1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle 7 * Copyright (C) 1995, 1996 Paul M. Antoine 8 * Copyright (C) 1998 Ulf Carlsson 9 * Copyright (C) 1999 Silicon Graphics, Inc. 10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki 12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved. 13 * Copyright (C) 2014, Imagination Technologies Ltd. 14 */ 15 #include <linux/bitops.h> 16 #include <linux/bug.h> 17 #include <linux/compiler.h> 18 #include <linux/context_tracking.h> 19 #include <linux/cpu_pm.h> 20 #include <linux/kexec.h> 21 #include <linux/init.h> 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/mm.h> 25 #include <linux/sched.h> 26 #include <linux/smp.h> 27 #include <linux/spinlock.h> 28 #include <linux/kallsyms.h> 29 #include <linux/bootmem.h> 30 #include <linux/interrupt.h> 31 #include <linux/ptrace.h> 32 #include <linux/kgdb.h> 33 #include <linux/kdebug.h> 34 #include <linux/kprobes.h> 35 #include <linux/notifier.h> 36 #include <linux/kdb.h> 37 #include <linux/irq.h> 38 #include <linux/perf_event.h> 39 40 #include <asm/addrspace.h> 41 #include <asm/bootinfo.h> 42 #include <asm/branch.h> 43 #include <asm/break.h> 44 #include <asm/cop2.h> 45 #include <asm/cpu.h> 46 #include <asm/cpu-type.h> 47 #include <asm/dsp.h> 48 #include <asm/fpu.h> 49 #include <asm/fpu_emulator.h> 50 #include <asm/idle.h> 51 #include <asm/mips-r2-to-r6-emul.h> 52 #include <asm/mipsregs.h> 53 #include <asm/mipsmtregs.h> 54 #include <asm/module.h> 55 #include <asm/msa.h> 56 #include <asm/pgtable.h> 57 #include <asm/ptrace.h> 58 #include <asm/sections.h> 59 #include <asm/tlbdebug.h> 60 #include <asm/traps.h> 61 #include <asm/uaccess.h> 62 #include <asm/watch.h> 63 #include <asm/mmu_context.h> 64 #include <asm/types.h> 65 #include <asm/stacktrace.h> 66 #include <asm/uasm.h> 67 68 extern void check_wait(void); 69 extern asmlinkage void rollback_handle_int(void); 70 extern asmlinkage void handle_int(void); 71 extern u32 handle_tlbl[]; 72 extern u32 handle_tlbs[]; 73 extern u32 handle_tlbm[]; 74 extern asmlinkage void handle_adel(void); 75 extern asmlinkage void handle_ades(void); 76 extern asmlinkage void handle_ibe(void); 77 extern asmlinkage void handle_dbe(void); 78 extern asmlinkage void handle_sys(void); 79 extern asmlinkage void handle_bp(void); 80 extern asmlinkage void handle_ri(void); 81 extern asmlinkage void handle_ri_rdhwr_vivt(void); 82 extern asmlinkage void handle_ri_rdhwr(void); 83 extern asmlinkage void handle_cpu(void); 84 extern asmlinkage void handle_ov(void); 85 extern asmlinkage void handle_tr(void); 86 extern asmlinkage void handle_msa_fpe(void); 87 extern asmlinkage void handle_fpe(void); 88 extern asmlinkage void handle_ftlb(void); 89 extern asmlinkage void handle_msa(void); 90 extern asmlinkage void handle_mdmx(void); 91 extern asmlinkage void handle_watch(void); 92 extern asmlinkage void handle_mt(void); 93 extern asmlinkage void handle_dsp(void); 94 extern asmlinkage void handle_mcheck(void); 95 extern asmlinkage void handle_reserved(void); 96 extern void tlb_do_page_fault_0(void); 97 98 void (*board_be_init)(void); 99 int (*board_be_handler)(struct pt_regs *regs, int is_fixup); 100 void (*board_nmi_handler_setup)(void); 101 void (*board_ejtag_handler_setup)(void); 102 void (*board_bind_eic_interrupt)(int irq, int regset); 103 void (*board_ebase_setup)(void); 104 void(*board_cache_error_setup)(void); 105 106 static void show_raw_backtrace(unsigned long reg29) 107 { 108 unsigned long *sp = (unsigned long *)(reg29 & ~3); 109 unsigned long addr; 110 111 printk("Call Trace:"); 112 #ifdef CONFIG_KALLSYMS 113 printk("\n"); 114 #endif 115 while (!kstack_end(sp)) { 116 unsigned long __user *p = 117 (unsigned long __user *)(unsigned long)sp++; 118 if (__get_user(addr, p)) { 119 printk(" (Bad stack address)"); 120 break; 121 } 122 if (__kernel_text_address(addr)) 123 print_ip_sym(addr); 124 } 125 printk("\n"); 126 } 127 128 #ifdef CONFIG_KALLSYMS 129 int raw_show_trace; 130 static int __init set_raw_show_trace(char *str) 131 { 132 raw_show_trace = 1; 133 return 1; 134 } 135 __setup("raw_show_trace", set_raw_show_trace); 136 #endif 137 138 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs) 139 { 140 unsigned long sp = regs->regs[29]; 141 unsigned long ra = regs->regs[31]; 142 unsigned long pc = regs->cp0_epc; 143 144 if (!task) 145 task = current; 146 147 if (raw_show_trace || !__kernel_text_address(pc)) { 148 show_raw_backtrace(sp); 149 return; 150 } 151 printk("Call Trace:\n"); 152 do { 153 print_ip_sym(pc); 154 pc = unwind_stack(task, &sp, pc, &ra); 155 } while (pc); 156 printk("\n"); 157 } 158 159 /* 160 * This routine abuses get_user()/put_user() to reference pointers 161 * with at least a bit of error checking ... 162 */ 163 static void show_stacktrace(struct task_struct *task, 164 const struct pt_regs *regs) 165 { 166 const int field = 2 * sizeof(unsigned long); 167 long stackdata; 168 int i; 169 unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; 170 171 printk("Stack :"); 172 i = 0; 173 while ((unsigned long) sp & (PAGE_SIZE - 1)) { 174 if (i && ((i % (64 / field)) == 0)) 175 printk("\n "); 176 if (i > 39) { 177 printk(" ..."); 178 break; 179 } 180 181 if (__get_user(stackdata, sp++)) { 182 printk(" (Bad stack address)"); 183 break; 184 } 185 186 printk(" %0*lx", field, stackdata); 187 i++; 188 } 189 printk("\n"); 190 show_backtrace(task, regs); 191 } 192 193 void show_stack(struct task_struct *task, unsigned long *sp) 194 { 195 struct pt_regs regs; 196 mm_segment_t old_fs = get_fs(); 197 if (sp) { 198 regs.regs[29] = (unsigned long)sp; 199 regs.regs[31] = 0; 200 regs.cp0_epc = 0; 201 } else { 202 if (task && task != current) { 203 regs.regs[29] = task->thread.reg29; 204 regs.regs[31] = 0; 205 regs.cp0_epc = task->thread.reg31; 206 #ifdef CONFIG_KGDB_KDB 207 } else if (atomic_read(&kgdb_active) != -1 && 208 kdb_current_regs) { 209 memcpy(®s, kdb_current_regs, sizeof(regs)); 210 #endif /* CONFIG_KGDB_KDB */ 211 } else { 212 prepare_frametrace(®s); 213 } 214 } 215 /* 216 * show_stack() deals exclusively with kernel mode, so be sure to access 217 * the stack in the kernel (not user) address space. 218 */ 219 set_fs(KERNEL_DS); 220 show_stacktrace(task, ®s); 221 set_fs(old_fs); 222 } 223 224 static void show_code(unsigned int __user *pc) 225 { 226 long i; 227 unsigned short __user *pc16 = NULL; 228 229 printk("\nCode:"); 230 231 if ((unsigned long)pc & 1) 232 pc16 = (unsigned short __user *)((unsigned long)pc & ~1); 233 for(i = -3 ; i < 6 ; i++) { 234 unsigned int insn; 235 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { 236 printk(" (Bad address in epc)\n"); 237 break; 238 } 239 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); 240 } 241 } 242 243 static void __show_regs(const struct pt_regs *regs) 244 { 245 const int field = 2 * sizeof(unsigned long); 246 unsigned int cause = regs->cp0_cause; 247 unsigned int exccode; 248 int i; 249 250 show_regs_print_info(KERN_DEFAULT); 251 252 /* 253 * Saved main processor registers 254 */ 255 for (i = 0; i < 32; ) { 256 if ((i % 4) == 0) 257 printk("$%2d :", i); 258 if (i == 0) 259 printk(" %0*lx", field, 0UL); 260 else if (i == 26 || i == 27) 261 printk(" %*s", field, ""); 262 else 263 printk(" %0*lx", field, regs->regs[i]); 264 265 i++; 266 if ((i % 4) == 0) 267 printk("\n"); 268 } 269 270 #ifdef CONFIG_CPU_HAS_SMARTMIPS 271 printk("Acx : %0*lx\n", field, regs->acx); 272 #endif 273 printk("Hi : %0*lx\n", field, regs->hi); 274 printk("Lo : %0*lx\n", field, regs->lo); 275 276 /* 277 * Saved cp0 registers 278 */ 279 printk("epc : %0*lx %pS\n", field, regs->cp0_epc, 280 (void *) regs->cp0_epc); 281 printk("ra : %0*lx %pS\n", field, regs->regs[31], 282 (void *) regs->regs[31]); 283 284 printk("Status: %08x ", (uint32_t) regs->cp0_status); 285 286 if (cpu_has_3kex) { 287 if (regs->cp0_status & ST0_KUO) 288 printk("KUo "); 289 if (regs->cp0_status & ST0_IEO) 290 printk("IEo "); 291 if (regs->cp0_status & ST0_KUP) 292 printk("KUp "); 293 if (regs->cp0_status & ST0_IEP) 294 printk("IEp "); 295 if (regs->cp0_status & ST0_KUC) 296 printk("KUc "); 297 if (regs->cp0_status & ST0_IEC) 298 printk("IEc "); 299 } else if (cpu_has_4kex) { 300 if (regs->cp0_status & ST0_KX) 301 printk("KX "); 302 if (regs->cp0_status & ST0_SX) 303 printk("SX "); 304 if (regs->cp0_status & ST0_UX) 305 printk("UX "); 306 switch (regs->cp0_status & ST0_KSU) { 307 case KSU_USER: 308 printk("USER "); 309 break; 310 case KSU_SUPERVISOR: 311 printk("SUPERVISOR "); 312 break; 313 case KSU_KERNEL: 314 printk("KERNEL "); 315 break; 316 default: 317 printk("BAD_MODE "); 318 break; 319 } 320 if (regs->cp0_status & ST0_ERL) 321 printk("ERL "); 322 if (regs->cp0_status & ST0_EXL) 323 printk("EXL "); 324 if (regs->cp0_status & ST0_IE) 325 printk("IE "); 326 } 327 printk("\n"); 328 329 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; 330 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode); 331 332 if (1 <= exccode && exccode <= 5) 333 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); 334 335 printk("PrId : %08x (%s)\n", read_c0_prid(), 336 cpu_name_string()); 337 } 338 339 /* 340 * FIXME: really the generic show_regs should take a const pointer argument. 