1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle 7 * Copyright (C) 1995, 1996 Paul M. Antoine 8 * Copyright (C) 1998 Ulf Carlsson 9 * Copyright (C) 1999 Silicon Graphics, Inc. 10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki 12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved. 13 * Copyright (C) 2014, Imagination Technologies Ltd. 14 */ 15 #include <linux/bitops.h> 16 #include <linux/bug.h> 17 #include <linux/compiler.h> 18 #include <linux/context_tracking.h> 19 #include <linux/cpu_pm.h> 20 #include <linux/kexec.h> 21 #include <linux/init.h> 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/mm.h> 25 #include <linux/sched.h> 26 #include <linux/smp.h> 27 #include <linux/spinlock.h> 28 #include <linux/kallsyms.h> 29 #include <linux/bootmem.h> 30 #include <linux/interrupt.h> 31 #include <linux/ptrace.h> 32 #include <linux/kgdb.h> 33 #include <linux/kdebug.h> 34 #include <linux/kprobes.h> 35 #include <linux/notifier.h> 36 #include <linux/kdb.h> 37 #include <linux/irq.h> 38 #include <linux/perf_event.h> 39 40 #include <asm/addrspace.h> 41 #include <asm/bootinfo.h> 42 #include <asm/branch.h> 43 #include <asm/break.h> 44 #include <asm/cop2.h> 45 #include <asm/cpu.h> 46 #include <asm/cpu-type.h> 47 #include <asm/dsp.h> 48 #include <asm/fpu.h> 49 #include <asm/fpu_emulator.h> 50 #include <asm/idle.h> 51 #include <asm/mips-r2-to-r6-emul.h> 52 #include <asm/mipsregs.h> 53 #include <asm/mipsmtregs.h> 54 #include <asm/module.h> 55 #include <asm/msa.h> 56 #include <asm/pgtable.h> 57 #include <asm/ptrace.h> 58 #include <asm/sections.h> 59 #include <asm/siginfo.h> 60 #include <asm/tlbdebug.h> 61 #include <asm/traps.h> 62 #include <asm/uaccess.h> 63 #include <asm/watch.h> 64 #include <asm/mmu_context.h> 65 #include <asm/types.h> 66 #include <asm/stacktrace.h> 67 #include <asm/uasm.h> 68 69 extern void check_wait(void); 70 extern asmlinkage void rollback_handle_int(void); 71 extern asmlinkage void handle_int(void); 72 extern u32 handle_tlbl[]; 73 extern u32 handle_tlbs[]; 74 extern u32 handle_tlbm[]; 75 extern asmlinkage void handle_adel(void); 76 extern asmlinkage void handle_ades(void); 77 extern asmlinkage void handle_ibe(void); 78 extern asmlinkage void handle_dbe(void); 79 extern asmlinkage void handle_sys(void); 80 extern asmlinkage void handle_bp(void); 81 extern asmlinkage void handle_ri(void); 82 extern asmlinkage void handle_ri_rdhwr_vivt(void); 83 extern asmlinkage void handle_ri_rdhwr(void); 84 extern asmlinkage void handle_cpu(void); 85 extern asmlinkage void handle_ov(void); 86 extern asmlinkage void handle_tr(void); 87 extern asmlinkage void handle_msa_fpe(void); 88 extern asmlinkage void handle_fpe(void); 89 extern asmlinkage void handle_ftlb(void); 90 extern asmlinkage void handle_msa(void); 91 extern asmlinkage void handle_mdmx(void); 92 extern asmlinkage void handle_watch(void); 93 extern asmlinkage void handle_mt(void); 94 extern asmlinkage void handle_dsp(void); 95 extern asmlinkage void handle_mcheck(void); 96 extern asmlinkage void handle_reserved(void); 97 extern void tlb_do_page_fault_0(void); 98 99 void (*board_be_init)(void); 100 int (*board_be_handler)(struct pt_regs *regs, int is_fixup); 101 void (*board_nmi_handler_setup)(void); 102 void (*board_ejtag_handler_setup)(void); 103 void (*board_bind_eic_interrupt)(int irq, int regset); 104 void (*board_ebase_setup)(void); 105 void(*board_cache_error_setup)(void); 106 107 static void show_raw_backtrace(unsigned long reg29) 108 { 109 unsigned long *sp = (unsigned long *)(reg29 & ~3); 110 unsigned long addr; 111 112 printk("Call Trace:"); 113 #ifdef CONFIG_KALLSYMS 114 printk("\n"); 115 #endif 116 while (!kstack_end(sp)) { 117 unsigned long __user *p = 118 (unsigned long __user *)(unsigned long)sp++; 119 if (__get_user(addr, p)) { 120 printk(" (Bad stack address)"); 121 break; 122 } 123 if (__kernel_text_address(addr)) 124 print_ip_sym(addr); 125 } 126 printk("\n"); 127 } 128 129 #ifdef CONFIG_KALLSYMS 130 int raw_show_trace; 131 static int __init set_raw_show_trace(char *str) 132 { 133 raw_show_trace = 1; 134 return 1; 135 } 136 __setup("raw_show_trace", set_raw_show_trace); 137 #endif 138 139 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs) 140 { 141 unsigned long sp = regs->regs[29]; 142 unsigned long ra = regs->regs[31]; 143 unsigned long pc = regs->cp0_epc; 144 145 if (!task) 146 task = current; 147 148 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) { 149 show_raw_backtrace(sp); 150 return; 151 } 152 printk("Call Trace:\n"); 153 do { 154 print_ip_sym(pc); 155 pc = unwind_stack(task, &sp, pc, &ra); 156 } while (pc); 157 printk("\n"); 158 } 159 160 /* 161 * This routine abuses get_user()/put_user() to reference pointers 162 * with at least a bit of error checking ... 163 */ 164 static void show_stacktrace(struct task_struct *task, 165 const struct pt_regs *regs) 166 { 167 const int field = 2 * sizeof(unsigned long); 168 long stackdata; 169 int i; 170 unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; 171 172 printk("Stack :"); 173 i = 0; 174 while ((unsigned long) sp & (PAGE_SIZE - 1)) { 175 if (i && ((i % (64 / field)) == 0)) 176 printk("\n "); 177 if (i > 39) { 178 printk(" ..."); 179 break; 180 } 181 182 if (__get_user(stackdata, sp++)) { 183 printk(" (Bad stack address)"); 184 break; 185 } 186 187 printk(" %0*lx", field, stackdata); 188 i++; 189 } 190 printk("\n"); 191 show_backtrace(task, regs); 192 } 193 194 void show_stack(struct task_struct *task, unsigned long *sp) 195 { 196 struct pt_regs regs; 197 mm_segment_t old_fs = get_fs(); 198 if (sp) { 199 regs.regs[29] = (unsigned long)sp; 200 regs.regs[31] = 0; 201 regs.cp0_epc = 0; 202 } else { 203 if (task && task != current) { 204 regs.regs[29] = task->thread.reg29; 205 regs.regs[31] = 0; 206 regs.cp0_epc = task->thread.reg31; 207 #ifdef CONFIG_KGDB_KDB 208 } else if (atomic_read(&kgdb_active) != -1 && 209 kdb_current_regs) { 210 memcpy(®s, kdb_current_regs, sizeof(regs)); 211 #endif /* CONFIG_KGDB_KDB */ 212 } else { 213 prepare_frametrace(®s); 214 } 215 } 216 /* 217 * show_stack() deals exclusively with kernel mode, so be sure to access 218 * the stack in the kernel (not user) address space. 219 */ 220 set_fs(KERNEL_DS); 221 show_stacktrace(task, ®s); 222 set_fs(old_fs); 223 } 224 225 static void show_code(unsigned int __user *pc) 226 { 227 long i; 228 unsigned short __user *pc16 = NULL; 229 230 printk("\nCode:"); 231 232 if ((unsigned long)pc & 1) 233 pc16 = (unsigned short __user *)((unsigned long)pc & ~1); 234 for(i = -3 ; i < 6 ; i++) { 235 unsigned int insn; 236 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { 237 printk(" (Bad address in epc)\n"); 238 break; 239 } 240 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); 241 } 242 } 243 244 static void __show_regs(const struct pt_regs *regs) 245 { 246 const int field = 2 * sizeof(unsigned long); 247 unsigned int cause = regs->cp0_cause; 248 unsigned int exccode; 249 int i; 250 251 show_regs_print_info(KERN_DEFAULT); 252 253 /* 254 * Saved main processor registers 255 */ 256 for (i = 0; i < 32; ) { 257 if ((i % 4) == 0) 258 printk("$%2d :", i); 259 if (i == 0) 260 printk(" %0*lx", field, 0UL); 261 else if (i == 26 || i == 27) 262 printk(" %*s", field, ""); 263 else 264 printk(" %0*lx", field, regs->regs[i]); 265 266 i++; 267 if ((i % 4) == 0) 268 printk("\n"); 269 } 270 271 #ifdef CONFIG_CPU_HAS_SMARTMIPS 272 printk("Acx : %0*lx\n", field, regs->acx); 273 #endif 274 printk("Hi : %0*lx\n", field, regs->hi); 275 printk("Lo : %0*lx\n", field, regs->lo); 276 277 /* 278 * Saved cp0 registers 279 */ 280 printk("epc : %0*lx %pS\n", field, regs->cp0_epc, 281 (void *) regs->cp0_epc); 282 printk("ra : %0*lx %pS\n", field, regs->regs[31], 283 (void *) regs->regs[31]); 284 285 printk("Status: %08x ", (uint32_t) regs->cp0_status); 286 287 if (cpu_has_3kex) { 288 if (regs->cp0_status & ST0_KUO) 289 printk("KUo "); 290 if (regs->cp0_status & ST0_IEO) 291 printk("IEo "); 292 if (regs->cp0_status & ST0_KUP) 293 printk("KUp "); 294 if (regs->cp0_status & ST0_IEP) 295 printk("IEp "); 296 if (regs->cp0_status & ST0_KUC) 297 printk("KUc "); 298 if (regs->cp0_status & ST0_IEC) 299 printk("IEc "); 300 } else if (cpu_has_4kex) { 301 if (regs->cp0_status & ST0_KX) 302 printk("KX "); 303 if (regs->cp0_status & ST0_SX) 304 printk("SX "); 305 if (regs->cp0_status & ST0_UX) 306 printk("UX "); 307 switch (regs->cp0_status & ST0_KSU) { 308 case KSU_USER: 309 printk("USER "); 310 break; 311 case KSU_SUPERVISOR: 312 printk("SUPERVISOR "); 313 break; 314 case KSU_KERNEL: 315 printk("KERNEL "); 316 break; 317 default: 318 printk("BAD_MODE "); 319 break; 320 } 321 if (regs->cp0_status & ST0_ERL) 322 printk("ERL "); 323 if (regs->cp0_status & ST0_EXL) 324 printk("EXL "); 325 if (regs->cp0_status & ST0_IE) 326 printk("IE "); 327 } 328 printk("\n"); 329 330 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; 331 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode); 332 333 if (1 <= exccode && exccode <= 5) 334 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); 335 336 printk("PrId : %08x (%s)\n", read_c0_prid(), 337 cpu_name_string()); 338 } 339 340 /* 341 * FIXME: really the generic show_regs should take a const pointer argument. 