xref: /openbmc/linux/arch/mips/kernel/traps.c (revision 26b32974)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
25 #include <linux/mm.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memblock.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
41 
42 #include <asm/addrspace.h>
43 #include <asm/bootinfo.h>
44 #include <asm/branch.h>
45 #include <asm/break.h>
46 #include <asm/cop2.h>
47 #include <asm/cpu.h>
48 #include <asm/cpu-type.h>
49 #include <asm/dsp.h>
50 #include <asm/fpu.h>
51 #include <asm/fpu_emulator.h>
52 #include <asm/idle.h>
53 #include <asm/isa-rev.h>
54 #include <asm/mips-cps.h>
55 #include <asm/mips-r2-to-r6-emul.h>
56 #include <asm/mipsregs.h>
57 #include <asm/mipsmtregs.h>
58 #include <asm/module.h>
59 #include <asm/msa.h>
60 #include <asm/ptrace.h>
61 #include <asm/sections.h>
62 #include <asm/siginfo.h>
63 #include <asm/tlbdebug.h>
64 #include <asm/traps.h>
65 #include <linux/uaccess.h>
66 #include <asm/watch.h>
67 #include <asm/mmu_context.h>
68 #include <asm/types.h>
69 #include <asm/stacktrace.h>
70 #include <asm/tlbex.h>
71 #include <asm/uasm.h>
72 
73 #include <asm/mach-loongson64/cpucfg-emul.h>
74 
75 #include "access-helper.h"
76 
77 extern void check_wait(void);
78 extern asmlinkage void rollback_handle_int(void);
79 extern asmlinkage void handle_int(void);
80 extern asmlinkage void handle_adel(void);
81 extern asmlinkage void handle_ades(void);
82 extern asmlinkage void handle_ibe(void);
83 extern asmlinkage void handle_dbe(void);
84 extern asmlinkage void handle_sys(void);
85 extern asmlinkage void handle_bp(void);
86 extern asmlinkage void handle_ri(void);
87 extern asmlinkage void handle_ri_rdhwr_tlbp(void);
88 extern asmlinkage void handle_ri_rdhwr(void);
89 extern asmlinkage void handle_cpu(void);
90 extern asmlinkage void handle_ov(void);
91 extern asmlinkage void handle_tr(void);
92 extern asmlinkage void handle_msa_fpe(void);
93 extern asmlinkage void handle_fpe(void);
94 extern asmlinkage void handle_ftlb(void);
95 extern asmlinkage void handle_gsexc(void);
96 extern asmlinkage void handle_msa(void);
97 extern asmlinkage void handle_mdmx(void);
98 extern asmlinkage void handle_watch(void);
99 extern asmlinkage void handle_mt(void);
100 extern asmlinkage void handle_dsp(void);
101 extern asmlinkage void handle_mcheck(void);
102 extern asmlinkage void handle_reserved(void);
103 extern void tlb_do_page_fault_0(void);
104 
105 void (*board_be_init)(void);
106 static int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
107 void (*board_nmi_handler_setup)(void);
108 void (*board_ejtag_handler_setup)(void);
109 void (*board_bind_eic_interrupt)(int irq, int regset);
110 void (*board_ebase_setup)(void);
111 void(*board_cache_error_setup)(void);
112 
113 void mips_set_be_handler(int (*handler)(struct pt_regs *regs, int is_fixup))
114 {
115 	board_be_handler = handler;
116 }
117 EXPORT_SYMBOL_GPL(mips_set_be_handler);
118 
119 static void show_raw_backtrace(unsigned long reg29, const char *loglvl,
120 			       bool user)
121 {
122 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
123 	unsigned long addr;
124 
125 	printk("%sCall Trace:", loglvl);
126 #ifdef CONFIG_KALLSYMS
127 	printk("%s\n", loglvl);
128 #endif
129 	while (!kstack_end(sp)) {
130 		if (__get_addr(&addr, sp++, user)) {
131 			printk("%s (Bad stack address)", loglvl);
132 			break;
133 		}
134 		if (__kernel_text_address(addr))
135 			print_ip_sym(loglvl, addr);
136 	}
137 	printk("%s\n", loglvl);
138 }
139 
140 #ifdef CONFIG_KALLSYMS
141 int raw_show_trace;
142 static int __init set_raw_show_trace(char *str)
143 {
144 	raw_show_trace = 1;
145 	return 1;
146 }
147 __setup("raw_show_trace", set_raw_show_trace);
148 #endif
149 
150 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs,
151 			   const char *loglvl, bool user)
152 {
153 	unsigned long sp = regs->regs[29];
154 	unsigned long ra = regs->regs[31];
155 	unsigned long pc = regs->cp0_epc;
156 
157 	if (!task)
158 		task = current;
159 
160 	if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
161 		show_raw_backtrace(sp, loglvl, user);
162 		return;
163 	}
164 	printk("%sCall Trace:\n", loglvl);
165 	do {
166 		print_ip_sym(loglvl, pc);
167 		pc = unwind_stack(task, &sp, pc, &ra);
168 	} while (pc);
169 	pr_cont("\n");
170 }
171 
172 /*
173  * This routine abuses get_user()/put_user() to reference pointers
174  * with at least a bit of error checking ...
175  */
176 static void show_stacktrace(struct task_struct *task,
177 	const struct pt_regs *regs, const char *loglvl, bool user)
178 {
179 	const int field = 2 * sizeof(unsigned long);
180 	unsigned long stackdata;
181 	int i;
182 	unsigned long *sp = (unsigned long *)regs->regs[29];
183 
184 	printk("%sStack :", loglvl);
185 	i = 0;
186 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
187 		if (i && ((i % (64 / field)) == 0)) {
188 			pr_cont("\n");
189 			printk("%s       ", loglvl);
190 		}
191 		if (i > 39) {
192 			pr_cont(" ...");
193 			break;
194 		}
195 
196 		if (__get_addr(&stackdata, sp++, user)) {
197 			pr_cont(" (Bad stack address)");
198 			break;
199 		}
200 
201 		pr_cont(" %0*lx", field, stackdata);
202 		i++;
203 	}
204 	pr_cont("\n");
205 	show_backtrace(task, regs, loglvl, user);
206 }
207 
208 void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
209 {
210 	struct pt_regs regs;
211 
212 	regs.cp0_status = KSU_KERNEL;
213 	if (sp) {
214 		regs.regs[29] = (unsigned long)sp;
215 		regs.regs[31] = 0;
216 		regs.cp0_epc = 0;
217 	} else {
218 		if (task && task != current) {
219 			regs.regs[29] = task->thread.reg29;
220 			regs.regs[31] = 0;
221 			regs.cp0_epc = task->thread.reg31;
222 		} else {
223 			prepare_frametrace(&regs);
224 		}
225 	}
226 	show_stacktrace(task, &regs, loglvl, false);
227 }
228 
229 static void show_code(void *pc, bool user)
230 {
231 	long i;
232 	unsigned short *pc16 = NULL;
233 
234 	printk("Code:");
235 
236 	if ((unsigned long)pc & 1)
237 		pc16 = (u16 *)((unsigned long)pc & ~1);
238 
239 	for(i = -3 ; i < 6 ; i++) {
240 		if (pc16) {
241 			u16 insn16;
242 
243 			if (__get_inst16(&insn16, pc16 + i, user))
244 				goto bad_address;
245 
246 			pr_cont("%c%04x%c", (i?' ':'<'), insn16, (i?' ':'>'));
247 		} else {
248 			u32 insn32;
249 
250 			if (__get_inst32(&insn32, (u32 *)pc + i, user))
251 				goto bad_address;
252 
253 			pr_cont("%c%08x%c", (i?' ':'<'), insn32, (i?' ':'>'));
254 		}
255 	}
256 	pr_cont("\n");
257 	return;
258 
259 bad_address:
260 	pr_cont(" (Bad address in epc)\n\n");
261 }
262 
263 static void __show_regs(const struct pt_regs *regs)
264 {
265 	const int field = 2 * sizeof(unsigned long);
266 	unsigned int cause = regs->cp0_cause;
267 	unsigned int exccode;
268 	int i;
269 
270 	show_regs_print_info(KERN_DEFAULT);
271 
272 	/*
273 	 * Saved main processor registers
274 	 */
275 	for (i = 0; i < 32; ) {
276 		if ((i % 4) == 0)
277 			printk("$%2d   :", i);
278 		if (i == 0)
279 			pr_cont(" %0*lx", field, 0UL);
280 		else if (i == 26 || i == 27)
281 			pr_cont(" %*s", field, "");
282 		else
283 			pr_cont(" %0*lx", field, regs->regs[i]);
284 
285 		i++;
286 		if ((i % 4) == 0)
287 			pr_cont("\n");
288 	}
289 
290 #ifdef CONFIG_CPU_HAS_SMARTMIPS
291 	printk("Acx    : %0*lx\n", field, regs->acx);
292 #endif
293 	if (MIPS_ISA_REV < 6) {
294 		printk("Hi    : %0*lx\n", field, regs->hi);
295 		printk("Lo    : %0*lx\n", field, regs->lo);
296 	}
297 
298 	/*
299 	 * Saved cp0 registers
300 	 */
301 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
302 	       (void *) regs->cp0_epc);
303 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
304 	       (void *) regs->regs[31]);
305 
306 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
307 
308 	if (cpu_has_3kex) {
309 		if (regs->cp0_status & ST0_KUO)
310 			pr_cont("KUo ");
311 		if (regs->cp0_status & ST0_IEO)
312 			pr_cont("IEo ");
313 		if (regs->cp0_status & ST0_KUP)
314 			pr_cont("KUp ");
315 		if (regs->cp0_status & ST0_IEP)
316 			pr_cont("IEp ");
317 		if (regs->cp0_status & ST0_KUC)
318 			pr_cont("KUc ");
319 		if (regs->cp0_status & ST0_IEC)
320 			pr_cont("IEc ");
321 	} else if (cpu_has_4kex) {
322 		if (regs->cp0_status & ST0_KX)
323 			pr_cont("KX ");
324 		if (regs->cp0_status & ST0_SX)
325 			pr_cont("SX ");
326 		if (regs->cp0_status & ST0_UX)
327 			pr_cont("UX ");
328 		switch (regs->cp0_status & ST0_KSU) {
329 		case KSU_USER:
330 			pr_cont("USER ");
331 			break;
332 		case KSU_SUPERVISOR:
333 			pr_cont("SUPERVISOR ");
334 			break;
335 		case KSU_KERNEL:
336 			pr_cont("KERNEL ");
337 			break;
338 		default:
339 			pr_cont("BAD_MODE ");
340 			break;
341 		}
342 		if (regs->cp0_status & ST0_ERL)
343 			pr_cont("ERL ");
344 		if (regs->cp0_status & ST0_EXL)
345 			pr_cont("EXL ");
346 		if (regs->cp0_status & ST0_IE)
347 			pr_cont("IE ");
348 	}
349 	pr_cont("\n");
350 
351 	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
352 	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
353 
354 	if (1 <= exccode && exccode <= 5)
355 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
356 
357 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
358 	       cpu_name_string());
359 }
360 
361 /*
362  * FIXME: really the generic show_regs should take a const pointer argument.
