xref: /openbmc/linux/arch/mips/kernel/traps.c (revision 2792d42f)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  */
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/kexec.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/mm.h>
21 #include <linux/sched.h>
22 #include <linux/smp.h>
23 #include <linux/spinlock.h>
24 #include <linux/kallsyms.h>
25 #include <linux/bootmem.h>
26 #include <linux/interrupt.h>
27 #include <linux/ptrace.h>
28 #include <linux/kgdb.h>
29 #include <linux/kdebug.h>
30 #include <linux/kprobes.h>
31 #include <linux/notifier.h>
32 #include <linux/kdb.h>
33 #include <linux/irq.h>
34 #include <linux/perf_event.h>
35 
36 #include <asm/bootinfo.h>
37 #include <asm/branch.h>
38 #include <asm/break.h>
39 #include <asm/cop2.h>
40 #include <asm/cpu.h>
41 #include <asm/dsp.h>
42 #include <asm/fpu.h>
43 #include <asm/fpu_emulator.h>
44 #include <asm/mipsregs.h>
45 #include <asm/mipsmtregs.h>
46 #include <asm/module.h>
47 #include <asm/pgtable.h>
48 #include <asm/ptrace.h>
49 #include <asm/sections.h>
50 #include <asm/tlbdebug.h>
51 #include <asm/traps.h>
52 #include <asm/uaccess.h>
53 #include <asm/watch.h>
54 #include <asm/mmu_context.h>
55 #include <asm/types.h>
56 #include <asm/stacktrace.h>
57 #include <asm/uasm.h>
58 
59 extern void check_wait(void);
60 extern asmlinkage void r4k_wait(void);
61 extern asmlinkage void rollback_handle_int(void);
62 extern asmlinkage void handle_int(void);
63 extern u32 handle_tlbl[];
64 extern u32 handle_tlbs[];
65 extern u32 handle_tlbm[];
66 extern asmlinkage void handle_adel(void);
67 extern asmlinkage void handle_ades(void);
68 extern asmlinkage void handle_ibe(void);
69 extern asmlinkage void handle_dbe(void);
70 extern asmlinkage void handle_sys(void);
71 extern asmlinkage void handle_bp(void);
72 extern asmlinkage void handle_ri(void);
73 extern asmlinkage void handle_ri_rdhwr_vivt(void);
74 extern asmlinkage void handle_ri_rdhwr(void);
75 extern asmlinkage void handle_cpu(void);
76 extern asmlinkage void handle_ov(void);
77 extern asmlinkage void handle_tr(void);
78 extern asmlinkage void handle_fpe(void);
79 extern asmlinkage void handle_mdmx(void);
80 extern asmlinkage void handle_watch(void);
81 extern asmlinkage void handle_mt(void);
82 extern asmlinkage void handle_dsp(void);
83 extern asmlinkage void handle_mcheck(void);
84 extern asmlinkage void handle_reserved(void);
85 
86 void (*board_be_init)(void);
87 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
88 void (*board_nmi_handler_setup)(void);
89 void (*board_ejtag_handler_setup)(void);
90 void (*board_bind_eic_interrupt)(int irq, int regset);
91 void (*board_ebase_setup)(void);
92 void __cpuinitdata(*board_cache_error_setup)(void);
93 
94 static void show_raw_backtrace(unsigned long reg29)
95 {
96 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
97 	unsigned long addr;
98 
99 	printk("Call Trace:");
100 #ifdef CONFIG_KALLSYMS
101 	printk("\n");
102 #endif
103 	while (!kstack_end(sp)) {
104 		unsigned long __user *p =
105 			(unsigned long __user *)(unsigned long)sp++;
106 		if (__get_user(addr, p)) {
107 			printk(" (Bad stack address)");
108 			break;
109 		}
110 		if (__kernel_text_address(addr))
111 			print_ip_sym(addr);
112 	}
113 	printk("\n");
114 }
115 
116 #ifdef CONFIG_KALLSYMS
117 int raw_show_trace;
118 static int __init set_raw_show_trace(char *str)
119 {
120 	raw_show_trace = 1;
121 	return 1;
122 }
123 __setup("raw_show_trace", set_raw_show_trace);
124 #endif
125 
126 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
127 {
128 	unsigned long sp = regs->regs[29];
129 	unsigned long ra = regs->regs[31];
130 	unsigned long pc = regs->cp0_epc;
131 
132 	if (!task)
133 		task = current;
134 
135 	if (raw_show_trace || !__kernel_text_address(pc)) {
136 		show_raw_backtrace(sp);
137 		return;
138 	}
139 	printk("Call Trace:\n");
140 	do {
141 		print_ip_sym(pc);
142 		pc = unwind_stack(task, &sp, pc, &ra);
143 	} while (pc);
144 	printk("\n");
145 }
146 
147 /*
148  * This routine abuses get_user()/put_user() to reference pointers
149  * with at least a bit of error checking ...
150  */
151 static void show_stacktrace(struct task_struct *task,
152 	const struct pt_regs *regs)
153 {
154 	const int field = 2 * sizeof(unsigned long);
155 	long stackdata;
156 	int i;
157 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
158 
159 	printk("Stack :");
160 	i = 0;
161 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
162 		if (i && ((i % (64 / field)) == 0))
163 			printk("\n	 ");
164 		if (i > 39) {
165 			printk(" ...");
166 			break;
167 		}
168 
169 		if (__get_user(stackdata, sp++)) {
170 			printk(" (Bad stack address)");
171 			break;
172 		}
173 
174 		printk(" %0*lx", field, stackdata);
175 		i++;
176 	}
177 	printk("\n");
178 	show_backtrace(task, regs);
179 }
180 
181 void show_stack(struct task_struct *task, unsigned long *sp)
182 {
183 	struct pt_regs regs;
184 	if (sp) {
185 		regs.regs[29] = (unsigned long)sp;
186 		regs.regs[31] = 0;
187 		regs.cp0_epc = 0;
188 	} else {
189 		if (task && task != current) {
190 			regs.regs[29] = task->thread.reg29;
191 			regs.regs[31] = 0;
192 			regs.cp0_epc = task->thread.reg31;
193 #ifdef CONFIG_KGDB_KDB
194 		} else if (atomic_read(&kgdb_active) != -1 &&
195 			   kdb_current_regs) {
196 			memcpy(&regs, kdb_current_regs, sizeof(regs));
197 #endif /* CONFIG_KGDB_KDB */
198 		} else {
199 			prepare_frametrace(&regs);
200 		}
201 	}
202 	show_stacktrace(task, &regs);
203 }
204 
205 static void show_code(unsigned int __user *pc)
206 {
207 	long i;
208 	unsigned short __user *pc16 = NULL;
209 
210 	printk("\nCode:");
211 
212 	if ((unsigned long)pc & 1)
213 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
214 	for(i = -3 ; i < 6 ; i++) {
215 		unsigned int insn;
216 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
217 			printk(" (Bad address in epc)\n");
218 			break;
219 		}
220 		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
221 	}
222 }
223 
224 static void __show_regs(const struct pt_regs *regs)
225 {
226 	const int field = 2 * sizeof(unsigned long);
227 	unsigned int cause = regs->cp0_cause;
228 	int i;
229 
230 	show_regs_print_info(KERN_DEFAULT);
231 
232 	/*
233 	 * Saved main processor registers
234 	 */
235 	for (i = 0; i < 32; ) {
236 		if ((i % 4) == 0)
237 			printk("$%2d   :", i);
238 		if (i == 0)
239 			printk(" %0*lx", field, 0UL);
240 		else if (i == 26 || i == 27)
241 			printk(" %*s", field, "");
242 		else
243 			printk(" %0*lx", field, regs->regs[i]);
244 
245 		i++;
246 		if ((i % 4) == 0)
247 			printk("\n");
248 	}
249 
250 #ifdef CONFIG_CPU_HAS_SMARTMIPS
251 	printk("Acx    : %0*lx\n", field, regs->acx);
252 #endif
253 	printk("Hi    : %0*lx\n", field, regs->hi);
254 	printk("Lo    : %0*lx\n", field, regs->lo);
255 
256 	/*
257 	 * Saved cp0 registers
258 	 */
259 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
260 	       (void *) regs->cp0_epc);
261 	printk("    %s\n", print_tainted());
262 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
263 	       (void *) regs->regs[31]);
264 
265 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
266 
267 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
268 		if (regs->cp0_status & ST0_KUO)
269 			printk("KUo ");
270 		if (regs->cp0_status & ST0_IEO)
271 			printk("IEo ");
272 		if (regs->cp0_status & ST0_KUP)
273 			printk("KUp ");
274 		if (regs->cp0_status & ST0_IEP)
275 			printk("IEp ");
276 		if (regs->cp0_status & ST0_KUC)
277 			printk("KUc ");
278 		if (regs->cp0_status & ST0_IEC)
279 			printk("IEc ");
280 	} else {
281 		if (regs->cp0_status & ST0_KX)
282 			printk("KX ");
283 		if (regs->cp0_status & ST0_SX)
284 			printk("SX ");
285 		if (regs->cp0_status & ST0_UX)
286 			printk("UX ");
287 		switch (regs->cp0_status & ST0_KSU) {
288 		case KSU_USER:
289 			printk("USER ");
290 			break;
291 		case KSU_SUPERVISOR:
292 			printk("SUPERVISOR ");
293 			break;
294 		case KSU_KERNEL:
295 			printk("KERNEL ");
296 			break;
297 		default:
298 			printk("BAD_MODE ");
299 			break;
300 		}
301 		if (regs->cp0_status & ST0_ERL)
302 			printk("ERL ");
303 		if (regs->cp0_status & ST0_EXL)
304 			printk("EXL ");
305 		if (regs->cp0_status & ST0_IE)
306 			printk("IE ");
307 	}
308 	printk("\n");
309 
310 	printk("Cause : %08x\n", cause);
311 
312 	cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
313 	if (1 <= cause && cause <= 5)
314 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
315 
316 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
317 	       cpu_name_string());
318 }
319 
320 /*
321  * FIXME: really the generic show_regs should take a const pointer argument.