342 */ 343 void show_regs(struct pt_regs *regs) 344 { 345 __show_regs((struct pt_regs *)regs); 346 } 347 348 void show_registers(struct pt_regs *regs) 349 { 350 const int field = 2 * sizeof(unsigned long); 351 mm_segment_t old_fs = get_fs(); 352 353 __show_regs(regs); 354 print_modules(); 355 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", 356 current->comm, current->pid, current_thread_info(), current, 357 field, current_thread_info()->tp_value); 358 if (cpu_has_userlocal) { 359 unsigned long tls; 360 361 tls = read_c0_userlocal(); 362 if (tls != current_thread_info()->tp_value) 363 printk("*HwTLS: %0*lx\n", field, tls); 364 } 365 366 if (!user_mode(regs)) 367 /* Necessary for getting the correct stack content */ 368 set_fs(KERNEL_DS); 369 show_stacktrace(current, regs); 370 show_code((unsigned int __user *) regs->cp0_epc); 371 printk("\n"); 372 set_fs(old_fs); 373 } 374 375 static DEFINE_RAW_SPINLOCK(die_lock); 376 377 void __noreturn die(const char *str, struct pt_regs *regs) 378 { 379 static int die_counter; 380 int sig = SIGSEGV; 381 382 oops_enter(); 383 384 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr, 385 SIGSEGV) == NOTIFY_STOP) 386 sig = 0; 387 388 console_verbose(); 389 raw_spin_lock_irq(&die_lock); 390 bust_spinlocks(1); 391 392 printk("%s[#%d]:\n", str, ++die_counter); 393 show_registers(regs); 394 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 395 raw_spin_unlock_irq(&die_lock); 396 397 oops_exit(); 398 399 if (in_interrupt()) 400 panic("Fatal exception in interrupt"); 401 402 if (panic_on_oops) 403 panic("Fatal exception"); 404 405 if (regs && kexec_should_crash(current)) 406 crash_kexec(regs); 407 408 do_exit(sig); 409 } 410 411 extern struct exception_table_entry __start___dbe_table[]; 412 extern struct exception_table_entry __stop___dbe_table[]; 413 414 __asm__( 415 " .section __dbe_table, \"a\"\n" 416 " .previous \n"); 417 418 /* Given an address, look for it in the exception tables. */ 419 static const struct exception_table_entry *search_dbe_tables(unsigned long addr) 420 { 421 const struct exception_table_entry *e; 422 423 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr); 424 if (!e) 425 e = search_module_dbetables(addr); 426 return e; 427 } 428 429 asmlinkage void do_be(struct pt_regs *regs) 430 { 431 const int field = 2 * sizeof(unsigned long); 432 const struct exception_table_entry *fixup = NULL; 433 int data = regs->cp0_cause & 4; 434 int action = MIPS_BE_FATAL; 435 enum ctx_state prev_state; 436 437 prev_state = exception_enter(); 438 /* XXX For now. Fixme, this searches the wrong table ... */ 439 if (data && !user_mode(regs)) 440 fixup = search_dbe_tables(exception_epc(regs)); 441 442 if (fixup) 443 action = MIPS_BE_FIXUP; 444 445 if (board_be_handler) 446 action = board_be_handler(regs, fixup != NULL); 447 448 switch (action) { 449 case MIPS_BE_DISCARD: 450 goto out; 451 case MIPS_BE_FIXUP: 452 if (fixup) { 453 regs->cp0_epc = fixup->nextinsn; 454 goto out; 455 } 456 break; 457 default: 458 break; 459 } 460 461 /* 462 * Assume it would be too dangerous to continue ... 463 */ 464 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", 465 data ? "Data" : "Instruction", 466 field, regs->cp0_epc, field, regs->regs[31]); 467 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr, 468 SIGBUS) == NOTIFY_STOP) 469 goto out; 470 471 die_if_kernel("Oops", regs); 472 force_sig(SIGBUS, current); 473 474 out: 475 exception_exit(prev_state); 476 } 477 478 /* 479 * ll/sc, rdhwr, sync emulation 480 */ 481 482 #define OPCODE 0xfc000000 483 #define BASE 0x03e00000 484 #define RT 0x001f0000 485 #define OFFSET 0x0000ffff 486 #define LL 0xc0000000 487 #define SC 0xe0000000 488 #define SPEC0 0x00000000 489 #define SPEC3 0x7c000000 490 #define RD 0x0000f800 491 #define FUNC 0x0000003f 492 #define SYNC 0x0000000f 493 #define RDHWR 0x0000003b 494 495 /* microMIPS definitions */ 496 #define MM_POOL32A_FUNC 0xfc00ffff 497 #define MM_RDHWR 0x00006b3c 498 #define MM_RS 0x001f0000 499 #define MM_RT 0x03e00000 500 501 /* 502 * The ll_bit is cleared by r*_switch.S 503 */ 504 505 unsigned int ll_bit; 506 struct task_struct *ll_task; 507 508 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) 509 { 510 unsigned long value, __user *vaddr; 511 long offset; 512 513 /* 514 * analyse the ll instruction that just caused a ri exception 515 * and put the referenced address to addr. 516 */ 517 518 /* sign extend offset */ 519 offset = opcode & OFFSET; 520 offset <<= 16; 521 offset >>= 16; 522 523 vaddr = (unsigned long __user *) 524 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 525 526 if ((unsigned long)vaddr & 3) 527 return SIGBUS; 528 if (get_user(value, vaddr)) 529 return SIGSEGV; 530 531 preempt_disable(); 532 533 if (ll_task == NULL || ll_task == current) { 534 ll_bit = 1; 535 } else { 536 ll_bit = 0; 537 } 538 ll_task = current; 539 540 preempt_enable(); 541 542 regs->regs[(opcode & RT) >> 16] = value; 543 544 return 0; 545 } 546 547 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) 548 { 549 unsigned long __user *vaddr; 550 unsigned long reg; 551 long offset; 552 553 /* 554 * analyse the sc instruction that just caused a ri exception 555 * and put the referenced address to addr. 556 */ 557 558 /* sign extend offset */ 559 offset = opcode & OFFSET; 560 offset <<= 16; 561 offset >>= 16; 562 563 vaddr = (unsigned long __user *) 564 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 565 reg = (opcode & RT) >> 16; 566 567 if ((unsigned long)vaddr & 3) 568 return SIGBUS; 569 570 preempt_disable(); 571 572 if (ll_bit == 0 || ll_task != current) { 573 regs->regs[reg] = 0; 574 preempt_enable(); 575 return 0; 576 } 577 578 preempt_enable(); 579 580 if (put_user(regs->regs[reg], vaddr)) 581 return SIGSEGV; 582 583 regs->regs[reg] = 1; 584 585 return 0; 586 } 587 588 /* 589 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both 590 * opcodes are supposed to result in coprocessor unusable exceptions if 591 * executed on ll/sc-less processors. That's the theory. In practice a 592 * few processors such as NEC's VR4100 throw reserved instruction exceptions 593 * instead, so we're doing the emulation thing in both exception handlers. 594 */ 595 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) 596 { 597 if ((opcode & OPCODE) == LL) { 598 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 599 1, regs, 0); 600 return simulate_ll(regs, opcode); 601 } 602 if ((opcode & OPCODE) == SC) { 603 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 604 1, regs, 0); 605 return simulate_sc(regs, opcode); 606 } 607 608 return -1; /* Must be something else ... */ 609 } 610 611 /* 612 * Simulate trapping 'rdhwr' instructions to provide user accessible 613 * registers not implemented in hardware. 