363  */
364 void show_regs(struct pt_regs *regs)
365 {
366 	__show_regs(regs);
367 	dump_stack();
368 }
369 
370 void show_registers(struct pt_regs *regs)
371 {
372 	const int field = 2 * sizeof(unsigned long);
373 
374 	__show_regs(regs);
375 	print_modules();
376 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
377 	       current->comm, current->pid, current_thread_info(), current,
378 	      field, current_thread_info()->tp_value);
379 	if (cpu_has_userlocal) {
380 		unsigned long tls;
381 
382 		tls = read_c0_userlocal();
383 		if (tls != current_thread_info()->tp_value)
384 			printk("*HwTLS: %0*lx\n", field, tls);
385 	}
386 
387 	show_stacktrace(current, regs, KERN_DEFAULT, user_mode(regs));
388 	show_code((void *)regs->cp0_epc, user_mode(regs));
389 	printk("\n");
390 }
391 
392 static DEFINE_RAW_SPINLOCK(die_lock);
393 
394 void __noreturn die(const char *str, struct pt_regs *regs)
395 {
396 	static int die_counter;
397 	int sig = SIGSEGV;
398 
399 	oops_enter();
400 
401 	if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
402 		       SIGSEGV) == NOTIFY_STOP)
403 		sig = 0;
404 
405 	console_verbose();
406 	raw_spin_lock_irq(&die_lock);
407 	bust_spinlocks(1);
408 
409 	printk("%s[#%d]:\n", str, ++die_counter);
410 	show_registers(regs);
411 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
412 	raw_spin_unlock_irq(&die_lock);
413 
414 	oops_exit();
415 
416 	if (in_interrupt())
417 		panic("Fatal exception in interrupt");
418 
419 	if (panic_on_oops)
420 		panic("Fatal exception");
421 
422 	if (regs && kexec_should_crash(current))
423 		crash_kexec(regs);
424 
425 	make_task_dead(sig);
426 }
427 
428 extern struct exception_table_entry __start___dbe_table[];
429 extern struct exception_table_entry __stop___dbe_table[];
430 
431 __asm__(
432 "	.section	__dbe_table, \"a\"\n"
433 "	.previous			\n");
434 
435 /* Given an address, look for it in the exception tables. */
436 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
437 {
438 	const struct exception_table_entry *e;
439 
440 	e = search_extable(__start___dbe_table,
441 			   __stop___dbe_table - __start___dbe_table, addr);
442 	if (!e)
443 		e = search_module_dbetables(addr);
444 	return e;
445 }
446 
447 asmlinkage void do_be(struct pt_regs *regs)
448 {
449 	const int field = 2 * sizeof(unsigned long);
450 	const struct exception_table_entry *fixup = NULL;
451 	int data = regs->cp0_cause & 4;
452 	int action = MIPS_BE_FATAL;
453 	enum ctx_state prev_state;
454 
455 	prev_state = exception_enter();
456 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
457 	if (data && !user_mode(regs))
458 		fixup = search_dbe_tables(exception_epc(regs));
459 
460 	if (fixup)
461 		action = MIPS_BE_FIXUP;
462 
463 	if (board_be_handler)
464 		action = board_be_handler(regs, fixup != NULL);
465 	else
466 		mips_cm_error_report();
467 
468 	switch (action) {
469 	case MIPS_BE_DISCARD:
470 		goto out;
471 	case MIPS_BE_FIXUP:
472 		if (fixup) {
473 			regs->cp0_epc = fixup->nextinsn;
474 			goto out;
475 		}
476 		break;
477 	default:
478 		break;
479 	}
480 
481 	/*
482 	 * Assume it would be too dangerous to continue ...
483 	 */
484 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
485 	       data ? "Data" : "Instruction",
486 	       field, regs->cp0_epc, field, regs->regs[31]);
487 	if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
488 		       SIGBUS) == NOTIFY_STOP)
489 		goto out;
490 
491 	die_if_kernel("Oops", regs);
492 	force_sig(SIGBUS);
493 
494 out:
495 	exception_exit(prev_state);
496 }
497 
498 /*
499  * ll/sc, rdhwr, sync emulation
500  */
501 
502 #define OPCODE 0xfc000000
503 #define BASE   0x03e00000
504 #define RT     0x001f0000
505 #define OFFSET 0x0000ffff
506 #define LL     0xc0000000
507 #define SC     0xe0000000
508 #define SPEC0  0x00000000
509 #define SPEC3  0x7c000000
510 #define RD     0x0000f800
511 #define FUNC   0x0000003f
512 #define SYNC   0x0000000f
513 #define RDHWR  0x0000003b
514 
515 /*  microMIPS definitions   */
516 #define MM_POOL32A_FUNC 0xfc00ffff
517 #define MM_RDHWR        0x00006b3c
518 #define MM_RS           0x001f0000
519 #define MM_RT           0x03e00000
520 
521 /*
522  * The ll_bit is cleared by r*_switch.S
523  */
524 
525 unsigned int ll_bit;
526 struct task_struct *ll_task;
527 
528 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
529 {
530 	unsigned long value, __user *vaddr;
531 	long offset;
532 
533 	/*
534 	 * analyse the ll instruction that just caused a ri exception
535 	 * and put the referenced address to addr.
536 	 */
537 
538 	/* sign extend offset */
539 	offset = opcode & OFFSET;
540 	offset <<= 16;
541 	offset >>= 16;
542 
543 	vaddr = (unsigned long __user *)
544 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
545 
546 	if ((unsigned long)vaddr & 3)
547 		return SIGBUS;
548 	if (get_user(value, vaddr))
549 		return SIGSEGV;
550 
551 	preempt_disable();
552 
553 	if (ll_task == NULL || ll_task == current) {
554 		ll_bit = 1;
555 	} else {
556 		ll_bit = 0;
557 	}
558 	ll_task = current;
559 
560 	preempt_enable();
561 
562 	regs->regs[(opcode & RT) >> 16] = value;
563 
564 	return 0;
565 }
566 
567 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
568 {
569 	unsigned long __user *vaddr;
570 	unsigned long reg;
571 	long offset;
572 
573 	/*
574 	 * analyse the sc instruction that just caused a ri exception
575 	 * and put the referenced address to addr.
576 	 */
577 
578 	/* sign extend offset */
579 	offset = opcode & OFFSET;
580 	offset <<= 16;
581 	offset >>= 16;
582 
583 	vaddr = (unsigned long __user *)
584 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
585 	reg = (opcode & RT) >> 16;
586 
587 	if ((unsigned long)vaddr & 3)
588 		return SIGBUS;
589 
590 	preempt_disable();
591 
592 	if (ll_bit == 0 || ll_task != current) {
593 		regs->regs[reg] = 0;
594 		preempt_enable();
595 		return 0;
596 	}
597 
598 	preempt_enable();
599 
600 	if (put_user(regs->regs[reg], vaddr))
601 		return SIGSEGV;
602 
603 	regs->regs[reg] = 1;
604 
605 	return 0;
606 }
607 
608 /*
609  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
610  * opcodes are supposed to result in coprocessor unusable exceptions if
611  * executed on ll/sc-less processors.  That's the theory.  In practice a
612  * few processors such as NEC's VR4100 throw reserved instruction exceptions
613  * instead, so we're doing the emulation thing in both exception handlers.
614  */
615 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
616 {
617 	if ((opcode & OPCODE) == LL) {
618 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
619 				1, regs, 0);
620 		return simulate_ll(regs, opcode);
621 	}
622 	if ((opcode & OPCODE) == SC) {
623 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
624 				1, regs, 0);
625 		return simulate_sc(regs, opcode);
626 	}
627 
628 	return -1;			/* Must be something else ... */
629 }
630 
631 /*
632  * Simulate trapping 'rdhwr' instructions to provide user accessible
633  * registers not implemented in hardware.