322  */
323 void show_regs(struct pt_regs *regs)
324 {
325 	__show_regs((struct pt_regs *)regs);
326 }
327 
328 void show_registers(struct pt_regs *regs)
329 {
330 	const int field = 2 * sizeof(unsigned long);
331 
332 	__show_regs(regs);
333 	print_modules();
334 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
335 	       current->comm, current->pid, current_thread_info(), current,
336 	      field, current_thread_info()->tp_value);
337 	if (cpu_has_userlocal) {
338 		unsigned long tls;
339 
340 		tls = read_c0_userlocal();
341 		if (tls != current_thread_info()->tp_value)
342 			printk("*HwTLS: %0*lx\n", field, tls);
343 	}
344 
345 	show_stacktrace(current, regs);
346 	show_code((unsigned int __user *) regs->cp0_epc);
347 	printk("\n");
348 }
349 
350 static int regs_to_trapnr(struct pt_regs *regs)
351 {
352 	return (regs->cp0_cause >> 2) & 0x1f;
353 }
354 
355 static DEFINE_RAW_SPINLOCK(die_lock);
356 
357 void __noreturn die(const char *str, struct pt_regs *regs)
358 {
359 	static int die_counter;
360 	int sig = SIGSEGV;
361 #ifdef CONFIG_MIPS_MT_SMTC
362 	unsigned long dvpret;
363 #endif /* CONFIG_MIPS_MT_SMTC */
364 
365 	oops_enter();
366 
367 	if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV) == NOTIFY_STOP)
368 		sig = 0;
369 
370 	console_verbose();
371 	raw_spin_lock_irq(&die_lock);
372 #ifdef CONFIG_MIPS_MT_SMTC
373 	dvpret = dvpe();
374 #endif /* CONFIG_MIPS_MT_SMTC */
375 	bust_spinlocks(1);
376 #ifdef CONFIG_MIPS_MT_SMTC
377 	mips_mt_regdump(dvpret);
378 #endif /* CONFIG_MIPS_MT_SMTC */
379 
380 	printk("%s[#%d]:\n", str, ++die_counter);
381 	show_registers(regs);
382 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
383 	raw_spin_unlock_irq(&die_lock);
384 
385 	oops_exit();
386 
387 	if (in_interrupt())
388 		panic("Fatal exception in interrupt");
389 
390 	if (panic_on_oops) {
391 		printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
392 		ssleep(5);
393 		panic("Fatal exception");
394 	}
395 
396 	if (regs && kexec_should_crash(current))
397 		crash_kexec(regs);
398 
399 	do_exit(sig);
400 }
401 
402 extern struct exception_table_entry __start___dbe_table[];
403 extern struct exception_table_entry __stop___dbe_table[];
404 
405 __asm__(
406 "	.section	__dbe_table, \"a\"\n"
407 "	.previous			\n");
408 
409 /* Given an address, look for it in the exception tables. */
410 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
411 {
412 	const struct exception_table_entry *e;
413 
414 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
415 	if (!e)
416 		e = search_module_dbetables(addr);
417 	return e;
418 }
419 
420 asmlinkage void do_be(struct pt_regs *regs)
421 {
422 	const int field = 2 * sizeof(unsigned long);
423 	const struct exception_table_entry *fixup = NULL;
424 	int data = regs->cp0_cause & 4;
425 	int action = MIPS_BE_FATAL;
426 
427 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
428 	if (data && !user_mode(regs))
429 		fixup = search_dbe_tables(exception_epc(regs));
430 
431 	if (fixup)
432 		action = MIPS_BE_FIXUP;
433 
434 	if (board_be_handler)
435 		action = board_be_handler(regs, fixup != NULL);
436 
437 	switch (action) {
438 	case MIPS_BE_DISCARD:
439 		return;
440 	case MIPS_BE_FIXUP:
441 		if (fixup) {
442 			regs->cp0_epc = fixup->nextinsn;
443 			return;
444 		}
445 		break;
446 	default:
447 		break;
448 	}
449 
450 	/*
451 	 * Assume it would be too dangerous to continue ...
452 	 */
453 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
454 	       data ? "Data" : "Instruction",
455 	       field, regs->cp0_epc, field, regs->regs[31]);
456 	if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), SIGBUS)
457 	    == NOTIFY_STOP)
458 		return;
459 
460 	die_if_kernel("Oops", regs);
461 	force_sig(SIGBUS, current);
462 }
463 
464 /*
465  * ll/sc, rdhwr, sync emulation
466  */
467 
468 #define OPCODE 0xfc000000
469 #define BASE   0x03e00000
470 #define RT     0x001f0000
471 #define OFFSET 0x0000ffff
472 #define LL     0xc0000000
473 #define SC     0xe0000000
474 #define SPEC0  0x00000000
475 #define SPEC3  0x7c000000
476 #define RD     0x0000f800
477 #define FUNC   0x0000003f
478 #define SYNC   0x0000000f
479 #define RDHWR  0x0000003b
480 
481 /*  microMIPS definitions   */
482 #define MM_POOL32A_FUNC 0xfc00ffff
483 #define MM_RDHWR        0x00006b3c
484 #define MM_RS           0x001f0000
485 #define MM_RT           0x03e00000
486 
487 /*
488  * The ll_bit is cleared by r*_switch.S
489  */
490 
491 unsigned int ll_bit;
492 struct task_struct *ll_task;
493 
494 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
495 {
496 	unsigned long value, __user *vaddr;
497 	long offset;
498 
499 	/*
500 	 * analyse the ll instruction that just caused a ri exception
501 	 * and put the referenced address to addr.