341 */ 342 void show_regs(struct pt_regs *regs) 343 { 344 __show_regs((struct pt_regs *)regs); 345 } 346 347 void show_registers(struct pt_regs *regs) 348 { 349 const int field = 2 * sizeof(unsigned long); 350 mm_segment_t old_fs = get_fs(); 351 352 __show_regs(regs); 353 print_modules(); 354 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", 355 current->comm, current->pid, current_thread_info(), current, 356 field, current_thread_info()->tp_value); 357 if (cpu_has_userlocal) { 358 unsigned long tls; 359 360 tls = read_c0_userlocal(); 361 if (tls != current_thread_info()->tp_value) 362 printk("*HwTLS: %0*lx\n", field, tls); 363 } 364 365 if (!user_mode(regs)) 366 /* Necessary for getting the correct stack content */ 367 set_fs(KERNEL_DS); 368 show_stacktrace(current, regs); 369 show_code((unsigned int __user *) regs->cp0_epc); 370 printk("\n"); 371 set_fs(old_fs); 372 } 373 374 static DEFINE_RAW_SPINLOCK(die_lock); 375 376 void __noreturn die(const char *str, struct pt_regs *regs) 377 { 378 static int die_counter; 379 int sig = SIGSEGV; 380 381 oops_enter(); 382 383 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr, 384 SIGSEGV) == NOTIFY_STOP) 385 sig = 0; 386 387 console_verbose(); 388 raw_spin_lock_irq(&die_lock); 389 bust_spinlocks(1); 390 391 printk("%s[#%d]:\n", str, ++die_counter); 392 show_registers(regs); 393 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 394 raw_spin_unlock_irq(&die_lock); 395 396 oops_exit(); 397 398 if (in_interrupt()) 399 panic("Fatal exception in interrupt"); 400 401 if (panic_on_oops) { 402 printk(KERN_EMERG "Fatal exception: panic in 5 seconds"); 403 ssleep(5); 404 panic("Fatal exception"); 405 } 406 407 if (regs && kexec_should_crash(current)) 408 crash_kexec(regs); 409 410 do_exit(sig); 411 } 412 413 extern struct exception_table_entry __start___dbe_table[]; 414 extern struct exception_table_entry __stop___dbe_table[]; 415 416 __asm__( 417 " .section __dbe_table, \"a\"\n" 418 " .previous \n"); 419 420 /* Given an address, look for it in the exception tables. */ 421 static const struct exception_table_entry *search_dbe_tables(unsigned long addr) 422 { 423 const struct exception_table_entry *e; 424 425 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr); 426 if (!e) 427 e = search_module_dbetables(addr); 428 return e; 429 } 430 431 asmlinkage void do_be(struct pt_regs *regs) 432 { 433 const int field = 2 * sizeof(unsigned long); 434 const struct exception_table_entry *fixup = NULL; 435 int data = regs->cp0_cause & 4; 436 int action = MIPS_BE_FATAL; 437 enum ctx_state prev_state; 438 439 prev_state = exception_enter(); 440 /* XXX For now. Fixme, this searches the wrong table ... */ 441 if (data && !user_mode(regs)) 442 fixup = search_dbe_tables(exception_epc(regs)); 443 444 if (fixup) 445 action = MIPS_BE_FIXUP; 446 447 if (board_be_handler) 448 action = board_be_handler(regs, fixup != NULL); 449 450 switch (action) { 451 case MIPS_BE_DISCARD: 452 goto out; 453 case MIPS_BE_FIXUP: 454 if (fixup) { 455 regs->cp0_epc = fixup->nextinsn; 456 goto out; 457 } 458 break; 459 default: 460 break; 461 } 462 463 /* 464 * Assume it would be too dangerous to continue ... 465 */ 466 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", 467 data ? "Data" : "Instruction", 468 field, regs->cp0_epc, field, regs->regs[31]); 469 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr, 470 SIGBUS) == NOTIFY_STOP) 471 goto out; 472 473 die_if_kernel("Oops", regs); 474 force_sig(SIGBUS, current); 475 476 out: 477 exception_exit(prev_state); 478 } 479 480 /* 481 * ll/sc, rdhwr, sync emulation 482 */ 483 484 #define OPCODE 0xfc000000 485 #define BASE 0x03e00000 486 #define RT 0x001f0000 487 #define OFFSET 0x0000ffff 488 #define LL 0xc0000000 489 #define SC 0xe0000000 490 #define SPEC0 0x00000000 491 #define SPEC3 0x7c000000 492 #define RD 0x0000f800 493 #define FUNC 0x0000003f 494 #define SYNC 0x0000000f 495 #define RDHWR 0x0000003b 496 497 /* microMIPS definitions */ 498 #define MM_POOL32A_FUNC 0xfc00ffff 499 #define MM_RDHWR 0x00006b3c 500 #define MM_RS 0x001f0000 501 #define MM_RT 0x03e00000 502 503 /* 504 * The ll_bit is cleared by r*_switch.S 505 */ 506 507 unsigned int ll_bit; 508 struct task_struct *ll_task; 509 510 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) 511 { 512 unsigned long value, __user *vaddr; 513 long offset; 514 515 /* 516 * analyse the ll instruction that just caused a ri exception 517 * and put the referenced address to addr. 518 */ 519 520 /* sign extend offset */ 521 offset = opcode & OFFSET; 522 offset <<= 16; 523 offset >>= 16; 524 525 vaddr = (unsigned long __user *) 526 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 527 528 if ((unsigned long)vaddr & 3) 529 return SIGBUS; 530 if (get_user(value, vaddr)) 531 return SIGSEGV; 532 533 preempt_disable(); 534 535 if (ll_task == NULL || ll_task == current) { 536 ll_bit = 1; 537 } else { 538 ll_bit = 0; 539 } 540 ll_task = current; 541 542 preempt_enable(); 543 544 regs->regs[(opcode & RT) >> 16] = value; 545 546 return 0; 547 } 548 549 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) 550 { 551 unsigned long __user *vaddr; 552 unsigned long reg; 553 long offset; 554 555 /* 556 * analyse the sc instruction that just caused a ri exception 557 * and put the referenced address to addr. 558 */ 559 560 /* sign extend offset */ 561 offset = opcode & OFFSET; 562 offset <<= 16; 563 offset >>= 16; 564 565 vaddr = (unsigned long __user *) 566 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 567 reg = (opcode & RT) >> 16; 568 569 if ((unsigned long)vaddr & 3) 570 return SIGBUS; 571 572 preempt_disable(); 573 574 if (ll_bit == 0 || ll_task != current) { 575 regs->regs[reg] = 0; 576 preempt_enable(); 577 return 0; 578 } 579 580 preempt_enable(); 581 582 if (put_user(regs->regs[reg], vaddr)) 583 return SIGSEGV; 584 585 regs->regs[reg] = 1; 586 587 return 0; 588 } 589 590 /* 591 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both 592 * opcodes are supposed to result in coprocessor unusable exceptions if 593 * executed on ll/sc-less processors. That's the theory. In practice a 594 * few processors such as NEC's VR4100 throw reserved instruction exceptions 595 * instead, so we're doing the emulation thing in both exception handlers. 596 */ 597 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) 598 { 599 if ((opcode & OPCODE) == LL) { 600 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 601 1, regs, 0); 602 return simulate_ll(regs, opcode); 603 } 604 if ((opcode & OPCODE) == SC) { 605 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 606 1, regs, 0); 607 return simulate_sc(regs, opcode); 608 } 609 610 return -1; /* Must be something else ... */ 611 } 612 613 /* 614 * Simulate trapping 'rdhwr' instructions to provide user accessible 615 * registers not implemented in hardware. 