826 	process_fpemu_return(sig, fault_addr, fcr31);
827 
828 	return 0;
829 }
830 
831 /*
832  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
833  */
834 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
835 {
836 	enum ctx_state prev_state;
837 	void __user *fault_addr;
838 	int sig;
839 
840 	prev_state = exception_enter();
841 	if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
842 		       SIGFPE) == NOTIFY_STOP)
843 		goto out;
844 
845 	/* Clear FCSR.Cause before enabling interrupts */
846 	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
847 	local_irq_enable();
848 
849 	die_if_kernel("FP exception in kernel code", regs);
850 
851 	if (fcr31 & FPU_CSR_UNI_X) {
852 		/*
853 		 * Unimplemented operation exception.  If we've got the full
854 		 * software emulator on-board, let's use it...
855 		 *
856 		 * Force FPU to dump state into task/thread context.  We're
857 		 * moving a lot of data here for what is probably a single
858 		 * instruction, but the alternative is to pre-decode the FP
859 		 * register operands before invoking the emulator, which seems
860 		 * a bit extreme for what should be an infrequent event.
861 		 */
862 		/* Ensure 'resume' not overwrite saved fp context again. */
863 		lose_fpu(1);
864 
865 		/* Run the emulator */
866 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
867 					       &fault_addr);
868 
869 		/*
870 		 * We can't allow the emulated instruction to leave any
871 		 * enabled Cause bits set in $fcr31.
872 		 */
873 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
874 		current->thread.fpu.fcr31 &= ~fcr31;
875 
876 		/* Restore the hardware register state */
877 		own_fpu(1);	/* Using the FPU again.	 */
878 	} else {
879 		sig = SIGFPE;
880 		fault_addr = (void __user *) regs->cp0_epc;
881 	}
882 
883 	/* Send a signal if required.  */
884 	process_fpemu_return(sig, fault_addr, fcr31);
885 
886 out:
887 	exception_exit(prev_state);
888 }
889 
890 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
891 	const char *str)
892 {
893 	siginfo_t info = { 0 };
894 	char b[40];
895 
896 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
897 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
898 			 SIGTRAP) == NOTIFY_STOP)
899 		return;
900 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
901 
902 	if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
903 		       SIGTRAP) == NOTIFY_STOP)
904 		return;
905 
906 	/*
907 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
908 	 * insns, even for trap and break codes that indicate arithmetic
909 	 * failures.  Weird ...
910 	 * But should we continue the brokenness???  --macro
911 	 */
912 	switch (code) {
913 	case BRK_OVERFLOW:
914 	case BRK_DIVZERO:
915 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
916 		die_if_kernel(b, regs);
917 		if (code == BRK_DIVZERO)
918 			info.si_code = FPE_INTDIV;
919 		else
920 			info.si_code = FPE_INTOVF;
921 		info.si_signo = SIGFPE;
922 		info.si_addr = (void __user *) regs->cp0_epc;
923 		force_sig_info(SIGFPE, &info, current);
924 		break;
925 	case BRK_BUG:
926 		die_if_kernel("Kernel bug detected", regs);
927 		force_sig(SIGTRAP, current);
928 		break;
929 	case BRK_MEMU:
930 		/*
931 		 * This breakpoint code is used by the FPU emulator to retake
932 		 * control of the CPU after executing the instruction from the
933 		 * delay slot of an emulated branch.
934 		 *
935 		 * Terminate if exception was recognized as a delay slot return
936 		 * otherwise handle as normal.
937 		 */
938 		if (do_dsemulret(regs))
939 			return;
940 
941 		die_if_kernel("Math emu break/trap", regs);
942 		force_sig(SIGTRAP, current);
943 		break;
944 	default:
945 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
946 		die_if_kernel(b, regs);
947 		if (si_code) {
948 			info.si_signo = SIGTRAP;
949 			info.si_code = si_code;
950 			force_sig_info(SIGTRAP, &info, current);
951 		} else {
952 			force_sig(SIGTRAP, current);
953 		}
954 	}
955 }
956 
957 asmlinkage void do_bp(struct pt_regs *regs)
958 {
959 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
960 	unsigned int opcode, bcode;
961 	enum ctx_state prev_state;
962 	mm_segment_t seg;
963 
964 	seg = get_fs();
965 	if (!user_mode(regs))
966 		set_fs(KERNEL_DS);
967 
968 	prev_state = exception_enter();
969 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
970 	if (get_isa16_mode(regs->cp0_epc)) {
971 		u16 instr[2];
972 
973 		if (__get_user(instr[0], (u16 __user *)epc))
974 			goto out_sigsegv;
975 
976 		if (!cpu_has_mmips) {
977 			/* MIPS16e mode */
978 			bcode = (instr[0] >> 5) & 0x3f;
979 		} else if (mm_insn_16bit(instr[0])) {
980 			/* 16-bit microMIPS BREAK */
981 			bcode = instr[0] & 0xf;
982 		} else {
983 			/* 32-bit microMIPS BREAK */
984 			if (__get_user(instr[1], (u16 __user *)(epc + 2)))
985 				goto out_sigsegv;
986 			opcode = (instr[0] << 16) | instr[1];
987 			bcode = (opcode >> 6) & ((1 << 20) - 1);
988 		}
989 	} else {
990 		if (__get_user(opcode, (unsigned int __user *)epc))
991 			goto out_sigsegv;
992 		bcode = (opcode >> 6) & ((1 << 20) - 1);
993 	}
994 
995 	/*
996 	 * There is the ancient bug in the MIPS assemblers that the break
997 	 * code starts left to bit 16 instead to bit 6 in the opcode.
998 	 * Gas is bug-compatible, but not always, grrr...
999 	 * We handle both cases with a simple heuristics.  --macro
1000 	 */
1001 	if (bcode >= (1 << 10))
1002 		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1003 
1004 	/*
1005 	 * notify the kprobe handlers, if instruction is likely to
1006 	 * pertain to them.