502 	 */
503 
504 	/* sign extend offset */
505 	offset = opcode & OFFSET;
506 	offset <<= 16;
507 	offset >>= 16;
508 
509 	vaddr = (unsigned long __user *)
510 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
511 
512 	if ((unsigned long)vaddr & 3)
513 		return SIGBUS;
514 	if (get_user(value, vaddr))
515 		return SIGSEGV;
516 
517 	preempt_disable();
518 
519 	if (ll_task == NULL || ll_task == current) {
520 		ll_bit = 1;
521 	} else {
522 		ll_bit = 0;
523 	}
524 	ll_task = current;
525 
526 	preempt_enable();
527 
528 	regs->regs[(opcode & RT) >> 16] = value;
529 
530 	return 0;
531 }
532 
533 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
534 {
535 	unsigned long __user *vaddr;
536 	unsigned long reg;
537 	long offset;
538 
539 	/*
540 	 * analyse the sc instruction that just caused a ri exception
541 	 * and put the referenced address to addr.
542 	 */
543 
544 	/* sign extend offset */
545 	offset = opcode & OFFSET;
546 	offset <<= 16;
547 	offset >>= 16;
548 
549 	vaddr = (unsigned long __user *)
550 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
551 	reg = (opcode & RT) >> 16;
552 
553 	if ((unsigned long)vaddr & 3)
554 		return SIGBUS;
555 
556 	preempt_disable();
557 
558 	if (ll_bit == 0 || ll_task != current) {
559 		regs->regs[reg] = 0;
560 		preempt_enable();
561 		return 0;
562 	}
563 
564 	preempt_enable();
565 
566 	if (put_user(regs->regs[reg], vaddr))
567 		return SIGSEGV;
568 
569 	regs->regs[reg] = 1;
570 
571 	return 0;
572 }
573 
574 /*
575  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
576  * opcodes are supposed to result in coprocessor unusable exceptions if
577  * executed on ll/sc-less processors.  That's the theory.  In practice a
578  * few processors such as NEC's VR4100 throw reserved instruction exceptions
579  * instead, so we're doing the emulation thing in both exception handlers.
580  */
581 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
582 {
583 	if ((opcode & OPCODE) == LL) {
584 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
585 				1, regs, 0);
586 		return simulate_ll(regs, opcode);
587 	}
588 	if ((opcode & OPCODE) == SC) {
589 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
590 				1, regs, 0);
591 		return simulate_sc(regs, opcode);
592 	}
593 
594 	return -1;			/* Must be something else ... */
595 }
596 
597 /*
598  * Simulate trapping 'rdhwr' instructions to provide user accessible
599  * registers not implemented in hardware.
600  */
601 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
602 {
603 	struct thread_info *ti = task_thread_info(current);
604 
605 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
606 			1, regs, 0);
607 	switch (rd) {
608 	case 0:		/* CPU number */
609 		regs->regs[rt] = smp_processor_id();
610 		return 0;
611 	case 1:		/* SYNCI length */
612 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
613 				     current_cpu_data.icache.linesz);
614 		return 0;
615 	case 2:		/* Read count register */
616 		regs->regs[rt] = read_c0_count();
617 		return 0;
618 	case 3:		/* Count register resolution */
619 		switch (current_cpu_data.cputype) {
620 		case CPU_20KC:
621 		case CPU_25KF:
622 			regs->regs[rt] = 1;
623 			break;
624 		default:
625 			regs->regs[rt] = 2;
626 		}
627 		return 0;
628 	case 29:
629 		regs->regs[rt] = ti->tp_value;
630 		return 0;
631 	default:
632 		return -1;
633 	}
634 }
635 
636 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
637 {
638 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
639 		int rd = (opcode & RD) >> 11;
640 		int rt = (opcode & RT) >> 16;
641 
642 		simulate_rdhwr(regs, rd, rt);
643 		return 0;
644 	}
645 
646 	/* Not ours.  */
647 	return -1;
648 }
649 
650 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
651 {
652 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
653 		int rd = (opcode & MM_RS) >> 16;
654 		int rt = (opcode & MM_RT) >> 21;
655 		simulate_rdhwr(regs, rd, rt);
656 		return 0;
657 	}
658 
659 	/* Not ours.  */
660 	return -1;
661 }
662 
663 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
664 {
665 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
666 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
667 				1, regs, 0);
668 		return 0;
669 	}
670 
671 	return -1;			/* Must be something else ... */
672 }
673 
674 asmlinkage void do_ov(struct pt_regs *regs)
675 {
676 	siginfo_t info;
677 
678 	die_if_kernel("Integer overflow", regs);
679 
680 	info.si_code = FPE_INTOVF;
681 	info.si_signo = SIGFPE;
682 	info.si_errno = 0;
683 	info.si_addr = (void __user *) regs->cp0_epc;
684 	force_sig_info(SIGFPE, &info, current);
685 }
686 
687 int process_fpemu_return(int sig, void __user *fault_addr)
688 {
689 	if (sig == SIGSEGV || sig == SIGBUS) {
690 		struct siginfo si = {0};
691 		si.si_addr = fault_addr;
692 		si.si_signo = sig;
693 		if (sig == SIGSEGV) {
694 			if (find_vma(current->mm, (unsigned long)fault_addr))
695 				si.si_code = SEGV_ACCERR;
696 			else
697 				si.si_code = SEGV_MAPERR;
698 		} else {
699 			si.si_code = BUS_ADRERR;
700 		}
701 		force_sig_info(sig, &si, current);
702 		return 1;
703 	} else if (sig) {
704 		force_sig(sig, current);
705 		return 1;
706 	} else {
707 		return 0;
708 	}
709 }
710 
711 /*
712  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
713  */
714 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
715 {
716 	siginfo_t info = {0};
717 
718 	if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), SIGFPE)
719 	    == NOTIFY_STOP)
720 		return;
721 	die_if_kernel("FP exception in kernel code", regs);
722 
723 	if (fcr31 & FPU_CSR_UNI_X) {
724 		int sig;
725 		void __user *fault_addr = NULL;
726 
727 		/*
728 		 * Unimplemented operation exception.  If we've got the full
729 		 * software emulator on-board, let's use it...
730 		 *
731 		 * Force FPU to dump state into task/thread context.  We're
732 		 * moving a lot of data here for what is probably a single
733 		 * instruction, but the alternative is to pre-decode the FP
734 		 * register operands before invoking the emulator, which seems
735 		 * a bit extreme for what should be an infrequent event.
736 		 */
737 		/* Ensure 'resume' not overwrite saved fp context again. */
738 		lose_fpu(1);
739 
740 		/* Run the emulator */
741 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
742 					       &fault_addr);
743 
744 		/*
745 		 * We can't allow the emulated instruction to leave any of
746 		 * the cause bit set in $fcr31.
747 		 */
748 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
749 
750 		/* Restore the hardware register state */
751 		own_fpu(1);	/* Using the FPU again.	 */
752 
753 		/* If something went wrong, signal */
754 		process_fpemu_return(sig, fault_addr);
755 
756 		return;
757 	} else if (fcr31 & FPU_CSR_INV_X)
758 		info.si_code = FPE_FLTINV;
759 	else if (fcr31 & FPU_CSR_DIV_X)
760 		info.si_code = FPE_FLTDIV;
761 	else if (fcr31 & FPU_CSR_OVF_X)
762 		info.si_code = FPE_FLTOVF;
763 	else if (fcr31 & FPU_CSR_UDF_X)
764 		info.si_code = FPE_FLTUND;
765 	else if (fcr31 & FPU_CSR_INE_X)
766 		info.si_code = FPE_FLTRES;
767 	else
768 		info.si_code = __SI_FAULT;
769 	info.si_signo = SIGFPE;
770 	info.si_errno = 0;
771 	info.si_addr = (void __user *) regs->cp0_epc;
772 	force_sig_info(SIGFPE, &info, current);
773 }
774 
775 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
776 	const char *str)
777 {
778 	siginfo_t info;
779 	char b[40];
780 
781 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
782 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
783 		return;
784 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
785 
786 	if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
787 		return;
788 
789 	/*
790 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
791 	 * insns, even for trap and break codes that indicate arithmetic
792 	 * failures.  Weird ...