614 */ 615 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt) 616 { 617 struct thread_info *ti = task_thread_info(current); 618 619 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 620 1, regs, 0); 621 switch (rd) { 622 case MIPS_HWR_CPUNUM: /* CPU number */ 623 regs->regs[rt] = smp_processor_id(); 624 return 0; 625 case MIPS_HWR_SYNCISTEP: /* SYNCI length */ 626 regs->regs[rt] = min(current_cpu_data.dcache.linesz, 627 current_cpu_data.icache.linesz); 628 return 0; 629 case MIPS_HWR_CC: /* Read count register */ 630 regs->regs[rt] = read_c0_count(); 631 return 0; 632 case MIPS_HWR_CCRES: /* Count register resolution */ 633 switch (current_cpu_type()) { 634 case CPU_20KC: 635 case CPU_25KF: 636 regs->regs[rt] = 1; 637 break; 638 default: 639 regs->regs[rt] = 2; 640 } 641 return 0; 642 case MIPS_HWR_ULR: /* Read UserLocal register */ 643 regs->regs[rt] = ti->tp_value; 644 return 0; 645 default: 646 return -1; 647 } 648 } 649 650 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode) 651 { 652 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { 653 int rd = (opcode & RD) >> 11; 654 int rt = (opcode & RT) >> 16; 655 656 simulate_rdhwr(regs, rd, rt); 657 return 0; 658 } 659 660 /* Not ours. */ 661 return -1; 662 } 663 664 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode) 665 { 666 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) { 667 int rd = (opcode & MM_RS) >> 16; 668 int rt = (opcode & MM_RT) >> 21; 669 simulate_rdhwr(regs, rd, rt); 670 return 0; 671 } 672 673 /* Not ours. */ 674 return -1; 675 } 676 677 static int simulate_sync(struct pt_regs *regs, unsigned int opcode) 678 { 679 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) { 680 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 681 1, regs, 0); 682 return 0; 683 } 684 685 return -1; /* Must be something else ... */ 686 } 687 688 asmlinkage void do_ov(struct pt_regs *regs) 689 { 690 enum ctx_state prev_state; 691 siginfo_t info = { 692 .si_signo = SIGFPE, 693 .si_code = FPE_INTOVF, 694 .si_addr = (void __user *)regs->cp0_epc, 695 }; 696 697 prev_state = exception_enter(); 698 die_if_kernel("Integer overflow", regs); 699 700 force_sig_info(SIGFPE, &info, current); 701 exception_exit(prev_state); 702 } 703 704 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31) 705 { 706 struct siginfo si = { 0 }; 707 struct vm_area_struct *vma; 708 709 switch (sig) { 710 case 0: 711 return 0; 712 713 case SIGFPE: 714 si.si_addr = fault_addr; 715 si.si_signo = sig; 716 /* 717 * Inexact can happen together with Overflow or Underflow. 718 * Respect the mask to deliver the correct exception. 719 */ 720 fcr31 &= (fcr31 & FPU_CSR_ALL_E) << 721 (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E)); 722 if (fcr31 & FPU_CSR_INV_X) 723 si.si_code = FPE_FLTINV; 724 else if (fcr31 & FPU_CSR_DIV_X) 725 si.si_code = FPE_FLTDIV; 726 else if (fcr31 & FPU_CSR_OVF_X) 727 si.si_code = FPE_FLTOVF; 728 else if (fcr31 & FPU_CSR_UDF_X) 729 si.si_code = FPE_FLTUND; 730 else if (fcr31 & FPU_CSR_INE_X) 731 si.si_code = FPE_FLTRES; 732 else 733 si.si_code = __SI_FAULT; 734 force_sig_info(sig, &si, current); 735 return 1; 736 737 case SIGBUS: 738 si.si_addr = fault_addr; 739 si.si_signo = sig; 740 si.si_code = BUS_ADRERR; 741 force_sig_info(sig, &si, current); 742 return 1; 743 744 case SIGSEGV: 745 si.si_addr = fault_addr; 746 si.si_signo = sig; 747 down_read(¤t->mm->mmap_sem); 748 vma = find_vma(current->mm, (unsigned long)fault_addr); 749 if (vma && (vma->vm_start <= (unsigned long)fault_addr)) 750 si.si_code = SEGV_ACCERR; 751 else 752 si.si_code = SEGV_MAPERR; 753 up_read(¤t->mm->mmap_sem); 754 force_sig_info(sig, &si, current); 755 return 1; 756 757 default: 758 force_sig(sig, current); 759 return 1; 760 } 761 } 762 763 static int simulate_fp(struct pt_regs *regs, unsigned int opcode, 764 unsigned long old_epc, unsigned long old_ra) 765 { 766 union mips_instruction inst = { .word = opcode }; 767 void __user *fault_addr; 768 unsigned long fcr31; 769 int sig; 770 771 /* If it's obviously not an FP instruction, skip it */ 772 switch (inst.i_format.opcode) { 773 case cop1_op: 774 case cop1x_op: 775 case lwc1_op: 776 case ldc1_op: 777 case swc1_op: 778 case sdc1_op: 779 break; 780 781 default: 782 return -1; 783 } 784 785 /* 786 * do_ri skipped over the instruction via compute_return_epc, undo 787 * that for the FPU emulator. 788 */ 789 regs->cp0_epc = old_epc; 790 regs->regs[31] = old_ra; 791 792 /* Save the FP context to struct thread_struct */ 793 lose_fpu(1); 794 795 /* Run the emulator */ 796 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 797 &fault_addr); 798 fcr31 = current->thread.fpu.fcr31; 799 800 /* 801 * We can't allow the emulated instruction to leave any of 802 * the cause bits set in $fcr31. 803 */ 804 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 805 806 /* Restore the hardware register state */ 807 own_fpu(1); 808 809 /* Send a signal if required. */ 810 process_fpemu_return(sig, fault_addr, fcr31); 811 812 return 0; 813 } 814 815 /* 816 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX 817 */ 818 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) 819 { 820 enum ctx_state prev_state; 821 void __user *fault_addr; 822 int sig; 823 824 prev_state = exception_enter(); 825 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr, 826 SIGFPE) == NOTIFY_STOP) 827 goto out; 828 829 /* Clear FCSR.Cause before enabling interrupts */ 830 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X); 831 local_irq_enable(); 832 833 die_if_kernel("FP exception in kernel code", regs); 834 835 if (fcr31 & FPU_CSR_UNI_X) { 836 /* 837 * Unimplemented operation exception. If we've got the full 838 * software emulator on-board, let's use it... 839 * 840 * Force FPU to dump state into task/thread context. We're 841 * moving a lot of data here for what is probably a single 842 * instruction, but the alternative is to pre-decode the FP 843 * register operands before invoking the emulator, which seems 844 * a bit extreme for what should be an infrequent event. 845 */ 846 /* Ensure 'resume' not overwrite saved fp context again. */ 847 lose_fpu(1); 848 849 /* Run the emulator */ 850 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 851 &fault_addr); 852 fcr31 = current->thread.fpu.fcr31; 853 854 /* 855 * We can't allow the emulated instruction to leave any of 856 * the cause bits set in $fcr31. 857 */ 858 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 859 860 /* Restore the hardware register state */ 861 own_fpu(1); /* Using the FPU again. */ 862 } else { 863 sig = SIGFPE; 864 fault_addr = (void __user *) regs->cp0_epc; 865 } 866 867 /* Send a signal if required. */ 868 process_fpemu_return(sig, fault_addr, fcr31); 869 870 out: 871 exception_exit(prev_state); 872 } 873 874 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code, 875 const char *str) 876 { 877 siginfo_t info = { 0 }; 878 char b[40]; 879 880 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 881 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr, 882 SIGTRAP) == NOTIFY_STOP) 883 return; 884 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 885 886 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr, 887 SIGTRAP) == NOTIFY_STOP) 888 return; 889 890 /* 891 * A short test says that IRIX 5.3 sends SIGTRAP for all trap 892 * insns, even for trap and break codes that indicate arithmetic 893 * failures. Weird ... 894 * But should we continue the brokenness??? --macro 895 */ 896 switch (code) { 897 case BRK_OVERFLOW: 898 case BRK_DIVZERO: 899 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 900 die_if_kernel(b, regs); 901 if (code == BRK_DIVZERO) 902 info.si_code = FPE_INTDIV; 903 else 904 info.si_code = FPE_INTOVF; 905 info.si_signo = SIGFPE; 906 info.si_addr = (void __user *) regs->cp0_epc; 907 force_sig_info(SIGFPE, &info, current); 908 break; 909 case BRK_BUG: 910 die_if_kernel("Kernel bug detected", regs); 911 force_sig(SIGTRAP, current); 912 break; 913 case BRK_MEMU: 914 /* 915 * This breakpoint code is used by the FPU emulator to retake 916 * control of the CPU after executing the instruction from the 917 * delay slot of an emulated branch. 918 * 919 * Terminate if exception was recognized as a delay slot return 920 * otherwise handle as normal. 