xref: /openbmc/linux/arch/mips/kernel/traps.c (revision 2209fda3)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
25 #include <linux/mm.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/bootmem.h>
32 #include <linux/memblock.h>
33 #include <linux/interrupt.h>
34 #include <linux/ptrace.h>
35 #include <linux/kgdb.h>
36 #include <linux/kdebug.h>
37 #include <linux/kprobes.h>
38 #include <linux/notifier.h>
39 #include <linux/kdb.h>
40 #include <linux/irq.h>
41 #include <linux/perf_event.h>
42 
43 #include <asm/addrspace.h>
44 #include <asm/bootinfo.h>
45 #include <asm/branch.h>
46 #include <asm/break.h>
47 #include <asm/cop2.h>
48 #include <asm/cpu.h>
49 #include <asm/cpu-type.h>
50 #include <asm/dsp.h>
51 #include <asm/fpu.h>
52 #include <asm/fpu_emulator.h>
53 #include <asm/idle.h>
54 #include <asm/mips-cps.h>
55 #include <asm/mips-r2-to-r6-emul.h>
56 #include <asm/mipsregs.h>
57 #include <asm/mipsmtregs.h>
58 #include <asm/module.h>
59 #include <asm/msa.h>
60 #include <asm/pgtable.h>
61 #include <asm/ptrace.h>
62 #include <asm/sections.h>
63 #include <asm/siginfo.h>
64 #include <asm/tlbdebug.h>
65 #include <asm/traps.h>
66 #include <linux/uaccess.h>
67 #include <asm/watch.h>
68 #include <asm/mmu_context.h>
69 #include <asm/types.h>
70 #include <asm/stacktrace.h>
71 #include <asm/tlbex.h>
72 #include <asm/uasm.h>
73 
74 extern void check_wait(void);
75 extern asmlinkage void rollback_handle_int(void);
76 extern asmlinkage void handle_int(void);
77 extern asmlinkage void handle_adel(void);
78 extern asmlinkage void handle_ades(void);
79 extern asmlinkage void handle_ibe(void);
80 extern asmlinkage void handle_dbe(void);
81 extern asmlinkage void handle_sys(void);
82 extern asmlinkage void handle_bp(void);
83 extern asmlinkage void handle_ri(void);
84 extern asmlinkage void handle_ri_rdhwr_tlbp(void);
85 extern asmlinkage void handle_ri_rdhwr(void);
86 extern asmlinkage void handle_cpu(void);
87 extern asmlinkage void handle_ov(void);
88 extern asmlinkage void handle_tr(void);
89 extern asmlinkage void handle_msa_fpe(void);
90 extern asmlinkage void handle_fpe(void);
91 extern asmlinkage void handle_ftlb(void);
92 extern asmlinkage void handle_msa(void);
93 extern asmlinkage void handle_mdmx(void);
94 extern asmlinkage void handle_watch(void);
95 extern asmlinkage void handle_mt(void);
96 extern asmlinkage void handle_dsp(void);
97 extern asmlinkage void handle_mcheck(void);
98 extern asmlinkage void handle_reserved(void);
99 extern void tlb_do_page_fault_0(void);
100 
101 void (*board_be_init)(void);
102 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
103 void (*board_nmi_handler_setup)(void);
104 void (*board_ejtag_handler_setup)(void);
105 void (*board_bind_eic_interrupt)(int irq, int regset);
106 void (*board_ebase_setup)(void);
107 void(*board_cache_error_setup)(void);
108 
109 static void show_raw_backtrace(unsigned long reg29)
110 {
111 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
112 	unsigned long addr;
113 
114 	printk("Call Trace:");
115 #ifdef CONFIG_KALLSYMS
116 	printk("\n");
117 #endif
118 	while (!kstack_end(sp)) {
119 		unsigned long __user *p =
120 			(unsigned long __user *)(unsigned long)sp++;
121 		if (__get_user(addr, p)) {
122 			printk(" (Bad stack address)");
123 			break;
124 		}
125 		if (__kernel_text_address(addr))
126 			print_ip_sym(addr);
127 	}
128 	printk("\n");
129 }
130 
131 #ifdef CONFIG_KALLSYMS
132 int raw_show_trace;
133 static int __init set_raw_show_trace(char *str)
134 {
135 	raw_show_trace = 1;
136 	return 1;
137 }
138 __setup("raw_show_trace", set_raw_show_trace);
139 #endif
140 
141 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
142 {
143 	unsigned long sp = regs->regs[29];
144 	unsigned long ra = regs->regs[31];
145 	unsigned long pc = regs->cp0_epc;
146 
147 	if (!task)
148 		task = current;
149 
150 	if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
151 		show_raw_backtrace(sp);
152 		return;
153 	}
154 	printk("Call Trace:\n");
155 	do {
156 		print_ip_sym(pc);
157 		pc = unwind_stack(task, &sp, pc, &ra);
158 	} while (pc);
159 	pr_cont("\n");
160 }
161 
162 /*
163  * This routine abuses get_user()/put_user() to reference pointers
164  * with at least a bit of error checking ...
165  */
166 static void show_stacktrace(struct task_struct *task,
167 	const struct pt_regs *regs)
168 {
169 	const int field = 2 * sizeof(unsigned long);
170 	long stackdata;
171 	int i;
172 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
173 
174 	printk("Stack :");
175 	i = 0;
176 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
177 		if (i && ((i % (64 / field)) == 0)) {
178 			pr_cont("\n");
179 			printk("       ");
180 		}
181 		if (i > 39) {
182 			pr_cont(" ...");
183 			break;
184 		}
185 
186 		if (__get_user(stackdata, sp++)) {
187 			pr_cont(" (Bad stack address)");
188 			break;
189 		}
190 
191 		pr_cont(" %0*lx", field, stackdata);
192 		i++;
193 	}
194 	pr_cont("\n");
195 	show_backtrace(task, regs);
196 }
197 
198 void show_stack(struct task_struct *task, unsigned long *sp)
199 {
200 	struct pt_regs regs;
201 	mm_segment_t old_fs = get_fs();
202 
203 	regs.cp0_status = KSU_KERNEL;
204 	if (sp) {
205 		regs.regs[29] = (unsigned long)sp;
206 		regs.regs[31] = 0;
207 		regs.cp0_epc = 0;
208 	} else {
209 		if (task && task != current) {
210 			regs.regs[29] = task->thread.reg29;
211 			regs.regs[31] = 0;
212 			regs.cp0_epc = task->thread.reg31;
213 #ifdef CONFIG_KGDB_KDB
214 		} else if (atomic_read(&kgdb_active) != -1 &&
215 			   kdb_current_regs) {
216 			memcpy(&regs, kdb_current_regs, sizeof(regs));
217 #endif /* CONFIG_KGDB_KDB */
218 		} else {
219 			prepare_frametrace(&regs);
220 		}
221 	}
222 	/*
223 	 * show_stack() deals exclusively with kernel mode, so be sure to access
224 	 * the stack in the kernel (not user) address space.
225 	 */
226 	set_fs(KERNEL_DS);
227 	show_stacktrace(task, &regs);
228 	set_fs(old_fs);
229 }
230 
231 static void show_code(unsigned int __user *pc)
232 {
233 	long i;
234 	unsigned short __user *pc16 = NULL;
235 
236 	printk("Code:");
237 
238 	if ((unsigned long)pc & 1)
239 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
240 	for(i = -3 ; i < 6 ; i++) {
241 		unsigned int insn;
242 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
243 			pr_cont(" (Bad address in epc)\n");
244 			break;
245 		}
246 		pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
247 	}
248 	pr_cont("\n");
249 }
250 
251 static void __show_regs(const struct pt_regs *regs)
252 {
253 	const int field = 2 * sizeof(unsigned long);
254 	unsigned int cause = regs->cp0_cause;
255 	unsigned int exccode;
256 	int i;
257 
258 	show_regs_print_info(KERN_DEFAULT);
259 
260 	/*
261 	 * Saved main processor registers
262 	 */
263 	for (i = 0; i < 32; ) {
264 		if ((i % 4) == 0)
265 			printk("$%2d   :", i);
266 		if (i == 0)
267 			pr_cont(" %0*lx", field, 0UL);
268 		else if (i == 26 || i == 27)
269 			pr_cont(" %*s", field, "");
270 		else
271 			pr_cont(" %0*lx", field, regs->regs[i]);
272 
273 		i++;
274 		if ((i % 4) == 0)
275 			pr_cont("\n");
276 	}
277 
278 #ifdef CONFIG_CPU_HAS_SMARTMIPS
279 	printk("Acx    : %0*lx\n", field, regs->acx);
280 #endif
281 	printk("Hi    : %0*lx\n", field, regs->hi);
282 	printk("Lo    : %0*lx\n", field, regs->lo);
283 
284 	/*
285 	 * Saved cp0 registers
286 	 */
287 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
288 	       (void *) regs->cp0_epc);
289 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
290 	       (void *) regs->regs[31]);
291 
292 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
293 
294 	if (cpu_has_3kex) {
295 		if (regs->cp0_status & ST0_KUO)
296 			pr_cont("KUo ");
297 		if (regs->cp0_status & ST0_IEO)
298 			pr_cont("IEo ");
299 		if (regs->cp0_status & ST0_KUP)
300 			pr_cont("KUp ");
301 		if (regs->cp0_status & ST0_IEP)
302 			pr_cont("IEp ");
303 		if (regs->cp0_status & ST0_KUC)
304 			pr_cont("KUc ");
305 		if (regs->cp0_status & ST0_IEC)
306 			pr_cont("IEc ");
307 	} else if (cpu_has_4kex) {
308 		if (regs->cp0_status & ST0_KX)
309 			pr_cont("KX ");
310 		if (regs->cp0_status & ST0_SX)
311 			pr_cont("SX ");
312 		if (regs->cp0_status & ST0_UX)
313 			pr_cont("UX ");
314 		switch (regs->cp0_status & ST0_KSU) {
315 		case KSU_USER:
316 			pr_cont("USER ");
317 			break;
318 		case KSU_SUPERVISOR:
319 			pr_cont("SUPERVISOR ");
320 			break;
321 		case KSU_KERNEL:
322 			pr_cont("KERNEL ");
323 			break;
324 		default:
325 			pr_cont("BAD_MODE ");
326 			break;
327 		}
328 		if (regs->cp0_status & ST0_ERL)
329 			pr_cont("ERL ");
330 		if (regs->cp0_status & ST0_EXL)
331 			pr_cont("EXL ");
332 		if (regs->cp0_status & ST0_IE)
333 			pr_cont("IE ");
334 	}
335 	pr_cont("\n");
336 
337 	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
338 	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
339 
340 	if (1 <= exccode && exccode <= 5)
341 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
342 
343 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
344 	       cpu_name_string());
345 }
346 
347 /*
348  * FIXME: really the generic show_regs should take a const pointer argument.