634  */
635 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
636 {
637 	struct thread_info *ti = task_thread_info(current);
638 
639 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
640 			1, regs, 0);
641 	switch (rd) {
642 	case MIPS_HWR_CPUNUM:		/* CPU number */
643 		regs->regs[rt] = smp_processor_id();
644 		return 0;
645 	case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
646 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
647 				     current_cpu_data.icache.linesz);
648 		return 0;
649 	case MIPS_HWR_CC:		/* Read count register */
650 		regs->regs[rt] = read_c0_count();
651 		return 0;
652 	case MIPS_HWR_CCRES:		/* Count register resolution */
653 		switch (current_cpu_type()) {
654 		case CPU_20KC:
655 		case CPU_25KF:
656 			regs->regs[rt] = 1;
657 			break;
658 		default:
659 			regs->regs[rt] = 2;
660 		}
661 		return 0;
662 	case MIPS_HWR_ULR:		/* Read UserLocal register */
663 		regs->regs[rt] = ti->tp_value;
664 		return 0;
665 	default:
666 		return -1;
667 	}
668 }
669 
670 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
671 {
672 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
673 		int rd = (opcode & RD) >> 11;
674 		int rt = (opcode & RT) >> 16;
675 
676 		simulate_rdhwr(regs, rd, rt);
677 		return 0;
678 	}
679 
680 	/* Not ours.  */
681 	return -1;
682 }
683 
684 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
685 {
686 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
687 		int rd = (opcode & MM_RS) >> 16;
688 		int rt = (opcode & MM_RT) >> 21;
689 		simulate_rdhwr(regs, rd, rt);
690 		return 0;
691 	}
692 
693 	/* Not ours.  */
694 	return -1;
695 }
696 
697 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
698 {
699 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
700 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
701 				1, regs, 0);
702 		return 0;
703 	}
704 
705 	return -1;			/* Must be something else ... */
706 }
707 
708 /*
709  * Loongson-3 CSR instructions emulation
710  */
711 
712 #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
713 
714 #define LWC2             0xc8000000
715 #define RS               BASE
716 #define CSR_OPCODE2      0x00000118
717 #define CSR_OPCODE2_MASK 0x000007ff
718 #define CSR_FUNC_MASK    RT
719 #define CSR_FUNC_CPUCFG  0x8
720 
721 static int simulate_loongson3_cpucfg(struct pt_regs *regs,
722 				     unsigned int opcode)
723 {
724 	int op = opcode & OPCODE;
725 	int op2 = opcode & CSR_OPCODE2_MASK;
726 	int csr_func = (opcode & CSR_FUNC_MASK) >> 16;
727 
728 	if (op == LWC2 && op2 == CSR_OPCODE2 && csr_func == CSR_FUNC_CPUCFG) {
729 		int rd = (opcode & RD) >> 11;
730 		int rs = (opcode & RS) >> 21;
731 		__u64 sel = regs->regs[rs];
732 
733 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
734 
735 		/* Do not emulate on unsupported core models. */
736 		preempt_disable();
737 		if (!loongson3_cpucfg_emulation_enabled(&current_cpu_data)) {
738 			preempt_enable();
739 			return -1;
740 		}
741 		regs->regs[rd] = loongson3_cpucfg_read_synthesized(
742 			&current_cpu_data, sel);
743 		preempt_enable();
744 		return 0;
745 	}
746 
747 	/* Not ours.  */
748 	return -1;
749 }
750 #endif /* CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION */
751 
752 asmlinkage void do_ov(struct pt_regs *regs)
753 {
754 	enum ctx_state prev_state;
755 
756 	prev_state = exception_enter();
757 	die_if_kernel("Integer overflow", regs);
758 
759 	force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
760 	exception_exit(prev_state);
761 }
762 
763 #ifdef CONFIG_MIPS_FP_SUPPORT
764 
765 /*
766  * Send SIGFPE according to FCSR Cause bits, which must have already
767  * been masked against Enable bits.  This is impotant as Inexact can
768  * happen together with Overflow or Underflow, and `ptrace' can set
769  * any bits.
770  */
771 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
772 		     struct task_struct *tsk)
773 {
774 	int si_code = FPE_FLTUNK;
775 
776 	if (fcr31 & FPU_CSR_INV_X)
777 		si_code = FPE_FLTINV;
778 	else if (fcr31 & FPU_CSR_DIV_X)
779 		si_code = FPE_FLTDIV;
780 	else if (fcr31 & FPU_CSR_OVF_X)
781 		si_code = FPE_FLTOVF;
782 	else if (fcr31 & FPU_CSR_UDF_X)
783 		si_code = FPE_FLTUND;
784 	else if (fcr31 & FPU_CSR_INE_X)
785 		si_code = FPE_FLTRES;
786 
787 	force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
788 }
789 
790 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
791 {
792 	int si_code;
793 
794 	switch (sig) {
795 	case 0:
796 		return 0;
797 
798 	case SIGFPE:
799 		force_fcr31_sig(fcr31, fault_addr, current);
800 		return 1;
801 
802 	case SIGBUS:
803 		force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
804 		return 1;
805 
806 	case SIGSEGV:
807 		mmap_read_lock(current->mm);
808 		if (vma_lookup(current->mm, (unsigned long)fault_addr))
809 			si_code = SEGV_ACCERR;
810 		else
811 			si_code = SEGV_MAPERR;
812 		mmap_read_unlock(current->mm);
813 		force_sig_fault(SIGSEGV, si_code, fault_addr);
814 		return 1;
815 
816 	default:
817 		force_sig(sig);
818 		return 1;
819 	}
820 }
821 
822 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
823 		       unsigned long old_epc, unsigned long old_ra)
824 {
825 	union mips_instruction inst = { .word = opcode };
826 	void __user *fault_addr;
827 	unsigned long fcr31;
828 	int sig;
829 
830 	/* If it's obviously not an FP instruction, skip it */
831 	switch (inst.i_format.opcode) {
832 	case cop1_op:
833 	case cop1x_op:
834 	case lwc1_op:
835 	case ldc1_op:
836 	case swc1_op:
837 	case sdc1_op:
838 		break;
839 
840 	default:
841 		return -1;
842 	}
843 
844 	/*
845 	 * do_ri skipped over the instruction via compute_return_epc, undo
846 	 * that for the FPU emulator.
847 	 */
848 	regs->cp0_epc = old_epc;
849 	regs->regs[31] = old_ra;
850 
851 	/* Run the emulator */
852 	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
853 				       &fault_addr);
854 
855 	/*
856 	 * We can't allow the emulated instruction to leave any
857 	 * enabled Cause bits set in $fcr31.
858 	 */
859 	fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
860 	current->thread.fpu.fcr31 &= ~fcr31;
861 
862 	/* Restore the hardware register state */
863 	own_fpu(1);
864 
865 	/* Send a signal if required.  */
866 	process_fpemu_return(sig, fault_addr, fcr31);
867 
868 	return 0;
869 }
870 
871 /*
872  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
873  */
874 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
875 {
876 	enum ctx_state prev_state;
877 	void __user *fault_addr;
878 	int sig;
879 
880 	prev_state = exception_enter();
881 	if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
882 		       SIGFPE) == NOTIFY_STOP)
883 		goto out;
884 
885 	/* Clear FCSR.Cause before enabling interrupts */
886 	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
887 	local_irq_enable();
888 
889 	die_if_kernel("FP exception in kernel code", regs);
890 
891 	if (fcr31 & FPU_CSR_UNI_X) {
892 		/*
893 		 * Unimplemented operation exception.  If we've got the full
894 		 * software emulator on-board, let's use it...
895 		 *
896 		 * Force FPU to dump state into task/thread context.  We're
897 		 * moving a lot of data here for what is probably a single
898 		 * instruction, but the alternative is to pre-decode the FP
899 		 * register operands before invoking the emulator, which seems
900 		 * a bit extreme for what should be an infrequent event.
901 		 */
902 
903 		/* Run the emulator */
904 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
905 					       &fault_addr);
906 
907 		/*
908 		 * We can't allow the emulated instruction to leave any
909 		 * enabled Cause bits set in $fcr31.
910 		 */
911 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
912 		current->thread.fpu.fcr31 &= ~fcr31;
913 
914 		/* Restore the hardware register state */
915 		own_fpu(1);	/* Using the FPU again.	 */
916 	} else {
917 		sig = SIGFPE;
918 		fault_addr = (void __user *) regs->cp0_epc;
919 	}
920 
921 	/* Send a signal if required.  */
922 	process_fpemu_return(sig, fault_addr, fcr31);
923 
924 out:
925 	exception_exit(prev_state);
926 }
927 
928 /*
929  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
930  * emulated more than some threshold number of instructions, force migration to
931  * a "CPU" that has FP support.
932  */
933 static void mt_ase_fp_affinity(void)
934 {
935 #ifdef CONFIG_MIPS_MT_FPAFF
936 	if (mt_fpemul_threshold > 0 &&
937 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
938 		/*
939 		 * If there's no FPU present, or if the application has already
940 		 * restricted the allowed set to exclude any CPUs with FPUs,
941 		 * we'll skip the procedure.
942 		 */
943 		if (cpumask_intersects(&current->cpus_mask, &mt_fpu_cpumask)) {
944 			cpumask_t tmask;
945 
946 			current->thread.user_cpus_allowed
947 				= current->cpus_mask;
948 			cpumask_and(&tmask, &current->cpus_mask,
949 				    &mt_fpu_cpumask);
950 			set_cpus_allowed_ptr(current, &tmask);
951 			set_thread_flag(TIF_FPUBOUND);
952 		}
953 	}
954 #endif /* CONFIG_MIPS_MT_FPAFF */
955 }
956 
957 #else /* !CONFIG_MIPS_FP_SUPPORT */
958 
959 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
960 		       unsigned long old_epc, unsigned long old_ra)
961 {
962 	return -1;
963 }
964 
965 #endif /* !CONFIG_MIPS_FP_SUPPORT */
966 
967 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
968 	const char *str)
969 {
970 	char b[40];
971 
972 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
973 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
974 			 SIGTRAP) == NOTIFY_STOP)
975 		return;
976 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
977 
978 	if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
979 		       SIGTRAP) == NOTIFY_STOP)
980 		return;
981 
982 	/*
983 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
984 	 * insns, even for trap and break codes that indicate arithmetic
985 	 * failures.  Weird ...
986 	 * But should we continue the brokenness???  --macro
987 	 */
988 	switch (code) {
989 	case BRK_OVERFLOW:
990 	case BRK_DIVZERO:
991 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
992 		die_if_kernel(b, regs);
993 		force_sig_fault(SIGFPE,
994 				code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
995 				(void __user *) regs->cp0_epc);
996 		break;
997 	case BRK_BUG:
998 		die_if_kernel("Kernel bug detected", regs);
999 		force_sig(SIGTRAP);
1000 		break;
1001 	case BRK_MEMU:
1002 		/*
1003 		 * This breakpoint code is used by the FPU emulator to retake
1004 		 * control of the CPU after executing the instruction from the
1005 		 * delay slot of an emulated branch.
1006 		 *
1007 		 * Terminate if exception was recognized as a delay slot return
1008 		 * otherwise handle as normal.