616 */ 617 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt) 618 { 619 struct thread_info *ti = task_thread_info(current); 620 621 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 622 1, regs, 0); 623 switch (rd) { 624 case 0: /* CPU number */ 625 regs->regs[rt] = smp_processor_id(); 626 return 0; 627 case 1: /* SYNCI length */ 628 regs->regs[rt] = min(current_cpu_data.dcache.linesz, 629 current_cpu_data.icache.linesz); 630 return 0; 631 case 2: /* Read count register */ 632 regs->regs[rt] = read_c0_count(); 633 return 0; 634 case 3: /* Count register resolution */ 635 switch (current_cpu_type()) { 636 case CPU_20KC: 637 case CPU_25KF: 638 regs->regs[rt] = 1; 639 break; 640 default: 641 regs->regs[rt] = 2; 642 } 643 return 0; 644 case 29: 645 regs->regs[rt] = ti->tp_value; 646 return 0; 647 default: 648 return -1; 649 } 650 } 651 652 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode) 653 { 654 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { 655 int rd = (opcode & RD) >> 11; 656 int rt = (opcode & RT) >> 16; 657 658 simulate_rdhwr(regs, rd, rt); 659 return 0; 660 } 661 662 /* Not ours. */ 663 return -1; 664 } 665 666 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode) 667 { 668 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) { 669 int rd = (opcode & MM_RS) >> 16; 670 int rt = (opcode & MM_RT) >> 21; 671 simulate_rdhwr(regs, rd, rt); 672 return 0; 673 } 674 675 /* Not ours. */ 676 return -1; 677 } 678 679 static int simulate_sync(struct pt_regs *regs, unsigned int opcode) 680 { 681 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) { 682 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 683 1, regs, 0); 684 return 0; 685 } 686 687 return -1; /* Must be something else ... */ 688 } 689 690 asmlinkage void do_ov(struct pt_regs *regs) 691 { 692 enum ctx_state prev_state; 693 siginfo_t info; 694 695 prev_state = exception_enter(); 696 die_if_kernel("Integer overflow", regs); 697 698 info.si_code = FPE_INTOVF; 699 info.si_signo = SIGFPE; 700 info.si_errno = 0; 701 info.si_addr = (void __user *) regs->cp0_epc; 702 force_sig_info(SIGFPE, &info, current); 703 exception_exit(prev_state); 704 } 705 706 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31) 707 { 708 struct siginfo si = { 0 }; 709 710 switch (sig) { 711 case 0: 712 return 0; 713 714 case SIGFPE: 715 si.si_addr = fault_addr; 716 si.si_signo = sig; 717 /* 718 * Inexact can happen together with Overflow or Underflow. 719 * Respect the mask to deliver the correct exception. 720 */ 721 fcr31 &= (fcr31 & FPU_CSR_ALL_E) << 722 (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E)); 723 if (fcr31 & FPU_CSR_INV_X) 724 si.si_code = FPE_FLTINV; 725 else if (fcr31 & FPU_CSR_DIV_X) 726 si.si_code = FPE_FLTDIV; 727 else if (fcr31 & FPU_CSR_OVF_X) 728 si.si_code = FPE_FLTOVF; 729 else if (fcr31 & FPU_CSR_UDF_X) 730 si.si_code = FPE_FLTUND; 731 else if (fcr31 & FPU_CSR_INE_X) 732 si.si_code = FPE_FLTRES; 733 else 734 si.si_code = __SI_FAULT; 735 force_sig_info(sig, &si, current); 736 return 1; 737 738 case SIGBUS: 739 si.si_addr = fault_addr; 740 si.si_signo = sig; 741 si.si_code = BUS_ADRERR; 742 force_sig_info(sig, &si, current); 743 return 1; 744 745 case SIGSEGV: 746 si.si_addr = fault_addr; 747 si.si_signo = sig; 748 down_read(¤t->mm->mmap_sem); 749 if (find_vma(current->mm, (unsigned long)fault_addr)) 750 si.si_code = SEGV_ACCERR; 751 else 752 si.si_code = SEGV_MAPERR; 753 up_read(¤t->mm->mmap_sem); 754 force_sig_info(sig, &si, current); 755 return 1; 756 757 default: 758 force_sig(sig, current); 759 return 1; 760 } 761 } 762 763 static int simulate_fp(struct pt_regs *regs, unsigned int opcode, 764 unsigned long old_epc, unsigned long old_ra) 765 { 766 union mips_instruction inst = { .word = opcode }; 767 void __user *fault_addr; 768 unsigned long fcr31; 769 int sig; 770 771 /* If it's obviously not an FP instruction, skip it */ 772 switch (inst.i_format.opcode) { 773 case cop1_op: 774 case cop1x_op: 775 case lwc1_op: 776 case ldc1_op: 777 case swc1_op: 778 case sdc1_op: 779 break; 780 781 default: 782 return -1; 783 } 784 785 /* 786 * do_ri skipped over the instruction via compute_return_epc, undo 787 * that for the FPU emulator. 788 */ 789 regs->cp0_epc = old_epc; 790 regs->regs[31] = old_ra; 791 792 /* Save the FP context to struct thread_struct */ 793 lose_fpu(1); 794 795 /* Run the emulator */ 796 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 797 &fault_addr); 798 fcr31 = current->thread.fpu.fcr31; 799 800 /* 801 * We can't allow the emulated instruction to leave any of 802 * the cause bits set in $fcr31. 803 */ 804 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 805 806 /* Restore the hardware register state */ 807 own_fpu(1); 808 809 /* Send a signal if required. */ 810 process_fpemu_return(sig, fault_addr, fcr31); 811 812 return 0; 813 } 814 815 /* 816 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX 817 */ 818 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) 819 { 820 enum ctx_state prev_state; 821 void __user *fault_addr; 822 int sig; 823 824 prev_state = exception_enter(); 825 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr, 826 SIGFPE) == NOTIFY_STOP) 827 goto out; 828 829 /* Clear FCSR.Cause before enabling interrupts */ 830 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X); 831 local_irq_enable(); 832 833 die_if_kernel("FP exception in kernel code", regs); 834 835 if (fcr31 & FPU_CSR_UNI_X) { 836 /* 837 * Unimplemented operation exception. If we've got the full 838 * software emulator on-board, let's use it... 839 * 840 * Force FPU to dump state into task/thread context. We're 841 * moving a lot of data here for what is probably a single 842 * instruction, but the alternative is to pre-decode the FP 843 * register operands before invoking the emulator, which seems 844 * a bit extreme for what should be an infrequent event. 845 */ 846 /* Ensure 'resume' not overwrite saved fp context again. */ 847 lose_fpu(1); 848 849 /* Run the emulator */ 850 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 851 &fault_addr); 852 fcr31 = current->thread.fpu.fcr31; 853 854 /* 855 * We can't allow the emulated instruction to leave any of 856 * the cause bits set in $fcr31. 857 */ 858 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 859 860 /* Restore the hardware register state */ 861 own_fpu(1); /* Using the FPU again. */ 862 } else { 863 sig = SIGFPE; 864 fault_addr = (void __user *) regs->cp0_epc; 865 } 866 867 /* Send a signal if required. */ 868 process_fpemu_return(sig, fault_addr, fcr31); 869 870 out: 871 exception_exit(prev_state); 872 } 873 874 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, 875 const char *str) 876 { 877 siginfo_t info; 878 char b[40]; 879 880 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 881 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr, 882 SIGTRAP) == NOTIFY_STOP) 883 return; 884 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 885 886 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr, 887 SIGTRAP) == NOTIFY_STOP) 888 return; 889 890 /* 891 * A short test says that IRIX 5.3 sends SIGTRAP for all trap 892 * insns, even for trap and break codes that indicate arithmetic 893 * failures. Weird ... 894 * But should we continue the brokenness??? --macro 895 */ 896 switch (code) { 897 case BRK_OVERFLOW: 898 case BRK_DIVZERO: 899 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 900 die_if_kernel(b, regs); 901 if (code == BRK_DIVZERO) 902 info.si_code = FPE_INTDIV; 903 else 904 info.si_code = FPE_INTOVF; 905 info.si_signo = SIGFPE; 906 info.si_errno = 0; 907 info.si_addr = (void __user *) regs->cp0_epc; 908 force_sig_info(SIGFPE, &info, current); 909 break; 910 case BRK_BUG: 911 die_if_kernel("Kernel bug detected", regs); 912 force_sig(SIGTRAP, current); 913 break; 914 case BRK_MEMU: 915 /* 916 * This breakpoint code is used by the FPU emulator to retake 917 * control of the CPU after executing the instruction from the 918 * delay slot of an emulated branch. 919 * 920 * Terminate if exception was recognized as a delay slot return 921 * otherwise handle as normal. 