349  */
350 void show_regs(struct pt_regs *regs)
351 {
352 	__show_regs(regs);
353 	dump_stack();
354 }
355 
356 void show_registers(struct pt_regs *regs)
357 {
358 	const int field = 2 * sizeof(unsigned long);
359 	mm_segment_t old_fs = get_fs();
360 
361 	__show_regs(regs);
362 	print_modules();
363 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
364 	       current->comm, current->pid, current_thread_info(), current,
365 	      field, current_thread_info()->tp_value);
366 	if (cpu_has_userlocal) {
367 		unsigned long tls;
368 
369 		tls = read_c0_userlocal();
370 		if (tls != current_thread_info()->tp_value)
371 			printk("*HwTLS: %0*lx\n", field, tls);
372 	}
373 
374 	if (!user_mode(regs))
375 		/* Necessary for getting the correct stack content */
376 		set_fs(KERNEL_DS);
377 	show_stacktrace(current, regs);
378 	show_code((unsigned int __user *) regs->cp0_epc);
379 	printk("\n");
380 	set_fs(old_fs);
381 }
382 
383 static DEFINE_RAW_SPINLOCK(die_lock);
384 
385 void __noreturn die(const char *str, struct pt_regs *regs)
386 {
387 	static int die_counter;
388 	int sig = SIGSEGV;
389 
390 	oops_enter();
391 
392 	if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
393 		       SIGSEGV) == NOTIFY_STOP)
394 		sig = 0;
395 
396 	console_verbose();
397 	raw_spin_lock_irq(&die_lock);
398 	bust_spinlocks(1);
399 
400 	printk("%s[#%d]:\n", str, ++die_counter);
401 	show_registers(regs);
402 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
403 	raw_spin_unlock_irq(&die_lock);
404 
405 	oops_exit();
406 
407 	if (in_interrupt())
408 		panic("Fatal exception in interrupt");
409 
410 	if (panic_on_oops)
411 		panic("Fatal exception");
412 
413 	if (regs && kexec_should_crash(current))
414 		crash_kexec(regs);
415 
416 	do_exit(sig);
417 }
418 
419 extern struct exception_table_entry __start___dbe_table[];
420 extern struct exception_table_entry __stop___dbe_table[];
421 
422 __asm__(
423 "	.section	__dbe_table, \"a\"\n"
424 "	.previous			\n");
425 
426 /* Given an address, look for it in the exception tables. */
427 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
428 {
429 	const struct exception_table_entry *e;
430 
431 	e = search_extable(__start___dbe_table,
432 			   __stop___dbe_table - __start___dbe_table, addr);
433 	if (!e)
434 		e = search_module_dbetables(addr);
435 	return e;
436 }
437 
438 asmlinkage void do_be(struct pt_regs *regs)
439 {
440 	const int field = 2 * sizeof(unsigned long);
441 	const struct exception_table_entry *fixup = NULL;
442 	int data = regs->cp0_cause & 4;
443 	int action = MIPS_BE_FATAL;
444 	enum ctx_state prev_state;
445 
446 	prev_state = exception_enter();
447 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
448 	if (data && !user_mode(regs))
449 		fixup = search_dbe_tables(exception_epc(regs));
450 
451 	if (fixup)
452 		action = MIPS_BE_FIXUP;
453 
454 	if (board_be_handler)
455 		action = board_be_handler(regs, fixup != NULL);
456 	else
457 		mips_cm_error_report();
458 
459 	switch (action) {
460 	case MIPS_BE_DISCARD:
461 		goto out;
462 	case MIPS_BE_FIXUP:
463 		if (fixup) {
464 			regs->cp0_epc = fixup->nextinsn;
465 			goto out;
466 		}
467 		break;
468 	default:
469 		break;
470 	}
471 
472 	/*
473 	 * Assume it would be too dangerous to continue ...
474 	 */
475 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
476 	       data ? "Data" : "Instruction",
477 	       field, regs->cp0_epc, field, regs->regs[31]);
478 	if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
479 		       SIGBUS) == NOTIFY_STOP)
480 		goto out;
481 
482 	die_if_kernel("Oops", regs);
483 	force_sig(SIGBUS, current);
484 
485 out:
486 	exception_exit(prev_state);
487 }
488 
489 /*
490  * ll/sc, rdhwr, sync emulation
491  */
492 
493 #define OPCODE 0xfc000000
494 #define BASE   0x03e00000
495 #define RT     0x001f0000
496 #define OFFSET 0x0000ffff
497 #define LL     0xc0000000
498 #define SC     0xe0000000
499 #define SPEC0  0x00000000
500 #define SPEC3  0x7c000000
501 #define RD     0x0000f800
502 #define FUNC   0x0000003f
503 #define SYNC   0x0000000f
504 #define RDHWR  0x0000003b
505 
506 /*  microMIPS definitions   */
507 #define MM_POOL32A_FUNC 0xfc00ffff
508 #define MM_RDHWR        0x00006b3c
509 #define MM_RS           0x001f0000
510 #define MM_RT           0x03e00000
511 
512 /*
513  * The ll_bit is cleared by r*_switch.S
514  */
515 
516 unsigned int ll_bit;
517 struct task_struct *ll_task;
518 
519 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
520 {
521 	unsigned long value, __user *vaddr;
522 	long offset;
523 
524 	/*
525 	 * analyse the ll instruction that just caused a ri exception
526 	 * and put the referenced address to addr.
527 	 */
528 
529 	/* sign extend offset */
530 	offset = opcode & OFFSET;
531 	offset <<= 16;
532 	offset >>= 16;
533 
534 	vaddr = (unsigned long __user *)
535 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
536 
537 	if ((unsigned long)vaddr & 3)
538 		return SIGBUS;
539 	if (get_user(value, vaddr))
540 		return SIGSEGV;
541 
542 	preempt_disable();
543 
544 	if (ll_task == NULL || ll_task == current) {
545 		ll_bit = 1;
546 	} else {
547 		ll_bit = 0;
548 	}
549 	ll_task = current;
550 
551 	preempt_enable();
552 
553 	regs->regs[(opcode & RT) >> 16] = value;
554 
555 	return 0;
556 }
557 
558 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
559 {
560 	unsigned long __user *vaddr;
561 	unsigned long reg;
562 	long offset;
563 
564 	/*
565 	 * analyse the sc instruction that just caused a ri exception
566 	 * and put the referenced address to addr.
567 	 */
568 
569 	/* sign extend offset */
570 	offset = opcode & OFFSET;
571 	offset <<= 16;
572 	offset >>= 16;
573 
574 	vaddr = (unsigned long __user *)
575 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
576 	reg = (opcode & RT) >> 16;
577 
578 	if ((unsigned long)vaddr & 3)
579 		return SIGBUS;
580 
581 	preempt_disable();
582 
583 	if (ll_bit == 0 || ll_task != current) {
584 		regs->regs[reg] = 0;
585 		preempt_enable();
586 		return 0;
587 	}
588 
589 	preempt_enable();
590 
591 	if (put_user(regs->regs[reg], vaddr))
592 		return SIGSEGV;
593 
594 	regs->regs[reg] = 1;
595 
596 	return 0;
597 }
598 
599 /*
600  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
601  * opcodes are supposed to result in coprocessor unusable exceptions if
602  * executed on ll/sc-less processors.  That's the theory.  In practice a
603  * few processors such as NEC's VR4100 throw reserved instruction exceptions
604  * instead, so we're doing the emulation thing in both exception handlers.
605  */
606 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
607 {
608 	if ((opcode & OPCODE) == LL) {
609 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
610 				1, regs, 0);
611 		return simulate_ll(regs, opcode);
612 	}
613 	if ((opcode & OPCODE) == SC) {
614 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
615 				1, regs, 0);
616 		return simulate_sc(regs, opcode);
617 	}
618 
619 	return -1;			/* Must be something else ... */
620 }
621 
622 /*
623  * Simulate trapping 'rdhwr' instructions to provide user accessible
624  * registers not implemented in hardware.