1009 		 */
1010 		if (do_dsemulret(regs))
1011 			return;
1012 
1013 		die_if_kernel("Math emu break/trap", regs);
1014 		force_sig(SIGTRAP);
1015 		break;
1016 	default:
1017 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
1018 		die_if_kernel(b, regs);
1019 		if (si_code) {
1020 			force_sig_fault(SIGTRAP, si_code, NULL);
1021 		} else {
1022 			force_sig(SIGTRAP);
1023 		}
1024 	}
1025 }
1026 
1027 asmlinkage void do_bp(struct pt_regs *regs)
1028 {
1029 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1030 	unsigned int opcode, bcode;
1031 	enum ctx_state prev_state;
1032 	bool user = user_mode(regs);
1033 
1034 	prev_state = exception_enter();
1035 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1036 	if (get_isa16_mode(regs->cp0_epc)) {
1037 		u16 instr[2];
1038 
1039 		if (__get_inst16(&instr[0], (u16 *)epc, user))
1040 			goto out_sigsegv;
1041 
1042 		if (!cpu_has_mmips) {
1043 			/* MIPS16e mode */
1044 			bcode = (instr[0] >> 5) & 0x3f;
1045 		} else if (mm_insn_16bit(instr[0])) {
1046 			/* 16-bit microMIPS BREAK */
1047 			bcode = instr[0] & 0xf;
1048 		} else {
1049 			/* 32-bit microMIPS BREAK */
1050 			if (__get_inst16(&instr[1], (u16 *)(epc + 2), user))
1051 				goto out_sigsegv;
1052 			opcode = (instr[0] << 16) | instr[1];
1053 			bcode = (opcode >> 6) & ((1 << 20) - 1);
1054 		}
1055 	} else {
1056 		if (__get_inst32(&opcode, (u32 *)epc, user))
1057 			goto out_sigsegv;
1058 		bcode = (opcode >> 6) & ((1 << 20) - 1);
1059 	}
1060 
1061 	/*
1062 	 * There is the ancient bug in the MIPS assemblers that the break
1063 	 * code starts left to bit 16 instead to bit 6 in the opcode.
1064 	 * Gas is bug-compatible, but not always, grrr...
1065 	 * We handle both cases with a simple heuristics.  --macro
1066 	 */
1067 	if (bcode >= (1 << 10))
1068 		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1069 
1070 	/*
1071 	 * notify the kprobe handlers, if instruction is likely to
1072 	 * pertain to them.
1073 	 */
1074 	switch (bcode) {
1075 	case BRK_UPROBE:
1076 		if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1077 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1078 			goto out;
1079 		else
1080 			break;
1081 	case BRK_UPROBE_XOL:
1082 		if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1083 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1084 			goto out;
1085 		else
1086 			break;
1087 	case BRK_KPROBE_BP:
1088 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
1089 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1090 			goto out;
1091 		else
1092 			break;
1093 	case BRK_KPROBE_SSTEPBP:
1094 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1095 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1096 			goto out;
1097 		else
1098 			break;
1099 	default:
1100 		break;
1101 	}
1102 
1103 	do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1104 
1105 out:
1106 	exception_exit(prev_state);
1107 	return;
1108 
1109 out_sigsegv:
1110 	force_sig(SIGSEGV);
1111 	goto out;
1112 }
1113 
1114 asmlinkage void do_tr(struct pt_regs *regs)
1115 {
1116 	u32 opcode, tcode = 0;
1117 	enum ctx_state prev_state;
1118 	u16 instr[2];
1119 	bool user = user_mode(regs);
1120 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1121 
1122 	prev_state = exception_enter();
1123 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1124 	if (get_isa16_mode(regs->cp0_epc)) {
1125 		if (__get_inst16(&instr[0], (u16 *)(epc + 0), user) ||
1126 		    __get_inst16(&instr[1], (u16 *)(epc + 2), user))
1127 			goto out_sigsegv;
1128 		opcode = (instr[0] << 16) | instr[1];
1129 		/* Immediate versions don't provide a code.  */
1130 		if (!(opcode & OPCODE))
1131 			tcode = (opcode >> 12) & ((1 << 4) - 1);
1132 	} else {
1133 		if (__get_inst32(&opcode, (u32 *)epc, user))
1134 			goto out_sigsegv;
1135 		/* Immediate versions don't provide a code.  */
1136 		if (!(opcode & OPCODE))
1137 			tcode = (opcode >> 6) & ((1 << 10) - 1);
1138 	}
1139 
1140 	do_trap_or_bp(regs, tcode, 0, "Trap");
1141 
1142 out:
1143 	exception_exit(prev_state);
1144 	return;
1145 
1146 out_sigsegv:
1147 	force_sig(SIGSEGV);
1148 	goto out;
1149 }
1150 
1151 asmlinkage void do_ri(struct pt_regs *regs)
1152 {
1153 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1154 	unsigned long old_epc = regs->cp0_epc;
1155 	unsigned long old31 = regs->regs[31];
1156 	enum ctx_state prev_state;
1157 	unsigned int opcode = 0;
1158 	int status = -1;
1159 
1160 	/*
1161 	 * Avoid any kernel code. Just emulate the R2 instruction
1162 	 * as quickly as possible.
1163 	 */
1164 	if (mipsr2_emulation && cpu_has_mips_r6 &&
1165 	    likely(user_mode(regs)) &&
1166 	    likely(get_user(opcode, epc) >= 0)) {
1167 		unsigned long fcr31 = 0;
1168 
1169 		status = mipsr2_decoder(regs, opcode, &fcr31);
1170 		switch (status) {
1171 		case 0:
1172 		case SIGEMT:
1173 			return;
1174 		case SIGILL:
1175 			goto no_r2_instr;
1176 		default:
1177 			process_fpemu_return(status,
1178 					     &current->thread.cp0_baduaddr,
1179 					     fcr31);
1180 			return;
1181 		}
1182 	}
1183 
1184 no_r2_instr:
1185 
1186 	prev_state = exception_enter();
1187 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1188 
1189 	if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1190 		       SIGILL) == NOTIFY_STOP)
1191 		goto out;
1192 
1193 	die_if_kernel("Reserved instruction in kernel code", regs);
1194 
1195 	if (unlikely(compute_return_epc(regs) < 0))
1196 		goto out;
1197 
1198 	if (!get_isa16_mode(regs->cp0_epc)) {
1199 		if (unlikely(get_user(opcode, epc) < 0))
1200 			status = SIGSEGV;
1201 
1202 		if (!cpu_has_llsc && status < 0)
1203 			status = simulate_llsc(regs, opcode);
1204 
1205 		if (status < 0)
1206 			status = simulate_rdhwr_normal(regs, opcode);
1207 
1208 		if (status < 0)
1209 			status = simulate_sync(regs, opcode);
1210 
1211 		if (status < 0)
1212 			status = simulate_fp(regs, opcode, old_epc, old31);
1213 
1214 #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
1215 		if (status < 0)
1216 			status = simulate_loongson3_cpucfg(regs, opcode);
1217 #endif
1218 	} else if (cpu_has_mmips) {
1219 		unsigned short mmop[2] = { 0 };
1220 
1221 		if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1222 			status = SIGSEGV;
1223 		if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1224 			status = SIGSEGV;
1225 		opcode = mmop[0];
1226 		opcode = (opcode << 16) | mmop[1];
1227 
1228 		if (status < 0)
1229 			status = simulate_rdhwr_mm(regs, opcode);
1230 	}
1231 
1232 	if (status < 0)
1233 		status = SIGILL;
1234 
1235 	if (unlikely(status > 0)) {
1236 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1237 		regs->regs[31] = old31;
1238 		force_sig(status);
1239 	}
1240 
1241 out:
1242 	exception_exit(prev_state);
1243 }
1244 
1245 /*
1246  * No lock; only written during early bootup by CPU 0.
1247  */
1248 static RAW_NOTIFIER_HEAD(cu2_chain);
1249 
1250 int __ref register_cu2_notifier(struct notifier_block *nb)
1251 {
1252 	return raw_notifier_chain_register(&cu2_chain, nb);
1253 }
1254 
1255 int cu2_notifier_call_chain(unsigned long val, void *v)
1256 {
1257 	return raw_notifier_call_chain(&cu2_chain, val, v);
1258 }
1259 
1260 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1261 	void *data)
1262 {
1263 	struct pt_regs *regs = data;
1264 
1265 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1266 			      "instruction", regs);
1267 	force_sig(SIGILL);
1268 
1269 	return NOTIFY_OK;
1270 }
1271 
1272 #ifdef CONFIG_MIPS_FP_SUPPORT
1273 
1274 static int enable_restore_fp_context(int msa)
1275 {
1276 	int err, was_fpu_owner, prior_msa;
1277 	bool first_fp;
1278 
1279 	/* Initialize context if it hasn't been used already */
1280 	first_fp = init_fp_ctx(current);
1281 
1282 	if (first_fp) {
1283 		preempt_disable();
1284 		err = own_fpu_inatomic(1);
1285 		if (msa && !err) {
1286 			enable_msa();
1287 			/*
1288 			 * with MSA enabled, userspace can see MSACSR
1289 			 * and MSA regs, but the values in them are from
1290 			 * other task before current task, restore them
1291 			 * from saved fp/msa context
1292 			 */
1293 			write_msa_csr(current->thread.fpu.msacsr);
1294 			/*
1295 			 * own_fpu_inatomic(1) just restore low 64bit,
1296 			 * fix the high 64bit
1297 			 */
1298 			init_msa_upper();
1299 			set_thread_flag(TIF_USEDMSA);
1300 			set_thread_flag(TIF_MSA_CTX_LIVE);
1301 		}
1302 		preempt_enable();
1303 		return err;
1304 	}
1305 
1306 	/*
1307 	 * This task has formerly used the FP context.
1308 	 *
1309 	 * If this thread has no live MSA vector context then we can simply
1310 	 * restore the scalar FP context. If it has live MSA vector context
1311 	 * (that is, it has or may have used MSA since last performing a
1312 	 * function call) then we'll need to restore the vector context. This
1313 	 * applies even if we're currently only executing a scalar FP
1314 	 * instruction. This is because if we were to later execute an MSA
1315 	 * instruction then we'd either have to:
1316 	 *
1317 	 *  - Restore the vector context & clobber any registers modified by
1318 	 *    scalar FP instructions between now & then.
1319 	 *
1320 	 * or
1321 	 *
1322 	 *  - Not restore the vector context & lose the most significant bits
1323 	 *    of all vector registers.
1324 	 *
1325 	 * Neither of those options is acceptable. We cannot restore the least
1326 	 * significant bits of the registers now & only restore the most
1327 	 * significant bits later because the most significant bits of any
1328 	 * vector registers whose aliased FP register is modified now will have
1329 	 * been zeroed. We'd have no way to know that when restoring the vector
1330 	 * context & thus may load an outdated value for the most significant
1331 	 * bits of a vector register.