922 */ 923 if (do_dsemulret(regs)) 924 return; 925 926 die_if_kernel("Math emu break/trap", regs); 927 force_sig(SIGTRAP, current); 928 break; 929 default: 930 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 931 die_if_kernel(b, regs); 932 force_sig(SIGTRAP, current); 933 } 934 } 935 936 asmlinkage void do_bp(struct pt_regs *regs) 937 { 938 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 939 unsigned int opcode, bcode; 940 enum ctx_state prev_state; 941 mm_segment_t seg; 942 943 seg = get_fs(); 944 if (!user_mode(regs)) 945 set_fs(KERNEL_DS); 946 947 prev_state = exception_enter(); 948 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 949 if (get_isa16_mode(regs->cp0_epc)) { 950 u16 instr[2]; 951 952 if (__get_user(instr[0], (u16 __user *)epc)) 953 goto out_sigsegv; 954 955 if (!cpu_has_mmips) { 956 /* MIPS16e mode */ 957 bcode = (instr[0] >> 5) & 0x3f; 958 } else if (mm_insn_16bit(instr[0])) { 959 /* 16-bit microMIPS BREAK */ 960 bcode = instr[0] & 0xf; 961 } else { 962 /* 32-bit microMIPS BREAK */ 963 if (__get_user(instr[1], (u16 __user *)(epc + 2))) 964 goto out_sigsegv; 965 opcode = (instr[0] << 16) | instr[1]; 966 bcode = (opcode >> 6) & ((1 << 20) - 1); 967 } 968 } else { 969 if (__get_user(opcode, (unsigned int __user *)epc)) 970 goto out_sigsegv; 971 bcode = (opcode >> 6) & ((1 << 20) - 1); 972 } 973 974 /* 975 * There is the ancient bug in the MIPS assemblers that the break 976 * code starts left to bit 16 instead to bit 6 in the opcode. 977 * Gas is bug-compatible, but not always, grrr... 978 * We handle both cases with a simple heuristics. --macro 979 */ 980 if (bcode >= (1 << 10)) 981 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10); 982 983 /* 984 * notify the kprobe handlers, if instruction is likely to 985 * pertain to them. 986 */ 987 switch (bcode) { 988 case BRK_UPROBE: 989 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode, 990 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 991 goto out; 992 else 993 break; 994 case BRK_UPROBE_XOL: 995 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode, 996 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 997 goto out; 998 else 999 break; 1000 case BRK_KPROBE_BP: 1001 if (notify_die(DIE_BREAK, "debug", regs, bcode, 1002 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1003 goto out; 1004 else 1005 break; 1006 case BRK_KPROBE_SSTEPBP: 1007 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, 1008 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1009 goto out; 1010 else 1011 break; 1012 default: 1013 break; 1014 } 1015 1016 do_trap_or_bp(regs, bcode, "Break"); 1017 1018 out: 1019 set_fs(seg); 1020 exception_exit(prev_state); 1021 return; 1022 1023 out_sigsegv: 1024 force_sig(SIGSEGV, current); 1025 goto out; 1026 } 1027 1028 asmlinkage void do_tr(struct pt_regs *regs) 1029 { 1030 u32 opcode, tcode = 0; 1031 enum ctx_state prev_state; 1032 u16 instr[2]; 1033 mm_segment_t seg; 1034 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 1035 1036 seg = get_fs(); 1037 if (!user_mode(regs)) 1038 set_fs(get_ds()); 1039 1040 prev_state = exception_enter(); 1041 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1042 if (get_isa16_mode(regs->cp0_epc)) { 1043 if (__get_user(instr[0], (u16 __user *)(epc + 0)) || 1044 __get_user(instr[1], (u16 __user *)(epc + 2))) 1045 goto out_sigsegv; 1046 opcode = (instr[0] << 16) | instr[1]; 1047 /* Immediate versions don't provide a code. */ 1048 if (!(opcode & OPCODE)) 1049 tcode = (opcode >> 12) & ((1 << 4) - 1); 1050 } else { 1051 if (__get_user(opcode, (u32 __user *)epc)) 1052 goto out_sigsegv; 1053 /* Immediate versions don't provide a code. */ 1054 if (!(opcode & OPCODE)) 1055 tcode = (opcode >> 6) & ((1 << 10) - 1); 1056 } 1057 1058 do_trap_or_bp(regs, tcode, "Trap"); 1059 1060 out: 1061 set_fs(seg); 1062 exception_exit(prev_state); 1063 return; 1064 1065 out_sigsegv: 1066 force_sig(SIGSEGV, current); 1067 goto out; 1068 } 1069 1070 asmlinkage void do_ri(struct pt_regs *regs) 1071 { 1072 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); 1073 unsigned long old_epc = regs->cp0_epc; 1074 unsigned long old31 = regs->regs[31]; 1075 enum ctx_state prev_state; 1076 unsigned int opcode = 0; 1077 int status = -1; 1078 1079 /* 1080 * Avoid any kernel code. Just emulate the R2 instruction 1081 * as quickly as possible. 1082 */ 1083 if (mipsr2_emulation && cpu_has_mips_r6 && 1084 likely(user_mode(regs)) && 1085 likely(get_user(opcode, epc) >= 0)) { 1086 unsigned long fcr31 = 0; 1087 1088 status = mipsr2_decoder(regs, opcode, &fcr31); 1089 switch (status) { 1090 case 0: 1091 case SIGEMT: 1092 task_thread_info(current)->r2_emul_return = 1; 1093 return; 1094 case SIGILL: 1095 goto no_r2_instr; 1096 default: 1097 process_fpemu_return(status, 1098 ¤t->thread.cp0_baduaddr, 1099 fcr31); 1100 task_thread_info(current)->r2_emul_return = 1; 1101 return; 1102 } 1103 } 1104 1105 no_r2_instr: 1106 1107 prev_state = exception_enter(); 1108 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1109 1110 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr, 1111 SIGILL) == NOTIFY_STOP) 1112 goto out; 1113 1114 die_if_kernel("Reserved instruction in kernel code", regs); 1115 1116 if (unlikely(compute_return_epc(regs) < 0)) 1117 goto out; 1118 1119 if (get_isa16_mode(regs->cp0_epc)) { 1120 unsigned short mmop[2] = { 0 }; 1121 1122 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0)) 1123 status = SIGSEGV; 1124 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0)) 1125 status = SIGSEGV; 1126 opcode = mmop[0]; 1127 opcode = (opcode << 16) | mmop[1]; 1128 1129 if (status < 0) 1130 status = simulate_rdhwr_mm(regs, opcode); 1131 } else { 1132 if (unlikely(get_user(opcode, epc) < 0)) 1133 status = SIGSEGV; 1134 1135 if (!cpu_has_llsc && status < 0) 1136 status = simulate_llsc(regs, opcode); 1137 1138 if (status < 0) 1139 status = simulate_rdhwr_normal(regs, opcode); 1140 1141 if (status < 0) 1142 status = simulate_sync(regs, opcode); 1143 1144 if (status < 0) 1145 status = simulate_fp(regs, opcode, old_epc, old31); 1146 } 1147 1148 if (status < 0) 1149 status = SIGILL; 1150 1151 if (unlikely(status > 0)) { 1152 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1153 regs->regs[31] = old31; 1154 force_sig(status, current); 1155 } 1156 1157 out: 1158 exception_exit(prev_state); 1159 } 1160 1161 /* 1162 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've 1163 * emulated more than some threshold number of instructions, force migration to 1164 * a "CPU" that has FP support. 1165 */ 1166 static void mt_ase_fp_affinity(void) 1167 { 1168 #ifdef CONFIG_MIPS_MT_FPAFF 1169 if (mt_fpemul_threshold > 0 && 1170 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { 1171 /* 1172 * If there's no FPU present, or if the application has already 1173 * restricted the allowed set to exclude any CPUs with FPUs, 1174 * we'll skip the procedure. 1175 */ 1176 if (cpumask_intersects(¤t->cpus_allowed, &mt_fpu_cpumask)) { 1177 cpumask_t tmask; 1178 1179 current->thread.user_cpus_allowed 1180 = current->cpus_allowed; 1181 cpumask_and(&tmask, ¤t->cpus_allowed, 1182 &mt_fpu_cpumask); 1183 set_cpus_allowed_ptr(current, &tmask); 1184 set_thread_flag(TIF_FPUBOUND); 1185 } 1186 } 1187 #endif /* CONFIG_MIPS_MT_FPAFF */ 1188 } 1189 1190 /* 1191 * No lock; only written during early bootup by CPU 0. 1192 */ 1193 static RAW_NOTIFIER_HEAD(cu2_chain); 1194 1195 int __ref register_cu2_notifier(struct notifier_block *nb) 1196 { 1197 return raw_notifier_chain_register(&cu2_chain, nb); 1198 } 1199 1200 int cu2_notifier_call_chain(unsigned long val, void *v) 1201 { 1202 return raw_notifier_call_chain(&cu2_chain, val, v); 1203 } 1204 1205 static int default_cu2_call(struct notifier_block *nfb, unsigned long action, 1206 void *data) 1207 { 1208 struct pt_regs *regs = data; 1209 1210 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid " 1211 "instruction", regs); 1212 force_sig(SIGILL, current); 1213 1214 return NOTIFY_OK; 1215 } 1216 1217 static int wait_on_fp_mode_switch(atomic_t *p) 1218 { 1219 /* 1220 * The FP mode for this task is currently being switched. That may 1221 * involve modifications to the format of this tasks FP context which 1222 * make it unsafe to proceed with execution for the moment. Instead, 1223 * schedule some other task. 1224 */ 1225 schedule(); 1226 return 0; 1227 } 1228 1229 static int enable_restore_fp_context(int msa) 1230 { 1231 int err, was_fpu_owner, prior_msa; 1232 1233 /* 1234 * If an FP mode switch is currently underway, wait for it to 1235 * complete before proceeding. 