625  */
626 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
627 {
628 	struct thread_info *ti = task_thread_info(current);
629 
630 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
631 			1, regs, 0);
632 	switch (rd) {
633 	case MIPS_HWR_CPUNUM:		/* CPU number */
634 		regs->regs[rt] = smp_processor_id();
635 		return 0;
636 	case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
637 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
638 				     current_cpu_data.icache.linesz);
639 		return 0;
640 	case MIPS_HWR_CC:		/* Read count register */
641 		regs->regs[rt] = read_c0_count();
642 		return 0;
643 	case MIPS_HWR_CCRES:		/* Count register resolution */
644 		switch (current_cpu_type()) {
645 		case CPU_20KC:
646 		case CPU_25KF:
647 			regs->regs[rt] = 1;
648 			break;
649 		default:
650 			regs->regs[rt] = 2;
651 		}
652 		return 0;
653 	case MIPS_HWR_ULR:		/* Read UserLocal register */
654 		regs->regs[rt] = ti->tp_value;
655 		return 0;
656 	default:
657 		return -1;
658 	}
659 }
660 
661 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
662 {
663 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
664 		int rd = (opcode & RD) >> 11;
665 		int rt = (opcode & RT) >> 16;
666 
667 		simulate_rdhwr(regs, rd, rt);
668 		return 0;
669 	}
670 
671 	/* Not ours.  */
672 	return -1;
673 }
674 
675 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
676 {
677 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
678 		int rd = (opcode & MM_RS) >> 16;
679 		int rt = (opcode & MM_RT) >> 21;
680 		simulate_rdhwr(regs, rd, rt);
681 		return 0;
682 	}
683 
684 	/* Not ours.  */
685 	return -1;
686 }
687 
688 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
689 {
690 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
691 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
692 				1, regs, 0);
693 		return 0;
694 	}
695 
696 	return -1;			/* Must be something else ... */
697 }
698 
699 asmlinkage void do_ov(struct pt_regs *regs)
700 {
701 	enum ctx_state prev_state;
702 
703 	prev_state = exception_enter();
704 	die_if_kernel("Integer overflow", regs);
705 
706 	force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc, current);
707 	exception_exit(prev_state);
708 }
709 
710 /*
711  * Send SIGFPE according to FCSR Cause bits, which must have already
712  * been masked against Enable bits.  This is impotant as Inexact can
713  * happen together with Overflow or Underflow, and `ptrace' can set
714  * any bits.
715  */
716 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
717 		     struct task_struct *tsk)
718 {
719 	int si_code = FPE_FLTUNK;
720 
721 	if (fcr31 & FPU_CSR_INV_X)
722 		si_code = FPE_FLTINV;
723 	else if (fcr31 & FPU_CSR_DIV_X)
724 		si_code = FPE_FLTDIV;
725 	else if (fcr31 & FPU_CSR_OVF_X)
726 		si_code = FPE_FLTOVF;
727 	else if (fcr31 & FPU_CSR_UDF_X)
728 		si_code = FPE_FLTUND;
729 	else if (fcr31 & FPU_CSR_INE_X)
730 		si_code = FPE_FLTRES;
731 
732 	force_sig_fault(SIGFPE, si_code, fault_addr, tsk);
733 }
734 
735 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
736 {
737 	int si_code;
738 	struct vm_area_struct *vma;
739 
740 	switch (sig) {
741 	case 0:
742 		return 0;
743 
744 	case SIGFPE:
745 		force_fcr31_sig(fcr31, fault_addr, current);
746 		return 1;
747 
748 	case SIGBUS:
749 		force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr, current);
750 		return 1;
751 
752 	case SIGSEGV:
753 		down_read(&current->mm->mmap_sem);
754 		vma = find_vma(current->mm, (unsigned long)fault_addr);
755 		if (vma && (vma->vm_start <= (unsigned long)fault_addr))
756 			si_code = SEGV_ACCERR;
757 		else
758 			si_code = SEGV_MAPERR;
759 		up_read(&current->mm->mmap_sem);
760 		force_sig_fault(SIGSEGV, si_code, fault_addr, current);
761 		return 1;
762 
763 	default:
764 		force_sig(sig, current);
765 		return 1;
766 	}
767 }
768 
769 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
770 		       unsigned long old_epc, unsigned long old_ra)
771 {
772 	union mips_instruction inst = { .word = opcode };
773 	void __user *fault_addr;
774 	unsigned long fcr31;
775 	int sig;
776 
777 	/* If it's obviously not an FP instruction, skip it */
778 	switch (inst.i_format.opcode) {
779 	case cop1_op:
780 	case cop1x_op:
781 	case lwc1_op:
782 	case ldc1_op:
783 	case swc1_op:
784 	case sdc1_op:
785 		break;
786 
787 	default:
788 		return -1;
789 	}
790 
791 	/*
792 	 * do_ri skipped over the instruction via compute_return_epc, undo
793 	 * that for the FPU emulator.
794 	 */
795 	regs->cp0_epc = old_epc;
796 	regs->regs[31] = old_ra;
797 
798 	/* Save the FP context to struct thread_struct */
799 	lose_fpu(1);
800 
801 	/* Run the emulator */
802 	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
803 				       &fault_addr);
804 
805 	/*
806 	 * We can't allow the emulated instruction to leave any
807 	 * enabled Cause bits set in $fcr31.
808 	 */
809 	fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
810 	current->thread.fpu.fcr31 &= ~fcr31;
811 
812 	/* Restore the hardware register state */
813 	own_fpu(1);
814 
815 	/* Send a signal if required.  */
816 	process_fpemu_return(sig, fault_addr, fcr31);
817 
818 	return 0;
819 }
820 
821 /*
822  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
823  */
824 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
825 {
826 	enum ctx_state prev_state;
827 	void __user *fault_addr;
828 	int sig;
829 
830 	prev_state = exception_enter();
831 	if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
832 		       SIGFPE) == NOTIFY_STOP)
833 		goto out;
834 
835 	/* Clear FCSR.Cause before enabling interrupts */
836 	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
837 	local_irq_enable();
838 
839 	die_if_kernel("FP exception in kernel code", regs);
840 
841 	if (fcr31 & FPU_CSR_UNI_X) {
842 		/*
843 		 * Unimplemented operation exception.  If we've got the full
844 		 * software emulator on-board, let's use it...
845 		 *
846 		 * Force FPU to dump state into task/thread context.  We're
847 		 * moving a lot of data here for what is probably a single
848 		 * instruction, but the alternative is to pre-decode the FP
849 		 * register operands before invoking the emulator, which seems
850 		 * a bit extreme for what should be an infrequent event.
851 		 */
852 		/* Ensure 'resume' not overwrite saved fp context again. */
853 		lose_fpu(1);
854 
855 		/* Run the emulator */
856 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
857 					       &fault_addr);
858 
859 		/*
860 		 * We can't allow the emulated instruction to leave any
861 		 * enabled Cause bits set in $fcr31.
862 		 */
863 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
864 		current->thread.fpu.fcr31 &= ~fcr31;
865 
866 		/* Restore the hardware register state */
867 		own_fpu(1);	/* Using the FPU again.	 */
868 	} else {
869 		sig = SIGFPE;
870 		fault_addr = (void __user *) regs->cp0_epc;
871 	}
872 
873 	/* Send a signal if required.  */
874 	process_fpemu_return(sig, fault_addr, fcr31);
875 
876 out:
877 	exception_exit(prev_state);
878 }
879 
880 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
881 	const char *str)
882 {
883 	char b[40];
884 
885 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
886 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
887 			 SIGTRAP) == NOTIFY_STOP)
888 		return;
889 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
890 
891 	if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
892 		       SIGTRAP) == NOTIFY_STOP)
893 		return;
894 
895 	/*
896 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
897 	 * insns, even for trap and break codes that indicate arithmetic
898 	 * failures.  Weird ...
899 	 * But should we continue the brokenness???  --macro
900 	 */
901 	switch (code) {
902 	case BRK_OVERFLOW:
903 	case BRK_DIVZERO:
904 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
905 		die_if_kernel(b, regs);
906 		force_sig_fault(SIGFPE,
907 				code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
908 				(void __user *) regs->cp0_epc, current);
909 		break;
910 	case BRK_BUG:
911 		die_if_kernel("Kernel bug detected", regs);
912 		force_sig(SIGTRAP, current);
913 		break;
914 	case BRK_MEMU:
915 		/*
916 		 * This breakpoint code is used by the FPU emulator to retake
917 		 * control of the CPU after executing the instruction from the
918 		 * delay slot of an emulated branch.
919 		 *
920 		 * Terminate if exception was recognized as a delay slot return
921 		 * otherwise handle as normal.
922 		 */
923 		if (do_dsemulret(regs))
924 			return;
925 
926 		die_if_kernel("Math emu break/trap", regs);
927 		force_sig(SIGTRAP, current);
928 		break;
929 	default:
930 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
931 		die_if_kernel(b, regs);
932 		if (si_code) {
933 			force_sig_fault(SIGTRAP, si_code, NULL,	current);
934 		} else {
935 			force_sig(SIGTRAP, current);
936 		}
937 	}
938 }
939 
940 asmlinkage void do_bp(struct pt_regs *regs)
941 {
942 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
943 	unsigned int opcode, bcode;
944 	enum ctx_state prev_state;
945 	mm_segment_t seg;
946 
947 	seg = get_fs();
948 	if (!user_mode(regs))
949 		set_fs(KERNEL_DS);
950 
951 	prev_state = exception_enter();
952 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
953 	if (get_isa16_mode(regs->cp0_epc)) {
954 		u16 instr[2];
955 
956 		if (__get_user(instr[0], (u16 __user *)epc))
957 			goto out_sigsegv;
958 
959 		if (!cpu_has_mmips) {
960 			/* MIPS16e mode */
961 			bcode = (instr[0] >> 5) & 0x3f;
962 		} else if (mm_insn_16bit(instr[0])) {
963 			/* 16-bit microMIPS BREAK */
964 			bcode = instr[0] & 0xf;
965 		} else {
966 			/* 32-bit microMIPS BREAK */
967 			if (__get_user(instr[1], (u16 __user *)(epc + 2)))
968 				goto out_sigsegv;
969 			opcode = (instr[0] << 16) | instr[1];
970 			bcode = (opcode >> 6) & ((1 << 20) - 1);
971 		}
972 	} else {
973 		if (__get_user(opcode, (unsigned int __user *)epc))
974 			goto out_sigsegv;
975 		bcode = (opcode >> 6) & ((1 << 20) - 1);
976 	}
977 
978 	/*
979 	 * There is the ancient bug in the MIPS assemblers that the break
980 	 * code starts left to bit 16 instead to bit 6 in the opcode.