921 */ 922 if (do_dsemulret(regs)) 923 return; 924 925 die_if_kernel("Math emu break/trap", regs); 926 force_sig(SIGTRAP, current); 927 break; 928 default: 929 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 930 die_if_kernel(b, regs); 931 if (si_code) { 932 info.si_signo = SIGTRAP; 933 info.si_code = si_code; 934 force_sig_info(SIGTRAP, &info, current); 935 } else { 936 force_sig(SIGTRAP, current); 937 } 938 } 939 } 940 941 asmlinkage void do_bp(struct pt_regs *regs) 942 { 943 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 944 unsigned int opcode, bcode; 945 enum ctx_state prev_state; 946 mm_segment_t seg; 947 948 seg = get_fs(); 949 if (!user_mode(regs)) 950 set_fs(KERNEL_DS); 951 952 prev_state = exception_enter(); 953 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 954 if (get_isa16_mode(regs->cp0_epc)) { 955 u16 instr[2]; 956 957 if (__get_user(instr[0], (u16 __user *)epc)) 958 goto out_sigsegv; 959 960 if (!cpu_has_mmips) { 961 /* MIPS16e mode */ 962 bcode = (instr[0] >> 5) & 0x3f; 963 } else if (mm_insn_16bit(instr[0])) { 964 /* 16-bit microMIPS BREAK */ 965 bcode = instr[0] & 0xf; 966 } else { 967 /* 32-bit microMIPS BREAK */ 968 if (__get_user(instr[1], (u16 __user *)(epc + 2))) 969 goto out_sigsegv; 970 opcode = (instr[0] << 16) | instr[1]; 971 bcode = (opcode >> 6) & ((1 << 20) - 1); 972 } 973 } else { 974 if (__get_user(opcode, (unsigned int __user *)epc)) 975 goto out_sigsegv; 976 bcode = (opcode >> 6) & ((1 << 20) - 1); 977 } 978 979 /* 980 * There is the ancient bug in the MIPS assemblers that the break 981 * code starts left to bit 16 instead to bit 6 in the opcode. 982 * Gas is bug-compatible, but not always, grrr... 983 * We handle both cases with a simple heuristics. --macro 984 */ 985 if (bcode >= (1 << 10)) 986 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10); 987 988 /* 989 * notify the kprobe handlers, if instruction is likely to 990 * pertain to them. 991 */ 992 switch (bcode) { 993 case BRK_UPROBE: 994 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode, 995 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 996 goto out; 997 else 998 break; 999 case BRK_UPROBE_XOL: 1000 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode, 1001 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1002 goto out; 1003 else 1004 break; 1005 case BRK_KPROBE_BP: 1006 if (notify_die(DIE_BREAK, "debug", regs, bcode, 1007 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1008 goto out; 1009 else 1010 break; 1011 case BRK_KPROBE_SSTEPBP: 1012 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, 1013 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1014 goto out; 1015 else 1016 break; 1017 default: 1018 break; 1019 } 1020 1021 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break"); 1022 1023 out: 1024 set_fs(seg); 1025 exception_exit(prev_state); 1026 return; 1027 1028 out_sigsegv: 1029 force_sig(SIGSEGV, current); 1030 goto out; 1031 } 1032 1033 asmlinkage void do_tr(struct pt_regs *regs) 1034 { 1035 u32 opcode, tcode = 0; 1036 enum ctx_state prev_state; 1037 u16 instr[2]; 1038 mm_segment_t seg; 1039 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 1040 1041 seg = get_fs(); 1042 if (!user_mode(regs)) 1043 set_fs(get_ds()); 1044 1045 prev_state = exception_enter(); 1046 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1047 if (get_isa16_mode(regs->cp0_epc)) { 1048 if (__get_user(instr[0], (u16 __user *)(epc + 0)) || 1049 __get_user(instr[1], (u16 __user *)(epc + 2))) 1050 goto out_sigsegv; 1051 opcode = (instr[0] << 16) | instr[1]; 1052 /* Immediate versions don't provide a code. */ 1053 if (!(opcode & OPCODE)) 1054 tcode = (opcode >> 12) & ((1 << 4) - 1); 1055 } else { 1056 if (__get_user(opcode, (u32 __user *)epc)) 1057 goto out_sigsegv; 1058 /* Immediate versions don't provide a code. */ 1059 if (!(opcode & OPCODE)) 1060 tcode = (opcode >> 6) & ((1 << 10) - 1); 1061 } 1062 1063 do_trap_or_bp(regs, tcode, 0, "Trap"); 1064 1065 out: 1066 set_fs(seg); 1067 exception_exit(prev_state); 1068 return; 1069 1070 out_sigsegv: 1071 force_sig(SIGSEGV, current); 1072 goto out; 1073 } 1074 1075 asmlinkage void do_ri(struct pt_regs *regs) 1076 { 1077 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); 1078 unsigned long old_epc = regs->cp0_epc; 1079 unsigned long old31 = regs->regs[31]; 1080 enum ctx_state prev_state; 1081 unsigned int opcode = 0; 1082 int status = -1; 1083 1084 /* 1085 * Avoid any kernel code. Just emulate the R2 instruction 1086 * as quickly as possible. 1087 */ 1088 if (mipsr2_emulation && cpu_has_mips_r6 && 1089 likely(user_mode(regs)) && 1090 likely(get_user(opcode, epc) >= 0)) { 1091 unsigned long fcr31 = 0; 1092 1093 status = mipsr2_decoder(regs, opcode, &fcr31); 1094 switch (status) { 1095 case 0: 1096 case SIGEMT: 1097 task_thread_info(current)->r2_emul_return = 1; 1098 return; 1099 case SIGILL: 1100 goto no_r2_instr; 1101 default: 1102 process_fpemu_return(status, 1103 ¤t->thread.cp0_baduaddr, 1104 fcr31); 1105 task_thread_info(current)->r2_emul_return = 1; 1106 return; 1107 } 1108 } 1109 1110 no_r2_instr: 1111 1112 prev_state = exception_enter(); 1113 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1114 1115 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr, 1116 SIGILL) == NOTIFY_STOP) 1117 goto out; 1118 1119 die_if_kernel("Reserved instruction in kernel code", regs); 1120 1121 if (unlikely(compute_return_epc(regs) < 0)) 1122 goto out; 1123 1124 if (!get_isa16_mode(regs->cp0_epc)) { 1125 if (unlikely(get_user(opcode, epc) < 0)) 1126 status = SIGSEGV; 1127 1128 if (!cpu_has_llsc && status < 0) 1129 status = simulate_llsc(regs, opcode); 1130 1131 if (status < 0) 1132 status = simulate_rdhwr_normal(regs, opcode); 1133 1134 if (status < 0) 1135 status = simulate_sync(regs, opcode); 1136 1137 if (status < 0) 1138 status = simulate_fp(regs, opcode, old_epc, old31); 1139 } else if (cpu_has_mmips) { 1140 unsigned short mmop[2] = { 0 }; 1141 1142 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0)) 1143 status = SIGSEGV; 1144 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0)) 1145 status = SIGSEGV; 1146 opcode = mmop[0]; 1147 opcode = (opcode << 16) | mmop[1]; 1148 1149 if (status < 0) 1150 status = simulate_rdhwr_mm(regs, opcode); 1151 } 1152 1153 if (status < 0) 1154 status = SIGILL; 1155 1156 if (unlikely(status > 0)) { 1157 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1158 regs->regs[31] = old31; 1159 force_sig(status, current); 1160 } 1161 1162 out: 1163 exception_exit(prev_state); 1164 } 1165 1166 /* 1167 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've 1168 * emulated more than some threshold number of instructions, force migration to 1169 * a "CPU" that has FP support. 1170 */ 1171 static void mt_ase_fp_affinity(void) 1172 { 1173 #ifdef CONFIG_MIPS_MT_FPAFF 1174 if (mt_fpemul_threshold > 0 && 1175 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { 1176 /* 1177 * If there's no FPU present, or if the application has already 1178 * restricted the allowed set to exclude any CPUs with FPUs, 1179 * we'll skip the procedure. 1180 */ 1181 if (cpumask_intersects(¤t->cpus_allowed, &mt_fpu_cpumask)) { 1182 cpumask_t tmask; 1183 1184 current->thread.user_cpus_allowed 1185 = current->cpus_allowed; 1186 cpumask_and(&tmask, ¤t->cpus_allowed, 1187 &mt_fpu_cpumask); 1188 set_cpus_allowed_ptr(current, &tmask); 1189 set_thread_flag(TIF_FPUBOUND); 1190 } 1191 } 1192 #endif /* CONFIG_MIPS_MT_FPAFF */ 1193 } 1194 1195 /* 1196 * No lock; only written during early bootup by CPU 0. 1197 */ 1198 static RAW_NOTIFIER_HEAD(cu2_chain); 1199 1200 int __ref register_cu2_notifier(struct notifier_block *nb) 1201 { 1202 return raw_notifier_chain_register(&cu2_chain, nb); 1203 } 1204 1205 int cu2_notifier_call_chain(unsigned long val, void *v) 1206 { 1207 return raw_notifier_call_chain(&cu2_chain, val, v); 1208 } 1209 1210 static int default_cu2_call(struct notifier_block *nfb, unsigned long action, 1211 void *data) 1212 { 1213 struct pt_regs *regs = data; 1214 1215 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid " 1216 "instruction", regs); 1217 force_sig(SIGILL, current); 1218 1219 return NOTIFY_OK; 1220 } 1221 1222 static int wait_on_fp_mode_switch(atomic_t *p) 1223 { 1224 /* 1225 * The FP mode for this task is currently being switched. That may 1226 * involve modifications to the format of this tasks FP context which 1227 * make it unsafe to proceed with execution for the moment. Instead, 1228 * schedule some other task. 1229 */ 1230 schedule(); 1231 return 0; 1232 } 1233 1234 static int enable_restore_fp_context(int msa) 1235 { 1236 int err, was_fpu_owner, prior_msa; 1237 1238 /* 1239 * If an FP mode switch is currently underway, wait for it to 1240 * complete before proceeding. 