793 	 * But should we continue the brokenness???  --macro
794 	 */
795 	switch (code) {
796 	case BRK_OVERFLOW:
797 	case BRK_DIVZERO:
798 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
799 		die_if_kernel(b, regs);
800 		if (code == BRK_DIVZERO)
801 			info.si_code = FPE_INTDIV;
802 		else
803 			info.si_code = FPE_INTOVF;
804 		info.si_signo = SIGFPE;
805 		info.si_errno = 0;
806 		info.si_addr = (void __user *) regs->cp0_epc;
807 		force_sig_info(SIGFPE, &info, current);
808 		break;
809 	case BRK_BUG:
810 		die_if_kernel("Kernel bug detected", regs);
811 		force_sig(SIGTRAP, current);
812 		break;
813 	case BRK_MEMU:
814 		/*
815 		 * Address errors may be deliberately induced by the FPU
816 		 * emulator to retake control of the CPU after executing the
817 		 * instruction in the delay slot of an emulated branch.
818 		 *
819 		 * Terminate if exception was recognized as a delay slot return
820 		 * otherwise handle as normal.
821 		 */
822 		if (do_dsemulret(regs))
823 			return;
824 
825 		die_if_kernel("Math emu break/trap", regs);
826 		force_sig(SIGTRAP, current);
827 		break;
828 	default:
829 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
830 		die_if_kernel(b, regs);
831 		force_sig(SIGTRAP, current);
832 	}
833 }
834 
835 asmlinkage void do_bp(struct pt_regs *regs)
836 {
837 	unsigned int opcode, bcode;
838 	unsigned long epc;
839 	u16 instr[2];
840 
841 	if (get_isa16_mode(regs->cp0_epc)) {
842 		/* Calculate EPC. */
843 		epc = exception_epc(regs);
844 		if (cpu_has_mmips) {
845 			if ((__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc)) ||
846 			    (__get_user(instr[1], (u16 __user *)msk_isa16_mode(epc + 2)))))
847 				goto out_sigsegv;
848 		    opcode = (instr[0] << 16) | instr[1];
849 		} else {
850 		    /* MIPS16e mode */
851 		    if (__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc)))
852 				goto out_sigsegv;
853 		    bcode = (instr[0] >> 6) & 0x3f;
854 		    do_trap_or_bp(regs, bcode, "Break");
855 		    return;
856 		}
857 	} else {
858 		if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
859 			goto out_sigsegv;
860 	}
861 
862 	/*
863 	 * There is the ancient bug in the MIPS assemblers that the break
864 	 * code starts left to bit 16 instead to bit 6 in the opcode.
865 	 * Gas is bug-compatible, but not always, grrr...
866 	 * We handle both cases with a simple heuristics.  --macro
867 	 */
868 	bcode = ((opcode >> 6) & ((1 << 20) - 1));
869 	if (bcode >= (1 << 10))
870 		bcode >>= 10;
871 
872 	/*
873 	 * notify the kprobe handlers, if instruction is likely to
874 	 * pertain to them.
875 	 */
876 	switch (bcode) {
877 	case BRK_KPROBE_BP:
878 		if (notify_die(DIE_BREAK, "debug", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
879 			return;
880 		else
881 			break;
882 	case BRK_KPROBE_SSTEPBP:
883 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
884 			return;
885 		else
886 			break;
887 	default:
888 		break;
889 	}
890 
891 	do_trap_or_bp(regs, bcode, "Break");
892 	return;
893 
894 out_sigsegv:
895 	force_sig(SIGSEGV, current);
896 }
897 
898 asmlinkage void do_tr(struct pt_regs *regs)
899 {
900 	unsigned int opcode, tcode = 0;
901 	u16 instr[2];
902 	unsigned long epc = exception_epc(regs);
903 
904 	if ((__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc))) ||
905 		(__get_user(instr[1], (u16 __user *)msk_isa16_mode(epc + 2))))
906 			goto out_sigsegv;
907 	opcode = (instr[0] << 16) | instr[1];
908 
909 	/* Immediate versions don't provide a code.  */
910 	if (!(opcode & OPCODE)) {
911 		if (get_isa16_mode(regs->cp0_epc))
912 			/* microMIPS */
913 			tcode = (opcode >> 12) & 0x1f;
914 		else
915 			tcode = ((opcode >> 6) & ((1 << 10) - 1));
916 	}
917 
918 	do_trap_or_bp(regs, tcode, "Trap");
919 	return;
920 
921 out_sigsegv:
922 	force_sig(SIGSEGV, current);
923 }
924 
925 asmlinkage void do_ri(struct pt_regs *regs)
926 {
927 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
928 	unsigned long old_epc = regs->cp0_epc;
929 	unsigned long old31 = regs->regs[31];
930 	unsigned int opcode = 0;
931 	int status = -1;
932 
933 	if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), SIGILL)
934 	    == NOTIFY_STOP)
935 		return;
936 
937 	die_if_kernel("Reserved instruction in kernel code", regs);
938 
939 	if (unlikely(compute_return_epc(regs) < 0))
940 		return;
941 
942 	if (get_isa16_mode(regs->cp0_epc)) {
943 		unsigned short mmop[2] = { 0 };
944 
945 		if (unlikely(get_user(mmop[0], epc) < 0))
946 			status = SIGSEGV;
947 		if (unlikely(get_user(mmop[1], epc) < 0))
948 			status = SIGSEGV;
949 		opcode = (mmop[0] << 16) | mmop[1];
950 
951 		if (status < 0)
952 			status = simulate_rdhwr_mm(regs, opcode);
953 	} else {
954 		if (unlikely(get_user(opcode, epc) < 0))
955 			status = SIGSEGV;
956 
957 		if (!cpu_has_llsc && status < 0)
958 			status = simulate_llsc(regs, opcode);
959 
960 		if (status < 0)
961 			status = simulate_rdhwr_normal(regs, opcode);
962 
963 		if (status < 0)
964 			status = simulate_sync(regs, opcode);
965 	}
966 
967 	if (status < 0)
968 		status = SIGILL;
969 
970 	if (unlikely(status > 0)) {
971 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
972 		regs->regs[31] = old31;
973 		force_sig(status, current);
974 	}
975 }
976 
977 /*
978  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
979  * emulated more than some threshold number of instructions, force migration to
980  * a "CPU" that has FP support.
981  */
982 static void mt_ase_fp_affinity(void)
983 {
984 #ifdef CONFIG_MIPS_MT_FPAFF
985 	if (mt_fpemul_threshold > 0 &&
986 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
987 		/*
988 		 * If there's no FPU present, or if the application has already
989 		 * restricted the allowed set to exclude any CPUs with FPUs,
990 		 * we'll skip the procedure.
991 		 */
992 		if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
993 			cpumask_t tmask;
994 
995 			current->thread.user_cpus_allowed
996 				= current->cpus_allowed;
997 			cpus_and(tmask, current->cpus_allowed,
998 				mt_fpu_cpumask);
999 			set_cpus_allowed_ptr(current, &tmask);
1000 			set_thread_flag(TIF_FPUBOUND);
1001 		}
1002 	}
1003 #endif /* CONFIG_MIPS_MT_FPAFF */
1004 }
1005 
1006 /*
1007  * No lock; only written during early bootup by CPU 0.