1236 */ 1237 wait_on_atomic_t(¤t->mm->context.fp_mode_switching, 1238 wait_on_fp_mode_switch, TASK_KILLABLE); 1239 1240 if (!used_math()) { 1241 /* First time FP context user. */ 1242 preempt_disable(); 1243 err = init_fpu(); 1244 if (msa && !err) { 1245 enable_msa(); 1246 _init_msa_upper(); 1247 set_thread_flag(TIF_USEDMSA); 1248 set_thread_flag(TIF_MSA_CTX_LIVE); 1249 } 1250 preempt_enable(); 1251 if (!err) 1252 set_used_math(); 1253 return err; 1254 } 1255 1256 /* 1257 * This task has formerly used the FP context. 1258 * 1259 * If this thread has no live MSA vector context then we can simply 1260 * restore the scalar FP context. If it has live MSA vector context 1261 * (that is, it has or may have used MSA since last performing a 1262 * function call) then we'll need to restore the vector context. This 1263 * applies even if we're currently only executing a scalar FP 1264 * instruction. This is because if we were to later execute an MSA 1265 * instruction then we'd either have to: 1266 * 1267 * - Restore the vector context & clobber any registers modified by 1268 * scalar FP instructions between now & then. 1269 * 1270 * or 1271 * 1272 * - Not restore the vector context & lose the most significant bits 1273 * of all vector registers. 1274 * 1275 * Neither of those options is acceptable. We cannot restore the least 1276 * significant bits of the registers now & only restore the most 1277 * significant bits later because the most significant bits of any 1278 * vector registers whose aliased FP register is modified now will have 1279 * been zeroed. We'd have no way to know that when restoring the vector 1280 * context & thus may load an outdated value for the most significant 1281 * bits of a vector register. 1282 */ 1283 if (!msa && !thread_msa_context_live()) 1284 return own_fpu(1); 1285 1286 /* 1287 * This task is using or has previously used MSA. Thus we require 1288 * that Status.FR == 1. 1289 */ 1290 preempt_disable(); 1291 was_fpu_owner = is_fpu_owner(); 1292 err = own_fpu_inatomic(0); 1293 if (err) 1294 goto out; 1295 1296 enable_msa(); 1297 write_msa_csr(current->thread.fpu.msacsr); 1298 set_thread_flag(TIF_USEDMSA); 1299 1300 /* 1301 * If this is the first time that the task is using MSA and it has 1302 * previously used scalar FP in this time slice then we already nave 1303 * FP context which we shouldn't clobber. We do however need to clear 1304 * the upper 64b of each vector register so that this task has no 1305 * opportunity to see data left behind by another. 1306 */ 1307 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE); 1308 if (!prior_msa && was_fpu_owner) { 1309 _init_msa_upper(); 1310 1311 goto out; 1312 } 1313 1314 if (!prior_msa) { 1315 /* 1316 * Restore the least significant 64b of each vector register 1317 * from the existing scalar FP context. 1318 */ 1319 _restore_fp(current); 1320 1321 /* 1322 * The task has not formerly used MSA, so clear the upper 64b 1323 * of each vector register such that it cannot see data left 1324 * behind by another task. 1325 */ 1326 _init_msa_upper(); 1327 } else { 1328 /* We need to restore the vector context. */ 1329 restore_msa(current); 1330 1331 /* Restore the scalar FP control & status register */ 1332 if (!was_fpu_owner) 1333 write_32bit_cp1_register(CP1_STATUS, 1334 current->thread.fpu.fcr31); 1335 } 1336 1337 out: 1338 preempt_enable(); 1339 1340 return 0; 1341 } 1342 1343 asmlinkage void do_cpu(struct pt_regs *regs) 1344 { 1345 enum ctx_state prev_state; 1346 unsigned int __user *epc; 1347 unsigned long old_epc, old31; 1348 void __user *fault_addr; 1349 unsigned int opcode; 1350 unsigned long fcr31; 1351 unsigned int cpid; 1352 int status, err; 1353 unsigned long __maybe_unused flags; 1354 int sig; 1355 1356 prev_state = exception_enter(); 1357 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; 1358 1359 if (cpid != 2) 1360 die_if_kernel("do_cpu invoked from kernel context!", regs); 1361 1362 switch (cpid) { 1363 case 0: 1364 epc = (unsigned int __user *)exception_epc(regs); 1365 old_epc = regs->cp0_epc; 1366 old31 = regs->regs[31]; 1367 opcode = 0; 1368 status = -1; 1369 1370 if (unlikely(compute_return_epc(regs) < 0)) 1371 break; 1372 1373 if (!get_isa16_mode(regs->cp0_epc)) { 1374 if (unlikely(get_user(opcode, epc) < 0)) 1375 status = SIGSEGV; 1376 1377 if (!cpu_has_llsc && status < 0) 1378 status = simulate_llsc(regs, opcode); 1379 } 1380 1381 if (status < 0) 1382 status = SIGILL; 1383 1384 if (unlikely(status > 0)) { 1385 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1386 regs->regs[31] = old31; 1387 force_sig(status, current); 1388 } 1389 1390 break; 1391 1392 case 3: 1393 /* 1394 * The COP3 opcode space and consequently the CP0.Status.CU3 1395 * bit and the CP0.Cause.CE=3 encoding have been removed as 1396 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs 1397 * up the space has been reused for COP1X instructions, that 1398 * are enabled by the CP0.Status.CU1 bit and consequently 1399 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable 1400 * exceptions. Some FPU-less processors that implement one 1401 * of these ISAs however use this code erroneously for COP1X 1402 * instructions. Therefore we redirect this trap to the FP 1403 * emulator too. 1404 */ 1405 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) { 1406 force_sig(SIGILL, current); 1407 break; 1408 } 1409 /* Fall through. */ 1410 1411 case 1: 1412 err = enable_restore_fp_context(0); 1413 1414 if (raw_cpu_has_fpu && !err) 1415 break; 1416 1417 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0, 1418 &fault_addr); 1419 fcr31 = current->thread.fpu.fcr31; 1420 1421 /* 1422 * We can't allow the emulated instruction to leave 1423 * any of the cause bits set in $fcr31. 1424 */ 1425 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 1426 1427 /* Send a signal if required. */ 1428 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err) 1429 mt_ase_fp_affinity(); 1430 1431 break; 1432 1433 case 2: 1434 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); 1435 break; 1436 } 1437 1438 exception_exit(prev_state); 1439 } 1440 1441 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr) 1442 { 1443 enum ctx_state prev_state; 1444 1445 prev_state = exception_enter(); 1446 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1447 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0, 1448 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP) 1449 goto out; 1450 1451 /* Clear MSACSR.Cause before enabling interrupts */ 1452 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF); 1453 local_irq_enable(); 1454 1455 die_if_kernel("do_msa_fpe invoked from kernel context!", regs); 1456 force_sig(SIGFPE, current); 1457 out: 1458 exception_exit(prev_state); 1459 } 1460 1461 asmlinkage void do_msa(struct pt_regs *regs) 1462 { 1463 enum ctx_state prev_state; 1464 int err; 1465 1466 prev_state = exception_enter(); 1467 1468 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) { 1469 force_sig(SIGILL, current); 1470 goto out; 1471 } 1472 1473 die_if_kernel("do_msa invoked from kernel context!", regs); 1474 1475 err = enable_restore_fp_context(1); 1476 if (err) 1477 force_sig(SIGILL, current); 1478 out: 1479 exception_exit(prev_state); 1480 } 1481 1482 asmlinkage void do_mdmx(struct pt_regs *regs) 1483 { 1484 enum ctx_state prev_state; 1485 1486 prev_state = exception_enter(); 1487 force_sig(SIGILL, current); 1488 exception_exit(prev_state); 1489 } 1490 1491 /* 1492 * Called with interrupts disabled. 1493 */ 1494 asmlinkage void do_watch(struct pt_regs *regs) 1495 { 1496 enum ctx_state prev_state; 1497 u32 cause; 1498 1499 prev_state = exception_enter(); 1500 /* 1501 * Clear WP (bit 22) bit of cause register so we don't loop 1502 * forever. 1503 */ 1504 cause = read_c0_cause(); 1505 cause &= ~(1 << 22); 1506 write_c0_cause(cause); 1507 1508 /* 1509 * If the current thread has the watch registers loaded, save 1510 * their values and send SIGTRAP. Otherwise another thread 1511 * left the registers set, clear them and continue. 