1007 	 */
1008 	switch (bcode) {
1009 	case BRK_UPROBE:
1010 		if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1011 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1012 			goto out;
1013 		else
1014 			break;
1015 	case BRK_UPROBE_XOL:
1016 		if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1017 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1018 			goto out;
1019 		else
1020 			break;
1021 	case BRK_KPROBE_BP:
1022 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
1023 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1024 			goto out;
1025 		else
1026 			break;
1027 	case BRK_KPROBE_SSTEPBP:
1028 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1029 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1030 			goto out;
1031 		else
1032 			break;
1033 	default:
1034 		break;
1035 	}
1036 
1037 	do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1038 
1039 out:
1040 	set_fs(seg);
1041 	exception_exit(prev_state);
1042 	return;
1043 
1044 out_sigsegv:
1045 	force_sig(SIGSEGV, current);
1046 	goto out;
1047 }
1048 
1049 asmlinkage void do_tr(struct pt_regs *regs)
1050 {
1051 	u32 opcode, tcode = 0;
1052 	enum ctx_state prev_state;
1053 	u16 instr[2];
1054 	mm_segment_t seg;
1055 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1056 
1057 	seg = get_fs();
1058 	if (!user_mode(regs))
1059 		set_fs(get_ds());
1060 
1061 	prev_state = exception_enter();
1062 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1063 	if (get_isa16_mode(regs->cp0_epc)) {
1064 		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1065 		    __get_user(instr[1], (u16 __user *)(epc + 2)))
1066 			goto out_sigsegv;
1067 		opcode = (instr[0] << 16) | instr[1];
1068 		/* Immediate versions don't provide a code.  */
1069 		if (!(opcode & OPCODE))
1070 			tcode = (opcode >> 12) & ((1 << 4) - 1);
1071 	} else {
1072 		if (__get_user(opcode, (u32 __user *)epc))
1073 			goto out_sigsegv;
1074 		/* Immediate versions don't provide a code.  */
1075 		if (!(opcode & OPCODE))
1076 			tcode = (opcode >> 6) & ((1 << 10) - 1);
1077 	}
1078 
1079 	do_trap_or_bp(regs, tcode, 0, "Trap");
1080 
1081 out:
1082 	set_fs(seg);
1083 	exception_exit(prev_state);
1084 	return;
1085 
1086 out_sigsegv:
1087 	force_sig(SIGSEGV, current);
1088 	goto out;
1089 }
1090 
1091 asmlinkage void do_ri(struct pt_regs *regs)
1092 {
1093 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1094 	unsigned long old_epc = regs->cp0_epc;
1095 	unsigned long old31 = regs->regs[31];
1096 	enum ctx_state prev_state;
1097 	unsigned int opcode = 0;
1098 	int status = -1;
1099 
1100 	/*
1101 	 * Avoid any kernel code. Just emulate the R2 instruction
1102 	 * as quickly as possible.
1103 	 */
1104 	if (mipsr2_emulation && cpu_has_mips_r6 &&
1105 	    likely(user_mode(regs)) &&
1106 	    likely(get_user(opcode, epc) >= 0)) {
1107 		unsigned long fcr31 = 0;
1108 
1109 		status = mipsr2_decoder(regs, opcode, &fcr31);
1110 		switch (status) {
1111 		case 0:
1112 		case SIGEMT:
1113 			return;
1114 		case SIGILL:
1115 			goto no_r2_instr;
1116 		default:
1117 			process_fpemu_return(status,
1118 					     &current->thread.cp0_baduaddr,
1119 					     fcr31);
1120 			return;
1121 		}
1122 	}
1123 
1124 no_r2_instr:
1125 
1126 	prev_state = exception_enter();
1127 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1128 
1129 	if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1130 		       SIGILL) == NOTIFY_STOP)
1131 		goto out;
1132 
1133 	die_if_kernel("Reserved instruction in kernel code", regs);
1134 
1135 	if (unlikely(compute_return_epc(regs) < 0))
1136 		goto out;
1137 
1138 	if (!get_isa16_mode(regs->cp0_epc)) {
1139 		if (unlikely(get_user(opcode, epc) < 0))
1140 			status = SIGSEGV;
1141 
1142 		if (!cpu_has_llsc && status < 0)
1143 			status = simulate_llsc(regs, opcode);
1144 
1145 		if (status < 0)
1146 			status = simulate_rdhwr_normal(regs, opcode);
1147 
1148 		if (status < 0)
1149 			status = simulate_sync(regs, opcode);
1150 
1151 		if (status < 0)
1152 			status = simulate_fp(regs, opcode, old_epc, old31);
1153 	} else if (cpu_has_mmips) {
1154 		unsigned short mmop[2] = { 0 };
1155 
1156 		if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1157 			status = SIGSEGV;
1158 		if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1159 			status = SIGSEGV;
1160 		opcode = mmop[0];
1161 		opcode = (opcode << 16) | mmop[1];
1162 
1163 		if (status < 0)
1164 			status = simulate_rdhwr_mm(regs, opcode);
1165 	}
1166 
1167 	if (status < 0)
1168 		status = SIGILL;
1169 
1170 	if (unlikely(status > 0)) {
1171 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1172 		regs->regs[31] = old31;
1173 		force_sig(status, current);
1174 	}
1175 
1176 out:
1177 	exception_exit(prev_state);
1178 }
1179 
1180 /*
1181  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1182  * emulated more than some threshold number of instructions, force migration to
1183  * a "CPU" that has FP support.
1184  */
1185 static void mt_ase_fp_affinity(void)
1186 {
1187 #ifdef CONFIG_MIPS_MT_FPAFF
1188 	if (mt_fpemul_threshold > 0 &&
1189 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1190 		/*
1191 		 * If there's no FPU present, or if the application has already
1192 		 * restricted the allowed set to exclude any CPUs with FPUs,
1193 		 * we'll skip the procedure.
1194 		 */
1195 		if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1196 			cpumask_t tmask;
1197 
1198 			current->thread.user_cpus_allowed
1199 				= current->cpus_allowed;
1200 			cpumask_and(&tmask, &current->cpus_allowed,
1201 				    &mt_fpu_cpumask);
1202 			set_cpus_allowed_ptr(current, &tmask);
1203 			set_thread_flag(TIF_FPUBOUND);
1204 		}
1205 	}
1206 #endif /* CONFIG_MIPS_MT_FPAFF */
1207 }
1208 
1209 /*
1210  * No lock; only written during early bootup by CPU 0.
1211  */
1212 static RAW_NOTIFIER_HEAD(cu2_chain);
1213 
1214 int __ref register_cu2_notifier(struct notifier_block *nb)
1215 {
1216 	return raw_notifier_chain_register(&cu2_chain, nb);
1217 }
1218 
1219 int cu2_notifier_call_chain(unsigned long val, void *v)
1220 {
1221 	return raw_notifier_call_chain(&cu2_chain, val, v);
1222 }
1223 
1224 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1225 	void *data)
1226 {
1227 	struct pt_regs *regs = data;
1228 
1229 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1230 			      "instruction", regs);
1231 	force_sig(SIGILL, current);
1232 
1233 	return NOTIFY_OK;
1234 }
1235 
1236 static int enable_restore_fp_context(int msa)
1237 {
1238 	int err, was_fpu_owner, prior_msa;
1239 
1240 	/*
1241 	 * If an FP mode switch is currently underway, wait for it to
1242 	 * complete before proceeding.
1243 	 */
1244 	wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1245 			 atomic_t_wait, TASK_KILLABLE);
1246 
1247 	if (!used_math()) {
1248 		/* First time FP context user. */
1249 		preempt_disable();
1250 		err = init_fpu();
1251 		if (msa && !err) {
1252 			enable_msa();
1253 			init_msa_upper();
1254 			set_thread_flag(TIF_USEDMSA);
1255 			set_thread_flag(TIF_MSA_CTX_LIVE);
1256 		}
1257 		preempt_enable();
1258 		if (!err)
1259 			set_used_math();
1260 		return err;
1261 	}
1262 
1263 	/*
1264 	 * This task has formerly used the FP context.