1008  */
1009 static RAW_NOTIFIER_HEAD(cu2_chain);
1010 
1011 int __ref register_cu2_notifier(struct notifier_block *nb)
1012 {
1013 	return raw_notifier_chain_register(&cu2_chain, nb);
1014 }
1015 
1016 int cu2_notifier_call_chain(unsigned long val, void *v)
1017 {
1018 	return raw_notifier_call_chain(&cu2_chain, val, v);
1019 }
1020 
1021 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1022 	void *data)
1023 {
1024 	struct pt_regs *regs = data;
1025 
1026 	switch (action) {
1027 	default:
1028 		die_if_kernel("Unhandled kernel unaligned access or invalid "
1029 			      "instruction", regs);
1030 		/* Fall through	 */
1031 
1032 	case CU2_EXCEPTION:
1033 		force_sig(SIGILL, current);
1034 	}
1035 
1036 	return NOTIFY_OK;
1037 }
1038 
1039 asmlinkage void do_cpu(struct pt_regs *regs)
1040 {
1041 	unsigned int __user *epc;
1042 	unsigned long old_epc, old31;
1043 	unsigned int opcode;
1044 	unsigned int cpid;
1045 	int status;
1046 	unsigned long __maybe_unused flags;
1047 
1048 	die_if_kernel("do_cpu invoked from kernel context!", regs);
1049 
1050 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1051 
1052 	switch (cpid) {
1053 	case 0:
1054 		epc = (unsigned int __user *)exception_epc(regs);
1055 		old_epc = regs->cp0_epc;
1056 		old31 = regs->regs[31];
1057 		opcode = 0;
1058 		status = -1;
1059 
1060 		if (unlikely(compute_return_epc(regs) < 0))
1061 			return;
1062 
1063 		if (get_isa16_mode(regs->cp0_epc)) {
1064 			unsigned short mmop[2] = { 0 };
1065 
1066 			if (unlikely(get_user(mmop[0], epc) < 0))
1067 				status = SIGSEGV;
1068 			if (unlikely(get_user(mmop[1], epc) < 0))
1069 				status = SIGSEGV;
1070 			opcode = (mmop[0] << 16) | mmop[1];
1071 
1072 			if (status < 0)
1073 				status = simulate_rdhwr_mm(regs, opcode);
1074 		} else {
1075 			if (unlikely(get_user(opcode, epc) < 0))
1076 				status = SIGSEGV;
1077 
1078 			if (!cpu_has_llsc && status < 0)
1079 				status = simulate_llsc(regs, opcode);
1080 
1081 			if (status < 0)
1082 				status = simulate_rdhwr_normal(regs, opcode);
1083 		}
1084 
1085 		if (status < 0)
1086 			status = SIGILL;
1087 
1088 		if (unlikely(status > 0)) {
1089 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1090 			regs->regs[31] = old31;
1091 			force_sig(status, current);
1092 		}
1093 
1094 		return;
1095 
1096 	case 3:
1097 		/*
1098 		 * Old (MIPS I and MIPS II) processors will set this code
1099 		 * for COP1X opcode instructions that replaced the original
1100 		 * COP3 space.	We don't limit COP1 space instructions in
1101 		 * the emulator according to the CPU ISA, so we want to
1102 		 * treat COP1X instructions consistently regardless of which
1103 		 * code the CPU chose.	Therefore we redirect this trap to
1104 		 * the FP emulator too.
1105 		 *
1106 		 * Then some newer FPU-less processors use this code
1107 		 * erroneously too, so they are covered by this choice
1108 		 * as well.
1109 		 */
1110 		if (raw_cpu_has_fpu)
1111 			break;
1112 		/* Fall through.  */
1113 
1114 	case 1:
1115 		if (used_math())	/* Using the FPU again.	 */
1116 			own_fpu(1);
1117 		else {			/* First time FPU user.	 */
1118 			init_fpu();
1119 			set_used_math();
1120 		}
1121 
1122 		if (!raw_cpu_has_fpu) {
1123 			int sig;
1124 			void __user *fault_addr = NULL;
1125 			sig = fpu_emulator_cop1Handler(regs,
1126 						       &current->thread.fpu,
1127 						       0, &fault_addr);
1128 			if (!process_fpemu_return(sig, fault_addr))
1129 				mt_ase_fp_affinity();
1130 		}
1131 
1132 		return;
1133 
1134 	case 2:
1135 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1136 		return;
1137 	}
1138 
1139 	force_sig(SIGILL, current);
1140 }
1141 
1142 asmlinkage void do_mdmx(struct pt_regs *regs)
1143 {
1144 	force_sig(SIGILL, current);
1145 }
1146 
1147 /*
1148  * Called with interrupts disabled.
1149  */
1150 asmlinkage void do_watch(struct pt_regs *regs)
1151 {
1152 	u32 cause;
1153 
1154 	/*
1155 	 * Clear WP (bit 22) bit of cause register so we don't loop
1156 	 * forever.
1157 	 */
1158 	cause = read_c0_cause();
1159 	cause &= ~(1 << 22);
1160 	write_c0_cause(cause);
1161 
1162 	/*
1163 	 * If the current thread has the watch registers loaded, save
1164 	 * their values and send SIGTRAP.  Otherwise another thread
1165 	 * left the registers set, clear them and continue.
1166 	 */
1167 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1168 		mips_read_watch_registers();
1169 		local_irq_enable();
1170 		force_sig(SIGTRAP, current);
1171 	} else {
1172 		mips_clear_watch_registers();
1173 		local_irq_enable();
1174 	}
1175 }
1176 
1177 asmlinkage void do_mcheck(struct pt_regs *regs)
1178 {
1179 	const int field = 2 * sizeof(unsigned long);
1180 	int multi_match = regs->cp0_status & ST0_TS;
1181 
1182 	show_regs(regs);
1183 
1184 	if (multi_match) {
1185 		printk("Index	: %0x\n", read_c0_index());
1186 		printk("Pagemask: %0x\n", read_c0_pagemask());
1187 		printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1188 		printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1189 		printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1190 		printk("\n");
1191 		dump_tlb_all();
1192 	}
1193 
1194 	show_code((unsigned int __user *) regs->cp0_epc);
1195 
1196 	/*
1197 	 * Some chips may have other causes of machine check (e.g. SB1
1198 	 * graduation timer)
1199 	 */
1200 	panic("Caught Machine Check exception - %scaused by multiple "
1201 	      "matching entries in the TLB.",
1202 	      (multi_match) ? "" : "not ");
1203 }
1204 
1205 asmlinkage void do_mt(struct pt_regs *regs)
1206 {
1207 	int subcode;
1208 
1209 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1210 			>> VPECONTROL_EXCPT_SHIFT;
1211 	switch (subcode) {
1212 	case 0:
1213 		printk(KERN_DEBUG "Thread Underflow\n");
1214 		break;
1215 	case 1:
1216 		printk(KERN_DEBUG "Thread Overflow\n");
1217 		break;
1218 	case 2:
1219 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1220 		break;
1221 	case 3:
1222 		printk(KERN_DEBUG "Gating Storage Exception\n");
1223 		break;
1224 	case 4:
1225 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1226 		break;
1227 	case 5:
1228 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1229 		break;
1230 	default:
1231 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1232 			subcode);
1233 		break;
1234 	}
1235 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1236 
1237 	force_sig(SIGILL, current);
1238 }
1239 
1240 
1241 asmlinkage void do_dsp(struct pt_regs *regs)
1242 {
1243 	if (cpu_has_dsp)
1244 		panic("Unexpected DSP exception");
1245 
1246 	force_sig(SIGILL, current);
1247 }
1248 
1249 asmlinkage void do_reserved(struct pt_regs *regs)
1250 {
1251 	/*
1252 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1253 	 * caused by a new unknown cpu type or after another deadly
1254 	 * hard/software error.
1255 	 */
1256 	show_regs(regs);
1257 	panic("Caught reserved exception %ld - should not happen.",
1258 	      (regs->cp0_cause & 0x7f) >> 2);
1259 }
1260 
1261 static int __initdata l1parity = 1;
1262 static int __init nol1parity(char *s)
1263 {
1264 	l1parity = 0;
1265 	return 1;
1266 }
1267 __setup("nol1par", nol1parity);
1268 static int __initdata l2parity = 1;
1269 static int __init nol2parity(char *s)
1270 {
1271 	l2parity = 0;
1272 	return 1;
1273 }
1274 __setup("nol2par", nol2parity);
1275 
1276 /*
1277  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1278  * it different ways.