1512 */ 1513 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { 1514 mips_read_watch_registers(); 1515 local_irq_enable(); 1516 force_sig(SIGTRAP, current); 1517 } else { 1518 mips_clear_watch_registers(); 1519 local_irq_enable(); 1520 } 1521 exception_exit(prev_state); 1522 } 1523 1524 asmlinkage void do_mcheck(struct pt_regs *regs) 1525 { 1526 int multi_match = regs->cp0_status & ST0_TS; 1527 enum ctx_state prev_state; 1528 mm_segment_t old_fs = get_fs(); 1529 1530 prev_state = exception_enter(); 1531 show_regs(regs); 1532 1533 if (multi_match) { 1534 dump_tlb_regs(); 1535 pr_info("\n"); 1536 dump_tlb_all(); 1537 } 1538 1539 if (!user_mode(regs)) 1540 set_fs(KERNEL_DS); 1541 1542 show_code((unsigned int __user *) regs->cp0_epc); 1543 1544 set_fs(old_fs); 1545 1546 /* 1547 * Some chips may have other causes of machine check (e.g. SB1 1548 * graduation timer) 1549 */ 1550 panic("Caught Machine Check exception - %scaused by multiple " 1551 "matching entries in the TLB.", 1552 (multi_match) ? "" : "not "); 1553 } 1554 1555 asmlinkage void do_mt(struct pt_regs *regs) 1556 { 1557 int subcode; 1558 1559 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) 1560 >> VPECONTROL_EXCPT_SHIFT; 1561 switch (subcode) { 1562 case 0: 1563 printk(KERN_DEBUG "Thread Underflow\n"); 1564 break; 1565 case 1: 1566 printk(KERN_DEBUG "Thread Overflow\n"); 1567 break; 1568 case 2: 1569 printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); 1570 break; 1571 case 3: 1572 printk(KERN_DEBUG "Gating Storage Exception\n"); 1573 break; 1574 case 4: 1575 printk(KERN_DEBUG "YIELD Scheduler Exception\n"); 1576 break; 1577 case 5: 1578 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n"); 1579 break; 1580 default: 1581 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", 1582 subcode); 1583 break; 1584 } 1585 die_if_kernel("MIPS MT Thread exception in kernel", regs); 1586 1587 force_sig(SIGILL, current); 1588 } 1589 1590 1591 asmlinkage void do_dsp(struct pt_regs *regs) 1592 { 1593 if (cpu_has_dsp) 1594 panic("Unexpected DSP exception"); 1595 1596 force_sig(SIGILL, current); 1597 } 1598 1599 asmlinkage void do_reserved(struct pt_regs *regs) 1600 { 1601 /* 1602 * Game over - no way to handle this if it ever occurs. Most probably 1603 * caused by a new unknown cpu type or after another deadly 1604 * hard/software error. 1605 */ 1606 show_regs(regs); 1607 panic("Caught reserved exception %ld - should not happen.", 1608 (regs->cp0_cause & 0x7f) >> 2); 1609 } 1610 1611 static int __initdata l1parity = 1; 1612 static int __init nol1parity(char *s) 1613 { 1614 l1parity = 0; 1615 return 1; 1616 } 1617 __setup("nol1par", nol1parity); 1618 static int __initdata l2parity = 1; 1619 static int __init nol2parity(char *s) 1620 { 1621 l2parity = 0; 1622 return 1; 1623 } 1624 __setup("nol2par", nol2parity); 1625 1626 /* 1627 * Some MIPS CPUs can enable/disable for cache parity detection, but do 1628 * it different ways. 1629 */ 1630 static inline void parity_protection_init(void) 1631 { 1632 switch (current_cpu_type()) { 1633 case CPU_24K: 1634 case CPU_34K: 1635 case CPU_74K: 1636 case CPU_1004K: 1637 case CPU_1074K: 1638 case CPU_INTERAPTIV: 1639 case CPU_PROAPTIV: 1640 case CPU_P5600: 1641 case CPU_QEMU_GENERIC: 1642 case CPU_I6400: 1643 { 1644 #define ERRCTL_PE 0x80000000 1645 #define ERRCTL_L2P 0x00800000 1646 unsigned long errctl; 1647 unsigned int l1parity_present, l2parity_present; 1648 1649 errctl = read_c0_ecc(); 1650 errctl &= ~(ERRCTL_PE|ERRCTL_L2P); 1651 1652 /* probe L1 parity support */ 1653 write_c0_ecc(errctl | ERRCTL_PE); 1654 back_to_back_c0_hazard(); 1655 l1parity_present = (read_c0_ecc() & ERRCTL_PE); 1656 1657 /* probe L2 parity support */ 1658 write_c0_ecc(errctl|ERRCTL_L2P); 1659 back_to_back_c0_hazard(); 1660 l2parity_present = (read_c0_ecc() & ERRCTL_L2P); 1661 1662 if (l1parity_present && l2parity_present) { 1663 if (l1parity) 1664 errctl |= ERRCTL_PE; 1665 if (l1parity ^ l2parity) 1666 errctl |= ERRCTL_L2P; 1667 } else if (l1parity_present) { 1668 if (l1parity) 1669 errctl |= ERRCTL_PE; 1670 } else if (l2parity_present) { 1671 if (l2parity) 1672 errctl |= ERRCTL_L2P; 1673 } else { 1674 /* No parity available */ 1675 } 1676 1677 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); 1678 1679 write_c0_ecc(errctl); 1680 back_to_back_c0_hazard(); 1681 errctl = read_c0_ecc(); 1682 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); 1683 1684 if (l1parity_present) 1685 printk(KERN_INFO "Cache parity protection %sabled\n", 1686 (errctl & ERRCTL_PE) ? "en" : "dis"); 1687 1688 if (l2parity_present) { 1689 if (l1parity_present && l1parity) 1690 errctl ^= ERRCTL_L2P; 1691 printk(KERN_INFO "L2 cache parity protection %sabled\n", 1692 (errctl & ERRCTL_L2P) ? "en" : "dis"); 1693 } 1694 } 1695 break; 1696 1697 case CPU_5KC: 1698 case CPU_5KE: 1699 case CPU_LOONGSON1: 1700 write_c0_ecc(0x80000000); 1701 back_to_back_c0_hazard(); 1702 /* Set the PE bit (bit 31) in the c0_errctl register. */ 1703 printk(KERN_INFO "Cache parity protection %sabled\n", 1704 (read_c0_ecc() & 0x80000000) ? "en" : "dis"); 1705 break; 1706 case CPU_20KC: 1707 case CPU_25KF: 1708 /* Clear the DE bit (bit 16) in the c0_status register. */ 1709 printk(KERN_INFO "Enable cache parity protection for " 1710 "MIPS 20KC/25KF CPUs.\n"); 1711 clear_c0_status(ST0_DE); 1712 break; 1713 default: 1714 break; 1715 } 1716 } 1717 1718 asmlinkage void cache_parity_error(void) 1719 { 1720 const int field = 2 * sizeof(unsigned long); 1721 unsigned int reg_val; 1722 1723 /* For the moment, report the problem and hang. */ 1724 printk("Cache error exception:\n"); 1725 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1726 reg_val = read_c0_cacheerr(); 1727 printk("c0_cacheerr == %08x\n", reg_val); 1728 1729 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1730 reg_val & (1<<30) ? "secondary" : "primary", 1731 reg_val & (1<<31) ? "data" : "insn"); 1732 if ((cpu_has_mips_r2_r6) && 1733 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { 1734 pr_err("Error bits: %s%s%s%s%s%s%s%s\n", 1735 reg_val & (1<<29) ? "ED " : "", 1736 reg_val & (1<<28) ? "ET " : "", 1737 reg_val & (1<<27) ? "ES " : "", 1738 reg_val & (1<<26) ? "EE " : "", 1739 reg_val & (1<<25) ? "EB " : "", 1740 reg_val & (1<<24) ? "EI " : "", 1741 reg_val & (1<<23) ? "E1 " : "", 1742 reg_val & (1<<22) ? "E0 " : ""); 1743 } else { 1744 pr_err("Error bits: %s%s%s%s%s%s%s\n", 1745 reg_val & (1<<29) ? "ED " : "", 1746 reg_val & (1<<28) ? "ET " : "", 1747 reg_val & (1<<26) ? "EE " : "", 1748 reg_val & (1<<25) ? "EB " : "", 1749 reg_val & (1<<24) ? "EI " : "", 1750 reg_val & (1<<23) ? "E1 " : "", 1751 reg_val & (1<<22) ? "E0 " : ""); 1752 } 1753 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); 1754 1755 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) 1756 if (reg_val & (1<<22)) 1757 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); 1758 1759 if (reg_val & (1<<23)) 1760 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); 1761 #endif 1762 1763 panic("Can't handle the cache error!"); 1764 } 1765 1766 asmlinkage void do_ftlb(void) 1767 { 1768 const int field = 2 * sizeof(unsigned long); 1769 unsigned int reg_val; 1770 1771 /* For the moment, report the problem and hang. */ 1772 if ((cpu_has_mips_r2_r6) && 1773 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { 1774 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n", 1775 read_c0_ecc()); 1776 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1777 reg_val = read_c0_cacheerr(); 1778 pr_err("c0_cacheerr == %08x\n", reg_val); 1779 1780 if ((reg_val & 0xc0000000) == 0xc0000000) { 1781 pr_err("Decoded c0_cacheerr: FTLB parity error\n"); 1782 } else { 1783 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1784 reg_val & (1<<30) ? "secondary" : "primary", 1785 reg_val & (1<<31) ? "data" : "insn"); 1786 } 1787 } else { 1788 pr_err("FTLB error exception\n"); 1789 } 1790 /* Just print the cacheerr bits for now */ 1791 cache_parity_error(); 1792 } 1793 1794 /* 1795 * SDBBP EJTAG debug exception handler. 1796 * We skip the instruction and return to the next instruction. 1797 */ 1798 void ejtag_exception_handler(struct pt_regs *regs) 1799 { 1800 const int field = 2 * sizeof(unsigned long); 1801 unsigned long depc, old_epc, old_ra; 1802 unsigned int debug; 1803 1804 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); 1805 depc = read_c0_depc(); 1806 debug = read_c0_debug(); 1807 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); 1808 if (debug & 0x80000000) { 1809 /* 1810 * In branch delay slot. 1811 * We cheat a little bit here and use EPC to calculate the 1812 * debug return address (DEPC). EPC is restored after the 1813 * calculation. 