1332 	 */
1333 	if (!msa && !thread_msa_context_live())
1334 		return own_fpu(1);
1335 
1336 	/*
1337 	 * This task is using or has previously used MSA. Thus we require
1338 	 * that Status.FR == 1.
1339 	 */
1340 	preempt_disable();
1341 	was_fpu_owner = is_fpu_owner();
1342 	err = own_fpu_inatomic(0);
1343 	if (err)
1344 		goto out;
1345 
1346 	enable_msa();
1347 	write_msa_csr(current->thread.fpu.msacsr);
1348 	set_thread_flag(TIF_USEDMSA);
1349 
1350 	/*
1351 	 * If this is the first time that the task is using MSA and it has
1352 	 * previously used scalar FP in this time slice then we already nave
1353 	 * FP context which we shouldn't clobber. We do however need to clear
1354 	 * the upper 64b of each vector register so that this task has no
1355 	 * opportunity to see data left behind by another.
1356 	 */
1357 	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1358 	if (!prior_msa && was_fpu_owner) {
1359 		init_msa_upper();
1360 
1361 		goto out;
1362 	}
1363 
1364 	if (!prior_msa) {
1365 		/*
1366 		 * Restore the least significant 64b of each vector register
1367 		 * from the existing scalar FP context.
1368 		 */
1369 		_restore_fp(current);
1370 
1371 		/*
1372 		 * The task has not formerly used MSA, so clear the upper 64b
1373 		 * of each vector register such that it cannot see data left
1374 		 * behind by another task.
1375 		 */
1376 		init_msa_upper();
1377 	} else {
1378 		/* We need to restore the vector context. */
1379 		restore_msa(current);
1380 
1381 		/* Restore the scalar FP control & status register */
1382 		if (!was_fpu_owner)
1383 			write_32bit_cp1_register(CP1_STATUS,
1384 						 current->thread.fpu.fcr31);
1385 	}
1386 
1387 out:
1388 	preempt_enable();
1389 
1390 	return 0;
1391 }
1392 
1393 #else /* !CONFIG_MIPS_FP_SUPPORT */
1394 
1395 static int enable_restore_fp_context(int msa)
1396 {
1397 	return SIGILL;
1398 }
1399 
1400 #endif /* CONFIG_MIPS_FP_SUPPORT */
1401 
1402 asmlinkage void do_cpu(struct pt_regs *regs)
1403 {
1404 	enum ctx_state prev_state;
1405 	unsigned int __user *epc;
1406 	unsigned long old_epc, old31;
1407 	unsigned int opcode;
1408 	unsigned int cpid;
1409 	int status;
1410 
1411 	prev_state = exception_enter();
1412 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1413 
1414 	if (cpid != 2)
1415 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1416 
1417 	switch (cpid) {
1418 	case 0:
1419 		epc = (unsigned int __user *)exception_epc(regs);
1420 		old_epc = regs->cp0_epc;
1421 		old31 = regs->regs[31];
1422 		opcode = 0;
1423 		status = -1;
1424 
1425 		if (unlikely(compute_return_epc(regs) < 0))
1426 			break;
1427 
1428 		if (!get_isa16_mode(regs->cp0_epc)) {
1429 			if (unlikely(get_user(opcode, epc) < 0))
1430 				status = SIGSEGV;
1431 
1432 			if (!cpu_has_llsc && status < 0)
1433 				status = simulate_llsc(regs, opcode);
1434 		}
1435 
1436 		if (status < 0)
1437 			status = SIGILL;
1438 
1439 		if (unlikely(status > 0)) {
1440 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1441 			regs->regs[31] = old31;
1442 			force_sig(status);
1443 		}
1444 
1445 		break;
1446 
1447 #ifdef CONFIG_MIPS_FP_SUPPORT
1448 	case 3:
1449 		/*
1450 		 * The COP3 opcode space and consequently the CP0.Status.CU3
1451 		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1452 		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1453 		 * up the space has been reused for COP1X instructions, that
1454 		 * are enabled by the CP0.Status.CU1 bit and consequently
1455 		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1456 		 * exceptions.  Some FPU-less processors that implement one
1457 		 * of these ISAs however use this code erroneously for COP1X
1458 		 * instructions.  Therefore we redirect this trap to the FP
1459 		 * emulator too.
1460 		 */
1461 		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1462 			force_sig(SIGILL);
1463 			break;
1464 		}
1465 		fallthrough;
1466 	case 1: {
1467 		void __user *fault_addr;
1468 		unsigned long fcr31;
1469 		int err, sig;
1470 
1471 		err = enable_restore_fp_context(0);
1472 
1473 		if (raw_cpu_has_fpu && !err)
1474 			break;
1475 
1476 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1477 					       &fault_addr);
1478 
1479 		/*
1480 		 * We can't allow the emulated instruction to leave
1481 		 * any enabled Cause bits set in $fcr31.
1482 		 */
1483 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1484 		current->thread.fpu.fcr31 &= ~fcr31;
1485 
1486 		/* Send a signal if required.  */
1487 		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1488 			mt_ase_fp_affinity();
1489 
1490 		break;
1491 	}
1492 #else /* CONFIG_MIPS_FP_SUPPORT */
1493 	case 1:
1494 	case 3:
1495 		force_sig(SIGILL);
1496 		break;
1497 #endif /* CONFIG_MIPS_FP_SUPPORT */
1498 
1499 	case 2:
1500 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1501 		break;
1502 	}
1503 
1504 	exception_exit(prev_state);
1505 }
1506 
1507 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1508 {
1509 	enum ctx_state prev_state;
1510 
1511 	prev_state = exception_enter();
1512 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1513 	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1514 		       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1515 		goto out;
1516 
1517 	/* Clear MSACSR.Cause before enabling interrupts */
1518 	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1519 	local_irq_enable();
1520 
1521 	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1522 	force_sig(SIGFPE);
1523 out:
1524 	exception_exit(prev_state);
1525 }
1526 
1527 asmlinkage void do_msa(struct pt_regs *regs)
1528 {
1529 	enum ctx_state prev_state;
1530 	int err;
1531 
1532 	prev_state = exception_enter();
1533 
1534 	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1535 		force_sig(SIGILL);
1536 		goto out;
1537 	}
1538 
1539 	die_if_kernel("do_msa invoked from kernel context!", regs);
1540 
1541 	err = enable_restore_fp_context(1);
1542 	if (err)
1543 		force_sig(SIGILL);
1544 out:
1545 	exception_exit(prev_state);
1546 }
1547 
1548 asmlinkage void do_mdmx(struct pt_regs *regs)
1549 {
1550 	enum ctx_state prev_state;
1551 
1552 	prev_state = exception_enter();
1553 	force_sig(SIGILL);
1554 	exception_exit(prev_state);
1555 }
1556 
1557 /*
1558  * Called with interrupts disabled.
1559  */
1560 asmlinkage void do_watch(struct pt_regs *regs)
1561 {
1562 	enum ctx_state prev_state;
1563 
1564 	prev_state = exception_enter();
1565 	/*
1566 	 * Clear WP (bit 22) bit of cause register so we don't loop
1567 	 * forever.
1568 	 */
1569 	clear_c0_cause(CAUSEF_WP);
1570 
1571 	/*
1572 	 * If the current thread has the watch registers loaded, save
1573 	 * their values and send SIGTRAP.  Otherwise another thread
1574 	 * left the registers set, clear them and continue.
1575 	 */
1576 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1577 		mips_read_watch_registers();
1578 		local_irq_enable();
1579 		force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
1580 	} else {
1581 		mips_clear_watch_registers();
1582 		local_irq_enable();
1583 	}
1584 	exception_exit(prev_state);
1585 }
1586 
1587 asmlinkage void do_mcheck(struct pt_regs *regs)
1588 {
1589 	int multi_match = regs->cp0_status & ST0_TS;
1590 	enum ctx_state prev_state;
1591 
1592 	prev_state = exception_enter();
1593 	show_regs(regs);
1594 
1595 	if (multi_match) {
1596 		dump_tlb_regs();
1597 		pr_info("\n");
1598 		dump_tlb_all();
1599 	}
1600 
1601 	show_code((void *)regs->cp0_epc, user_mode(regs));
1602 
1603 	/*
1604 	 * Some chips may have other causes of machine check (e.g. SB1
1605 	 * graduation timer)
1606 	 */
1607 	panic("Caught Machine Check exception - %scaused by multiple "
1608 	      "matching entries in the TLB.",
1609 	      (multi_match) ? "" : "not ");
1610 }
1611 
1612 asmlinkage void do_mt(struct pt_regs *regs)
1613 {
1614 	int subcode;
1615 
1616 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1617 			>> VPECONTROL_EXCPT_SHIFT;
1618 	switch (subcode) {
1619 	case 0:
1620 		printk(KERN_DEBUG "Thread Underflow\n");
1621 		break;
1622 	case 1:
1623 		printk(KERN_DEBUG "Thread Overflow\n");
1624 		break;
1625 	case 2:
1626 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1627 		break;
1628 	case 3:
1629 		printk(KERN_DEBUG "Gating Storage Exception\n");
1630 		break;
1631 	case 4:
1632 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1633 		break;
1634 	case 5:
1635 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1636 		break;
1637 	default:
1638 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1639 			subcode);
1640 		break;
1641 	}
1642 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1643 
1644 	force_sig(SIGILL);
1645 }
1646 
1647 
1648 asmlinkage void do_dsp(struct pt_regs *regs)
1649 {
1650 	if (cpu_has_dsp)
1651 		panic("Unexpected DSP exception");
1652 
1653 	force_sig(SIGILL);
1654 }
1655 
1656 asmlinkage void do_reserved(struct pt_regs *regs)
1657 {
1658 	/*
1659 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1660 	 * caused by a new unknown cpu type or after another deadly
1661 	 * hard/software error.