1279  */
1280 static inline void parity_protection_init(void)
1281 {
1282 	switch (current_cpu_type()) {
1283 	case CPU_24K:
1284 	case CPU_34K:
1285 	case CPU_74K:
1286 	case CPU_1004K:
1287 		{
1288 #define ERRCTL_PE	0x80000000
1289 #define ERRCTL_L2P	0x00800000
1290 			unsigned long errctl;
1291 			unsigned int l1parity_present, l2parity_present;
1292 
1293 			errctl = read_c0_ecc();
1294 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1295 
1296 			/* probe L1 parity support */
1297 			write_c0_ecc(errctl | ERRCTL_PE);
1298 			back_to_back_c0_hazard();
1299 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1300 
1301 			/* probe L2 parity support */
1302 			write_c0_ecc(errctl|ERRCTL_L2P);
1303 			back_to_back_c0_hazard();
1304 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1305 
1306 			if (l1parity_present && l2parity_present) {
1307 				if (l1parity)
1308 					errctl |= ERRCTL_PE;
1309 				if (l1parity ^ l2parity)
1310 					errctl |= ERRCTL_L2P;
1311 			} else if (l1parity_present) {
1312 				if (l1parity)
1313 					errctl |= ERRCTL_PE;
1314 			} else if (l2parity_present) {
1315 				if (l2parity)
1316 					errctl |= ERRCTL_L2P;
1317 			} else {
1318 				/* No parity available */
1319 			}
1320 
1321 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1322 
1323 			write_c0_ecc(errctl);
1324 			back_to_back_c0_hazard();
1325 			errctl = read_c0_ecc();
1326 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1327 
1328 			if (l1parity_present)
1329 				printk(KERN_INFO "Cache parity protection %sabled\n",
1330 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1331 
1332 			if (l2parity_present) {
1333 				if (l1parity_present && l1parity)
1334 					errctl ^= ERRCTL_L2P;
1335 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1336 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1337 			}
1338 		}
1339 		break;
1340 
1341 	case CPU_5KC:
1342 	case CPU_5KE:
1343 	case CPU_LOONGSON1:
1344 		write_c0_ecc(0x80000000);
1345 		back_to_back_c0_hazard();
1346 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1347 		printk(KERN_INFO "Cache parity protection %sabled\n",
1348 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1349 		break;
1350 	case CPU_20KC:
1351 	case CPU_25KF:
1352 		/* Clear the DE bit (bit 16) in the c0_status register. */
1353 		printk(KERN_INFO "Enable cache parity protection for "
1354 		       "MIPS 20KC/25KF CPUs.\n");
1355 		clear_c0_status(ST0_DE);
1356 		break;
1357 	default:
1358 		break;
1359 	}
1360 }
1361 
1362 asmlinkage void cache_parity_error(void)
1363 {
1364 	const int field = 2 * sizeof(unsigned long);
1365 	unsigned int reg_val;
1366 
1367 	/* For the moment, report the problem and hang. */
1368 	printk("Cache error exception:\n");
1369 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1370 	reg_val = read_c0_cacheerr();
1371 	printk("c0_cacheerr == %08x\n", reg_val);
1372 
1373 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1374 	       reg_val & (1<<30) ? "secondary" : "primary",
1375 	       reg_val & (1<<31) ? "data" : "insn");
1376 	printk("Error bits: %s%s%s%s%s%s%s\n",
1377 	       reg_val & (1<<29) ? "ED " : "",
1378 	       reg_val & (1<<28) ? "ET " : "",
1379 	       reg_val & (1<<26) ? "EE " : "",
1380 	       reg_val & (1<<25) ? "EB " : "",
1381 	       reg_val & (1<<24) ? "EI " : "",
1382 	       reg_val & (1<<23) ? "E1 " : "",
1383 	       reg_val & (1<<22) ? "E0 " : "");
1384 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1385 
1386 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1387 	if (reg_val & (1<<22))
1388 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1389 
1390 	if (reg_val & (1<<23))
1391 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1392 #endif
1393 
1394 	panic("Can't handle the cache error!");
1395 }
1396 
1397 /*
1398  * SDBBP EJTAG debug exception handler.
1399  * We skip the instruction and return to the next instruction.
1400  */
1401 void ejtag_exception_handler(struct pt_regs *regs)
1402 {
1403 	const int field = 2 * sizeof(unsigned long);
1404 	unsigned long depc, old_epc, old_ra;
1405 	unsigned int debug;
1406 
1407 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1408 	depc = read_c0_depc();
1409 	debug = read_c0_debug();
1410 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1411 	if (debug & 0x80000000) {
1412 		/*
1413 		 * In branch delay slot.
1414 		 * We cheat a little bit here and use EPC to calculate the
1415 		 * debug return address (DEPC). EPC is restored after the
1416 		 * calculation.
1417 		 */
1418 		old_epc = regs->cp0_epc;
1419 		old_ra = regs->regs[31];
1420 		regs->cp0_epc = depc;
1421 		compute_return_epc(regs);
1422 		depc = regs->cp0_epc;
1423 		regs->cp0_epc = old_epc;
1424 		regs->regs[31] = old_ra;
1425 	} else
1426 		depc += 4;
1427 	write_c0_depc(depc);
1428 
1429 #if 0
1430 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1431 	write_c0_debug(debug | 0x100);
1432 #endif
1433 }
1434 
1435 /*
1436  * NMI exception handler.
1437  * No lock; only written during early bootup by CPU 0.
1438  */
1439 static RAW_NOTIFIER_HEAD(nmi_chain);
1440 
1441 int register_nmi_notifier(struct notifier_block *nb)
1442 {
1443 	return raw_notifier_chain_register(&nmi_chain, nb);
1444 }
1445 
1446 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1447 {
1448 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1449 	bust_spinlocks(1);
1450 	printk("NMI taken!!!!\n");
1451 	die("NMI", regs);
1452 }
1453 
1454 #define VECTORSPACING 0x100	/* for EI/VI mode */
1455 
1456 unsigned long ebase;
1457 unsigned long exception_handlers[32];
1458 unsigned long vi_handlers[64];
1459 
1460 void __init *set_except_vector(int n, void *addr)
1461 {
1462 	unsigned long handler = (unsigned long) addr;
1463 	unsigned long old_handler;
1464 
1465 #ifdef CONFIG_CPU_MICROMIPS
1466 	/*
1467 	 * Only the TLB handlers are cache aligned with an even
1468 	 * address. All other handlers are on an odd address and
1469 	 * require no modification. Otherwise, MIPS32 mode will
1470 	 * be entered when handling any TLB exceptions. That
1471 	 * would be bad...since we must stay in microMIPS mode.
1472 	 */
1473 	if (!(handler & 0x1))
1474 		handler |= 1;
1475 #endif
1476 	old_handler = xchg(&exception_handlers[n], handler);
1477 
1478 	if (n == 0 && cpu_has_divec) {
1479 #ifdef CONFIG_CPU_MICROMIPS
1480 		unsigned long jump_mask = ~((1 << 27) - 1);
1481 #else
1482 		unsigned long jump_mask = ~((1 << 28) - 1);
1483 #endif
1484 		u32 *buf = (u32 *)(ebase + 0x200);
1485 		unsigned int k0 = 26;
1486 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1487 			uasm_i_j(&buf, handler & ~jump_mask);
1488 			uasm_i_nop(&buf);
1489 		} else {
1490 			UASM_i_LA(&buf, k0, handler);
1491 			uasm_i_jr(&buf, k0);
1492 			uasm_i_nop(&buf);
1493 		}
1494 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1495 	}
1496 	return (void *)old_handler;
1497 }
1498 
1499 static void do_default_vi(void)
1500 {
1501 	show_regs(get_irq_regs());
1502 	panic("Caught unexpected vectored interrupt.");
1503 }
1504 
1505 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1506 {
1507 	unsigned long handler;
1508 	unsigned long old_handler = vi_handlers[n];
1509 	int srssets = current_cpu_data.srsets;
1510 	u16 *h;
1511 	unsigned char *b;
1512 
1513 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1514 	BUG_ON((n < 0) && (n > 9));
1515 
1516 	if (addr == NULL) {
1517 		handler = (unsigned long) do_default_vi;
1518 		srs = 0;
1519 	} else
1520 		handler = (unsigned long) addr;
1521 	vi_handlers[n] = handler;
1522 
1523 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1524 
1525 	if (srs >= srssets)
1526 		panic("Shadow register set %d not supported", srs);
1527 
1528 	if (cpu_has_veic) {
1529 		if (board_bind_eic_interrupt)
1530 			board_bind_eic_interrupt(n, srs);
1531 	} else if (cpu_has_vint) {
1532 		/* SRSMap is only defined if shadow sets are implemented */
1533 		if (srssets > 1)
1534 			change_c0_srsmap(0xf << n*4, srs << n*4);
1535 	}
1536 
1537 	if (srs == 0) {
1538 		/*
1539 		 * If no shadow set is selected then use the default handler
1540 		 * that does normal register saving and standard interrupt exit
1541 		 */
1542 		extern char except_vec_vi, except_vec_vi_lui;
1543 		extern char except_vec_vi_ori, except_vec_vi_end;
1544 		extern char rollback_except_vec_vi;
1545 		char *vec_start = (cpu_wait == r4k_wait) ?