981 	 * Gas is bug-compatible, but not always, grrr...
982 	 * We handle both cases with a simple heuristics.  --macro
983 	 */
984 	if (bcode >= (1 << 10))
985 		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
986 
987 	/*
988 	 * notify the kprobe handlers, if instruction is likely to
989 	 * pertain to them.
990 	 */
991 	switch (bcode) {
992 	case BRK_UPROBE:
993 		if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
994 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
995 			goto out;
996 		else
997 			break;
998 	case BRK_UPROBE_XOL:
999 		if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1000 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1001 			goto out;
1002 		else
1003 			break;
1004 	case BRK_KPROBE_BP:
1005 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
1006 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1007 			goto out;
1008 		else
1009 			break;
1010 	case BRK_KPROBE_SSTEPBP:
1011 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1012 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1013 			goto out;
1014 		else
1015 			break;
1016 	default:
1017 		break;
1018 	}
1019 
1020 	do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1021 
1022 out:
1023 	set_fs(seg);
1024 	exception_exit(prev_state);
1025 	return;
1026 
1027 out_sigsegv:
1028 	force_sig(SIGSEGV, current);
1029 	goto out;
1030 }
1031 
1032 asmlinkage void do_tr(struct pt_regs *regs)
1033 {
1034 	u32 opcode, tcode = 0;
1035 	enum ctx_state prev_state;
1036 	u16 instr[2];
1037 	mm_segment_t seg;
1038 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1039 
1040 	seg = get_fs();
1041 	if (!user_mode(regs))
1042 		set_fs(get_ds());
1043 
1044 	prev_state = exception_enter();
1045 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1046 	if (get_isa16_mode(regs->cp0_epc)) {
1047 		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1048 		    __get_user(instr[1], (u16 __user *)(epc + 2)))
1049 			goto out_sigsegv;
1050 		opcode = (instr[0] << 16) | instr[1];
1051 		/* Immediate versions don't provide a code.  */
1052 		if (!(opcode & OPCODE))
1053 			tcode = (opcode >> 12) & ((1 << 4) - 1);
1054 	} else {
1055 		if (__get_user(opcode, (u32 __user *)epc))
1056 			goto out_sigsegv;
1057 		/* Immediate versions don't provide a code.  */
1058 		if (!(opcode & OPCODE))
1059 			tcode = (opcode >> 6) & ((1 << 10) - 1);
1060 	}
1061 
1062 	do_trap_or_bp(regs, tcode, 0, "Trap");
1063 
1064 out:
1065 	set_fs(seg);
1066 	exception_exit(prev_state);
1067 	return;
1068 
1069 out_sigsegv:
1070 	force_sig(SIGSEGV, current);
1071 	goto out;
1072 }
1073 
1074 asmlinkage void do_ri(struct pt_regs *regs)
1075 {
1076 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1077 	unsigned long old_epc = regs->cp0_epc;
1078 	unsigned long old31 = regs->regs[31];
1079 	enum ctx_state prev_state;
1080 	unsigned int opcode = 0;
1081 	int status = -1;
1082 
1083 	/*
1084 	 * Avoid any kernel code. Just emulate the R2 instruction
1085 	 * as quickly as possible.
1086 	 */
1087 	if (mipsr2_emulation && cpu_has_mips_r6 &&
1088 	    likely(user_mode(regs)) &&
1089 	    likely(get_user(opcode, epc) >= 0)) {
1090 		unsigned long fcr31 = 0;
1091 
1092 		status = mipsr2_decoder(regs, opcode, &fcr31);
1093 		switch (status) {
1094 		case 0:
1095 		case SIGEMT:
1096 			return;
1097 		case SIGILL:
1098 			goto no_r2_instr;
1099 		default:
1100 			process_fpemu_return(status,
1101 					     &current->thread.cp0_baduaddr,
1102 					     fcr31);
1103 			return;
1104 		}
1105 	}
1106 
1107 no_r2_instr:
1108 
1109 	prev_state = exception_enter();
1110 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1111 
1112 	if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1113 		       SIGILL) == NOTIFY_STOP)
1114 		goto out;
1115 
1116 	die_if_kernel("Reserved instruction in kernel code", regs);
1117 
1118 	if (unlikely(compute_return_epc(regs) < 0))
1119 		goto out;
1120 
1121 	if (!get_isa16_mode(regs->cp0_epc)) {
1122 		if (unlikely(get_user(opcode, epc) < 0))
1123 			status = SIGSEGV;
1124 
1125 		if (!cpu_has_llsc && status < 0)
1126 			status = simulate_llsc(regs, opcode);
1127 
1128 		if (status < 0)
1129 			status = simulate_rdhwr_normal(regs, opcode);
1130 
1131 		if (status < 0)
1132 			status = simulate_sync(regs, opcode);
1133 
1134 		if (status < 0)
1135 			status = simulate_fp(regs, opcode, old_epc, old31);
1136 	} else if (cpu_has_mmips) {
1137 		unsigned short mmop[2] = { 0 };
1138 
1139 		if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1140 			status = SIGSEGV;
1141 		if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1142 			status = SIGSEGV;
1143 		opcode = mmop[0];
1144 		opcode = (opcode << 16) | mmop[1];
1145 
1146 		if (status < 0)
1147 			status = simulate_rdhwr_mm(regs, opcode);
1148 	}
1149 
1150 	if (status < 0)
1151 		status = SIGILL;
1152 
1153 	if (unlikely(status > 0)) {
1154 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1155 		regs->regs[31] = old31;
1156 		force_sig(status, current);
1157 	}
1158 
1159 out:
1160 	exception_exit(prev_state);
1161 }
1162 
1163 /*
1164  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1165  * emulated more than some threshold number of instructions, force migration to
1166  * a "CPU" that has FP support.
1167  */
1168 static void mt_ase_fp_affinity(void)
1169 {
1170 #ifdef CONFIG_MIPS_MT_FPAFF
1171 	if (mt_fpemul_threshold > 0 &&
1172 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1173 		/*
1174 		 * If there's no FPU present, or if the application has already
1175 		 * restricted the allowed set to exclude any CPUs with FPUs,
1176 		 * we'll skip the procedure.
1177 		 */
1178 		if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1179 			cpumask_t tmask;
1180 
1181 			current->thread.user_cpus_allowed
1182 				= current->cpus_allowed;
1183 			cpumask_and(&tmask, &current->cpus_allowed,
1184 				    &mt_fpu_cpumask);
1185 			set_cpus_allowed_ptr(current, &tmask);
1186 			set_thread_flag(TIF_FPUBOUND);
1187 		}
1188 	}
1189 #endif /* CONFIG_MIPS_MT_FPAFF */
1190 }
1191 
1192 /*
1193  * No lock; only written during early bootup by CPU 0.
1194  */
1195 static RAW_NOTIFIER_HEAD(cu2_chain);
1196 
1197 int __ref register_cu2_notifier(struct notifier_block *nb)
1198 {
1199 	return raw_notifier_chain_register(&cu2_chain, nb);
1200 }
1201 
1202 int cu2_notifier_call_chain(unsigned long val, void *v)
1203 {
1204 	return raw_notifier_call_chain(&cu2_chain, val, v);
1205 }
1206 
1207 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1208 	void *data)
1209 {
1210 	struct pt_regs *regs = data;
1211 
1212 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1213 			      "instruction", regs);
1214 	force_sig(SIGILL, current);
1215 
1216 	return NOTIFY_OK;
1217 }
1218 
1219 static int enable_restore_fp_context(int msa)
1220 {
1221 	int err, was_fpu_owner, prior_msa;
1222 
1223 	if (!used_math()) {
1224 		/* First time FP context user. */
1225 		preempt_disable();
1226 		err = init_fpu();
1227 		if (msa && !err) {
1228 			enable_msa();
1229 			init_msa_upper();
1230 			set_thread_flag(TIF_USEDMSA);
1231 			set_thread_flag(TIF_MSA_CTX_LIVE);
1232 		}
1233 		preempt_enable();
1234 		if (!err)
1235 			set_used_math();
1236 		return err;
1237 	}
1238 
1239 	/*
1240 	 * This task has formerly used the FP context.
1241 	 *
1242 	 * If this thread has no live MSA vector context then we can simply
1243 	 * restore the scalar FP context. If it has live MSA vector context
1244 	 * (that is, it has or may have used MSA since last performing a
1245 	 * function call) then we'll need to restore the vector context. This
1246 	 * applies even if we're currently only executing a scalar FP
1247 	 * instruction. This is because if we were to later execute an MSA
1248 	 * instruction then we'd either have to:
1249 	 *
1250 	 *  - Restore the vector context & clobber any registers modified by
1251 	 *    scalar FP instructions between now & then.
1252 	 *
1253 	 * or
1254 	 *
1255 	 *  - Not restore the vector context & lose the most significant bits
1256 	 *    of all vector registers.
1257 	 *
1258 	 * Neither of those options is acceptable. We cannot restore the least
1259 	 * significant bits of the registers now & only restore the most
1260 	 * significant bits later because the most significant bits of any
1261 	 * vector registers whose aliased FP register is modified now will have
1262 	 * been zeroed. We'd have no way to know that when restoring the vector
1263 	 * context & thus may load an outdated value for the most significant
1264 	 * bits of a vector register.
1265 	 */
1266 	if (!msa && !thread_msa_context_live())
1267 		return own_fpu(1);
1268 
1269 	/*
1270 	 * This task is using or has previously used MSA. Thus we require
1271 	 * that Status.FR == 1.