1814 */ 1815 old_epc = regs->cp0_epc; 1816 old_ra = regs->regs[31]; 1817 regs->cp0_epc = depc; 1818 compute_return_epc(regs); 1819 depc = regs->cp0_epc; 1820 regs->cp0_epc = old_epc; 1821 regs->regs[31] = old_ra; 1822 } else 1823 depc += 4; 1824 write_c0_depc(depc); 1825 1826 #if 0 1827 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); 1828 write_c0_debug(debug | 0x100); 1829 #endif 1830 } 1831 1832 /* 1833 * NMI exception handler. 1834 * No lock; only written during early bootup by CPU 0. 1835 */ 1836 static RAW_NOTIFIER_HEAD(nmi_chain); 1837 1838 int register_nmi_notifier(struct notifier_block *nb) 1839 { 1840 return raw_notifier_chain_register(&nmi_chain, nb); 1841 } 1842 1843 void __noreturn nmi_exception_handler(struct pt_regs *regs) 1844 { 1845 char str[100]; 1846 1847 nmi_enter(); 1848 raw_notifier_call_chain(&nmi_chain, 0, regs); 1849 bust_spinlocks(1); 1850 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n", 1851 smp_processor_id(), regs->cp0_epc); 1852 regs->cp0_epc = read_c0_errorepc(); 1853 die(str, regs); 1854 nmi_exit(); 1855 } 1856 1857 #define VECTORSPACING 0x100 /* for EI/VI mode */ 1858 1859 unsigned long ebase; 1860 unsigned long exception_handlers[32]; 1861 unsigned long vi_handlers[64]; 1862 1863 void __init *set_except_vector(int n, void *addr) 1864 { 1865 unsigned long handler = (unsigned long) addr; 1866 unsigned long old_handler; 1867 1868 #ifdef CONFIG_CPU_MICROMIPS 1869 /* 1870 * Only the TLB handlers are cache aligned with an even 1871 * address. All other handlers are on an odd address and 1872 * require no modification. Otherwise, MIPS32 mode will 1873 * be entered when handling any TLB exceptions. That 1874 * would be bad...since we must stay in microMIPS mode. 1875 */ 1876 if (!(handler & 0x1)) 1877 handler |= 1; 1878 #endif 1879 old_handler = xchg(&exception_handlers[n], handler); 1880 1881 if (n == 0 && cpu_has_divec) { 1882 #ifdef CONFIG_CPU_MICROMIPS 1883 unsigned long jump_mask = ~((1 << 27) - 1); 1884 #else 1885 unsigned long jump_mask = ~((1 << 28) - 1); 1886 #endif 1887 u32 *buf = (u32 *)(ebase + 0x200); 1888 unsigned int k0 = 26; 1889 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { 1890 uasm_i_j(&buf, handler & ~jump_mask); 1891 uasm_i_nop(&buf); 1892 } else { 1893 UASM_i_LA(&buf, k0, handler); 1894 uasm_i_jr(&buf, k0); 1895 uasm_i_nop(&buf); 1896 } 1897 local_flush_icache_range(ebase + 0x200, (unsigned long)buf); 1898 } 1899 return (void *)old_handler; 1900 } 1901 1902 static void do_default_vi(void) 1903 { 1904 show_regs(get_irq_regs()); 1905 panic("Caught unexpected vectored interrupt."); 1906 } 1907 1908 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) 1909 { 1910 unsigned long handler; 1911 unsigned long old_handler = vi_handlers[n]; 1912 int srssets = current_cpu_data.srsets; 1913 u16 *h; 1914 unsigned char *b; 1915 1916 BUG_ON(!cpu_has_veic && !cpu_has_vint); 1917 1918 if (addr == NULL) { 1919 handler = (unsigned long) do_default_vi; 1920 srs = 0; 1921 } else 1922 handler = (unsigned long) addr; 1923 vi_handlers[n] = handler; 1924 1925 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); 1926 1927 if (srs >= srssets) 1928 panic("Shadow register set %d not supported", srs); 1929 1930 if (cpu_has_veic) { 1931 if (board_bind_eic_interrupt) 1932 board_bind_eic_interrupt(n, srs); 1933 } else if (cpu_has_vint) { 1934 /* SRSMap is only defined if shadow sets are implemented */ 1935 if (srssets > 1) 1936 change_c0_srsmap(0xf << n*4, srs << n*4); 1937 } 1938 1939 if (srs == 0) { 1940 /* 1941 * If no shadow set is selected then use the default handler 1942 * that does normal register saving and standard interrupt exit 1943 */ 1944 extern char except_vec_vi, except_vec_vi_lui; 1945 extern char except_vec_vi_ori, except_vec_vi_end; 1946 extern char rollback_except_vec_vi; 1947 char *vec_start = using_rollback_handler() ? 1948 &rollback_except_vec_vi : &except_vec_vi; 1949 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN) 1950 const int lui_offset = &except_vec_vi_lui - vec_start + 2; 1951 const int ori_offset = &except_vec_vi_ori - vec_start + 2; 1952 #else 1953 const int lui_offset = &except_vec_vi_lui - vec_start; 1954 const int ori_offset = &except_vec_vi_ori - vec_start; 1955 #endif 1956 const int handler_len = &except_vec_vi_end - vec_start; 1957 1958 if (handler_len > VECTORSPACING) { 1959 /* 1960 * Sigh... panicing won't help as the console 1961 * is probably not configured :( 1962 */ 1963 panic("VECTORSPACING too small"); 1964 } 1965 1966 set_handler(((unsigned long)b - ebase), vec_start, 1967 #ifdef CONFIG_CPU_MICROMIPS 1968 (handler_len - 1)); 1969 #else 1970 handler_len); 1971 #endif 1972 h = (u16 *)(b + lui_offset); 1973 *h = (handler >> 16) & 0xffff; 1974 h = (u16 *)(b + ori_offset); 1975 *h = (handler & 0xffff); 1976 local_flush_icache_range((unsigned long)b, 1977 (unsigned long)(b+handler_len)); 1978 } 1979 else { 1980 /* 1981 * In other cases jump directly to the interrupt handler. It 1982 * is the handler's responsibility to save registers if required 1983 * (eg hi/lo) and return from the exception using "eret". 1984 */ 1985 u32 insn; 1986 1987 h = (u16 *)b; 1988 /* j handler */ 1989 #ifdef CONFIG_CPU_MICROMIPS 1990 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1); 1991 #else 1992 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2); 1993 #endif 1994 h[0] = (insn >> 16) & 0xffff; 1995 h[1] = insn & 0xffff; 1996 h[2] = 0; 1997 h[3] = 0; 1998 local_flush_icache_range((unsigned long)b, 1999 (unsigned long)(b+8)); 2000 } 2001 2002 return (void *)old_handler; 2003 } 2004 2005 void *set_vi_handler(int n, vi_handler_t addr) 2006 { 2007 return set_vi_srs_handler(n, addr, 0); 2008 } 2009 2010 extern void tlb_init(void); 2011 2012 /* 2013 * Timer interrupt 2014 */ 2015 int cp0_compare_irq; 2016 EXPORT_SYMBOL_GPL(cp0_compare_irq); 2017 int cp0_compare_irq_shift; 2018 2019 /* 2020 * Performance counter IRQ or -1 if shared with timer 2021 */ 2022 int cp0_perfcount_irq; 2023 EXPORT_SYMBOL_GPL(cp0_perfcount_irq); 2024 2025 /* 2026 * Fast debug channel IRQ or -1 if not present 2027 */ 2028 int cp0_fdc_irq; 2029 EXPORT_SYMBOL_GPL(cp0_fdc_irq); 2030 2031 static int noulri; 2032 2033 static int __init ulri_disable(char *s) 2034 { 2035 pr_info("Disabling ulri\n"); 2036 noulri = 1; 2037 2038 return 1; 2039 } 2040 __setup("noulri", ulri_disable); 2041 2042 /* configure STATUS register */ 2043 static void configure_status(void) 2044 { 2045 /* 2046 * Disable coprocessors and select 32-bit or 64-bit addressing 2047 * and the 16/32 or 32/32 FPR register model. Reset the BEV 2048 * flag that some firmware may have left set and the TS bit (for 2049 * IP27). Set XX for ISA IV code to work. 2050 */ 2051 unsigned int status_set = ST0_CU0; 2052 #ifdef CONFIG_64BIT 2053 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; 2054 #endif 2055 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV) 2056 status_set |= ST0_XX; 2057 if (cpu_has_dsp) 2058 status_set |= ST0_MX; 2059 2060 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, 2061 status_set); 2062 } 2063 2064 /* configure HWRENA register */ 2065 static void configure_hwrena(void) 2066 { 2067 unsigned int hwrena = cpu_hwrena_impl_bits; 2068 2069 if (cpu_has_mips_r2_r6) 2070 hwrena |= 0x0000000f; 2071 2072 if (!noulri && cpu_has_userlocal) 2073 hwrena |= (1 << 29); 2074 2075 if (hwrena) 2076 write_c0_hwrena(hwrena); 2077 } 2078 2079 static void configure_exception_vector(void) 2080 { 2081 if (cpu_has_veic || cpu_has_vint) { 2082 unsigned long sr = set_c0_status(ST0_BEV); 2083 write_c0_ebase(ebase); 2084 write_c0_status(sr); 2085 /* Setting vector spacing enables EI/VI mode */ 2086 change_c0_intctl(0x3e0, VECTORSPACING); 2087 } 2088 if (cpu_has_divec) { 2089 if (cpu_has_mipsmt) { 2090 unsigned int vpflags = dvpe(); 2091 set_c0_cause(CAUSEF_IV); 2092 evpe(vpflags); 2093 } else 2094 set_c0_cause(CAUSEF_IV); 2095 } 2096 } 2097 2098 void per_cpu_trap_init(bool