1546 			&rollback_except_vec_vi : &except_vec_vi;
1547 #ifdef CONFIG_MIPS_MT_SMTC
1548 		/*
1549 		 * We need to provide the SMTC vectored interrupt handler
1550 		 * not only with the address of the handler, but with the
1551 		 * Status.IM bit to be masked before going there.
1552 		 */
1553 		extern char except_vec_vi_mori;
1554 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1555 		const int mori_offset = &except_vec_vi_mori - vec_start + 2;
1556 #else
1557 		const int mori_offset = &except_vec_vi_mori - vec_start;
1558 #endif
1559 #endif /* CONFIG_MIPS_MT_SMTC */
1560 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1561 		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1562 		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1563 #else
1564 		const int lui_offset = &except_vec_vi_lui - vec_start;
1565 		const int ori_offset = &except_vec_vi_ori - vec_start;
1566 #endif
1567 		const int handler_len = &except_vec_vi_end - vec_start;
1568 
1569 		if (handler_len > VECTORSPACING) {
1570 			/*
1571 			 * Sigh... panicing won't help as the console
1572 			 * is probably not configured :(
1573 			 */
1574 			panic("VECTORSPACING too small");
1575 		}
1576 
1577 		set_handler(((unsigned long)b - ebase), vec_start,
1578 #ifdef CONFIG_CPU_MICROMIPS
1579 				(handler_len - 1));
1580 #else
1581 				handler_len);
1582 #endif
1583 #ifdef CONFIG_MIPS_MT_SMTC
1584 		BUG_ON(n > 7);	/* Vector index %d exceeds SMTC maximum. */
1585 
1586 		h = (u16 *)(b + mori_offset);
1587 		*h = (0x100 << n);
1588 #endif /* CONFIG_MIPS_MT_SMTC */
1589 		h = (u16 *)(b + lui_offset);
1590 		*h = (handler >> 16) & 0xffff;
1591 		h = (u16 *)(b + ori_offset);
1592 		*h = (handler & 0xffff);
1593 		local_flush_icache_range((unsigned long)b,
1594 					 (unsigned long)(b+handler_len));
1595 	}
1596 	else {
1597 		/*
1598 		 * In other cases jump directly to the interrupt handler. It
1599 		 * is the handler's responsibility to save registers if required
1600 		 * (eg hi/lo) and return from the exception using "eret".
1601 		 */
1602 		u32 insn;
1603 
1604 		h = (u16 *)b;
1605 		/* j handler */
1606 #ifdef CONFIG_CPU_MICROMIPS
1607 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
1608 #else
1609 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
1610 #endif
1611 		h[0] = (insn >> 16) & 0xffff;
1612 		h[1] = insn & 0xffff;
1613 		h[2] = 0;
1614 		h[3] = 0;
1615 		local_flush_icache_range((unsigned long)b,
1616 					 (unsigned long)(b+8));
1617 	}
1618 
1619 	return (void *)old_handler;
1620 }
1621 
1622 void *set_vi_handler(int n, vi_handler_t addr)
1623 {
1624 	return set_vi_srs_handler(n, addr, 0);
1625 }
1626 
1627 extern void tlb_init(void);
1628 extern void flush_tlb_handlers(void);
1629 
1630 /*
1631  * Timer interrupt
1632  */
1633 int cp0_compare_irq;
1634 EXPORT_SYMBOL_GPL(cp0_compare_irq);
1635 int cp0_compare_irq_shift;
1636 
1637 /*
1638  * Performance counter IRQ or -1 if shared with timer
1639  */
1640 int cp0_perfcount_irq;
1641 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1642 
1643 static int __cpuinitdata noulri;
1644 
1645 static int __init ulri_disable(char *s)
1646 {
1647 	pr_info("Disabling ulri\n");
1648 	noulri = 1;
1649 
1650 	return 1;
1651 }
1652 __setup("noulri", ulri_disable);
1653 
1654 void __cpuinit per_cpu_trap_init(bool is_boot_cpu)
1655 {
1656 	unsigned int cpu = smp_processor_id();
1657 	unsigned int status_set = ST0_CU0;
1658 	unsigned int hwrena = cpu_hwrena_impl_bits;
1659 #ifdef CONFIG_MIPS_MT_SMTC
1660 	int secondaryTC = 0;
1661 	int bootTC = (cpu == 0);
1662 
1663 	/*
1664 	 * Only do per_cpu_trap_init() for first TC of Each VPE.
1665 	 * Note that this hack assumes that the SMTC init code
1666 	 * assigns TCs consecutively and in ascending order.
1667 	 */
1668 
1669 	if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1670 	    ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1671 		secondaryTC = 1;
1672 #endif /* CONFIG_MIPS_MT_SMTC */
1673 
1674 	/*
1675 	 * Disable coprocessors and select 32-bit or 64-bit addressing
1676 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
1677 	 * flag that some firmware may have left set and the TS bit (for
1678 	 * IP27).  Set XX for ISA IV code to work.
1679 	 */
1680 #ifdef CONFIG_64BIT
1681 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1682 #endif
1683 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
1684 		status_set |= ST0_XX;
1685 	if (cpu_has_dsp)
1686 		status_set |= ST0_MX;
1687 
1688 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1689 			 status_set);
1690 
1691 	if (cpu_has_mips_r2)
1692 		hwrena |= 0x0000000f;
1693 
1694 	if (!noulri && cpu_has_userlocal)
1695 		hwrena |= (1 << 29);
1696 
1697 	if (hwrena)
1698 		write_c0_hwrena(hwrena);
1699 
1700 #ifdef CONFIG_MIPS_MT_SMTC
1701 	if (!secondaryTC) {
1702 #endif /* CONFIG_MIPS_MT_SMTC */
1703 
1704 	if (cpu_has_veic || cpu_has_vint) {
1705 		unsigned long sr = set_c0_status(ST0_BEV);
1706 		write_c0_ebase(ebase);
1707 		write_c0_status(sr);
1708 		/* Setting vector spacing enables EI/VI mode  */
1709 		change_c0_intctl(0x3e0, VECTORSPACING);
1710 	}
1711 	if (cpu_has_divec) {
1712 		if (cpu_has_mipsmt) {
1713 			unsigned int vpflags = dvpe();
1714 			set_c0_cause(CAUSEF_IV);
1715 			evpe(vpflags);
1716 		} else
1717 			set_c0_cause(CAUSEF_IV);
1718 	}
1719 
1720 	/*
1721 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1722 	 *
1723 	 *  o read IntCtl.IPTI to determine the timer interrupt
1724 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
1725 	 */
1726 	if (cpu_has_mips_r2) {
1727 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1728 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1729 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1730 		if (cp0_perfcount_irq == cp0_compare_irq)
1731 			cp0_perfcount_irq = -1;
1732 	} else {
1733 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1734 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
1735 		cp0_perfcount_irq = -1;
1736 	}
1737 
1738 #ifdef CONFIG_MIPS_MT_SMTC
1739 	}
1740 #endif /* CONFIG_MIPS_MT_SMTC */
1741 
1742 	if (!cpu_data[cpu].asid_cache)
1743 		cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1744 
1745 	atomic_inc(&init_mm.mm_count);
1746 	current->active_mm = &init_mm;
1747 	BUG_ON(current->mm);
1748 	enter_lazy_tlb(&init_mm, current);
1749 
1750 #ifdef CONFIG_MIPS_MT_SMTC
1751 	if (bootTC) {
1752 #endif /* CONFIG_MIPS_MT_SMTC */
1753 		/* Boot CPU's cache setup in setup_arch(). */
1754 		if (!is_boot_cpu)
1755 			cpu_cache_init();
1756 		tlb_init();
1757 #ifdef CONFIG_MIPS_MT_SMTC
1758 	} else if (!secondaryTC) {
1759 		/*
1760 		 * First TC in non-boot VPE must do subset of tlb_init()
1761 		 * for MMU countrol registers.