1272 	 */
1273 	preempt_disable();
1274 	was_fpu_owner = is_fpu_owner();
1275 	err = own_fpu_inatomic(0);
1276 	if (err)
1277 		goto out;
1278 
1279 	enable_msa();
1280 	write_msa_csr(current->thread.fpu.msacsr);
1281 	set_thread_flag(TIF_USEDMSA);
1282 
1283 	/*
1284 	 * If this is the first time that the task is using MSA and it has
1285 	 * previously used scalar FP in this time slice then we already nave
1286 	 * FP context which we shouldn't clobber. We do however need to clear
1287 	 * the upper 64b of each vector register so that this task has no
1288 	 * opportunity to see data left behind by another.
1289 	 */
1290 	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1291 	if (!prior_msa && was_fpu_owner) {
1292 		init_msa_upper();
1293 
1294 		goto out;
1295 	}
1296 
1297 	if (!prior_msa) {
1298 		/*
1299 		 * Restore the least significant 64b of each vector register
1300 		 * from the existing scalar FP context.
1301 		 */
1302 		_restore_fp(current);
1303 
1304 		/*
1305 		 * The task has not formerly used MSA, so clear the upper 64b
1306 		 * of each vector register such that it cannot see data left
1307 		 * behind by another task.
1308 		 */
1309 		init_msa_upper();
1310 	} else {
1311 		/* We need to restore the vector context. */
1312 		restore_msa(current);
1313 
1314 		/* Restore the scalar FP control & status register */
1315 		if (!was_fpu_owner)
1316 			write_32bit_cp1_register(CP1_STATUS,
1317 						 current->thread.fpu.fcr31);
1318 	}
1319 
1320 out:
1321 	preempt_enable();
1322 
1323 	return 0;
1324 }
1325 
1326 asmlinkage void do_cpu(struct pt_regs *regs)
1327 {
1328 	enum ctx_state prev_state;
1329 	unsigned int __user *epc;
1330 	unsigned long old_epc, old31;
1331 	void __user *fault_addr;
1332 	unsigned int opcode;
1333 	unsigned long fcr31;
1334 	unsigned int cpid;
1335 	int status, err;
1336 	int sig;
1337 
1338 	prev_state = exception_enter();
1339 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1340 
1341 	if (cpid != 2)
1342 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1343 
1344 	switch (cpid) {
1345 	case 0:
1346 		epc = (unsigned int __user *)exception_epc(regs);
1347 		old_epc = regs->cp0_epc;
1348 		old31 = regs->regs[31];
1349 		opcode = 0;
1350 		status = -1;
1351 
1352 		if (unlikely(compute_return_epc(regs) < 0))
1353 			break;
1354 
1355 		if (!get_isa16_mode(regs->cp0_epc)) {
1356 			if (unlikely(get_user(opcode, epc) < 0))
1357 				status = SIGSEGV;
1358 
1359 			if (!cpu_has_llsc && status < 0)
1360 				status = simulate_llsc(regs, opcode);
1361 		}
1362 
1363 		if (status < 0)
1364 			status = SIGILL;
1365 
1366 		if (unlikely(status > 0)) {
1367 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1368 			regs->regs[31] = old31;
1369 			force_sig(status, current);
1370 		}
1371 
1372 		break;
1373 
1374 	case 3:
1375 		/*
1376 		 * The COP3 opcode space and consequently the CP0.Status.CU3
1377 		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1378 		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1379 		 * up the space has been reused for COP1X instructions, that
1380 		 * are enabled by the CP0.Status.CU1 bit and consequently
1381 		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1382 		 * exceptions.  Some FPU-less processors that implement one
1383 		 * of these ISAs however use this code erroneously for COP1X
1384 		 * instructions.  Therefore we redirect this trap to the FP
1385 		 * emulator too.
1386 		 */
1387 		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1388 			force_sig(SIGILL, current);
1389 			break;
1390 		}
1391 		/* Fall through.  */
1392 
1393 	case 1:
1394 		err = enable_restore_fp_context(0);
1395 
1396 		if (raw_cpu_has_fpu && !err)
1397 			break;
1398 
1399 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1400 					       &fault_addr);
1401 
1402 		/*
1403 		 * We can't allow the emulated instruction to leave
1404 		 * any enabled Cause bits set in $fcr31.
1405 		 */
1406 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1407 		current->thread.fpu.fcr31 &= ~fcr31;
1408 
1409 		/* Send a signal if required.  */
1410 		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1411 			mt_ase_fp_affinity();
1412 
1413 		break;
1414 
1415 	case 2:
1416 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1417 		break;
1418 	}
1419 
1420 	exception_exit(prev_state);
1421 }
1422 
1423 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1424 {
1425 	enum ctx_state prev_state;
1426 
1427 	prev_state = exception_enter();
1428 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1429 	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1430 		       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1431 		goto out;
1432 
1433 	/* Clear MSACSR.Cause before enabling interrupts */
1434 	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1435 	local_irq_enable();
1436 
1437 	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1438 	force_sig(SIGFPE, current);
1439 out:
1440 	exception_exit(prev_state);
1441 }
1442 
1443 asmlinkage void do_msa(struct pt_regs *regs)
1444 {
1445 	enum ctx_state prev_state;
1446 	int err;
1447 
1448 	prev_state = exception_enter();
1449 
1450 	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1451 		force_sig(SIGILL, current);
1452 		goto out;
1453 	}
1454 
1455 	die_if_kernel("do_msa invoked from kernel context!", regs);
1456 
1457 	err = enable_restore_fp_context(1);
1458 	if (err)
1459 		force_sig(SIGILL, current);
1460 out:
1461 	exception_exit(prev_state);
1462 }
1463 
1464 asmlinkage void do_mdmx(struct pt_regs *regs)
1465 {
1466 	enum ctx_state prev_state;
1467 
1468 	prev_state = exception_enter();
1469 	force_sig(SIGILL, current);
1470 	exception_exit(prev_state);
1471 }
1472 
1473 /*
1474  * Called with interrupts disabled.
1475  */
1476 asmlinkage void do_watch(struct pt_regs *regs)
1477 {
1478 	enum ctx_state prev_state;
1479 
1480 	prev_state = exception_enter();
1481 	/*
1482 	 * Clear WP (bit 22) bit of cause register so we don't loop
1483 	 * forever.
1484 	 */
1485 	clear_c0_cause(CAUSEF_WP);
1486 
1487 	/*
1488 	 * If the current thread has the watch registers loaded, save
1489 	 * their values and send SIGTRAP.  Otherwise another thread
1490 	 * left the registers set, clear them and continue.
1491 	 */
1492 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1493 		mips_read_watch_registers();
1494 		local_irq_enable();
1495 		force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL, current);
1496 	} else {
1497 		mips_clear_watch_registers();
1498 		local_irq_enable();
1499 	}
1500 	exception_exit(prev_state);
1501 }
1502 
1503 asmlinkage void do_mcheck(struct pt_regs *regs)
1504 {
1505 	int multi_match = regs->cp0_status & ST0_TS;
1506 	enum ctx_state prev_state;
1507 	mm_segment_t old_fs = get_fs();
1508 
1509 	prev_state = exception_enter();
1510 	show_regs(regs);
1511 
1512 	if (multi_match) {
1513 		dump_tlb_regs();
1514 		pr_info("\n");
1515 		dump_tlb_all();
1516 	}
1517 
1518 	if (!user_mode(regs))
1519 		set_fs(KERNEL_DS);
1520 
1521 	show_code((unsigned int __user *) regs->cp0_epc);
1522 
1523 	set_fs(old_fs);
1524 
1525 	/*
1526 	 * Some chips may have other causes of machine check (e.g. SB1
1527 	 * graduation timer)
1528 	 */
1529 	panic("Caught Machine Check exception - %scaused by multiple "
1530 	      "matching entries in the TLB.",
1531 	      (multi_match) ? "" : "not ");
1532 }
1533 
1534 asmlinkage void do_mt(struct pt_regs *regs)
1535 {
1536 	int subcode;
1537 
1538 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1539 			>> VPECONTROL_EXCPT_SHIFT;
1540 	switch (subcode) {
1541 	case 0:
1542 		printk(KERN_DEBUG "Thread Underflow\n");
1543 		break;
1544 	case 1:
1545 		printk(KERN_DEBUG "Thread Overflow\n");
1546 		break;
1547 	case 2:
1548 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1549 		break;
1550 	case 3:
1551 		printk(KERN_DEBUG "Gating Storage Exception\n");
1552 		break;
1553 	case 4:
1554 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1555 		break;
1556 	case 5:
1557 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1558 		break;
1559 	default:
1560 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1561 			subcode);
1562 		break;
1563 	}
1564 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1565 
1566 	force_sig(SIGILL, current);
1567 }
1568 
1569 
1570 asmlinkage void do_dsp(struct pt_regs *regs)
1571 {
1572 	if (cpu_has_dsp)
1573 		panic("Unexpected DSP exception");
1574 
1575 	force_sig(SIGILL, current);
1576 }
1577 
1578 asmlinkage void do_reserved(struct pt_regs *regs)
1579 {
1580 	/*
1581 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1582 	 * caused by a new unknown cpu type or after another deadly
1583 	 * hard/software error.
1584 	 */
1585 	show_regs(regs);
1586 	panic("Caught reserved exception %ld - should not happen.",
1587 	      (regs->cp0_cause & 0x7f) >> 2);
1588 }
1589 
1590 static int __initdata l1parity = 1;
1591 static int __init nol1parity(char *s)
1592 {
1593 	l1parity = 0;
1594 	return 1;
1595 }
1596 __setup("nol1par", nol1parity);
1597 static int __initdata l2parity = 1;
1598 static int __init nol2parity(char *s)
1599 {
1600 	l2parity = 0;
1601 	return 1;
1602 }
1603 __setup("nol2par", nol2parity);
1604 
1605 /*
1606  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1607  * it different ways.