1662 	 */
1663 	show_regs(regs);
1664 	panic("Caught reserved exception %ld - should not happen.",
1665 	      (regs->cp0_cause & 0x7f) >> 2);
1666 }
1667 
1668 static int __initdata l1parity = 1;
1669 static int __init nol1parity(char *s)
1670 {
1671 	l1parity = 0;
1672 	return 1;
1673 }
1674 __setup("nol1par", nol1parity);
1675 static int __initdata l2parity = 1;
1676 static int __init nol2parity(char *s)
1677 {
1678 	l2parity = 0;
1679 	return 1;
1680 }
1681 __setup("nol2par", nol2parity);
1682 
1683 /*
1684  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1685  * it different ways.
1686  */
1687 static inline __init void parity_protection_init(void)
1688 {
1689 #define ERRCTL_PE	0x80000000
1690 #define ERRCTL_L2P	0x00800000
1691 
1692 	if (mips_cm_revision() >= CM_REV_CM3) {
1693 		ulong gcr_ectl, cp0_ectl;
1694 
1695 		/*
1696 		 * With CM3 systems we need to ensure that the L1 & L2
1697 		 * parity enables are set to the same value, since this
1698 		 * is presumed by the hardware engineers.
1699 		 *
1700 		 * If the user disabled either of L1 or L2 ECC checking,
1701 		 * disable both.
1702 		 */
1703 		l1parity &= l2parity;
1704 		l2parity &= l1parity;
1705 
1706 		/* Probe L1 ECC support */
1707 		cp0_ectl = read_c0_ecc();
1708 		write_c0_ecc(cp0_ectl | ERRCTL_PE);
1709 		back_to_back_c0_hazard();
1710 		cp0_ectl = read_c0_ecc();
1711 
1712 		/* Probe L2 ECC support */
1713 		gcr_ectl = read_gcr_err_control();
1714 
1715 		if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1716 		    !(cp0_ectl & ERRCTL_PE)) {
1717 			/*
1718 			 * One of L1 or L2 ECC checking isn't supported,
1719 			 * so we cannot enable either.
1720 			 */
1721 			l1parity = l2parity = 0;
1722 		}
1723 
1724 		/* Configure L1 ECC checking */
1725 		if (l1parity)
1726 			cp0_ectl |= ERRCTL_PE;
1727 		else
1728 			cp0_ectl &= ~ERRCTL_PE;
1729 		write_c0_ecc(cp0_ectl);
1730 		back_to_back_c0_hazard();
1731 		WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1732 
1733 		/* Configure L2 ECC checking */
1734 		if (l2parity)
1735 			gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1736 		else
1737 			gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1738 		write_gcr_err_control(gcr_ectl);
1739 		gcr_ectl = read_gcr_err_control();
1740 		gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1741 		WARN_ON(!!gcr_ectl != l2parity);
1742 
1743 		pr_info("Cache parity protection %sabled\n",
1744 			l1parity ? "en" : "dis");
1745 		return;
1746 	}
1747 
1748 	switch (current_cpu_type()) {
1749 	case CPU_24K:
1750 	case CPU_34K:
1751 	case CPU_74K:
1752 	case CPU_1004K:
1753 	case CPU_1074K:
1754 	case CPU_INTERAPTIV:
1755 	case CPU_PROAPTIV:
1756 	case CPU_P5600:
1757 	case CPU_QEMU_GENERIC:
1758 	case CPU_P6600:
1759 		{
1760 			unsigned long errctl;
1761 			unsigned int l1parity_present, l2parity_present;
1762 
1763 			errctl = read_c0_ecc();
1764 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1765 
1766 			/* probe L1 parity support */
1767 			write_c0_ecc(errctl | ERRCTL_PE);
1768 			back_to_back_c0_hazard();
1769 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1770 
1771 			/* probe L2 parity support */
1772 			write_c0_ecc(errctl|ERRCTL_L2P);
1773 			back_to_back_c0_hazard();
1774 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1775 
1776 			if (l1parity_present && l2parity_present) {
1777 				if (l1parity)
1778 					errctl |= ERRCTL_PE;
1779 				if (l1parity ^ l2parity)
1780 					errctl |= ERRCTL_L2P;
1781 			} else if (l1parity_present) {
1782 				if (l1parity)
1783 					errctl |= ERRCTL_PE;
1784 			} else if (l2parity_present) {
1785 				if (l2parity)
1786 					errctl |= ERRCTL_L2P;
1787 			} else {
1788 				/* No parity available */
1789 			}
1790 
1791 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1792 
1793 			write_c0_ecc(errctl);
1794 			back_to_back_c0_hazard();
1795 			errctl = read_c0_ecc();
1796 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1797 
1798 			if (l1parity_present)
1799 				printk(KERN_INFO "Cache parity protection %sabled\n",
1800 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1801 
1802 			if (l2parity_present) {
1803 				if (l1parity_present && l1parity)
1804 					errctl ^= ERRCTL_L2P;
1805 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1806 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1807 			}
1808 		}
1809 		break;
1810 
1811 	case CPU_5KC:
1812 	case CPU_5KE:
1813 	case CPU_LOONGSON32:
1814 		write_c0_ecc(0x80000000);
1815 		back_to_back_c0_hazard();
1816 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1817 		printk(KERN_INFO "Cache parity protection %sabled\n",
1818 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1819 		break;
1820 	case CPU_20KC:
1821 	case CPU_25KF:
1822 		/* Clear the DE bit (bit 16) in the c0_status register. */
1823 		printk(KERN_INFO "Enable cache parity protection for "
1824 		       "MIPS 20KC/25KF CPUs.\n");
1825 		clear_c0_status(ST0_DE);
1826 		break;
1827 	default:
1828 		break;
1829 	}
1830 }
1831 
1832 asmlinkage void cache_parity_error(void)
1833 {
1834 	const int field = 2 * sizeof(unsigned long);
1835 	unsigned int reg_val;
1836 
1837 	/* For the moment, report the problem and hang. */
1838 	printk("Cache error exception:\n");
1839 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1840 	reg_val = read_c0_cacheerr();
1841 	printk("c0_cacheerr == %08x\n", reg_val);
1842 
1843 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1844 	       reg_val & (1<<30) ? "secondary" : "primary",
1845 	       reg_val & (1<<31) ? "data" : "insn");
1846 	if ((cpu_has_mips_r2_r6) &&
1847 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1848 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1849 			reg_val & (1<<29) ? "ED " : "",
1850 			reg_val & (1<<28) ? "ET " : "",
1851 			reg_val & (1<<27) ? "ES " : "",
1852 			reg_val & (1<<26) ? "EE " : "",
1853 			reg_val & (1<<25) ? "EB " : "",
1854 			reg_val & (1<<24) ? "EI " : "",
1855 			reg_val & (1<<23) ? "E1 " : "",
1856 			reg_val & (1<<22) ? "E0 " : "");
1857 	} else {
1858 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1859 			reg_val & (1<<29) ? "ED " : "",
1860 			reg_val & (1<<28) ? "ET " : "",
1861 			reg_val & (1<<26) ? "EE " : "",
1862 			reg_val & (1<<25) ? "EB " : "",
1863 			reg_val & (1<<24) ? "EI " : "",
1864 			reg_val & (1<<23) ? "E1 " : "",
1865 			reg_val & (1<<22) ? "E0 " : "");
1866 	}
1867 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1868 
1869 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1870 	if (reg_val & (1<<22))
1871 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1872 
1873 	if (reg_val & (1<<23))
1874 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1875 #endif
1876 
1877 	panic("Can't handle the cache error!");
1878 }
1879 
1880 asmlinkage void do_ftlb(void)
1881 {
1882 	const int field = 2 * sizeof(unsigned long);
1883 	unsigned int reg_val;
1884 
1885 	/* For the moment, report the problem and hang. */
1886 	if ((cpu_has_mips_r2_r6) &&
1887 	    (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1888 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1889 		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1890 		       read_c0_ecc());
1891 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1892 		reg_val = read_c0_cacheerr();
1893 		pr_err("c0_cacheerr == %08x\n", reg_val);
1894 
1895 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1896 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1897 		} else {
1898 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1899 			       reg_val & (1<<30) ? "secondary" : "primary",
1900 			       reg_val & (1<<31) ? "data" : "insn");
1901 		}
1902 	} else {
1903 		pr_err("FTLB error exception\n");
1904 	}
1905 	/* Just print the cacheerr bits for now */
1906 	cache_parity_error();
1907 }
1908 
1909 asmlinkage void do_gsexc(struct pt_regs *regs, u32 diag1)
1910 {
1911 	u32 exccode = (diag1 & LOONGSON_DIAG1_EXCCODE) >>
1912 			LOONGSON_DIAG1_EXCCODE_SHIFT;
1913 	enum ctx_state prev_state;
1914 
1915 	prev_state = exception_enter();
1916 
1917 	switch (exccode) {
1918 	case 0x08:
1919 		/* Undocumented exception, will trigger on certain
1920 		 * also-undocumented instructions accessible from userspace.
1921 		 * Processor state is not otherwise corrupted, but currently
1922 		 * we don't know how to proceed. Maybe there is some
1923 		 * undocumented control flag to enable the instructions?
1924 		 */
1925 		force_sig(SIGILL);
1926 		break;
1927 
1928 	default:
1929 		/* None of the other exceptions, documented or not, have
1930 		 * further details given; none are encountered in the wild
1931 		 * either. Panic in case some of them turn out to be fatal.
1932 		 */
1933 		show_regs(regs);
1934 		panic("Unhandled Loongson exception - GSCause = %08x", diag1);
1935 	}
1936 
1937 	exception_exit(prev_state);
1938 }
1939 
1940 /*
1941  * SDBBP EJTAG debug exception handler.
1942  * We skip the instruction and return to the next instruction.
1943  */
1944 void ejtag_exception_handler(struct pt_regs *regs)
1945 {
1946 	const int field = 2 * sizeof(unsigned long);
1947 	unsigned long depc, old_epc, old_ra;
1948 	unsigned int debug;
1949 
1950 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1951 	depc = read_c0_depc();
1952 	debug = read_c0_debug();
1953 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1954 	if (debug & 0x80000000) {
1955 		/*
1956 		 * In branch delay slot.
1957 		 * We cheat a little bit here and use EPC to calculate the
1958 		 * debug return address (DEPC). EPC is restored after the
1959 		 * calculation.