1241 */ 1242 wait_on_atomic_t(¤t->mm->context.fp_mode_switching, 1243 wait_on_fp_mode_switch, TASK_KILLABLE); 1244 1245 if (!used_math()) { 1246 /* First time FP context user. */ 1247 preempt_disable(); 1248 err = init_fpu(); 1249 if (msa && !err) { 1250 enable_msa(); 1251 init_msa_upper(); 1252 set_thread_flag(TIF_USEDMSA); 1253 set_thread_flag(TIF_MSA_CTX_LIVE); 1254 } 1255 preempt_enable(); 1256 if (!err) 1257 set_used_math(); 1258 return err; 1259 } 1260 1261 /* 1262 * This task has formerly used the FP context. 1263 * 1264 * If this thread has no live MSA vector context then we can simply 1265 * restore the scalar FP context. If it has live MSA vector context 1266 * (that is, it has or may have used MSA since last performing a 1267 * function call) then we'll need to restore the vector context. This 1268 * applies even if we're currently only executing a scalar FP 1269 * instruction. This is because if we were to later execute an MSA 1270 * instruction then we'd either have to: 1271 * 1272 * - Restore the vector context & clobber any registers modified by 1273 * scalar FP instructions between now & then. 1274 * 1275 * or 1276 * 1277 * - Not restore the vector context & lose the most significant bits 1278 * of all vector registers. 1279 * 1280 * Neither of those options is acceptable. We cannot restore the least 1281 * significant bits of the registers now & only restore the most 1282 * significant bits later because the most significant bits of any 1283 * vector registers whose aliased FP register is modified now will have 1284 * been zeroed. We'd have no way to know that when restoring the vector 1285 * context & thus may load an outdated value for the most significant 1286 * bits of a vector register. 1287 */ 1288 if (!msa && !thread_msa_context_live()) 1289 return own_fpu(1); 1290 1291 /* 1292 * This task is using or has previously used MSA. Thus we require 1293 * that Status.FR == 1. 1294 */ 1295 preempt_disable(); 1296 was_fpu_owner = is_fpu_owner(); 1297 err = own_fpu_inatomic(0); 1298 if (err) 1299 goto out; 1300 1301 enable_msa(); 1302 write_msa_csr(current->thread.fpu.msacsr); 1303 set_thread_flag(TIF_USEDMSA); 1304 1305 /* 1306 * If this is the first time that the task is using MSA and it has 1307 * previously used scalar FP in this time slice then we already nave 1308 * FP context which we shouldn't clobber. We do however need to clear 1309 * the upper 64b of each vector register so that this task has no 1310 * opportunity to see data left behind by another. 1311 */ 1312 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE); 1313 if (!prior_msa && was_fpu_owner) { 1314 init_msa_upper(); 1315 1316 goto out; 1317 } 1318 1319 if (!prior_msa) { 1320 /* 1321 * Restore the least significant 64b of each vector register 1322 * from the existing scalar FP context. 1323 */ 1324 _restore_fp(current); 1325 1326 /* 1327 * The task has not formerly used MSA, so clear the upper 64b 1328 * of each vector register such that it cannot see data left 1329 * behind by another task. 1330 */ 1331 init_msa_upper(); 1332 } else { 1333 /* We need to restore the vector context. */ 1334 restore_msa(current); 1335 1336 /* Restore the scalar FP control & status register */ 1337 if (!was_fpu_owner) 1338 write_32bit_cp1_register(CP1_STATUS, 1339 current->thread.fpu.fcr31); 1340 } 1341 1342 out: 1343 preempt_enable(); 1344 1345 return 0; 1346 } 1347 1348 asmlinkage void do_cpu(struct pt_regs *regs) 1349 { 1350 enum ctx_state prev_state; 1351 unsigned int __user *epc; 1352 unsigned long old_epc, old31; 1353 void __user *fault_addr; 1354 unsigned int opcode; 1355 unsigned long fcr31; 1356 unsigned int cpid; 1357 int status, err; 1358 int sig; 1359 1360 prev_state = exception_enter(); 1361 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; 1362 1363 if (cpid != 2) 1364 die_if_kernel("do_cpu invoked from kernel context!", regs); 1365 1366 switch (cpid) { 1367 case 0: 1368 epc = (unsigned int __user *)exception_epc(regs); 1369 old_epc = regs->cp0_epc; 1370 old31 = regs->regs[31]; 1371 opcode = 0; 1372 status = -1; 1373 1374 if (unlikely(compute_return_epc(regs) < 0)) 1375 break; 1376 1377 if (!get_isa16_mode(regs->cp0_epc)) { 1378 if (unlikely(get_user(opcode, epc) < 0)) 1379 status = SIGSEGV; 1380 1381 if (!cpu_has_llsc && status < 0) 1382 status = simulate_llsc(regs, opcode); 1383 } 1384 1385 if (status < 0) 1386 status = SIGILL; 1387 1388 if (unlikely(status > 0)) { 1389 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1390 regs->regs[31] = old31; 1391 force_sig(status, current); 1392 } 1393 1394 break; 1395 1396 case 3: 1397 /* 1398 * The COP3 opcode space and consequently the CP0.Status.CU3 1399 * bit and the CP0.Cause.CE=3 encoding have been removed as 1400 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs 1401 * up the space has been reused for COP1X instructions, that 1402 * are enabled by the CP0.Status.CU1 bit and consequently 1403 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable 1404 * exceptions. Some FPU-less processors that implement one 1405 * of these ISAs however use this code erroneously for COP1X 1406 * instructions. Therefore we redirect this trap to the FP 1407 * emulator too. 1408 */ 1409 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) { 1410 force_sig(SIGILL, current); 1411 break; 1412 } 1413 /* Fall through. */ 1414 1415 case 1: 1416 err = enable_restore_fp_context(0); 1417 1418 if (raw_cpu_has_fpu && !err) 1419 break; 1420 1421 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0, 1422 &fault_addr); 1423 fcr31 = current->thread.fpu.fcr31; 1424 1425 /* 1426 * We can't allow the emulated instruction to leave 1427 * any of the cause bits set in $fcr31. 1428 */ 1429 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 1430 1431 /* Send a signal if required. */ 1432 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err) 1433 mt_ase_fp_affinity(); 1434 1435 break; 1436 1437 case 2: 1438 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); 1439 break; 1440 } 1441 1442 exception_exit(prev_state); 1443 } 1444 1445 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr) 1446 { 1447 enum ctx_state prev_state; 1448 1449 prev_state = exception_enter(); 1450 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1451 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0, 1452 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP) 1453 goto out; 1454 1455 /* Clear MSACSR.Cause before enabling interrupts */ 1456 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF); 1457 local_irq_enable(); 1458 1459 die_if_kernel("do_msa_fpe invoked from kernel context!", regs); 1460 force_sig(SIGFPE, current); 1461 out: 1462 exception_exit(prev_state); 1463 } 1464 1465 asmlinkage void do_msa(struct pt_regs *regs) 1466 { 1467 enum ctx_state prev_state; 1468 int err; 1469 1470 prev_state = exception_enter(); 1471 1472 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) { 1473 force_sig(SIGILL, current); 1474 goto out; 1475 } 1476 1477 die_if_kernel("do_msa invoked from kernel context!", regs); 1478 1479 err = enable_restore_fp_context(1); 1480 if (err) 1481 force_sig(SIGILL, current); 1482 out: 1483 exception_exit(prev_state); 1484 } 1485 1486 asmlinkage void do_mdmx(struct pt_regs *regs) 1487 { 1488 enum ctx_state prev_state; 1489 1490 prev_state = exception_enter(); 1491 force_sig(SIGILL, current); 1492 exception_exit(prev_state); 1493 } 1494 1495 /* 1496 * Called with interrupts disabled. 1497 */ 1498 asmlinkage void do_watch(struct pt_regs *regs) 1499 { 1500 siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT }; 1501 enum ctx_state prev_state; 1502 1503 prev_state = exception_enter(); 1504 /* 1505 * Clear WP (bit 22) bit of cause register so we don't loop 1506 * forever. 1507 */ 1508 clear_c0_cause(CAUSEF_WP); 1509 1510 /* 1511 * If the current thread has the watch registers loaded, save 1512 * their values and send SIGTRAP. Otherwise another thread 1513 * left the registers set, clear them and continue. 