1265 	 *
1266 	 * If this thread has no live MSA vector context then we can simply
1267 	 * restore the scalar FP context. If it has live MSA vector context
1268 	 * (that is, it has or may have used MSA since last performing a
1269 	 * function call) then we'll need to restore the vector context. This
1270 	 * applies even if we're currently only executing a scalar FP
1271 	 * instruction. This is because if we were to later execute an MSA
1272 	 * instruction then we'd either have to:
1273 	 *
1274 	 *  - Restore the vector context & clobber any registers modified by
1275 	 *    scalar FP instructions between now & then.
1276 	 *
1277 	 * or
1278 	 *
1279 	 *  - Not restore the vector context & lose the most significant bits
1280 	 *    of all vector registers.
1281 	 *
1282 	 * Neither of those options is acceptable. We cannot restore the least
1283 	 * significant bits of the registers now & only restore the most
1284 	 * significant bits later because the most significant bits of any
1285 	 * vector registers whose aliased FP register is modified now will have
1286 	 * been zeroed. We'd have no way to know that when restoring the vector
1287 	 * context & thus may load an outdated value for the most significant
1288 	 * bits of a vector register.
1289 	 */
1290 	if (!msa && !thread_msa_context_live())
1291 		return own_fpu(1);
1292 
1293 	/*
1294 	 * This task is using or has previously used MSA. Thus we require
1295 	 * that Status.FR == 1.
1296 	 */
1297 	preempt_disable();
1298 	was_fpu_owner = is_fpu_owner();
1299 	err = own_fpu_inatomic(0);
1300 	if (err)
1301 		goto out;
1302 
1303 	enable_msa();
1304 	write_msa_csr(current->thread.fpu.msacsr);
1305 	set_thread_flag(TIF_USEDMSA);
1306 
1307 	/*
1308 	 * If this is the first time that the task is using MSA and it has
1309 	 * previously used scalar FP in this time slice then we already nave
1310 	 * FP context which we shouldn't clobber. We do however need to clear
1311 	 * the upper 64b of each vector register so that this task has no
1312 	 * opportunity to see data left behind by another.
1313 	 */
1314 	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1315 	if (!prior_msa && was_fpu_owner) {
1316 		init_msa_upper();
1317 
1318 		goto out;
1319 	}
1320 
1321 	if (!prior_msa) {
1322 		/*
1323 		 * Restore the least significant 64b of each vector register
1324 		 * from the existing scalar FP context.
1325 		 */
1326 		_restore_fp(current);
1327 
1328 		/*
1329 		 * The task has not formerly used MSA, so clear the upper 64b
1330 		 * of each vector register such that it cannot see data left
1331 		 * behind by another task.
1332 		 */
1333 		init_msa_upper();
1334 	} else {
1335 		/* We need to restore the vector context. */
1336 		restore_msa(current);
1337 
1338 		/* Restore the scalar FP control & status register */
1339 		if (!was_fpu_owner)
1340 			write_32bit_cp1_register(CP1_STATUS,
1341 						 current->thread.fpu.fcr31);
1342 	}
1343 
1344 out:
1345 	preempt_enable();
1346 
1347 	return 0;
1348 }
1349 
1350 asmlinkage void do_cpu(struct pt_regs *regs)
1351 {
1352 	enum ctx_state prev_state;
1353 	unsigned int __user *epc;
1354 	unsigned long old_epc, old31;
1355 	void __user *fault_addr;
1356 	unsigned int opcode;
1357 	unsigned long fcr31;
1358 	unsigned int cpid;
1359 	int status, err;
1360 	int sig;
1361 
1362 	prev_state = exception_enter();
1363 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1364 
1365 	if (cpid != 2)
1366 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1367 
1368 	switch (cpid) {
1369 	case 0:
1370 		epc = (unsigned int __user *)exception_epc(regs);
1371 		old_epc = regs->cp0_epc;
1372 		old31 = regs->regs[31];
1373 		opcode = 0;
1374 		status = -1;
1375 
1376 		if (unlikely(compute_return_epc(regs) < 0))
1377 			break;
1378 
1379 		if (!get_isa16_mode(regs->cp0_epc)) {
1380 			if (unlikely(get_user(opcode, epc) < 0))
1381 				status = SIGSEGV;
1382 
1383 			if (!cpu_has_llsc && status < 0)
1384 				status = simulate_llsc(regs, opcode);
1385 		}
1386 
1387 		if (status < 0)
1388 			status = SIGILL;
1389 
1390 		if (unlikely(status > 0)) {
1391 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1392 			regs->regs[31] = old31;
1393 			force_sig(status, current);
1394 		}
1395 
1396 		break;
1397 
1398 	case 3:
1399 		/*
1400 		 * The COP3 opcode space and consequently the CP0.Status.CU3
1401 		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1402 		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1403 		 * up the space has been reused for COP1X instructions, that
1404 		 * are enabled by the CP0.Status.CU1 bit and consequently
1405 		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1406 		 * exceptions.  Some FPU-less processors that implement one
1407 		 * of these ISAs however use this code erroneously for COP1X
1408 		 * instructions.  Therefore we redirect this trap to the FP
1409 		 * emulator too.
1410 		 */
1411 		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1412 			force_sig(SIGILL, current);
1413 			break;
1414 		}
1415 		/* Fall through.  */
1416 
1417 	case 1:
1418 		err = enable_restore_fp_context(0);
1419 
1420 		if (raw_cpu_has_fpu && !err)
1421 			break;
1422 
1423 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1424 					       &fault_addr);
1425 
1426 		/*
1427 		 * We can't allow the emulated instruction to leave
1428 		 * any enabled Cause bits set in $fcr31.
1429 		 */
1430 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1431 		current->thread.fpu.fcr31 &= ~fcr31;
1432 
1433 		/* Send a signal if required.  */
1434 		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1435 			mt_ase_fp_affinity();
1436 
1437 		break;
1438 
1439 	case 2:
1440 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1441 		break;
1442 	}
1443 
1444 	exception_exit(prev_state);
1445 }
1446 
1447 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1448 {
1449 	enum ctx_state prev_state;
1450 
1451 	prev_state = exception_enter();
1452 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1453 	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1454 		       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1455 		goto out;
1456 
1457 	/* Clear MSACSR.Cause before enabling interrupts */
1458 	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1459 	local_irq_enable();
1460 
1461 	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1462 	force_sig(SIGFPE, current);
1463 out:
1464 	exception_exit(prev_state);
1465 }
1466 
1467 asmlinkage void do_msa(struct pt_regs *regs)
1468 {
1469 	enum ctx_state prev_state;
1470 	int err;
1471 
1472 	prev_state = exception_enter();
1473 
1474 	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1475 		force_sig(SIGILL, current);
1476 		goto out;
1477 	}
1478 
1479 	die_if_kernel("do_msa invoked from kernel context!", regs);
1480 
1481 	err = enable_restore_fp_context(1);
1482 	if (err)
1483 		force_sig(SIGILL, current);
1484 out:
1485 	exception_exit(prev_state);
1486 }
1487 
1488 asmlinkage void do_mdmx(struct pt_regs *regs)
1489 {
1490 	enum ctx_state prev_state;
1491 
1492 	prev_state = exception_enter();
1493 	force_sig(SIGILL, current);
1494 	exception_exit(prev_state);
1495 }
1496 
1497 /*
1498  * Called with interrupts disabled.