1960 		 */
1961 		old_epc = regs->cp0_epc;
1962 		old_ra = regs->regs[31];
1963 		regs->cp0_epc = depc;
1964 		compute_return_epc(regs);
1965 		depc = regs->cp0_epc;
1966 		regs->cp0_epc = old_epc;
1967 		regs->regs[31] = old_ra;
1968 	} else
1969 		depc += 4;
1970 	write_c0_depc(depc);
1971 
1972 #if 0
1973 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1974 	write_c0_debug(debug | 0x100);
1975 #endif
1976 }
1977 
1978 /*
1979  * NMI exception handler.
1980  * No lock; only written during early bootup by CPU 0.
1981  */
1982 static RAW_NOTIFIER_HEAD(nmi_chain);
1983 
1984 int register_nmi_notifier(struct notifier_block *nb)
1985 {
1986 	return raw_notifier_chain_register(&nmi_chain, nb);
1987 }
1988 
1989 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1990 {
1991 	char str[100];
1992 
1993 	nmi_enter();
1994 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1995 	bust_spinlocks(1);
1996 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1997 		 smp_processor_id(), regs->cp0_epc);
1998 	regs->cp0_epc = read_c0_errorepc();
1999 	die(str, regs);
2000 	nmi_exit();
2001 }
2002 
2003 unsigned long ebase;
2004 EXPORT_SYMBOL_GPL(ebase);
2005 unsigned long exception_handlers[32];
2006 unsigned long vi_handlers[64];
2007 
2008 void reserve_exception_space(phys_addr_t addr, unsigned long size)
2009 {
2010 	memblock_reserve(addr, size);
2011 }
2012 
2013 void __init *set_except_vector(int n, void *addr)
2014 {
2015 	unsigned long handler = (unsigned long) addr;
2016 	unsigned long old_handler;
2017 
2018 #ifdef CONFIG_CPU_MICROMIPS
2019 	/*
2020 	 * Only the TLB handlers are cache aligned with an even
2021 	 * address. All other handlers are on an odd address and
2022 	 * require no modification. Otherwise, MIPS32 mode will
2023 	 * be entered when handling any TLB exceptions. That
2024 	 * would be bad...since we must stay in microMIPS mode.
2025 	 */
2026 	if (!(handler & 0x1))
2027 		handler |= 1;
2028 #endif
2029 	old_handler = xchg(&exception_handlers[n], handler);
2030 
2031 	if (n == 0 && cpu_has_divec) {
2032 #ifdef CONFIG_CPU_MICROMIPS
2033 		unsigned long jump_mask = ~((1 << 27) - 1);
2034 #else
2035 		unsigned long jump_mask = ~((1 << 28) - 1);
2036 #endif
2037 		u32 *buf = (u32 *)(ebase + 0x200);
2038 		unsigned int k0 = 26;
2039 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
2040 			uasm_i_j(&buf, handler & ~jump_mask);
2041 			uasm_i_nop(&buf);
2042 		} else {
2043 			UASM_i_LA(&buf, k0, handler);
2044 			uasm_i_jr(&buf, k0);
2045 			uasm_i_nop(&buf);
2046 		}
2047 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
2048 	}
2049 	return (void *)old_handler;
2050 }
2051 
2052 static void do_default_vi(void)
2053 {
2054 	show_regs(get_irq_regs());
2055 	panic("Caught unexpected vectored interrupt.");
2056 }
2057 
2058 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
2059 {
2060 	unsigned long handler;
2061 	unsigned long old_handler = vi_handlers[n];
2062 	int srssets = current_cpu_data.srsets;
2063 	u16 *h;
2064 	unsigned char *b;
2065 
2066 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
2067 
2068 	if (addr == NULL) {
2069 		handler = (unsigned long) do_default_vi;
2070 		srs = 0;
2071 	} else
2072 		handler = (unsigned long) addr;
2073 	vi_handlers[n] = handler;
2074 
2075 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2076 
2077 	if (srs >= srssets)
2078 		panic("Shadow register set %d not supported", srs);
2079 
2080 	if (cpu_has_veic) {
2081 		if (board_bind_eic_interrupt)
2082 			board_bind_eic_interrupt(n, srs);
2083 	} else if (cpu_has_vint) {
2084 		/* SRSMap is only defined if shadow sets are implemented */
2085 		if (srssets > 1)
2086 			change_c0_srsmap(0xf << n*4, srs << n*4);
2087 	}
2088 
2089 	if (srs == 0) {
2090 		/*
2091 		 * If no shadow set is selected then use the default handler
2092 		 * that does normal register saving and standard interrupt exit
2093 		 */
2094 		extern const u8 except_vec_vi[], except_vec_vi_lui[];
2095 		extern const u8 except_vec_vi_ori[], except_vec_vi_end[];
2096 		extern const u8 rollback_except_vec_vi[];
2097 		const u8 *vec_start = using_rollback_handler() ?
2098 				      rollback_except_vec_vi : except_vec_vi;
2099 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2100 		const int lui_offset = except_vec_vi_lui - vec_start + 2;
2101 		const int ori_offset = except_vec_vi_ori - vec_start + 2;
2102 #else
2103 		const int lui_offset = except_vec_vi_lui - vec_start;
2104 		const int ori_offset = except_vec_vi_ori - vec_start;
2105 #endif
2106 		const int handler_len = except_vec_vi_end - vec_start;
2107 
2108 		if (handler_len > VECTORSPACING) {
2109 			/*
2110 			 * Sigh... panicing won't help as the console
2111 			 * is probably not configured :(
2112 			 */
2113 			panic("VECTORSPACING too small");
2114 		}
2115 
2116 		set_handler(((unsigned long)b - ebase), vec_start,
2117 #ifdef CONFIG_CPU_MICROMIPS
2118 				(handler_len - 1));
2119 #else
2120 				handler_len);
2121 #endif
2122 		h = (u16 *)(b + lui_offset);
2123 		*h = (handler >> 16) & 0xffff;
2124 		h = (u16 *)(b + ori_offset);
2125 		*h = (handler & 0xffff);
2126 		local_flush_icache_range((unsigned long)b,
2127 					 (unsigned long)(b+handler_len));
2128 	}
2129 	else {
2130 		/*
2131 		 * In other cases jump directly to the interrupt handler. It
2132 		 * is the handler's responsibility to save registers if required
2133 		 * (eg hi/lo) and return from the exception using "eret".
2134 		 */
2135 		u32 insn;
2136 
2137 		h = (u16 *)b;
2138 		/* j handler */
2139 #ifdef CONFIG_CPU_MICROMIPS
2140 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2141 #else
2142 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2143 #endif
2144 		h[0] = (insn >> 16) & 0xffff;
2145 		h[1] = insn & 0xffff;
2146 		h[2] = 0;
2147 		h[3] = 0;
2148 		local_flush_icache_range((unsigned long)b,
2149 					 (unsigned long)(b+8));
2150 	}
2151 
2152 	return (void *)old_handler;
2153 }
2154 
2155 void *set_vi_handler(int n, vi_handler_t addr)
2156 {
2157 	return set_vi_srs_handler(n, addr, 0);
2158 }
2159 
2160 extern void tlb_init(void);
2161 
2162 /*
2163  * Timer interrupt
2164  */
2165 int cp0_compare_irq;
2166 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2167 int cp0_compare_irq_shift;
2168 
2169 /*
2170  * Performance counter IRQ or -1 if shared with timer
2171  */
2172 int cp0_perfcount_irq;
2173 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2174 
2175 /*
2176  * Fast debug channel IRQ or -1 if not present
2177  */
2178 int cp0_fdc_irq;
2179 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2180 
2181 static int noulri;
2182 
2183 static int __init ulri_disable(char *s)
2184 {
2185 	pr_info("Disabling ulri\n");
2186 	noulri = 1;
2187 
2188 	return 1;
2189 }
2190 __setup("noulri", ulri_disable);
2191 
2192 /* configure STATUS register */
2193 static void configure_status(void)
2194 {
2195 	/*
2196 	 * Disable coprocessors and select 32-bit or 64-bit addressing
2197 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2198 	 * flag that some firmware may have left set and the TS bit (for
2199 	 * IP27).  Set XX for ISA IV code to work.
2200 	 */
2201 	unsigned int status_set = ST0_KERNEL_CUMASK;
2202 #ifdef CONFIG_64BIT
2203 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2204 #endif
2205 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2206 		status_set |= ST0_XX;
2207 	if (cpu_has_dsp)
2208 		status_set |= ST0_MX;
2209 
2210 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2211 			 status_set);
2212 	back_to_back_c0_hazard();
2213 }
2214 
2215 unsigned int hwrena;
2216 EXPORT_SYMBOL_GPL(hwrena);
2217 
2218 /* configure HWRENA register */
2219 static void configure_hwrena(void)
2220 {
2221 	hwrena = cpu_hwrena_impl_bits;
2222 
2223 	if (cpu_has_mips_r2_r6)
2224 		hwrena |= MIPS_HWRENA_CPUNUM |
2225 			  MIPS_HWRENA_SYNCISTEP |
2226 			  MIPS_HWRENA_CC |
2227 			  MIPS_HWRENA_CCRES;
2228 
2229 	if (!noulri && cpu_has_userlocal)
2230 		hwrena |= MIPS_HWRENA_ULR;
2231 
2232 	if (hwrena)
2233 		write_c0_hwrena(hwrena);
2234 }
2235 
2236 static void configure_exception_vector(void)
2237 {
2238 	if (cpu_has_mips_r2_r6) {
2239 		unsigned long sr = set_c0_status(ST0_BEV);
2240 		/* If available, use WG to set top bits of EBASE */
2241 		if (cpu_has_ebase_wg) {
2242 #ifdef CONFIG_64BIT
2243 			write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2244 #else
2245 			write_c0_ebase(ebase | MIPS_EBASE_WG);
2246 #endif
2247 		}
2248 		write_c0_ebase(ebase);
2249 		write_c0_status(sr);
2250 	}
2251 	if (cpu_has_veic || cpu_has_vint) {
2252 		/* Setting vector spacing enables EI/VI mode  */
2253 		change_c0_intctl(0x3e0, VECTORSPACING);
2254 	}
2255 	if (cpu_has_divec) {
2256 		if (cpu_has_mipsmt) {
2257 			unsigned int vpflags = dvpe();
2258 			set_c0_cause(CAUSEF_IV);
2259 			evpe(vpflags);
2260 		} else
2261 			set_c0_cause(CAUSEF_IV);
2262 	}
2263 }
2264 
2265 void per_cpu_trap_init(bool is_boot_cpu)
2266 {
2267 	unsigned int cpu = smp_processor_id();
2268 
2269 	configure_status();
2270 	configure_hwrena();
2271 
2272 	configure_exception_vector();
2273 
2274 	/*
2275 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2276 	 *
2277 	 *  o read IntCtl.IPTI to determine the timer interrupt
2278 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2279 	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2280 	 */
2281 	if (cpu_has_mips_r2_r6) {
2282 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2283 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2284 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2285 		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2286 		if (!cp0_fdc_irq)
2287 			cp0_fdc_irq = -1;
2288 
2289 	} else {
2290 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2291 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2292 		cp0_perfcount_irq = -1;
2293 		cp0_fdc_irq = -1;
2294 	}
2295 
2296 	if (cpu_has_mmid)
2297 		cpu_data[cpu].asid_cache = 0;
2298 	else if (!cpu_data[cpu].asid_cache)
2299 		cpu_data[cpu].asid_cache = asid_first_version(cpu);
2300 
2301 	mmgrab(&init_mm);
2302 	current->active_mm = &init_mm;
2303 	BUG_ON(current->mm);
2304 	enter_lazy_tlb(&init_mm, current);
2305 
2306 	/* Boot CPU's cache setup in setup_arch(). */
2307 	if (!is_boot_cpu)
2308 		cpu_cache_init();
2309 	tlb_init();
2310 	TLBMISS_HANDLER_SETUP();
2311 }
2312 
2313 /* Install CPU exception handler */
2314 void set_handler(unsigned long offset, const void *addr, unsigned long size)
2315 {
2316 #ifdef CONFIG_CPU_MICROMIPS
2317 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2318 #else
2319 	memcpy((void *)(ebase + offset), addr, size);
2320 #endif
2321 	local_flush_icache_range(ebase + offset, ebase + offset + size);
2322 }
2323 
2324 static const char panic_null_cerr[] =
2325 	"Trying to set NULL cache error exception handler\n";
2326 
2327 /*
2328  * Install uncached CPU exception handler.