1514 */ 1515 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { 1516 mips_read_watch_registers(); 1517 local_irq_enable(); 1518 force_sig_info(SIGTRAP, &info, current); 1519 } else { 1520 mips_clear_watch_registers(); 1521 local_irq_enable(); 1522 } 1523 exception_exit(prev_state); 1524 } 1525 1526 asmlinkage void do_mcheck(struct pt_regs *regs) 1527 { 1528 int multi_match = regs->cp0_status & ST0_TS; 1529 enum ctx_state prev_state; 1530 mm_segment_t old_fs = get_fs(); 1531 1532 prev_state = exception_enter(); 1533 show_regs(regs); 1534 1535 if (multi_match) { 1536 dump_tlb_regs(); 1537 pr_info("\n"); 1538 dump_tlb_all(); 1539 } 1540 1541 if (!user_mode(regs)) 1542 set_fs(KERNEL_DS); 1543 1544 show_code((unsigned int __user *) regs->cp0_epc); 1545 1546 set_fs(old_fs); 1547 1548 /* 1549 * Some chips may have other causes of machine check (e.g. SB1 1550 * graduation timer) 1551 */ 1552 panic("Caught Machine Check exception - %scaused by multiple " 1553 "matching entries in the TLB.", 1554 (multi_match) ? "" : "not "); 1555 } 1556 1557 asmlinkage void do_mt(struct pt_regs *regs) 1558 { 1559 int subcode; 1560 1561 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) 1562 >> VPECONTROL_EXCPT_SHIFT; 1563 switch (subcode) { 1564 case 0: 1565 printk(KERN_DEBUG "Thread Underflow\n"); 1566 break; 1567 case 1: 1568 printk(KERN_DEBUG "Thread Overflow\n"); 1569 break; 1570 case 2: 1571 printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); 1572 break; 1573 case 3: 1574 printk(KERN_DEBUG "Gating Storage Exception\n"); 1575 break; 1576 case 4: 1577 printk(KERN_DEBUG "YIELD Scheduler Exception\n"); 1578 break; 1579 case 5: 1580 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n"); 1581 break; 1582 default: 1583 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", 1584 subcode); 1585 break; 1586 } 1587 die_if_kernel("MIPS MT Thread exception in kernel", regs); 1588 1589 force_sig(SIGILL, current); 1590 } 1591 1592 1593 asmlinkage void do_dsp(struct pt_regs *regs) 1594 { 1595 if (cpu_has_dsp) 1596 panic("Unexpected DSP exception"); 1597 1598 force_sig(SIGILL, current); 1599 } 1600 1601 asmlinkage void do_reserved(struct pt_regs *regs) 1602 { 1603 /* 1604 * Game over - no way to handle this if it ever occurs. Most probably 1605 * caused by a new unknown cpu type or after another deadly 1606 * hard/software error. 1607 */ 1608 show_regs(regs); 1609 panic("Caught reserved exception %ld - should not happen.", 1610 (regs->cp0_cause & 0x7f) >> 2); 1611 } 1612 1613 static int __initdata l1parity = 1; 1614 static int __init nol1parity(char *s) 1615 { 1616 l1parity = 0; 1617 return 1; 1618 } 1619 __setup("nol1par", nol1parity); 1620 static int __initdata l2parity = 1; 1621 static int __init nol2parity(char *s) 1622 { 1623 l2parity = 0; 1624 return 1; 1625 } 1626 __setup("nol2par", nol2parity); 1627 1628 /* 1629 * Some MIPS CPUs can enable/disable for cache parity detection, but do 1630 * it different ways. 1631 */ 1632 static inline void parity_protection_init(void) 1633 { 1634 switch (current_cpu_type()) { 1635 case CPU_24K: 1636 case CPU_34K: 1637 case CPU_74K: 1638 case CPU_1004K: 1639 case CPU_1074K: 1640 case CPU_INTERAPTIV: 1641 case CPU_PROAPTIV: 1642 case CPU_P5600: 1643 case CPU_QEMU_GENERIC: 1644 case CPU_I6400: 1645 case CPU_P6600: 1646 { 1647 #define ERRCTL_PE 0x80000000 1648 #define ERRCTL_L2P 0x00800000 1649 unsigned long errctl; 1650 unsigned int l1parity_present, l2parity_present; 1651 1652 errctl = read_c0_ecc(); 1653 errctl &= ~(ERRCTL_PE|ERRCTL_L2P); 1654 1655 /* probe L1 parity support */ 1656 write_c0_ecc(errctl | ERRCTL_PE); 1657 back_to_back_c0_hazard(); 1658 l1parity_present = (read_c0_ecc() & ERRCTL_PE); 1659 1660 /* probe L2 parity support */ 1661 write_c0_ecc(errctl|ERRCTL_L2P); 1662 back_to_back_c0_hazard(); 1663 l2parity_present = (read_c0_ecc() & ERRCTL_L2P); 1664 1665 if (l1parity_present && l2parity_present) { 1666 if (l1parity) 1667 errctl |= ERRCTL_PE; 1668 if (l1parity ^ l2parity) 1669 errctl |= ERRCTL_L2P; 1670 } else if (l1parity_present) { 1671 if (l1parity) 1672 errctl |= ERRCTL_PE; 1673 } else if (l2parity_present) { 1674 if (l2parity) 1675 errctl |= ERRCTL_L2P; 1676 } else { 1677 /* No parity available */ 1678 } 1679 1680 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); 1681 1682 write_c0_ecc(errctl); 1683 back_to_back_c0_hazard(); 1684 errctl = read_c0_ecc(); 1685 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); 1686 1687 if (l1parity_present) 1688 printk(KERN_INFO "Cache parity protection %sabled\n", 1689 (errctl & ERRCTL_PE) ? "en" : "dis"); 1690 1691 if (l2parity_present) { 1692 if (l1parity_present && l1parity) 1693 errctl ^= ERRCTL_L2P; 1694 printk(KERN_INFO "L2 cache parity protection %sabled\n", 1695 (errctl & ERRCTL_L2P) ? "en" : "dis"); 1696 } 1697 } 1698 break; 1699 1700 case CPU_5KC: 1701 case CPU_5KE: 1702 case CPU_LOONGSON1: 1703 write_c0_ecc(0x80000000); 1704 back_to_back_c0_hazard(); 1705 /* Set the PE bit (bit 31) in the c0_errctl register. */ 1706 printk(KERN_INFO "Cache parity protection %sabled\n", 1707 (read_c0_ecc() & 0x80000000) ? "en" : "dis"); 1708 break; 1709 case CPU_20KC: 1710 case CPU_25KF: 1711 /* Clear the DE bit (bit 16) in the c0_status register. */ 1712 printk(KERN_INFO "Enable cache parity protection for " 1713 "MIPS 20KC/25KF CPUs.\n"); 1714 clear_c0_status(ST0_DE); 1715 break; 1716 default: 1717 break; 1718 } 1719 } 1720 1721 asmlinkage void cache_parity_error(void) 1722 { 1723 const int field = 2 * sizeof(unsigned long); 1724 unsigned int reg_val; 1725 1726 /* For the moment, report the problem and hang. */ 1727 printk("Cache error exception:\n"); 1728 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1729 reg_val = read_c0_cacheerr(); 1730 printk("c0_cacheerr == %08x\n", reg_val); 1731 1732 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1733 reg_val & (1<<30) ? "secondary" : "primary", 1734 reg_val & (1<<31) ? "data" : "insn"); 1735 if ((cpu_has_mips_r2_r6) && 1736 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { 1737 pr_err("Error bits: %s%s%s%s%s%s%s%s\n", 1738 reg_val & (1<<29) ? "ED " : "", 1739 reg_val & (1<<28) ? "ET " : "", 1740 reg_val & (1<<27) ? "ES " : "", 1741 reg_val & (1<<26) ? "EE " : "", 1742 reg_val & (1<<25) ? "EB " : "", 1743 reg_val & (1<<24) ? "EI " : "", 1744 reg_val & (1<<23) ? "E1 " : "", 1745 reg_val & (1<<22) ? "E0 " : ""); 1746 } else { 1747 pr_err("Error bits: %s%s%s%s%s%s%s\n", 1748 reg_val & (1<<29) ? "ED " : "", 1749 reg_val & (1<<28) ? "ET " : "", 1750 reg_val & (1<<26) ? "EE " : "", 1751 reg_val & (1<<25) ? "EB " : "", 1752 reg_val & (1<<24) ? "EI " : "", 1753 reg_val & (1<<23) ? "E1 " : "", 1754 reg_val & (1<<22) ? "E0 " : ""); 1755 } 1756 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); 1757 1758 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) 1759 if (reg_val & (1<<22)) 1760 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); 1761 1762 if (reg_val & (1<<23)) 1763 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); 1764 #endif 1765 1766 panic("Can't handle the cache error!"); 1767 } 1768 1769 asmlinkage void do_ftlb(void) 1770 { 1771 const int field = 2 * sizeof(unsigned long); 1772 unsigned int reg_val; 1773 1774 /* For the moment, report the problem and hang. */ 1775 if ((cpu_has_mips_r2_r6) && 1776 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) || 1777 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) { 1778 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n", 1779 read_c0_ecc()); 1780 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1781 reg_val = read_c0_cacheerr(); 1782 pr_err("c0_cacheerr == %08x\n", reg_val); 1783 1784 if ((reg_val & 0xc0000000) == 0xc0000000) { 1785 pr_err("Decoded c0_cacheerr: FTLB parity error\n"); 1786 } else { 1787 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1788 reg_val & (1<<30) ? "secondary" : "primary", 1789 reg_val & (1<<31) ? "data" : "insn"); 1790 } 1791 } else { 1792 pr_err("FTLB error exception\n"); 1793 } 1794 /* Just print the cacheerr bits for now */ 1795 cache_parity_error(); 1796 } 1797 1798 /* 1799 * SDBBP EJTAG debug exception handler. 1800 * We skip the instruction and return to the next instruction. 1801 */ 1802 void ejtag_exception_handler(struct pt_regs *regs) 1803 { 1804 const int field = 2 * sizeof(unsigned long); 1805 unsigned long depc, old_epc, old_ra; 1806 unsigned int debug; 1807 1808 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); 1809 depc = read_c0_depc(); 1810 debug = read_c0_debug(); 1811 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); 1812 if (debug & 0x80000000) { 1813 /* 1814 * In branch delay slot. 1815 * We cheat a little bit here and use EPC to calculate the 1816 * debug return address (DEPC). EPC is restored after the 1817 * calculation. 