1608  */
1609 static inline void parity_protection_init(void)
1610 {
1611 #define ERRCTL_PE	0x80000000
1612 #define ERRCTL_L2P	0x00800000
1613 
1614 	if (mips_cm_revision() >= CM_REV_CM3) {
1615 		ulong gcr_ectl, cp0_ectl;
1616 
1617 		/*
1618 		 * With CM3 systems we need to ensure that the L1 & L2
1619 		 * parity enables are set to the same value, since this
1620 		 * is presumed by the hardware engineers.
1621 		 *
1622 		 * If the user disabled either of L1 or L2 ECC checking,
1623 		 * disable both.
1624 		 */
1625 		l1parity &= l2parity;
1626 		l2parity &= l1parity;
1627 
1628 		/* Probe L1 ECC support */
1629 		cp0_ectl = read_c0_ecc();
1630 		write_c0_ecc(cp0_ectl | ERRCTL_PE);
1631 		back_to_back_c0_hazard();
1632 		cp0_ectl = read_c0_ecc();
1633 
1634 		/* Probe L2 ECC support */
1635 		gcr_ectl = read_gcr_err_control();
1636 
1637 		if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1638 		    !(cp0_ectl & ERRCTL_PE)) {
1639 			/*
1640 			 * One of L1 or L2 ECC checking isn't supported,
1641 			 * so we cannot enable either.
1642 			 */
1643 			l1parity = l2parity = 0;
1644 		}
1645 
1646 		/* Configure L1 ECC checking */
1647 		if (l1parity)
1648 			cp0_ectl |= ERRCTL_PE;
1649 		else
1650 			cp0_ectl &= ~ERRCTL_PE;
1651 		write_c0_ecc(cp0_ectl);
1652 		back_to_back_c0_hazard();
1653 		WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1654 
1655 		/* Configure L2 ECC checking */
1656 		if (l2parity)
1657 			gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1658 		else
1659 			gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1660 		write_gcr_err_control(gcr_ectl);
1661 		gcr_ectl = read_gcr_err_control();
1662 		gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1663 		WARN_ON(!!gcr_ectl != l2parity);
1664 
1665 		pr_info("Cache parity protection %sabled\n",
1666 			l1parity ? "en" : "dis");
1667 		return;
1668 	}
1669 
1670 	switch (current_cpu_type()) {
1671 	case CPU_24K:
1672 	case CPU_34K:
1673 	case CPU_74K:
1674 	case CPU_1004K:
1675 	case CPU_1074K:
1676 	case CPU_INTERAPTIV:
1677 	case CPU_PROAPTIV:
1678 	case CPU_P5600:
1679 	case CPU_QEMU_GENERIC:
1680 	case CPU_P6600:
1681 		{
1682 			unsigned long errctl;
1683 			unsigned int l1parity_present, l2parity_present;
1684 
1685 			errctl = read_c0_ecc();
1686 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1687 
1688 			/* probe L1 parity support */
1689 			write_c0_ecc(errctl | ERRCTL_PE);
1690 			back_to_back_c0_hazard();
1691 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1692 
1693 			/* probe L2 parity support */
1694 			write_c0_ecc(errctl|ERRCTL_L2P);
1695 			back_to_back_c0_hazard();
1696 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1697 
1698 			if (l1parity_present && l2parity_present) {
1699 				if (l1parity)
1700 					errctl |= ERRCTL_PE;
1701 				if (l1parity ^ l2parity)
1702 					errctl |= ERRCTL_L2P;
1703 			} else if (l1parity_present) {
1704 				if (l1parity)
1705 					errctl |= ERRCTL_PE;
1706 			} else if (l2parity_present) {
1707 				if (l2parity)
1708 					errctl |= ERRCTL_L2P;
1709 			} else {
1710 				/* No parity available */
1711 			}
1712 
1713 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1714 
1715 			write_c0_ecc(errctl);
1716 			back_to_back_c0_hazard();
1717 			errctl = read_c0_ecc();
1718 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1719 
1720 			if (l1parity_present)
1721 				printk(KERN_INFO "Cache parity protection %sabled\n",
1722 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1723 
1724 			if (l2parity_present) {
1725 				if (l1parity_present && l1parity)
1726 					errctl ^= ERRCTL_L2P;
1727 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1728 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1729 			}
1730 		}
1731 		break;
1732 
1733 	case CPU_5KC:
1734 	case CPU_5KE:
1735 	case CPU_LOONGSON1:
1736 		write_c0_ecc(0x80000000);
1737 		back_to_back_c0_hazard();
1738 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1739 		printk(KERN_INFO "Cache parity protection %sabled\n",
1740 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1741 		break;
1742 	case CPU_20KC:
1743 	case CPU_25KF:
1744 		/* Clear the DE bit (bit 16) in the c0_status register. */
1745 		printk(KERN_INFO "Enable cache parity protection for "
1746 		       "MIPS 20KC/25KF CPUs.\n");
1747 		clear_c0_status(ST0_DE);
1748 		break;
1749 	default:
1750 		break;
1751 	}
1752 }
1753 
1754 asmlinkage void cache_parity_error(void)
1755 {
1756 	const int field = 2 * sizeof(unsigned long);
1757 	unsigned int reg_val;
1758 
1759 	/* For the moment, report the problem and hang. */
1760 	printk("Cache error exception:\n");
1761 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1762 	reg_val = read_c0_cacheerr();
1763 	printk("c0_cacheerr == %08x\n", reg_val);
1764 
1765 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1766 	       reg_val & (1<<30) ? "secondary" : "primary",
1767 	       reg_val & (1<<31) ? "data" : "insn");
1768 	if ((cpu_has_mips_r2_r6) &&
1769 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1770 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1771 			reg_val & (1<<29) ? "ED " : "",
1772 			reg_val & (1<<28) ? "ET " : "",
1773 			reg_val & (1<<27) ? "ES " : "",
1774 			reg_val & (1<<26) ? "EE " : "",
1775 			reg_val & (1<<25) ? "EB " : "",
1776 			reg_val & (1<<24) ? "EI " : "",
1777 			reg_val & (1<<23) ? "E1 " : "",
1778 			reg_val & (1<<22) ? "E0 " : "");
1779 	} else {
1780 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1781 			reg_val & (1<<29) ? "ED " : "",
1782 			reg_val & (1<<28) ? "ET " : "",
1783 			reg_val & (1<<26) ? "EE " : "",
1784 			reg_val & (1<<25) ? "EB " : "",
1785 			reg_val & (1<<24) ? "EI " : "",
1786 			reg_val & (1<<23) ? "E1 " : "",
1787 			reg_val & (1<<22) ? "E0 " : "");
1788 	}
1789 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1790 
1791 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1792 	if (reg_val & (1<<22))
1793 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1794 
1795 	if (reg_val & (1<<23))
1796 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1797 #endif
1798 
1799 	panic("Can't handle the cache error!");
1800 }
1801 
1802 asmlinkage void do_ftlb(void)
1803 {
1804 	const int field = 2 * sizeof(unsigned long);
1805 	unsigned int reg_val;
1806 
1807 	/* For the moment, report the problem and hang. */
1808 	if ((cpu_has_mips_r2_r6) &&
1809 	    (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1810 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1811 		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1812 		       read_c0_ecc());
1813 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1814 		reg_val = read_c0_cacheerr();
1815 		pr_err("c0_cacheerr == %08x\n", reg_val);
1816 
1817 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1818 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1819 		} else {
1820 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1821 			       reg_val & (1<<30) ? "secondary" : "primary",
1822 			       reg_val & (1<<31) ? "data" : "insn");
1823 		}
1824 	} else {
1825 		pr_err("FTLB error exception\n");
1826 	}
1827 	/* Just print the cacheerr bits for now */
1828 	cache_parity_error();
1829 }
1830 
1831 /*
1832  * SDBBP EJTAG debug exception handler.
1833  * We skip the instruction and return to the next instruction.
1834  */
1835 void ejtag_exception_handler(struct pt_regs *regs)
1836 {
1837 	const int field = 2 * sizeof(unsigned long);
1838 	unsigned long depc, old_epc, old_ra;
1839 	unsigned int debug;
1840 
1841 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1842 	depc = read_c0_depc();
1843 	debug = read_c0_debug();
1844 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1845 	if (debug & 0x80000000) {
1846 		/*
1847 		 * In branch delay slot.
1848 		 * We cheat a little bit here and use EPC to calculate the
1849 		 * debug return address (DEPC). EPC is restored after the
1850 		 * calculation.
1851 		 */
1852 		old_epc = regs->cp0_epc;
1853 		old_ra = regs->regs[31];
1854 		regs->cp0_epc = depc;
1855 		compute_return_epc(regs);
1856 		depc = regs->cp0_epc;
1857 		regs->cp0_epc = old_epc;
1858 		regs->regs[31] = old_ra;
1859 	} else
1860 		depc += 4;
1861 	write_c0_depc(depc);
1862 
1863 #if 0
1864 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1865 	write_c0_debug(debug | 0x100);
1866 #endif
1867 }
1868 
1869 /*
1870  * NMI exception handler.
1871  * No lock; only written during early bootup by CPU 0.