1499  */
1500 asmlinkage void do_watch(struct pt_regs *regs)
1501 {
1502 	siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT };
1503 	enum ctx_state prev_state;
1504 
1505 	prev_state = exception_enter();
1506 	/*
1507 	 * Clear WP (bit 22) bit of cause register so we don't loop
1508 	 * forever.
1509 	 */
1510 	clear_c0_cause(CAUSEF_WP);
1511 
1512 	/*
1513 	 * If the current thread has the watch registers loaded, save
1514 	 * their values and send SIGTRAP.  Otherwise another thread
1515 	 * left the registers set, clear them and continue.
1516 	 */
1517 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1518 		mips_read_watch_registers();
1519 		local_irq_enable();
1520 		force_sig_info(SIGTRAP, &info, current);
1521 	} else {
1522 		mips_clear_watch_registers();
1523 		local_irq_enable();
1524 	}
1525 	exception_exit(prev_state);
1526 }
1527 
1528 asmlinkage void do_mcheck(struct pt_regs *regs)
1529 {
1530 	int multi_match = regs->cp0_status & ST0_TS;
1531 	enum ctx_state prev_state;
1532 	mm_segment_t old_fs = get_fs();
1533 
1534 	prev_state = exception_enter();
1535 	show_regs(regs);
1536 
1537 	if (multi_match) {
1538 		dump_tlb_regs();
1539 		pr_info("\n");
1540 		dump_tlb_all();
1541 	}
1542 
1543 	if (!user_mode(regs))
1544 		set_fs(KERNEL_DS);
1545 
1546 	show_code((unsigned int __user *) regs->cp0_epc);
1547 
1548 	set_fs(old_fs);
1549 
1550 	/*
1551 	 * Some chips may have other causes of machine check (e.g. SB1
1552 	 * graduation timer)
1553 	 */
1554 	panic("Caught Machine Check exception - %scaused by multiple "
1555 	      "matching entries in the TLB.",
1556 	      (multi_match) ? "" : "not ");
1557 }
1558 
1559 asmlinkage void do_mt(struct pt_regs *regs)
1560 {
1561 	int subcode;
1562 
1563 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1564 			>> VPECONTROL_EXCPT_SHIFT;
1565 	switch (subcode) {
1566 	case 0:
1567 		printk(KERN_DEBUG "Thread Underflow\n");
1568 		break;
1569 	case 1:
1570 		printk(KERN_DEBUG "Thread Overflow\n");
1571 		break;
1572 	case 2:
1573 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1574 		break;
1575 	case 3:
1576 		printk(KERN_DEBUG "Gating Storage Exception\n");
1577 		break;
1578 	case 4:
1579 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1580 		break;
1581 	case 5:
1582 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1583 		break;
1584 	default:
1585 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1586 			subcode);
1587 		break;
1588 	}
1589 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1590 
1591 	force_sig(SIGILL, current);
1592 }
1593 
1594 
1595 asmlinkage void do_dsp(struct pt_regs *regs)
1596 {
1597 	if (cpu_has_dsp)
1598 		panic("Unexpected DSP exception");
1599 
1600 	force_sig(SIGILL, current);
1601 }
1602 
1603 asmlinkage void do_reserved(struct pt_regs *regs)
1604 {
1605 	/*
1606 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1607 	 * caused by a new unknown cpu type or after another deadly
1608 	 * hard/software error.
1609 	 */
1610 	show_regs(regs);
1611 	panic("Caught reserved exception %ld - should not happen.",
1612 	      (regs->cp0_cause & 0x7f) >> 2);
1613 }
1614 
1615 static int __initdata l1parity = 1;
1616 static int __init nol1parity(char *s)
1617 {
1618 	l1parity = 0;
1619 	return 1;
1620 }
1621 __setup("nol1par", nol1parity);
1622 static int __initdata l2parity = 1;
1623 static int __init nol2parity(char *s)
1624 {
1625 	l2parity = 0;
1626 	return 1;
1627 }
1628 __setup("nol2par", nol2parity);
1629 
1630 /*
1631  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1632  * it different ways.
1633  */
1634 static inline void parity_protection_init(void)
1635 {
1636 #define ERRCTL_PE	0x80000000
1637 #define ERRCTL_L2P	0x00800000
1638 
1639 	if (mips_cm_revision() >= CM_REV_CM3) {
1640 		ulong gcr_ectl, cp0_ectl;
1641 
1642 		/*
1643 		 * With CM3 systems we need to ensure that the L1 & L2
1644 		 * parity enables are set to the same value, since this
1645 		 * is presumed by the hardware engineers.
1646 		 *
1647 		 * If the user disabled either of L1 or L2 ECC checking,
1648 		 * disable both.
1649 		 */
1650 		l1parity &= l2parity;
1651 		l2parity &= l1parity;
1652 
1653 		/* Probe L1 ECC support */
1654 		cp0_ectl = read_c0_ecc();
1655 		write_c0_ecc(cp0_ectl | ERRCTL_PE);
1656 		back_to_back_c0_hazard();
1657 		cp0_ectl = read_c0_ecc();
1658 
1659 		/* Probe L2 ECC support */
1660 		gcr_ectl = read_gcr_err_control();
1661 
1662 		if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1663 		    !(cp0_ectl & ERRCTL_PE)) {
1664 			/*
1665 			 * One of L1 or L2 ECC checking isn't supported,
1666 			 * so we cannot enable either.