2329  * This is suitable only for the cache error exception which is the only
2330  * exception handler that is being run uncached.
2331  */
2332 void set_uncached_handler(unsigned long offset, void *addr,
2333 	unsigned long size)
2334 {
2335 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2336 
2337 	if (!addr)
2338 		panic(panic_null_cerr);
2339 
2340 	memcpy((void *)(uncached_ebase + offset), addr, size);
2341 }
2342 
2343 static int __initdata rdhwr_noopt;
2344 static int __init set_rdhwr_noopt(char *str)
2345 {
2346 	rdhwr_noopt = 1;
2347 	return 1;
2348 }
2349 
2350 __setup("rdhwr_noopt", set_rdhwr_noopt);
2351 
2352 void __init trap_init(void)
2353 {
2354 	extern char except_vec3_generic;
2355 	extern char except_vec4;
2356 	extern char except_vec3_r4000;
2357 	unsigned long i, vec_size;
2358 	phys_addr_t ebase_pa;
2359 
2360 	check_wait();
2361 
2362 	if (!cpu_has_mips_r2_r6) {
2363 		ebase = CAC_BASE;
2364 		vec_size = 0x400;
2365 	} else {
2366 		if (cpu_has_veic || cpu_has_vint)
2367 			vec_size = 0x200 + VECTORSPACING*64;
2368 		else
2369 			vec_size = PAGE_SIZE;
2370 
2371 		ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
2372 		if (!ebase_pa)
2373 			panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2374 			      __func__, vec_size, 1 << fls(vec_size));
2375 
2376 		/*
2377 		 * Try to ensure ebase resides in KSeg0 if possible.
2378 		 *
2379 		 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2380 		 * hitting a poorly defined exception base for Cache Errors.
2381 		 * The allocation is likely to be in the low 512MB of physical,
2382 		 * in which case we should be able to convert to KSeg0.
2383 		 *
2384 		 * EVA is special though as it allows segments to be rearranged
2385 		 * and to become uncached during cache error handling.
2386 		 */
2387 		if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2388 			ebase = CKSEG0ADDR(ebase_pa);
2389 		else
2390 			ebase = (unsigned long)phys_to_virt(ebase_pa);
2391 	}
2392 
2393 	if (cpu_has_mmips) {
2394 		unsigned int config3 = read_c0_config3();
2395 
2396 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2397 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2398 		else
2399 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2400 	}
2401 
2402 	if (board_ebase_setup)
2403 		board_ebase_setup();
2404 	per_cpu_trap_init(true);
2405 	memblock_set_bottom_up(false);
2406 
2407 	/*
2408 	 * Copy the generic exception handlers to their final destination.
2409 	 * This will be overridden later as suitable for a particular
2410 	 * configuration.
2411 	 */
2412 	set_handler(0x180, &except_vec3_generic, 0x80);
2413 
2414 	/*
2415 	 * Setup default vectors
2416 	 */
2417 	for (i = 0; i <= 31; i++)
2418 		set_except_vector(i, handle_reserved);
2419 
2420 	/*
2421 	 * Copy the EJTAG debug exception vector handler code to it's final
2422 	 * destination.
2423 	 */
2424 	if (cpu_has_ejtag && board_ejtag_handler_setup)
2425 		board_ejtag_handler_setup();
2426 
2427 	/*
2428 	 * Only some CPUs have the watch exceptions.
2429 	 */
2430 	if (cpu_has_watch)
2431 		set_except_vector(EXCCODE_WATCH, handle_watch);
2432 
2433 	/*
2434 	 * Initialise interrupt handlers
2435 	 */
2436 	if (cpu_has_veic || cpu_has_vint) {
2437 		int nvec = cpu_has_veic ? 64 : 8;
2438 		for (i = 0; i < nvec; i++)
2439 			set_vi_handler(i, NULL);
2440 	}
2441 	else if (cpu_has_divec)
2442 		set_handler(0x200, &except_vec4, 0x8);
2443 
2444 	/*
2445 	 * Some CPUs can enable/disable for cache parity detection, but does
2446 	 * it different ways.
2447 	 */
2448 	parity_protection_init();
2449 
2450 	/*
2451 	 * The Data Bus Errors / Instruction Bus Errors are signaled
2452 	 * by external hardware.  Therefore these two exceptions
2453 	 * may have board specific handlers.
2454 	 */
2455 	if (board_be_init)
2456 		board_be_init();
2457 
2458 	set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2459 					rollback_handle_int : handle_int);
2460 	set_except_vector(EXCCODE_MOD, handle_tlbm);
2461 	set_except_vector(EXCCODE_TLBL, handle_tlbl);
2462 	set_except_vector(EXCCODE_TLBS, handle_tlbs);
2463 
2464 	set_except_vector(EXCCODE_ADEL, handle_adel);
2465 	set_except_vector(EXCCODE_ADES, handle_ades);
2466 
2467 	set_except_vector(EXCCODE_IBE, handle_ibe);
2468 	set_except_vector(EXCCODE_DBE, handle_dbe);
2469 
2470 	set_except_vector(EXCCODE_SYS, handle_sys);
2471 	set_except_vector(EXCCODE_BP, handle_bp);
2472 
2473 	if (rdhwr_noopt)
2474 		set_except_vector(EXCCODE_RI, handle_ri);
2475 	else {
2476 		if (cpu_has_vtag_icache)
2477 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2478 		else if (current_cpu_type() == CPU_LOONGSON64)
2479 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2480 		else
2481 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2482 	}
2483 
2484 	set_except_vector(EXCCODE_CPU, handle_cpu);
2485 	set_except_vector(EXCCODE_OV, handle_ov);
2486 	set_except_vector(EXCCODE_TR, handle_tr);
2487 	set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2488 
2489 	if (board_nmi_handler_setup)
2490 		board_nmi_handler_setup();
2491 
2492 	if (cpu_has_fpu && !cpu_has_nofpuex)
2493 		set_except_vector(EXCCODE_FPE, handle_fpe);
2494 
2495 	if (cpu_has_ftlbparex)
2496 		set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2497 
2498 	if (cpu_has_gsexcex)
2499 		set_except_vector(LOONGSON_EXCCODE_GSEXC, handle_gsexc);
2500 
2501 	if (cpu_has_rixiex) {
2502 		set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2503 		set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2504 	}
2505 
2506 	set_except_vector(EXCCODE_MSADIS, handle_msa);
2507 	set_except_vector(EXCCODE_MDMX, handle_mdmx);
2508 
2509 	if (cpu_has_mcheck)
2510 		set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2511 
2512 	if (cpu_has_mipsmt)
2513 		set_except_vector(EXCCODE_THREAD, handle_mt);
2514 
2515 	set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2516 
2517 	if (board_cache_error_setup)
2518 		board_cache_error_setup();
2519 
2520 	if (cpu_has_vce)
2521 		/* Special exception: R4[04]00 uses also the divec space. */
2522 		set_handler(0x180, &except_vec3_r4000, 0x100);
2523 	else if (cpu_has_4kex)
2524 		set_handler(0x180, &except_vec3_generic, 0x80);
2525 	else
2526 		set_handler(0x080, &except_vec3_generic, 0x80);
2527 
2528 	local_flush_icache_range(ebase, ebase + vec_size);
2529 
2530 	sort_extable(__start___dbe_table, __stop___dbe_table);
2531 
2532 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2533 }
2534 
2535 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2536 			    void *v)
2537 {
2538 	switch (cmd) {
2539 	case CPU_PM_ENTER_FAILED:
2540 	case CPU_PM_EXIT:
2541 		configure_status();
2542 		configure_hwrena();
2543 		configure_exception_vector();
2544 
2545 		/* Restore register with CPU number for TLB handlers */
2546 		TLBMISS_HANDLER_RESTORE();
2547 
2548 		break;
2549 	}
2550 
2551 	return NOTIFY_OK;
2552 }
2553 
2554 static struct notifier_block trap_pm_notifier_block = {
2555 	.notifier_call = trap_pm_notifier,
2556 };
2557 
2558 static int __init trap_pm_init(void)
2559 {
2560 	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2561 }
2562 arch_initcall(trap_pm_init);
2563