1872  */
1873 static RAW_NOTIFIER_HEAD(nmi_chain);
1874 
1875 int register_nmi_notifier(struct notifier_block *nb)
1876 {
1877 	return raw_notifier_chain_register(&nmi_chain, nb);
1878 }
1879 
1880 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1881 {
1882 	char str[100];
1883 
1884 	nmi_enter();
1885 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1886 	bust_spinlocks(1);
1887 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1888 		 smp_processor_id(), regs->cp0_epc);
1889 	regs->cp0_epc = read_c0_errorepc();
1890 	die(str, regs);
1891 	nmi_exit();
1892 }
1893 
1894 #define VECTORSPACING 0x100	/* for EI/VI mode */
1895 
1896 unsigned long ebase;
1897 EXPORT_SYMBOL_GPL(ebase);
1898 unsigned long exception_handlers[32];
1899 unsigned long vi_handlers[64];
1900 
1901 void __init *set_except_vector(int n, void *addr)
1902 {
1903 	unsigned long handler = (unsigned long) addr;
1904 	unsigned long old_handler;
1905 
1906 #ifdef CONFIG_CPU_MICROMIPS
1907 	/*
1908 	 * Only the TLB handlers are cache aligned with an even
1909 	 * address. All other handlers are on an odd address and
1910 	 * require no modification. Otherwise, MIPS32 mode will
1911 	 * be entered when handling any TLB exceptions. That
1912 	 * would be bad...since we must stay in microMIPS mode.
1913 	 */
1914 	if (!(handler & 0x1))
1915 		handler |= 1;
1916 #endif
1917 	old_handler = xchg(&exception_handlers[n], handler);
1918 
1919 	if (n == 0 && cpu_has_divec) {
1920 #ifdef CONFIG_CPU_MICROMIPS
1921 		unsigned long jump_mask = ~((1 << 27) - 1);
1922 #else
1923 		unsigned long jump_mask = ~((1 << 28) - 1);
1924 #endif
1925 		u32 *buf = (u32 *)(ebase + 0x200);
1926 		unsigned int k0 = 26;
1927 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1928 			uasm_i_j(&buf, handler & ~jump_mask);
1929 			uasm_i_nop(&buf);
1930 		} else {
1931 			UASM_i_LA(&buf, k0, handler);
1932 			uasm_i_jr(&buf, k0);
1933 			uasm_i_nop(&buf);
1934 		}
1935 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1936 	}
1937 	return (void *)old_handler;
1938 }
1939 
1940 static void do_default_vi(void)
1941 {
1942 	show_regs(get_irq_regs());
1943 	panic("Caught unexpected vectored interrupt.");
1944 }
1945 
1946 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1947 {
1948 	unsigned long handler;
1949 	unsigned long old_handler = vi_handlers[n];
1950 	int srssets = current_cpu_data.srsets;
1951 	u16 *h;
1952 	unsigned char *b;
1953 
1954 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1955 
1956 	if (addr == NULL) {
1957 		handler = (unsigned long) do_default_vi;
1958 		srs = 0;
1959 	} else
1960 		handler = (unsigned long) addr;
1961 	vi_handlers[n] = handler;
1962 
1963 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1964 
1965 	if (srs >= srssets)
1966 		panic("Shadow register set %d not supported", srs);
1967 
1968 	if (cpu_has_veic) {
1969 		if (board_bind_eic_interrupt)
1970 			board_bind_eic_interrupt(n, srs);
1971 	} else if (cpu_has_vint) {
1972 		/* SRSMap is only defined if shadow sets are implemented */
1973 		if (srssets > 1)
1974 			change_c0_srsmap(0xf << n*4, srs << n*4);
1975 	}
1976 
1977 	if (srs == 0) {
1978 		/*
1979 		 * If no shadow set is selected then use the default handler
1980 		 * that does normal register saving and standard interrupt exit
1981 		 */
1982 		extern char except_vec_vi, except_vec_vi_lui;
1983 		extern char except_vec_vi_ori, except_vec_vi_end;
1984 		extern char rollback_except_vec_vi;
1985 		char *vec_start = using_rollback_handler() ?
1986 			&rollback_except_vec_vi : &except_vec_vi;
1987 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1988 		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1989 		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1990 #else
1991 		const int lui_offset = &except_vec_vi_lui - vec_start;
1992 		const int ori_offset = &except_vec_vi_ori - vec_start;
1993 #endif
1994 		const int handler_len = &except_vec_vi_end - vec_start;
1995 
1996 		if (handler_len > VECTORSPACING) {
1997 			/*
1998 			 * Sigh... panicing won't help as the console
1999 			 * is probably not configured :(
2000 			 */
2001 			panic("VECTORSPACING too small");
2002 		}
2003 
2004 		set_handler(((unsigned long)b - ebase), vec_start,
2005 #ifdef CONFIG_CPU_MICROMIPS
2006 				(handler_len - 1));
2007 #else
2008 				handler_len);
2009 #endif
2010 		h = (u16 *)(b + lui_offset);
2011 		*h = (handler >> 16) & 0xffff;
2012 		h = (u16 *)(b + ori_offset);
2013 		*h = (handler & 0xffff);
2014 		local_flush_icache_range((unsigned long)b,
2015 					 (unsigned long)(b+handler_len));
2016 	}
2017 	else {
2018 		/*
2019 		 * In other cases jump directly to the interrupt handler. It
2020 		 * is the handler's responsibility to save registers if required
2021 		 * (eg hi/lo) and return from the exception using "eret".
2022 		 */
2023 		u32 insn;
2024 
2025 		h = (u16 *)b;
2026 		/* j handler */
2027 #ifdef CONFIG_CPU_MICROMIPS
2028 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2029 #else
2030 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2031 #endif
2032 		h[0] = (insn >> 16) & 0xffff;
2033 		h[1] = insn & 0xffff;
2034 		h[2] = 0;
2035 		h[3] = 0;
2036 		local_flush_icache_range((unsigned long)b,
2037 					 (unsigned long)(b+8));
2038 	}
2039 
2040 	return (void *)old_handler;
2041 }
2042 
2043 void *set_vi_handler(int n, vi_handler_t addr)
2044 {
2045 	return set_vi_srs_handler(n, addr, 0);
2046 }
2047 
2048 extern void tlb_init(void);
2049 
2050 /*
2051  * Timer interrupt
2052  */
2053 int cp0_compare_irq;
2054 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2055 int cp0_compare_irq_shift;
2056 
2057 /*
2058  * Performance counter IRQ or -1 if shared with timer
2059  */
2060 int cp0_perfcount_irq;
2061 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2062 
2063 /*
2064  * Fast debug channel IRQ or -1 if not present
2065  */
2066 int cp0_fdc_irq;
2067 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2068 
2069 static int noulri;
2070 
2071 static int __init ulri_disable(char *s)
2072 {
2073 	pr_info("Disabling ulri\n");
2074 	noulri = 1;
2075 
2076 	return 1;
2077 }
2078 __setup("noulri", ulri_disable);
2079 
2080 /* configure STATUS register */
2081 static void configure_status(void)
2082 {
2083 	/*
2084 	 * Disable coprocessors and select 32-bit or 64-bit addressing
2085 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2086 	 * flag that some firmware may have left set and the TS bit (for
2087 	 * IP27).  Set XX for ISA IV code to work.
2088 	 */
2089 	unsigned int status_set = ST0_CU0;
2090 #ifdef CONFIG_64BIT
2091 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2092 #endif
2093 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2094 		status_set |= ST0_XX;
2095 	if (cpu_has_dsp)
2096 		status_set |= ST0_MX;
2097 
2098 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2099 			 status_set);
2100 }
2101 
2102 unsigned int hwrena;
2103 EXPORT_SYMBOL_GPL(hwrena);
2104 
2105 /* configure HWRENA register */
2106 static void configure_hwrena(void)
2107 {
2108 	hwrena = cpu_hwrena_impl_bits;
2109 
2110 	if (cpu_has_mips_r2_r6)
2111 		hwrena |= MIPS_HWRENA_CPUNUM |
2112 			  MIPS_HWRENA_SYNCISTEP |
2113 			  MIPS_HWRENA_CC |
2114 			  MIPS_HWRENA_CCRES;
2115 
2116 	if (!noulri && cpu_has_userlocal)
2117 		hwrena |= MIPS_HWRENA_ULR;
2118 
2119 	if (hwrena)
2120 		write_c0_hwrena(hwrena);
2121 }
2122 
2123 static void configure_exception_vector(void)
2124 {
2125 	if (cpu_has_veic || cpu_has_vint) {
2126 		unsigned long sr = set_c0_status(ST0_BEV);
2127 		/* If available, use WG to set top bits of EBASE */
2128 		if (cpu_has_ebase_wg) {
2129 #ifdef CONFIG_64BIT
2130 			write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2131 #else
2132 			write_c0_ebase(ebase | MIPS_EBASE_WG);
2133 #endif
2134 		}
2135 		write_c0_ebase(ebase);
2136 		write_c0_status(sr);
2137 		/* Setting vector spacing enables EI/VI mode  */
2138 		change_c0_intctl(0x3e0, VECTORSPACING);
2139 	}
2140 	if (cpu_has_divec) {
2141 		if (cpu_has_mipsmt) {
2142 			unsigned int vpflags = dvpe();
2143 			set_c0_cause(CAUSEF_IV);
2144 			evpe(vpflags);
2145 		} else
2146 			set_c0_cause(CAUSEF_IV);
2147 	}
2148 }
2149 
2150 void per_cpu_trap_init(bool is_boot_cpu)
2151 {
2152 	unsigned int cpu = smp_processor_id();
2153 
2154 	configure_status();
2155 	configure_hwrena();
2156 
2157 	configure_exception_vector();
2158 
2159 	/*
2160 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2161 	 *
2162 	 *  o read IntCtl.IPTI to determine the timer interrupt
2163 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2164 	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2165 	 */
2166 	if (cpu_has_mips_r2_r6) {
2167 		/*
2168 		 * We shouldn't trust a secondary core has a sane EBASE register
2169 		 * so use the one calculated by the boot CPU.