1667 			 */
1668 			l1parity = l2parity = 0;
1669 		}
1670 
1671 		/* Configure L1 ECC checking */
1672 		if (l1parity)
1673 			cp0_ectl |= ERRCTL_PE;
1674 		else
1675 			cp0_ectl &= ~ERRCTL_PE;
1676 		write_c0_ecc(cp0_ectl);
1677 		back_to_back_c0_hazard();
1678 		WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1679 
1680 		/* Configure L2 ECC checking */
1681 		if (l2parity)
1682 			gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1683 		else
1684 			gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1685 		write_gcr_err_control(gcr_ectl);
1686 		gcr_ectl = read_gcr_err_control();
1687 		gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1688 		WARN_ON(!!gcr_ectl != l2parity);
1689 
1690 		pr_info("Cache parity protection %sabled\n",
1691 			l1parity ? "en" : "dis");
1692 		return;
1693 	}
1694 
1695 	switch (current_cpu_type()) {
1696 	case CPU_24K:
1697 	case CPU_34K:
1698 	case CPU_74K:
1699 	case CPU_1004K:
1700 	case CPU_1074K:
1701 	case CPU_INTERAPTIV:
1702 	case CPU_PROAPTIV:
1703 	case CPU_P5600:
1704 	case CPU_QEMU_GENERIC:
1705 	case CPU_P6600:
1706 		{
1707 			unsigned long errctl;
1708 			unsigned int l1parity_present, l2parity_present;
1709 
1710 			errctl = read_c0_ecc();
1711 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1712 
1713 			/* probe L1 parity support */
1714 			write_c0_ecc(errctl | ERRCTL_PE);
1715 			back_to_back_c0_hazard();
1716 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1717 
1718 			/* probe L2 parity support */
1719 			write_c0_ecc(errctl|ERRCTL_L2P);
1720 			back_to_back_c0_hazard();
1721 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1722 
1723 			if (l1parity_present && l2parity_present) {
1724 				if (l1parity)
1725 					errctl |= ERRCTL_PE;
1726 				if (l1parity ^ l2parity)
1727 					errctl |= ERRCTL_L2P;
1728 			} else if (l1parity_present) {
1729 				if (l1parity)
1730 					errctl |= ERRCTL_PE;
1731 			} else if (l2parity_present) {
1732 				if (l2parity)
1733 					errctl |= ERRCTL_L2P;
1734 			} else {
1735 				/* No parity available */
1736 			}
1737 
1738 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1739 
1740 			write_c0_ecc(errctl);
1741 			back_to_back_c0_hazard();
1742 			errctl = read_c0_ecc();
1743 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1744 
1745 			if (l1parity_present)
1746 				printk(KERN_INFO "Cache parity protection %sabled\n",
1747 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1748 
1749 			if (l2parity_present) {
1750 				if (l1parity_present && l1parity)
1751 					errctl ^= ERRCTL_L2P;
1752 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1753 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1754 			}
1755 		}
1756 		break;
1757 
1758 	case CPU_5KC:
1759 	case CPU_5KE:
1760 	case CPU_LOONGSON1:
1761 		write_c0_ecc(0x80000000);
1762 		back_to_back_c0_hazard();
1763 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1764 		printk(KERN_INFO "Cache parity protection %sabled\n",
1765 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1766 		break;
1767 	case CPU_20KC:
1768 	case CPU_25KF:
1769 		/* Clear the DE bit (bit 16) in the c0_status register. */
1770 		printk(KERN_INFO "Enable cache parity protection for "
1771 		       "MIPS 20KC/25KF CPUs.\n");
1772 		clear_c0_status(ST0_DE);
1773 		break;
1774 	default:
1775 		break;
1776 	}
1777 }
1778 
1779 asmlinkage void cache_parity_error(void)
1780 {
1781 	const int field = 2 * sizeof(unsigned long);
1782 	unsigned int reg_val;
1783 
1784 	/* For the moment, report the problem and hang. */
1785 	printk("Cache error exception:\n");
1786 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1787 	reg_val = read_c0_cacheerr();
1788 	printk("c0_cacheerr == %08x\n", reg_val);
1789 
1790 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1791 	       reg_val & (1<<30) ? "secondary" : "primary",
1792 	       reg_val & (1<<31) ? "data" : "insn");
1793 	if ((cpu_has_mips_r2_r6) &&
1794 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1795 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1796 			reg_val & (1<<29) ? "ED " : "",
1797 			reg_val & (1<<28) ? "ET " : "",
1798 			reg_val & (1<<27) ? "ES " : "",
1799 			reg_val & (1<<26) ? "EE " : "",
1800 			reg_val & (1<<25) ? "EB " : "",
1801 			reg_val & (1<<24) ? "EI " : "",
1802 			reg_val & (1<<23) ? "E1 " : "",
1803 			reg_val & (1<<22) ? "E0 " : "");
1804 	} else {
1805 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1806 			reg_val & (1<<29) ? "ED " : "",
1807 			reg_val & (1<<28) ? "ET " : "",
1808 			reg_val & (1<<26) ? "EE " : "",
1809 			reg_val & (1<<25) ? "EB " : "",
1810 			reg_val & (1<<24) ? "EI " : "",
1811 			reg_val & (1<<23) ? "E1 " : "",
1812 			reg_val & (1<<22) ? "E0 " : "");
1813 	}
1814 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1815 
1816 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1817 	if (reg_val & (1<<22))
1818 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1819 
1820 	if (reg_val & (1<<23))
1821 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1822 #endif
1823 
1824 	panic("Can't handle the cache error!");
1825 }
1826 
1827 asmlinkage void do_ftlb(void)
1828 {
1829 	const int field = 2 * sizeof(unsigned long);
1830 	unsigned int reg_val;
1831 
1832 	/* For the moment, report the problem and hang. */
1833 	if ((cpu_has_mips_r2_r6) &&
1834 	    (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1835 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1836 		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1837 		       read_c0_ecc());
1838 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1839 		reg_val = read_c0_cacheerr();
1840 		pr_err("c0_cacheerr == %08x\n", reg_val);
1841 
1842 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1843 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1844 		} else {
1845 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1846 			       reg_val & (1<<30) ? "secondary" : "primary",
1847 			       reg_val & (1<<31) ? "data" : "insn");
1848 		}
1849 	} else {
1850 		pr_err("FTLB error exception\n");
1851 	}
1852 	/* Just print the cacheerr bits for now */
1853 	cache_parity_error();
1854 }
1855 
1856 /*
1857  * SDBBP EJTAG debug exception handler.
1858  * We skip the instruction and return to the next instruction.
1859  */
1860 void ejtag_exception_handler(struct pt_regs *regs)
1861 {
1862 	const int field = 2 * sizeof(unsigned long);
1863 	unsigned long depc, old_epc, old_ra;
1864 	unsigned int debug;
1865 
1866 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1867 	depc = read_c0_depc();
1868 	debug = read_c0_debug();
1869 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1870 	if (debug & 0x80000000) {
1871 		/*
1872 		 * In branch delay slot.
1873 		 * We cheat a little bit here and use EPC to calculate the
1874 		 * debug return address (DEPC). EPC is restored after the
1875 		 * calculation.
1876 		 */
1877 		old_epc = regs->cp0_epc;
1878 		old_ra = regs->regs[31];
1879 		regs->cp0_epc = depc;
1880 		compute_return_epc(regs);
1881 		depc = regs->cp0_epc;
1882 		regs->cp0_epc = old_epc;
1883 		regs->regs[31] = old_ra;
1884 	} else
1885 		depc += 4;
1886 	write_c0_depc(depc);
1887 
1888 #if 0
1889 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1890 	write_c0_debug(debug | 0x100);
1891 #endif
1892 }
1893 
1894 /*
1895  * NMI exception handler.