1818 */ 1819 old_epc = regs->cp0_epc; 1820 old_ra = regs->regs[31]; 1821 regs->cp0_epc = depc; 1822 compute_return_epc(regs); 1823 depc = regs->cp0_epc; 1824 regs->cp0_epc = old_epc; 1825 regs->regs[31] = old_ra; 1826 } else 1827 depc += 4; 1828 write_c0_depc(depc); 1829 1830 #if 0 1831 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); 1832 write_c0_debug(debug | 0x100); 1833 #endif 1834 } 1835 1836 /* 1837 * NMI exception handler. 1838 * No lock; only written during early bootup by CPU 0. 1839 */ 1840 static RAW_NOTIFIER_HEAD(nmi_chain); 1841 1842 int register_nmi_notifier(struct notifier_block *nb) 1843 { 1844 return raw_notifier_chain_register(&nmi_chain, nb); 1845 } 1846 1847 void __noreturn nmi_exception_handler(struct pt_regs *regs) 1848 { 1849 char str[100]; 1850 1851 nmi_enter(); 1852 raw_notifier_call_chain(&nmi_chain, 0, regs); 1853 bust_spinlocks(1); 1854 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n", 1855 smp_processor_id(), regs->cp0_epc); 1856 regs->cp0_epc = read_c0_errorepc(); 1857 die(str, regs); 1858 nmi_exit(); 1859 } 1860 1861 #define VECTORSPACING 0x100 /* for EI/VI mode */ 1862 1863 unsigned long ebase; 1864 EXPORT_SYMBOL_GPL(ebase); 1865 unsigned long exception_handlers[32]; 1866 unsigned long vi_handlers[64]; 1867 1868 void __init *set_except_vector(int n, void *addr) 1869 { 1870 unsigned long handler = (unsigned long) addr; 1871 unsigned long old_handler; 1872 1873 #ifdef CONFIG_CPU_MICROMIPS 1874 /* 1875 * Only the TLB handlers are cache aligned with an even 1876 * address. All other handlers are on an odd address and 1877 * require no modification. Otherwise, MIPS32 mode will 1878 * be entered when handling any TLB exceptions. That 1879 * would be bad...since we must stay in microMIPS mode. 1880 */ 1881 if (!(handler & 0x1)) 1882 handler |= 1; 1883 #endif 1884 old_handler = xchg(&exception_handlers[n], handler); 1885 1886 if (n == 0 && cpu_has_divec) { 1887 #ifdef CONFIG_CPU_MICROMIPS 1888 unsigned long jump_mask = ~((1 << 27) - 1); 1889 #else 1890 unsigned long jump_mask = ~((1 << 28) - 1); 1891 #endif 1892 u32 *buf = (u32 *)(ebase + 0x200); 1893 unsigned int k0 = 26; 1894 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { 1895 uasm_i_j(&buf, handler & ~jump_mask); 1896 uasm_i_nop(&buf); 1897 } else { 1898 UASM_i_LA(&buf, k0, handler); 1899 uasm_i_jr(&buf, k0); 1900 uasm_i_nop(&buf); 1901 } 1902 local_flush_icache_range(ebase + 0x200, (unsigned long)buf); 1903 } 1904 return (void *)old_handler; 1905 } 1906 1907 static void do_default_vi(void) 1908 { 1909 show_regs(get_irq_regs()); 1910 panic("Caught unexpected vectored interrupt."); 1911 } 1912 1913 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) 1914 { 1915 unsigned long handler; 1916 unsigned long old_handler = vi_handlers[n]; 1917 int srssets = current_cpu_data.srsets; 1918 u16 *h; 1919 unsigned char *b; 1920 1921 BUG_ON(!cpu_has_veic && !cpu_has_vint); 1922 1923 if (addr == NULL) { 1924 handler = (unsigned long) do_default_vi; 1925 srs = 0; 1926 } else 1927 handler = (unsigned long) addr; 1928 vi_handlers[n] = handler; 1929 1930 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); 1931 1932 if (srs >= srssets) 1933 panic("Shadow register set %d not supported", srs); 1934 1935 if (cpu_has_veic) { 1936 if (board_bind_eic_interrupt) 1937 board_bind_eic_interrupt(n, srs); 1938 } else if (cpu_has_vint) { 1939 /* SRSMap is only defined if shadow sets are implemented */ 1940 if (srssets > 1) 1941 change_c0_srsmap(0xf << n*4, srs << n*4); 1942 } 1943 1944 if (srs == 0) { 1945 /* 1946 * If no shadow set is selected then use the default handler 1947 * that does normal register saving and standard interrupt exit 1948 */ 1949 extern char except_vec_vi, except_vec_vi_lui; 1950 extern char except_vec_vi_ori, except_vec_vi_end; 1951 extern char rollback_except_vec_vi; 1952 char *vec_start = using_rollback_handler() ? 1953 &rollback_except_vec_vi : &except_vec_vi; 1954 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN) 1955 const int lui_offset = &except_vec_vi_lui - vec_start + 2; 1956 const int ori_offset = &except_vec_vi_ori - vec_start + 2; 1957 #else 1958 const int lui_offset = &except_vec_vi_lui - vec_start; 1959 const int ori_offset = &except_vec_vi_ori - vec_start; 1960 #endif 1961 const int handler_len = &except_vec_vi_end - vec_start; 1962 1963 if (handler_len > VECTORSPACING) { 1964 /* 1965 * Sigh... panicing won't help as the console 1966 * is probably not configured :( 1967 */ 1968 panic("VECTORSPACING too small"); 1969 } 1970 1971 set_handler(((unsigned long)b - ebase), vec_start, 1972 #ifdef CONFIG_CPU_MICROMIPS 1973 (handler_len - 1)); 1974 #else 1975 handler_len); 1976 #endif 1977 h = (u16 *)(b + lui_offset); 1978 *h = (handler >> 16) & 0xffff; 1979 h = (u16 *)(b + ori_offset); 1980 *h = (handler & 0xffff); 1981 local_flush_icache_range((unsigned long)b, 1982 (unsigned long)(b+handler_len)); 1983 } 1984 else { 1985 /* 1986 * In other cases jump directly to the interrupt handler. It 1987 * is the handler's responsibility to save registers if required 1988 * (eg hi/lo) and return from the exception using "eret". 1989 */ 1990 u32 insn; 1991 1992 h = (u16 *)b; 1993 /* j handler */ 1994 #ifdef CONFIG_CPU_MICROMIPS 1995 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1); 1996 #else 1997 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2); 1998 #endif 1999 h[0] = (insn >> 16) & 0xffff; 2000 h[1] = insn & 0xffff; 2001 h[2] = 0; 2002 h[3] = 0; 2003 local_flush_icache_range((unsigned long)b, 2004 (unsigned long)(b+8)); 2005 } 2006 2007 return (void *)old_handler; 2008 } 2009 2010 void *set_vi_handler(int n, vi_handler_t addr) 2011 { 2012 return set_vi_srs_handler(n, addr, 0); 2013 } 2014 2015 extern void tlb_init(void); 2016 2017 /* 2018 * Timer interrupt 2019 */ 2020 int cp0_compare_irq; 2021 EXPORT_SYMBOL_GPL(cp0_compare_irq); 2022 int cp0_compare_irq_shift; 2023 2024 /* 2025 * Performance counter IRQ or -1 if shared with timer 2026 */ 2027 int cp0_perfcount_irq; 2028 EXPORT_SYMBOL_GPL(cp0_perfcount_irq); 2029 2030 /* 2031 * Fast debug channel IRQ or -1 if not present 2032 */ 2033 int cp0_fdc_irq; 2034 EXPORT_SYMBOL_GPL(cp0_fdc_irq); 2035 2036 static int noulri; 2037 2038 static int __init ulri_disable(char *s) 2039 { 2040 pr_info("Disabling ulri\n"); 2041 noulri = 1; 2042 2043 return 1; 2044 } 2045 __setup("noulri", ulri_disable); 2046 2047 /* configure STATUS register */ 2048 static void configure_status(void) 2049 { 2050 /* 2051 * Disable coprocessors and select 32-bit or 64-bit addressing 2052 * and the 16/32 or 32/32 FPR register model. Reset the BEV 2053 * flag that some firmware may have left set and the TS bit (for 2054 * IP27). Set XX for ISA IV code to work. 2055 */ 2056 unsigned int status_set = ST0_CU0; 2057 #ifdef CONFIG_64BIT 2058 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; 2059 #endif 2060 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV) 2061 status_set |= ST0_XX; 2062 if (cpu_has_dsp) 2063 status_set |= ST0_MX; 2064 2065 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, 2066 status_set); 2067 } 2068 2069 unsigned int hwrena; 2070 EXPORT_SYMBOL_GPL(hwrena); 2071 2072 /* configure HWRENA register */ 2073 static void configure_hwrena(void) 2074 { 2075 hwrena = cpu_hwrena_impl_bits; 2076 2077 if (cpu_has_mips_r2_r6) 2078 hwrena |= MIPS_HWRENA_CPUNUM | 2079 MIPS_HWRENA_SYNCISTEP | 2080 MIPS_HWRENA_CC | 2081 MIPS_HWRENA_CCRES; 2082 2083 if (!noulri && cpu_has_userlocal) 2084 hwrena |= MIPS_HWRENA_ULR; 2085 2086 if (hwrena) 2087 write_c0_hwrena(hwrena); 2088 } 2089 2090 static void configure_exception_vector(void) 2091 { 2092 if (cpu_has_veic || cpu_has_vint) { 2093 unsigned long sr = set_c0_status(ST0_BEV); 2094 write_c0_ebase(ebase); 2095 write_c0_status(sr); 2096 /* Setting vector spacing enables EI/VI mode */ 2097 change_c0_intctl(0x3e0, VECTORSPACING); 2098 } 2099 if (cpu_has_divec) { 2100 if (cpu_has_mipsmt) { 2101 unsigned int vpflags = dvpe(); 2102 set_c0_cause(CAUSEF_IV); 2103 evpe(vpflags); 2104 } else 2105 set_c0_cause(CAUSEF_IV); 2106 } 2107 } 2108 2109 void per_cpu_trap_init(bool is_boot_cpu) 2110 { 2111 unsigned int cpu = smp_processor_id(); 2112 2113 configure_status(); 