2170 		 */
2171 		if (!is_boot_cpu) {
2172 			/* If available, use WG to set top bits of EBASE */
2173 			if (cpu_has_ebase_wg) {
2174 #ifdef CONFIG_64BIT
2175 				write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2176 #else
2177 				write_c0_ebase(ebase | MIPS_EBASE_WG);
2178 #endif
2179 			}
2180 			write_c0_ebase(ebase);
2181 		}
2182 
2183 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2184 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2185 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2186 		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2187 		if (!cp0_fdc_irq)
2188 			cp0_fdc_irq = -1;
2189 
2190 	} else {
2191 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2192 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2193 		cp0_perfcount_irq = -1;
2194 		cp0_fdc_irq = -1;
2195 	}
2196 
2197 	if (!cpu_data[cpu].asid_cache)
2198 		cpu_data[cpu].asid_cache = asid_first_version(cpu);
2199 
2200 	mmgrab(&init_mm);
2201 	current->active_mm = &init_mm;
2202 	BUG_ON(current->mm);
2203 	enter_lazy_tlb(&init_mm, current);
2204 
2205 	/* Boot CPU's cache setup in setup_arch(). */
2206 	if (!is_boot_cpu)
2207 		cpu_cache_init();
2208 	tlb_init();
2209 	TLBMISS_HANDLER_SETUP();
2210 }
2211 
2212 /* Install CPU exception handler */
2213 void set_handler(unsigned long offset, void *addr, unsigned long size)
2214 {
2215 #ifdef CONFIG_CPU_MICROMIPS
2216 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2217 #else
2218 	memcpy((void *)(ebase + offset), addr, size);
2219 #endif
2220 	local_flush_icache_range(ebase + offset, ebase + offset + size);
2221 }
2222 
2223 static const char panic_null_cerr[] =
2224 	"Trying to set NULL cache error exception handler\n";
2225 
2226 /*
2227  * Install uncached CPU exception handler.
2228  * This is suitable only for the cache error exception which is the only
2229  * exception handler that is being run uncached.
2230  */
2231 void set_uncached_handler(unsigned long offset, void *addr,
2232 	unsigned long size)
2233 {
2234 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2235 
2236 	if (!addr)
2237 		panic(panic_null_cerr);
2238 
2239 	memcpy((void *)(uncached_ebase + offset), addr, size);
2240 }
2241 
2242 static int __initdata rdhwr_noopt;
2243 static int __init set_rdhwr_noopt(char *str)
2244 {
2245 	rdhwr_noopt = 1;
2246 	return 1;
2247 }
2248 
2249 __setup("rdhwr_noopt", set_rdhwr_noopt);
2250 
2251 void __init trap_init(void)
2252 {
2253 	extern char except_vec3_generic;
2254 	extern char except_vec4;
2255 	extern char except_vec3_r4000;
2256 	unsigned long i;
2257 
2258 	check_wait();
2259 
2260 	if (cpu_has_veic || cpu_has_vint) {
2261 		unsigned long size = 0x200 + VECTORSPACING*64;
2262 		phys_addr_t ebase_pa;
2263 
2264 		memblock_set_bottom_up(true);
2265 		ebase = (unsigned long)
2266 			__alloc_bootmem(size, 1 << fls(size), 0);
2267 		memblock_set_bottom_up(false);
2268 
2269 		/*
2270 		 * Try to ensure ebase resides in KSeg0 if possible.
2271 		 *
2272 		 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2273 		 * hitting a poorly defined exception base for Cache Errors.
2274 		 * The allocation is likely to be in the low 512MB of physical,
2275 		 * in which case we should be able to convert to KSeg0.
2276 		 *
2277 		 * EVA is special though as it allows segments to be rearranged
2278 		 * and to become uncached during cache error handling.
2279 		 */
2280 		ebase_pa = __pa(ebase);
2281 		if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2282 			ebase = CKSEG0ADDR(ebase_pa);
2283 	} else {
2284 		ebase = CAC_BASE;
2285 
2286 		if (cpu_has_mips_r2_r6) {
2287 			if (cpu_has_ebase_wg) {
2288 #ifdef CONFIG_64BIT
2289 				ebase = (read_c0_ebase_64() & ~0xfff);
2290 #else
2291 				ebase = (read_c0_ebase() & ~0xfff);
2292 #endif
2293 			} else {
2294 				ebase += (read_c0_ebase() & 0x3ffff000);
2295 			}
2296 		}
2297 	}
2298 
2299 	if (cpu_has_mmips) {
2300 		unsigned int config3 = read_c0_config3();
2301 
2302 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2303 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2304 		else
2305 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2306 	}
2307 
2308 	if (board_ebase_setup)
2309 		board_ebase_setup();
2310 	per_cpu_trap_init(true);
2311 
2312 	/*
2313 	 * Copy the generic exception handlers to their final destination.
2314 	 * This will be overridden later as suitable for a particular
2315 	 * configuration.
2316 	 */
2317 	set_handler(0x180, &except_vec3_generic, 0x80);
2318 
2319 	/*
2320 	 * Setup default vectors
2321 	 */
2322 	for (i = 0; i <= 31; i++)
2323 		set_except_vector(i, handle_reserved);
2324 
2325 	/*
2326 	 * Copy the EJTAG debug exception vector handler code to it's final
2327 	 * destination.
2328 	 */
2329 	if (cpu_has_ejtag && board_ejtag_handler_setup)
2330 		board_ejtag_handler_setup();
2331 
2332 	/*
2333 	 * Only some CPUs have the watch exceptions.
2334 	 */
2335 	if (cpu_has_watch)
2336 		set_except_vector(EXCCODE_WATCH, handle_watch);
2337 
2338 	/*
2339 	 * Initialise interrupt handlers
2340 	 */
2341 	if (cpu_has_veic || cpu_has_vint) {
2342 		int nvec = cpu_has_veic ? 64 : 8;
2343 		for (i = 0; i < nvec; i++)
2344 			set_vi_handler(i, NULL);
2345 	}
2346 	else if (cpu_has_divec)
2347 		set_handler(0x200, &except_vec4, 0x8);
2348 
2349 	/*
2350 	 * Some CPUs can enable/disable for cache parity detection, but does
2351 	 * it different ways.
2352 	 */
2353 	parity_protection_init();
2354 
2355 	/*
2356 	 * The Data Bus Errors / Instruction Bus Errors are signaled
2357 	 * by external hardware.  Therefore these two exceptions
2358 	 * may have board specific handlers.
2359 	 */
2360 	if (board_be_init)
2361 		board_be_init();
2362 
2363 	set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2364 					rollback_handle_int : handle_int);
2365 	set_except_vector(EXCCODE_MOD, handle_tlbm);
2366 	set_except_vector(EXCCODE_TLBL, handle_tlbl);
2367 	set_except_vector(EXCCODE_TLBS, handle_tlbs);
2368 
2369 	set_except_vector(EXCCODE_ADEL, handle_adel);
2370 	set_except_vector(EXCCODE_ADES, handle_ades);
2371 
2372 	set_except_vector(EXCCODE_IBE, handle_ibe);
2373 	set_except_vector(EXCCODE_DBE, handle_dbe);
2374 
2375 	set_except_vector(EXCCODE_SYS, handle_sys);
2376 	set_except_vector(EXCCODE_BP, handle_bp);
2377 
2378 	if (rdhwr_noopt)
2379 		set_except_vector(EXCCODE_RI, handle_ri);
2380 	else {
2381 		if (cpu_has_vtag_icache)
2382 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2383 		else if (current_cpu_type() == CPU_LOONGSON3)
2384 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2385 		else
2386 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2387 	}
2388 
2389 	set_except_vector(EXCCODE_CPU, handle_cpu);
2390 	set_except_vector(EXCCODE_OV, handle_ov);
2391 	set_except_vector(EXCCODE_TR, handle_tr);
2392 	set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2393 
2394 	if (board_nmi_handler_setup)
2395 		board_nmi_handler_setup();
2396 
2397 	if (cpu_has_fpu && !cpu_has_nofpuex)
2398 		set_except_vector(EXCCODE_FPE, handle_fpe);
2399 
2400 	set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2401 
2402 	if (cpu_has_rixiex) {
2403 		set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2404 		set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2405 	}
2406 
2407 	set_except_vector(EXCCODE_MSADIS, handle_msa);
2408 	set_except_vector(EXCCODE_MDMX, handle_mdmx);
2409 
2410 	if (cpu_has_mcheck)
2411 		set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2412 
2413 	if (cpu_has_mipsmt)
2414 		set_except_vector(EXCCODE_THREAD, handle_mt);
2415 
2416 	set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2417 
2418 	if (board_cache_error_setup)
2419 		board_cache_error_setup();
2420 
2421 	if (cpu_has_vce)
2422 		/* Special exception: R4[04]00 uses also the divec space. */
2423 		set_handler(0x180, &except_vec3_r4000, 0x100);
2424 	else if (cpu_has_4kex)
2425 		set_handler(0x180, &except_vec3_generic, 0x80);
2426 	else
2427 		set_handler(0x080, &except_vec3_generic, 0x80);
2428 
2429 	local_flush_icache_range(ebase, ebase + 0x400);
2430 
2431 	sort_extable(__start___dbe_table, __stop___dbe_table);
2432 
2433 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2434 }
2435 
2436 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2437 			    void *v)
2438 {
2439 	switch (cmd) {
2440 	case CPU_PM_ENTER_FAILED:
2441 	case CPU_PM_EXIT:
2442 		configure_status();
2443 		configure_hwrena();
2444 		configure_exception_vector();
2445 
2446 		/* Restore register with CPU number for TLB handlers */
2447 		TLBMISS_HANDLER_RESTORE();
2448 
2449 		break;
2450 	}
2451 
2452 	return NOTIFY_OK;
2453 }
2454 
2455 static struct notifier_block trap_pm_notifier_block = {
2456 	.notifier_call = trap_pm_notifier,
2457 };
2458 
2459 static int __init trap_pm_init(void)
2460 {
2461 	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2462 }
2463 arch_initcall(trap_pm_init);
2464