1896  * No lock; only written during early bootup by CPU 0.
1897  */
1898 static RAW_NOTIFIER_HEAD(nmi_chain);
1899 
1900 int register_nmi_notifier(struct notifier_block *nb)
1901 {
1902 	return raw_notifier_chain_register(&nmi_chain, nb);
1903 }
1904 
1905 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1906 {
1907 	char str[100];
1908 
1909 	nmi_enter();
1910 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1911 	bust_spinlocks(1);
1912 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1913 		 smp_processor_id(), regs->cp0_epc);
1914 	regs->cp0_epc = read_c0_errorepc();
1915 	die(str, regs);
1916 	nmi_exit();
1917 }
1918 
1919 #define VECTORSPACING 0x100	/* for EI/VI mode */
1920 
1921 unsigned long ebase;
1922 EXPORT_SYMBOL_GPL(ebase);
1923 unsigned long exception_handlers[32];
1924 unsigned long vi_handlers[64];
1925 
1926 void __init *set_except_vector(int n, void *addr)
1927 {
1928 	unsigned long handler = (unsigned long) addr;
1929 	unsigned long old_handler;
1930 
1931 #ifdef CONFIG_CPU_MICROMIPS
1932 	/*
1933 	 * Only the TLB handlers are cache aligned with an even
1934 	 * address. All other handlers are on an odd address and
1935 	 * require no modification. Otherwise, MIPS32 mode will
1936 	 * be entered when handling any TLB exceptions. That
1937 	 * would be bad...since we must stay in microMIPS mode.
1938 	 */
1939 	if (!(handler & 0x1))
1940 		handler |= 1;
1941 #endif
1942 	old_handler = xchg(&exception_handlers[n], handler);
1943 
1944 	if (n == 0 && cpu_has_divec) {
1945 #ifdef CONFIG_CPU_MICROMIPS
1946 		unsigned long jump_mask = ~((1 << 27) - 1);
1947 #else
1948 		unsigned long jump_mask = ~((1 << 28) - 1);
1949 #endif
1950 		u32 *buf = (u32 *)(ebase + 0x200);
1951 		unsigned int k0 = 26;
1952 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1953 			uasm_i_j(&buf, handler & ~jump_mask);
1954 			uasm_i_nop(&buf);
1955 		} else {
1956 			UASM_i_LA(&buf, k0, handler);
1957 			uasm_i_jr(&buf, k0);
1958 			uasm_i_nop(&buf);
1959 		}
1960 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1961 	}
1962 	return (void *)old_handler;
1963 }
1964 
1965 static void do_default_vi(void)
1966 {
1967 	show_regs(get_irq_regs());
1968 	panic("Caught unexpected vectored interrupt.");
1969 }
1970 
1971 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1972 {
1973 	unsigned long handler;
1974 	unsigned long old_handler = vi_handlers[n];
1975 	int srssets = current_cpu_data.srsets;
1976 	u16 *h;
1977 	unsigned char *b;
1978 
1979 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1980 
1981 	if (addr == NULL) {
1982 		handler = (unsigned long) do_default_vi;
1983 		srs = 0;
1984 	} else
1985 		handler = (unsigned long) addr;
1986 	vi_handlers[n] = handler;
1987 
1988 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1989 
1990 	if (srs >= srssets)
1991 		panic("Shadow register set %d not supported", srs);
1992 
1993 	if (cpu_has_veic) {
1994 		if (board_bind_eic_interrupt)
1995 			board_bind_eic_interrupt(n, srs);
1996 	} else if (cpu_has_vint) {
1997 		/* SRSMap is only defined if shadow sets are implemented */
1998 		if (srssets > 1)
1999 			change_c0_srsmap(0xf << n*4, srs << n*4);
2000 	}
2001 
2002 	if (srs == 0) {
2003 		/*
2004 		 * If no shadow set is selected then use the default handler
2005 		 * that does normal register saving and standard interrupt exit
2006 		 */
2007 		extern char except_vec_vi, except_vec_vi_lui;
2008 		extern char except_vec_vi_ori, except_vec_vi_end;
2009 		extern char rollback_except_vec_vi;
2010 		char *vec_start = using_rollback_handler() ?
2011 			&rollback_except_vec_vi : &except_vec_vi;
2012 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2013 		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2014 		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2015 #else
2016 		const int lui_offset = &except_vec_vi_lui - vec_start;
2017 		const int ori_offset = &except_vec_vi_ori - vec_start;
2018 #endif
2019 		const int handler_len = &except_vec_vi_end - vec_start;
2020 
2021 		if (handler_len > VECTORSPACING) {
2022 			/*
2023 			 * Sigh... panicing won't help as the console
2024 			 * is probably not configured :(
2025 			 */
2026 			panic("VECTORSPACING too small");
2027 		}
2028 
2029 		set_handler(((unsigned long)b - ebase), vec_start,
2030 #ifdef CONFIG_CPU_MICROMIPS
2031 				(handler_len - 1));
2032 #else
2033 				handler_len);
2034 #endif
2035 		h = (u16 *)(b + lui_offset);
2036 		*h = (handler >> 16) & 0xffff;
2037 		h = (u16 *)(b + ori_offset);
2038 		*h = (handler & 0xffff);
2039 		local_flush_icache_range((unsigned long)b,
2040 					 (unsigned long)(b+handler_len));
2041 	}
2042 	else {
2043 		/*
2044 		 * In other cases jump directly to the interrupt handler. It
2045 		 * is the handler's responsibility to save registers if required
2046 		 * (eg hi/lo) and return from the exception using "eret".
2047 		 */
2048 		u32 insn;
2049 
2050 		h = (u16 *)b;
2051 		/* j handler */
2052 #ifdef CONFIG_CPU_MICROMIPS
2053 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2054 #else
2055 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2056 #endif
2057 		h[0] = (insn >> 16) & 0xffff;
2058 		h[1] = insn & 0xffff;
2059 		h[2] = 0;
2060 		h[3] = 0;
2061 		local_flush_icache_range((unsigned long)b,
2062 					 (unsigned long)(b+8));
2063 	}
2064 
2065 	return (void *)old_handler;
2066 }
2067 
2068 void *set_vi_handler(int n, vi_handler_t addr)
2069 {
2070 	return set_vi_srs_handler(n, addr, 0);
2071 }
2072 
2073 extern void tlb_init(void);
2074 
2075 /*
2076  * Timer interrupt
2077  */
2078 int cp0_compare_irq;
2079 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2080 int cp0_compare_irq_shift;
2081 
2082 /*
2083  * Performance counter IRQ or -1 if shared with timer
2084  */
2085 int cp0_perfcount_irq;
2086 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2087 
2088 /*
2089  * Fast debug channel IRQ or -1 if not present
2090  */
2091 int cp0_fdc_irq;
2092 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2093 
2094 static int noulri;
2095 
2096 static int __init ulri_disable(char *s)
2097 {
2098 	pr_info("Disabling ulri\n");
2099 	noulri = 1;
2100 
2101 	return 1;
2102 }
2103 __setup("noulri", ulri_disable);
2104 
2105 /* configure STATUS register */
2106 static void configure_status(void)
2107 {
2108 	/*
2109 	 * Disable coprocessors and select 32-bit or 64-bit addressing
2110 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2111 	 * flag that some firmware may have left set and the TS bit (for
2112 	 * IP27).  Set XX for ISA IV code to work.