1762 		 */
1763 		write_c0_pagemask(PM_DEFAULT_MASK);
1764 		write_c0_wired(0);
1765 	}
1766 #endif /* CONFIG_MIPS_MT_SMTC */
1767 	TLBMISS_HANDLER_SETUP();
1768 }
1769 
1770 /* Install CPU exception handler */
1771 void __cpuinit set_handler(unsigned long offset, void *addr, unsigned long size)
1772 {
1773 #ifdef CONFIG_CPU_MICROMIPS
1774 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
1775 #else
1776 	memcpy((void *)(ebase + offset), addr, size);
1777 #endif
1778 	local_flush_icache_range(ebase + offset, ebase + offset + size);
1779 }
1780 
1781 static char panic_null_cerr[] __cpuinitdata =
1782 	"Trying to set NULL cache error exception handler";
1783 
1784 /*
1785  * Install uncached CPU exception handler.
1786  * This is suitable only for the cache error exception which is the only
1787  * exception handler that is being run uncached.
1788  */
1789 void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1790 	unsigned long size)
1791 {
1792 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
1793 
1794 	if (!addr)
1795 		panic(panic_null_cerr);
1796 
1797 	memcpy((void *)(uncached_ebase + offset), addr, size);
1798 }
1799 
1800 static int __initdata rdhwr_noopt;
1801 static int __init set_rdhwr_noopt(char *str)
1802 {
1803 	rdhwr_noopt = 1;
1804 	return 1;
1805 }
1806 
1807 __setup("rdhwr_noopt", set_rdhwr_noopt);
1808 
1809 void __init trap_init(void)
1810 {
1811 	extern char except_vec3_generic;
1812 	extern char except_vec4;
1813 	extern char except_vec3_r4000;
1814 	unsigned long i;
1815 	int rollback;
1816 
1817 	check_wait();
1818 	rollback = (cpu_wait == r4k_wait);
1819 
1820 #if defined(CONFIG_KGDB)
1821 	if (kgdb_early_setup)
1822 		return; /* Already done */
1823 #endif
1824 
1825 	if (cpu_has_veic || cpu_has_vint) {
1826 		unsigned long size = 0x200 + VECTORSPACING*64;
1827 		ebase = (unsigned long)
1828 			__alloc_bootmem(size, 1 << fls(size), 0);
1829 	} else {
1830 #ifdef CONFIG_KVM_GUEST
1831 #define KVM_GUEST_KSEG0     0x40000000
1832         ebase = KVM_GUEST_KSEG0;
1833 #else
1834         ebase = CKSEG0;
1835 #endif
1836 		if (cpu_has_mips_r2)
1837 			ebase += (read_c0_ebase() & 0x3ffff000);
1838 	}
1839 
1840 	if (board_ebase_setup)
1841 		board_ebase_setup();
1842 	per_cpu_trap_init(true);
1843 
1844 	/*
1845 	 * Copy the generic exception handlers to their final destination.
1846 	 * This will be overriden later as suitable for a particular
1847 	 * configuration.
1848 	 */
1849 	set_handler(0x180, &except_vec3_generic, 0x80);
1850 
1851 	/*
1852 	 * Setup default vectors
1853 	 */
1854 	for (i = 0; i <= 31; i++)
1855 		set_except_vector(i, handle_reserved);
1856 
1857 	/*
1858 	 * Copy the EJTAG debug exception vector handler code to it's final
1859 	 * destination.
1860 	 */
1861 	if (cpu_has_ejtag && board_ejtag_handler_setup)
1862 		board_ejtag_handler_setup();
1863 
1864 	/*
1865 	 * Only some CPUs have the watch exceptions.
1866 	 */
1867 	if (cpu_has_watch)
1868 		set_except_vector(23, handle_watch);
1869 
1870 	/*
1871 	 * Initialise interrupt handlers
1872 	 */
1873 	if (cpu_has_veic || cpu_has_vint) {
1874 		int nvec = cpu_has_veic ? 64 : 8;
1875 		for (i = 0; i < nvec; i++)
1876 			set_vi_handler(i, NULL);
1877 	}
1878 	else if (cpu_has_divec)
1879 		set_handler(0x200, &except_vec4, 0x8);
1880 
1881 	/*
1882 	 * Some CPUs can enable/disable for cache parity detection, but does
1883 	 * it different ways.
1884 	 */
1885 	parity_protection_init();
1886 
1887 	/*
1888 	 * The Data Bus Errors / Instruction Bus Errors are signaled
1889 	 * by external hardware.  Therefore these two exceptions
1890 	 * may have board specific handlers.
1891 	 */
1892 	if (board_be_init)
1893 		board_be_init();
1894 
1895 	set_except_vector(0, rollback ? rollback_handle_int : handle_int);
1896 	set_except_vector(1, handle_tlbm);
1897 	set_except_vector(2, handle_tlbl);
1898 	set_except_vector(3, handle_tlbs);
1899 
1900 	set_except_vector(4, handle_adel);
1901 	set_except_vector(5, handle_ades);
1902 
1903 	set_except_vector(6, handle_ibe);
1904 	set_except_vector(7, handle_dbe);
1905 
1906 	set_except_vector(8, handle_sys);
1907 	set_except_vector(9, handle_bp);
1908 	set_except_vector(10, rdhwr_noopt ? handle_ri :
1909 			  (cpu_has_vtag_icache ?
1910 			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1911 	set_except_vector(11, handle_cpu);
1912 	set_except_vector(12, handle_ov);
1913 	set_except_vector(13, handle_tr);
1914 
1915 	if (current_cpu_type() == CPU_R6000 ||
1916 	    current_cpu_type() == CPU_R6000A) {
1917 		/*
1918 		 * The R6000 is the only R-series CPU that features a machine
1919 		 * check exception (similar to the R4000 cache error) and
1920 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
1921 		 * written yet.	 Well, anyway there is no R6000 machine on the
1922 		 * current list of targets for Linux/MIPS.
1923 		 * (Duh, crap, there is someone with a triple R6k machine)
1924 		 */
1925 		//set_except_vector(14, handle_mc);
1926 		//set_except_vector(15, handle_ndc);
1927 	}
1928 
1929 
1930 	if (board_nmi_handler_setup)
1931 		board_nmi_handler_setup();
1932 
1933 	if (cpu_has_fpu && !cpu_has_nofpuex)
1934 		set_except_vector(15, handle_fpe);
1935 
1936 	set_except_vector(22, handle_mdmx);
1937 
1938 	if (cpu_has_mcheck)
1939 		set_except_vector(24, handle_mcheck);
1940 
1941 	if (cpu_has_mipsmt)
1942 		set_except_vector(25, handle_mt);
1943 
1944 	set_except_vector(26, handle_dsp);
1945 
1946 	if (board_cache_error_setup)
1947 		board_cache_error_setup();
1948 
1949 	if (cpu_has_vce)
1950 		/* Special exception: R4[04]00 uses also the divec space. */
1951 		set_handler(0x180, &except_vec3_r4000, 0x100);
1952 	else if (cpu_has_4kex)
1953 		set_handler(0x180, &except_vec3_generic, 0x80);
1954 	else
1955 		set_handler(0x080, &except_vec3_generic, 0x80);
1956 
1957 	local_flush_icache_range(ebase, ebase + 0x400);
1958 	flush_tlb_handlers();
1959 
1960 	sort_extable(__start___dbe_table, __stop___dbe_table);
1961 
1962 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
1963 }
1964