is_boot_cpu) 2099 { 2100 unsigned int cpu = smp_processor_id(); 2101 2102 configure_status(); 2103 configure_hwrena(); 2104 2105 configure_exception_vector(); 2106 2107 /* 2108 * Before R2 both interrupt numbers were fixed to 7, so on R2 only: 2109 * 2110 * o read IntCtl.IPTI to determine the timer interrupt 2111 * o read IntCtl.IPPCI to determine the performance counter interrupt 2112 * o read IntCtl.IPFDC to determine the fast debug channel interrupt 2113 */ 2114 if (cpu_has_mips_r2_r6) { 2115 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; 2116 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; 2117 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; 2118 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7; 2119 if (!cp0_fdc_irq) 2120 cp0_fdc_irq = -1; 2121 2122 } else { 2123 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; 2124 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ; 2125 cp0_perfcount_irq = -1; 2126 cp0_fdc_irq = -1; 2127 } 2128 2129 if (!cpu_data[cpu].asid_cache) 2130 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION; 2131 2132 atomic_inc(&init_mm.mm_count); 2133 current->active_mm = &init_mm; 2134 BUG_ON(current->mm); 2135 enter_lazy_tlb(&init_mm, current); 2136 2137 /* Boot CPU's cache setup in setup_arch(). */ 2138 if (!is_boot_cpu) 2139 cpu_cache_init(); 2140 tlb_init(); 2141 TLBMISS_HANDLER_SETUP(); 2142 } 2143 2144 /* Install CPU exception handler */ 2145 void set_handler(unsigned long offset, void *addr, unsigned long size) 2146 { 2147 #ifdef CONFIG_CPU_MICROMIPS 2148 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size); 2149 #else 2150 memcpy((void *)(ebase + offset), addr, size); 2151 #endif 2152 local_flush_icache_range(ebase + offset, ebase + offset + size); 2153 } 2154 2155 static char panic_null_cerr[] = 2156 "Trying to set NULL cache error exception handler"; 2157 2158 /* 2159 * Install uncached CPU exception handler. 2160 * This is suitable only for the cache error exception which is the only 2161 * exception handler that is being run uncached. 2162 */ 2163 void set_uncached_handler(unsigned long offset, void *addr, 2164 unsigned long size) 2165 { 2166 unsigned long uncached_ebase = CKSEG1ADDR(ebase); 2167 2168 if (!addr) 2169 panic(panic_null_cerr); 2170 2171 memcpy((void *)(uncached_ebase + offset), addr, size); 2172 } 2173 2174 static int __initdata rdhwr_noopt; 2175 static int __init set_rdhwr_noopt(char *str) 2176 { 2177 rdhwr_noopt = 1; 2178 return 1; 2179 } 2180 2181 __setup("rdhwr_noopt", set_rdhwr_noopt); 2182 2183 void __init trap_init(void) 2184 { 2185 extern char except_vec3_generic; 2186 extern char except_vec4; 2187 extern char except_vec3_r4000; 2188 unsigned long i; 2189 2190 check_wait(); 2191 2192 if (cpu_has_veic || cpu_has_vint) { 2193 unsigned long size = 0x200 + VECTORSPACING*64; 2194 ebase = (unsigned long) 2195 __alloc_bootmem(size, 1 << fls(size), 0); 2196 } else { 2197 ebase = CAC_BASE; 2198 2199 if (cpu_has_mips_r2_r6) 2200 ebase += (read_c0_ebase() & 0x3ffff000); 2201 } 2202 2203 if (cpu_has_mmips) { 2204 unsigned int config3 = read_c0_config3(); 2205 2206 if (IS_ENABLED(CONFIG_CPU_MICROMIPS)) 2207 write_c0_config3(config3 | MIPS_CONF3_ISA_OE); 2208 else 2209 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE); 2210 } 2211 2212 if (board_ebase_setup) 2213 board_ebase_setup(); 2214 per_cpu_trap_init(true); 2215 2216 /* 2217 * Copy the generic exception handlers to their final destination. 2218 * This will be overriden later as suitable for a particular 2219 * configuration. 2220 */ 2221 set_handler(0x180, &except_vec3_generic, 0x80); 2222 2223 /* 2224 * Setup default vectors 2225 */ 2226 for (i = 0; i <= 31; i++) 2227 set_except_vector(i, handle_reserved); 2228 2229 /* 2230 * Copy the EJTAG debug exception vector handler code to it's final 2231 * destination. 2232 */ 2233 if (cpu_has_ejtag && board_ejtag_handler_setup) 2234 board_ejtag_handler_setup(); 2235 2236 /* 2237 * Only some CPUs have the watch exceptions. 2238 */ 2239 if (cpu_has_watch) 2240 set_except_vector(EXCCODE_WATCH, handle_watch); 2241 2242 /* 2243 * Initialise interrupt handlers 2244 */ 2245 if (cpu_has_veic || cpu_has_vint) { 2246 int nvec = cpu_has_veic ? 64 : 8; 2247 for (i = 0; i < nvec; i++) 2248 set_vi_handler(i, NULL); 2249 } 2250 else if (cpu_has_divec) 2251 set_handler(0x200, &except_vec4, 0x8); 2252 2253 /* 2254 * Some CPUs can enable/disable for cache parity detection, but does 2255 * it different ways. 2256 */ 2257 parity_protection_init(); 2258 2259 /* 2260 * The Data Bus Errors / Instruction Bus Errors are signaled 2261 * by external hardware. Therefore these two exceptions 2262 * may have board specific handlers. 2263 */ 2264 if (board_be_init) 2265 board_be_init(); 2266 2267 set_except_vector(EXCCODE_INT, using_rollback_handler() ? 2268 rollback_handle_int : handle_int); 2269 set_except_vector(EXCCODE_MOD, handle_tlbm); 2270 set_except_vector(EXCCODE_TLBL, handle_tlbl); 2271 set_except_vector(EXCCODE_TLBS, handle_tlbs); 2272 2273 set_except_vector(EXCCODE_ADEL, handle_adel); 2274 set_except_vector(EXCCODE_ADES, handle_ades); 2275 2276 set_except_vector(EXCCODE_IBE, handle_ibe); 2277 set_except_vector(EXCCODE_DBE, handle_dbe); 2278 2279 set_except_vector(EXCCODE_SYS, handle_sys); 2280 set_except_vector(EXCCODE_BP, handle_bp); 2281 set_except_vector(EXCCODE_RI, rdhwr_noopt ? handle_ri : 2282 (cpu_has_vtag_icache ? 2283 handle_ri_rdhwr_vivt : handle_ri_rdhwr)); 2284 set_except_vector(EXCCODE_CPU, handle_cpu); 2285 set_except_vector(EXCCODE_OV, handle_ov); 2286 set_except_vector(EXCCODE_TR, handle_tr); 2287 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe); 2288 2289 if (current_cpu_type() == CPU_R6000 || 2290 current_cpu_type() == CPU_R6000A) { 2291 /* 2292 * The R6000 is the only R-series CPU that features a machine 2293 * check exception (similar to the R4000 cache error) and 2294 * unaligned ldc1/sdc1 exception. The handlers have not been 2295 * written yet. Well, anyway there is no R6000 machine on the 2296 * current list of targets for Linux/MIPS. 2297 * (Duh, crap, there is someone with a triple R6k machine) 2298 */ 2299 //set_except_vector(14, handle_mc); 2300 //set_except_vector(15, handle_ndc); 2301 } 2302 2303 2304 if (board_nmi_handler_setup) 2305 board_nmi_handler_setup(); 2306 2307 if (cpu_has_fpu && !cpu_has_nofpuex) 2308 set_except_vector(EXCCODE_FPE, handle_fpe); 2309 2310 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb); 2311 2312 if (cpu_has_rixiex) { 2313 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0); 2314 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0); 2315 } 2316 2317 set_except_vector(EXCCODE_MSADIS, handle_msa); 2318 set_except_vector(EXCCODE_MDMX, handle_mdmx); 2319 2320 if (cpu_has_mcheck) 2321 set_except_vector(EXCCODE_MCHECK, handle_mcheck); 2322 2323 if (cpu_has_mipsmt) 2324 set_except_vector(EXCCODE_THREAD, handle_mt); 2325 2326 set_except_vector(EXCCODE_DSPDIS, handle_dsp); 2327 2328 if (board_cache_error_setup) 2329 board_cache_error_setup(); 2330 2331 if (cpu_has_vce) 2332 /* Special exception: R4[04]00 uses also the divec space. */ 2333 set_handler(0x180, &except_vec3_r4000, 0x100); 2334 else if (cpu_has_4kex) 2335 set_handler(0x180, &except_vec3_generic, 0x80); 2336 else 2337 set_handler(0x080, &except_vec3_generic, 0x80); 2338 2339 local_flush_icache_range(ebase, ebase + 0x400); 2340 2341 sort_extable(__start___dbe_table, __stop___dbe_table); 2342 2343 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */ 2344 } 2345 2346 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd, 2347 void *v) 2348 { 2349 switch (cmd) { 2350 case CPU_PM_ENTER_FAILED: 2351 case CPU_PM_EXIT: 2352 configure_status(); 2353 configure_hwrena(); 2354 configure_exception_vector(); 2355 2356 /* Restore register with CPU number for TLB handlers */ 2357 TLBMISS_HANDLER_RESTORE(); 2358 2359 break; 2360 } 2361 2362 return NOTIFY_OK; 2363 } 2364 2365 static struct notifier_block trap_pm_notifier_block = { 2366 .notifier_call = trap_pm_notifier, 2367 }; 2368 2369 static int __init trap_pm_init(void) 2370 { 2371 return cpu_pm_register_notifier(&trap_pm_notifier_block); 2372 } 2373 arch_initcall(trap_pm_init); 2374