2113 	 */
2114 	unsigned int status_set = ST0_CU0;
2115 #ifdef CONFIG_64BIT
2116 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2117 #endif
2118 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2119 		status_set |= ST0_XX;
2120 	if (cpu_has_dsp)
2121 		status_set |= ST0_MX;
2122 
2123 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2124 			 status_set);
2125 }
2126 
2127 unsigned int hwrena;
2128 EXPORT_SYMBOL_GPL(hwrena);
2129 
2130 /* configure HWRENA register */
2131 static void configure_hwrena(void)
2132 {
2133 	hwrena = cpu_hwrena_impl_bits;
2134 
2135 	if (cpu_has_mips_r2_r6)
2136 		hwrena |= MIPS_HWRENA_CPUNUM |
2137 			  MIPS_HWRENA_SYNCISTEP |
2138 			  MIPS_HWRENA_CC |
2139 			  MIPS_HWRENA_CCRES;
2140 
2141 	if (!noulri && cpu_has_userlocal)
2142 		hwrena |= MIPS_HWRENA_ULR;
2143 
2144 	if (hwrena)
2145 		write_c0_hwrena(hwrena);
2146 }
2147 
2148 static void configure_exception_vector(void)
2149 {
2150 	if (cpu_has_veic || cpu_has_vint) {
2151 		unsigned long sr = set_c0_status(ST0_BEV);
2152 		/* If available, use WG to set top bits of EBASE */
2153 		if (cpu_has_ebase_wg) {
2154 #ifdef CONFIG_64BIT
2155 			write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2156 #else
2157 			write_c0_ebase(ebase | MIPS_EBASE_WG);
2158 #endif
2159 		}
2160 		write_c0_ebase(ebase);
2161 		write_c0_status(sr);
2162 		/* Setting vector spacing enables EI/VI mode  */
2163 		change_c0_intctl(0x3e0, VECTORSPACING);
2164 	}
2165 	if (cpu_has_divec) {
2166 		if (cpu_has_mipsmt) {
2167 			unsigned int vpflags = dvpe();
2168 			set_c0_cause(CAUSEF_IV);
2169 			evpe(vpflags);
2170 		} else
2171 			set_c0_cause(CAUSEF_IV);
2172 	}
2173 }
2174 
2175 void per_cpu_trap_init(bool is_boot_cpu)
2176 {
2177 	unsigned int cpu = smp_processor_id();
2178 
2179 	configure_status();
2180 	configure_hwrena();
2181 
2182 	configure_exception_vector();
2183 
2184 	/*
2185 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2186 	 *
2187 	 *  o read IntCtl.IPTI to determine the timer interrupt
2188 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2189 	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2190 	 */
2191 	if (cpu_has_mips_r2_r6) {
2192 		/*
2193 		 * We shouldn't trust a secondary core has a sane EBASE register
2194 		 * so use the one calculated by the boot CPU.
2195 		 */
2196 		if (!is_boot_cpu) {
2197 			/* If available, use WG to set top bits of EBASE */
2198 			if (cpu_has_ebase_wg) {
2199 #ifdef CONFIG_64BIT
2200 				write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2201 #else
2202 				write_c0_ebase(ebase | MIPS_EBASE_WG);
2203 #endif
2204 			}
2205 			write_c0_ebase(ebase);
2206 		}
2207 
2208 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2209 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2210 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2211 		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2212 		if (!cp0_fdc_irq)
2213 			cp0_fdc_irq = -1;
2214 
2215 	} else {
2216 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2217 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2218 		cp0_perfcount_irq = -1;
2219 		cp0_fdc_irq = -1;
2220 	}
2221 
2222 	if (!cpu_data[cpu].asid_cache)
2223 		cpu_data[cpu].asid_cache = asid_first_version(cpu);
2224 
2225 	mmgrab(&init_mm);
2226 	current->active_mm = &init_mm;
2227 	BUG_ON(current->mm);
2228 	enter_lazy_tlb(&init_mm, current);
2229 
2230 	/* Boot CPU's cache setup in setup_arch(). */
2231 	if (!is_boot_cpu)
2232 		cpu_cache_init();
2233 	tlb_init();
2234 	TLBMISS_HANDLER_SETUP();
2235 }
2236 
2237 /* Install CPU exception handler */
2238 void set_handler(unsigned long offset, void *addr, unsigned long size)
2239 {
2240 #ifdef CONFIG_CPU_MICROMIPS
2241 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2242 #else
2243 	memcpy((void *)(ebase + offset), addr, size);
2244 #endif
2245 	local_flush_icache_range(ebase + offset, ebase + offset + size);
2246 }
2247 
2248 static const char panic_null_cerr[] =
2249 	"Trying to set NULL cache error exception handler\n";
2250 
2251 /*
2252  * Install uncached CPU exception handler.
2253  * This is suitable only for the cache error exception which is the only
2254  * exception handler that is being run uncached.
2255  */
2256 void set_uncached_handler(unsigned long offset, void *addr,
2257 	unsigned long size)
2258 {
2259 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2260 
2261 	if (!addr)
2262 		panic(panic_null_cerr);
2263 
2264 	memcpy((void *)(uncached_ebase + offset), addr, size);
2265 }
2266 
2267 static int __initdata rdhwr_noopt;
2268 static int __init set_rdhwr_noopt(char *str)
2269 {
2270 	rdhwr_noopt = 1;
2271 	return 1;
2272 }
2273 
2274 __setup("rdhwr_noopt", set_rdhwr_noopt);
2275 
2276 void __init trap_init(void)
2277 {
2278 	extern char except_vec3_generic;
2279 	extern char except_vec4;
2280 	extern char except_vec3_r4000;
2281 	unsigned long i;
2282 
2283 	check_wait();
2284 
2285 	if (cpu_has_veic || cpu_has_vint) {
2286 		unsigned long size = 0x200 + VECTORSPACING*64;
2287 		phys_addr_t ebase_pa;
2288 
2289 		ebase = (unsigned long)
2290 			__alloc_bootmem(size, 1 << fls(size), 0);
2291 
2292 		/*
2293 		 * Try to ensure ebase resides in KSeg0 if possible.