2114 configure_hwrena(); 2115 2116 configure_exception_vector(); 2117 2118 /* 2119 * Before R2 both interrupt numbers were fixed to 7, so on R2 only: 2120 * 2121 * o read IntCtl.IPTI to determine the timer interrupt 2122 * o read IntCtl.IPPCI to determine the performance counter interrupt 2123 * o read IntCtl.IPFDC to determine the fast debug channel interrupt 2124 */ 2125 if (cpu_has_mips_r2_r6) { 2126 /* 2127 * We shouldn't trust a secondary core has a sane EBASE register 2128 * so use the one calculated by the boot CPU. 2129 */ 2130 if (!is_boot_cpu) 2131 write_c0_ebase(ebase); 2132 2133 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; 2134 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; 2135 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; 2136 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7; 2137 if (!cp0_fdc_irq) 2138 cp0_fdc_irq = -1; 2139 2140 } else { 2141 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; 2142 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ; 2143 cp0_perfcount_irq = -1; 2144 cp0_fdc_irq = -1; 2145 } 2146 2147 if (!cpu_data[cpu].asid_cache) 2148 cpu_data[cpu].asid_cache = asid_first_version(cpu); 2149 2150 atomic_inc(&init_mm.mm_count); 2151 current->active_mm = &init_mm; 2152 BUG_ON(current->mm); 2153 enter_lazy_tlb(&init_mm, current); 2154 2155 /* Boot CPU's cache setup in setup_arch(). */ 2156 if (!is_boot_cpu) 2157 cpu_cache_init(); 2158 tlb_init(); 2159 TLBMISS_HANDLER_SETUP(); 2160 } 2161 2162 /* Install CPU exception handler */ 2163 void set_handler(unsigned long offset, void *addr, unsigned long size) 2164 { 2165 #ifdef CONFIG_CPU_MICROMIPS 2166 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size); 2167 #else 2168 memcpy((void *)(ebase + offset), addr, size); 2169 #endif 2170 local_flush_icache_range(ebase + offset, ebase + offset + size); 2171 } 2172 2173 static char panic_null_cerr[] = 2174 "Trying to set NULL cache error exception handler"; 2175 2176 /* 2177 * Install uncached CPU exception handler. 2178 * This is suitable only for the cache error exception which is the only 2179 * exception handler that is being run uncached. 2180 */ 2181 void set_uncached_handler(unsigned long offset, void *addr, 2182 unsigned long size) 2183 { 2184 unsigned long uncached_ebase = CKSEG1ADDR(ebase); 2185 2186 if (!addr) 2187 panic(panic_null_cerr); 2188 2189 memcpy((void *)(uncached_ebase + offset), addr, size); 2190 } 2191 2192 static int __initdata rdhwr_noopt; 2193 static int __init set_rdhwr_noopt(char *str) 2194 { 2195 rdhwr_noopt = 1; 2196 return 1; 2197 } 2198 2199 __setup("rdhwr_noopt", set_rdhwr_noopt); 2200 2201 void __init trap_init(void) 2202 { 2203 extern char except_vec3_generic; 2204 extern char except_vec4; 2205 extern char except_vec3_r4000; 2206 unsigned long i; 2207 2208 check_wait(); 2209 2210 if (cpu_has_veic || cpu_has_vint) { 2211 unsigned long size = 0x200 + VECTORSPACING*64; 2212 ebase = (unsigned long) 2213 __alloc_bootmem(size, 1 << fls(size), 0); 2214 } else { 2215 ebase = CAC_BASE; 2216 2217 if (cpu_has_mips_r2_r6) 2218 ebase += (read_c0_ebase() & 0x3ffff000); 2219 } 2220 2221 if (cpu_has_mmips) { 2222 unsigned int config3 = read_c0_config3(); 2223 2224 if (IS_ENABLED(CONFIG_CPU_MICROMIPS)) 2225 write_c0_config3(config3 | MIPS_CONF3_ISA_OE); 2226 else 2227 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE); 2228 } 2229 2230 if (board_ebase_setup) 2231 board_ebase_setup(); 2232 per_cpu_trap_init(true); 2233 2234 /* 2235 * Copy the generic exception handlers to their final destination. 2236 * This will be overridden later as suitable for a particular 2237 * configuration. 2238 */ 2239 set_handler(0x180, &except_vec3_generic, 0x80); 2240 2241 /* 2242 * Setup default vectors 2243 */ 2244 for (i = 0; i <= 31; i++) 2245 set_except_vector(i, handle_reserved); 2246 2247 /* 2248 * Copy the EJTAG debug exception vector handler code to it's final 2249 * destination. 2250 */ 2251 if (cpu_has_ejtag && board_ejtag_handler_setup) 2252 board_ejtag_handler_setup(); 2253 2254 /* 2255 * Only some CPUs have the watch exceptions. 2256 */ 2257 if (cpu_has_watch) 2258 set_except_vector(EXCCODE_WATCH, handle_watch); 2259 2260 /* 2261 * Initialise interrupt handlers 2262 */ 2263 if (cpu_has_veic || cpu_has_vint) { 2264 int nvec = cpu_has_veic ? 64 : 8; 2265 for (i = 0; i < nvec; i++) 2266 set_vi_handler(i, NULL); 2267 } 2268 else if (cpu_has_divec) 2269 set_handler(0x200, &except_vec4, 0x8); 2270 2271 /* 2272 * Some CPUs can enable/disable for cache parity detection, but does 2273 * it different ways. 2274 */ 2275 parity_protection_init(); 2276 2277 /* 2278 * The Data Bus Errors / Instruction Bus Errors are signaled 2279 * by external hardware. Therefore these two exceptions 2280 * may have board specific handlers. 2281 */ 2282 if (board_be_init) 2283 board_be_init(); 2284 2285 set_except_vector(EXCCODE_INT, using_rollback_handler() ? 2286 rollback_handle_int : handle_int); 2287 set_except_vector(EXCCODE_MOD, handle_tlbm); 2288 set_except_vector(EXCCODE_TLBL, handle_tlbl); 2289 set_except_vector(EXCCODE_TLBS, handle_tlbs); 2290 2291 set_except_vector(EXCCODE_ADEL, handle_adel); 2292 set_except_vector(EXCCODE_ADES, handle_ades); 2293 2294 set_except_vector(EXCCODE_IBE, handle_ibe); 2295 set_except_vector(EXCCODE_DBE, handle_dbe); 2296 2297 set_except_vector(EXCCODE_SYS, handle_sys); 2298 set_except_vector(EXCCODE_BP, handle_bp); 2299 set_except_vector(EXCCODE_RI, rdhwr_noopt ? handle_ri : 2300 (cpu_has_vtag_icache ? 2301 handle_ri_rdhwr_vivt : handle_ri_rdhwr)); 2302 set_except_vector(EXCCODE_CPU, handle_cpu); 2303 set_except_vector(EXCCODE_OV, handle_ov); 2304 set_except_vector(EXCCODE_TR, handle_tr); 2305 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe); 2306 2307 if (current_cpu_type() == CPU_R6000 || 2308 current_cpu_type() == CPU_R6000A) { 2309 /* 2310 * The R6000 is the only R-series CPU that features a machine 2311 * check exception (similar to the R4000 cache error) and 2312 * unaligned ldc1/sdc1 exception. The handlers have not been 2313 * written yet. Well, anyway there is no R6000 machine on the 2314 * current list of targets for Linux/MIPS. 2315 * (Duh, crap, there is someone with a triple R6k machine) 2316 */ 2317 //set_except_vector(14, handle_mc); 2318 //set_except_vector(15, handle_ndc); 2319 } 2320 2321 2322 if (board_nmi_handler_setup) 2323 board_nmi_handler_setup(); 2324 2325 if (cpu_has_fpu && !cpu_has_nofpuex) 2326 set_except_vector(EXCCODE_FPE, handle_fpe); 2327 2328 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb); 2329 2330 if (cpu_has_rixiex) { 2331 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0); 2332 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0); 2333 } 2334 2335 set_except_vector(EXCCODE_MSADIS, handle_msa); 2336 set_except_vector(EXCCODE_MDMX, handle_mdmx); 2337 2338 if (cpu_has_mcheck) 2339 set_except_vector(EXCCODE_MCHECK, handle_mcheck); 2340 2341 if (cpu_has_mipsmt) 2342 set_except_vector(EXCCODE_THREAD, handle_mt); 2343 2344 set_except_vector(EXCCODE_DSPDIS, handle_dsp); 2345 2346 if (board_cache_error_setup) 2347 board_cache_error_setup(); 2348 2349 if (cpu_has_vce) 2350 /* Special exception: R4[04]00 uses also the divec space. */ 2351 set_handler(0x180, &except_vec3_r4000, 0x100); 2352 else if (cpu_has_4kex) 2353 set_handler(0x180, &except_vec3_generic, 0x80); 2354 else 2355 set_handler(0x080, &except_vec3_generic, 0x80); 2356 2357 local_flush_icache_range(ebase, ebase + 0x400); 2358 2359 sort_extable(__start___dbe_table, __stop___dbe_table); 2360 2361 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */ 2362 } 2363 2364 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd, 2365 void *v) 2366 { 2367 switch (cmd) { 2368 case CPU_PM_ENTER_FAILED: 2369 case CPU_PM_EXIT: 2370 configure_status(); 2371 configure_hwrena(); 2372 configure_exception_vector(); 2373 2374 /* Restore register with CPU number for TLB handlers */ 2375 TLBMISS_HANDLER_RESTORE(); 2376 2377 break; 2378 } 2379 2380 return NOTIFY_OK; 2381 } 2382 2383 static struct notifier_block trap_pm_notifier_block = { 2384 .notifier_call = trap_pm_notifier, 2385 }; 2386 2387 static int __init trap_pm_init(void) 2388 { 2389 return cpu_pm_register_notifier(&trap_pm_notifier_block); 2390 } 2391 arch_initcall(trap_pm_init); 2392