2294 		 *
2295 		 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2296 		 * hitting a poorly defined exception base for Cache Errors.
2297 		 * The allocation is likely to be in the low 512MB of physical,
2298 		 * in which case we should be able to convert to KSeg0.
2299 		 *
2300 		 * EVA is special though as it allows segments to be rearranged
2301 		 * and to become uncached during cache error handling.
2302 		 */
2303 		ebase_pa = __pa(ebase);
2304 		if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2305 			ebase = CKSEG0ADDR(ebase_pa);
2306 	} else {
2307 		ebase = CAC_BASE;
2308 
2309 		if (cpu_has_mips_r2_r6) {
2310 			if (cpu_has_ebase_wg) {
2311 #ifdef CONFIG_64BIT
2312 				ebase = (read_c0_ebase_64() & ~0xfff);
2313 #else
2314 				ebase = (read_c0_ebase() & ~0xfff);
2315 #endif
2316 			} else {
2317 				ebase += (read_c0_ebase() & 0x3ffff000);
2318 			}
2319 		}
2320 	}
2321 
2322 	if (cpu_has_mmips) {
2323 		unsigned int config3 = read_c0_config3();
2324 
2325 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2326 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2327 		else
2328 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2329 	}
2330 
2331 	if (board_ebase_setup)
2332 		board_ebase_setup();
2333 	per_cpu_trap_init(true);
2334 
2335 	/*
2336 	 * Copy the generic exception handlers to their final destination.
2337 	 * This will be overridden later as suitable for a particular
2338 	 * configuration.
2339 	 */
2340 	set_handler(0x180, &except_vec3_generic, 0x80);
2341 
2342 	/*
2343 	 * Setup default vectors
2344 	 */
2345 	for (i = 0; i <= 31; i++)
2346 		set_except_vector(i, handle_reserved);
2347 
2348 	/*
2349 	 * Copy the EJTAG debug exception vector handler code to it's final
2350 	 * destination.
2351 	 */
2352 	if (cpu_has_ejtag && board_ejtag_handler_setup)
2353 		board_ejtag_handler_setup();
2354 
2355 	/*
2356 	 * Only some CPUs have the watch exceptions.
2357 	 */
2358 	if (cpu_has_watch)
2359 		set_except_vector(EXCCODE_WATCH, handle_watch);
2360 
2361 	/*
2362 	 * Initialise interrupt handlers
2363 	 */
2364 	if (cpu_has_veic || cpu_has_vint) {
2365 		int nvec = cpu_has_veic ? 64 : 8;
2366 		for (i = 0; i < nvec; i++)
2367 			set_vi_handler(i, NULL);
2368 	}
2369 	else if (cpu_has_divec)
2370 		set_handler(0x200, &except_vec4, 0x8);
2371 
2372 	/*
2373 	 * Some CPUs can enable/disable for cache parity detection, but does
2374 	 * it different ways.
2375 	 */
2376 	parity_protection_init();
2377 
2378 	/*
2379 	 * The Data Bus Errors / Instruction Bus Errors are signaled
2380 	 * by external hardware.  Therefore these two exceptions
2381 	 * may have board specific handlers.
2382 	 */
2383 	if (board_be_init)
2384 		board_be_init();
2385 
2386 	set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2387 					rollback_handle_int : handle_int);
2388 	set_except_vector(EXCCODE_MOD, handle_tlbm);
2389 	set_except_vector(EXCCODE_TLBL, handle_tlbl);
2390 	set_except_vector(EXCCODE_TLBS, handle_tlbs);
2391 
2392 	set_except_vector(EXCCODE_ADEL, handle_adel);
2393 	set_except_vector(EXCCODE_ADES, handle_ades);
2394 
2395 	set_except_vector(EXCCODE_IBE, handle_ibe);
2396 	set_except_vector(EXCCODE_DBE, handle_dbe);
2397 
2398 	set_except_vector(EXCCODE_SYS, handle_sys);
2399 	set_except_vector(EXCCODE_BP, handle_bp);
2400 
2401 	if (rdhwr_noopt)
2402 		set_except_vector(EXCCODE_RI, handle_ri);
2403 	else {
2404 		if (cpu_has_vtag_icache)
2405 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2406 		else if (current_cpu_type() == CPU_LOONGSON3)
2407 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2408 		else
2409 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2410 	}
2411 
2412 	set_except_vector(EXCCODE_CPU, handle_cpu);
2413 	set_except_vector(EXCCODE_OV, handle_ov);
2414 	set_except_vector(EXCCODE_TR, handle_tr);
2415 	set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2416 
2417 	if (board_nmi_handler_setup)
2418 		board_nmi_handler_setup();
2419 
2420 	if (cpu_has_fpu && !cpu_has_nofpuex)
2421 		set_except_vector(EXCCODE_FPE, handle_fpe);
2422 
2423 	set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2424 
2425 	if (cpu_has_rixiex) {
2426 		set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2427 		set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2428 	}
2429 
2430 	set_except_vector(EXCCODE_MSADIS, handle_msa);
2431 	set_except_vector(EXCCODE_MDMX, handle_mdmx);
2432 
2433 	if (cpu_has_mcheck)
2434 		set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2435 
2436 	if (cpu_has_mipsmt)
2437 		set_except_vector(EXCCODE_THREAD, handle_mt);
2438 
2439 	set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2440 
2441 	if (board_cache_error_setup)
2442 		board_cache_error_setup();
2443 
2444 	if (cpu_has_vce)
2445 		/* Special exception: R4[04]00 uses also the divec space. */
2446 		set_handler(0x180, &except_vec3_r4000, 0x100);
2447 	else if (cpu_has_4kex)
2448 		set_handler(0x180, &except_vec3_generic, 0x80);
2449 	else
2450 		set_handler(0x080, &except_vec3_generic, 0x80);
2451 
2452 	local_flush_icache_range(ebase, ebase + 0x400);
2453 
2454 	sort_extable(__start___dbe_table, __stop___dbe_table);
2455 
2456 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2457 }
2458 
2459 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2460 			    void *v)
2461 {
2462 	switch (cmd) {
2463 	case CPU_PM_ENTER_FAILED:
2464 	case CPU_PM_EXIT:
2465 		configure_status();
2466 		configure_hwrena();
2467 		configure_exception_vector();
2468 
2469 		/* Restore register with CPU number for TLB handlers */
2470 		TLBMISS_HANDLER_RESTORE();
2471 
2472 		break;
2473 	}
2474 
2475 	return NOTIFY_OK;
2476 }
2477 
2478 static struct notifier_block trap_pm_notifier_block = {
2479 	.notifier_call = trap_pm_notifier,
2480 };
2481 
2482 static int __init trap_pm_init(void)
2483 {
2484 	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2485 }
2486 arch_initcall(trap_pm_init);
2487