1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle 7 * Copyright (C) 1995, 1996 Paul M. Antoine 8 * Copyright (C) 1998 Ulf Carlsson 9 * Copyright (C) 1999 Silicon Graphics, Inc. 10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki 12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved. 13 * Copyright (C) 2014, Imagination Technologies Ltd. 14 */ 15 #include <linux/bitops.h> 16 #include <linux/bug.h> 17 #include <linux/compiler.h> 18 #include <linux/context_tracking.h> 19 #include <linux/cpu_pm.h> 20 #include <linux/kexec.h> 21 #include <linux/init.h> 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/extable.h> 25 #include <linux/mm.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/debug.h> 28 #include <linux/smp.h> 29 #include <linux/spinlock.h> 30 #include <linux/kallsyms.h> 31 #include <linux/memblock.h> 32 #include <linux/interrupt.h> 33 #include <linux/ptrace.h> 34 #include <linux/kgdb.h> 35 #include <linux/kdebug.h> 36 #include <linux/kprobes.h> 37 #include <linux/notifier.h> 38 #include <linux/kdb.h> 39 #include <linux/irq.h> 40 #include <linux/perf_event.h> 41 42 #include <asm/addrspace.h> 43 #include <asm/bootinfo.h> 44 #include <asm/branch.h> 45 #include <asm/break.h> 46 #include <asm/cop2.h> 47 #include <asm/cpu.h> 48 #include <asm/cpu-type.h> 49 #include <asm/dsp.h> 50 #include <asm/fpu.h> 51 #include <asm/fpu_emulator.h> 52 #include <asm/idle.h> 53 #include <asm/isa-rev.h> 54 #include <asm/mips-cps.h> 55 #include <asm/mips-r2-to-r6-emul.h> 56 #include <asm/mipsregs.h> 57 #include <asm/mipsmtregs.h> 58 #include <asm/module.h> 59 #include <asm/msa.h> 60 #include <asm/pgtable.h> 61 #include <asm/ptrace.h> 62 #include <asm/sections.h> 63 #include <asm/siginfo.h> 64 #include <asm/tlbdebug.h> 65 #include <asm/traps.h> 66 #include <linux/uaccess.h> 67 #include <asm/watch.h> 68 #include <asm/mmu_context.h> 69 #include <asm/types.h> 70 #include <asm/stacktrace.h> 71 #include <asm/tlbex.h> 72 #include <asm/uasm.h> 73 74 extern void check_wait(void); 75 extern asmlinkage void rollback_handle_int(void); 76 extern asmlinkage void handle_int(void); 77 extern asmlinkage void handle_adel(void); 78 extern asmlinkage void handle_ades(void); 79 extern asmlinkage void handle_ibe(void); 80 extern asmlinkage void handle_dbe(void); 81 extern asmlinkage void handle_sys(void); 82 extern asmlinkage void handle_bp(void); 83 extern asmlinkage void handle_ri(void); 84 extern asmlinkage void handle_ri_rdhwr_tlbp(void); 85 extern asmlinkage void handle_ri_rdhwr(void); 86 extern asmlinkage void handle_cpu(void); 87 extern asmlinkage void handle_ov(void); 88 extern asmlinkage void handle_tr(void); 89 extern asmlinkage void handle_msa_fpe(void); 90 extern asmlinkage void handle_fpe(void); 91 extern asmlinkage void handle_ftlb(void); 92 extern asmlinkage void handle_msa(void); 93 extern asmlinkage void handle_mdmx(void); 94 extern asmlinkage void handle_watch(void); 95 extern asmlinkage void handle_mt(void); 96 extern asmlinkage void handle_dsp(void); 97 extern asmlinkage void handle_mcheck(void); 98 extern asmlinkage void handle_reserved(void); 99 extern void tlb_do_page_fault_0(void); 100 101 void (*board_be_init)(void); 102 int (*board_be_handler)(struct pt_regs *regs, int is_fixup); 103 void (*board_nmi_handler_setup)(void); 104 void (*board_ejtag_handler_setup)(void); 105 void (*board_bind_eic_interrupt)(int irq, int regset); 106 void (*board_ebase_setup)(void); 107 void(*board_cache_error_setup)(void); 108 109 static void show_raw_backtrace(unsigned long reg29) 110 { 111 unsigned long *sp = (unsigned long *)(reg29 & ~3); 112 unsigned long addr; 113 114 printk("Call Trace:"); 115 #ifdef CONFIG_KALLSYMS 116 printk("\n"); 117 #endif 118 while (!kstack_end(sp)) { 119 unsigned long __user *p = 120 (unsigned long __user *)(unsigned long)sp++; 121 if (__get_user(addr, p)) { 122 printk(" (Bad stack address)"); 123 break; 124 } 125 if (__kernel_text_address(addr)) 126 print_ip_sym(addr); 127 } 128 printk("\n"); 129 } 130 131 #ifdef CONFIG_KALLSYMS 132 int raw_show_trace; 133 static int __init set_raw_show_trace(char *str) 134 { 135 raw_show_trace = 1; 136 return 1; 137 } 138 __setup("raw_show_trace", set_raw_show_trace); 139 #endif 140 141 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs) 142 { 143 unsigned long sp = regs->regs[29]; 144 unsigned long ra = regs->regs[31]; 145 unsigned long pc = regs->cp0_epc; 146 147 if (!task) 148 task = current; 149 150 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) { 151 show_raw_backtrace(sp); 152 return; 153 } 154 printk("Call Trace:\n"); 155 do { 156 print_ip_sym(pc); 157 pc = unwind_stack(task, &sp, pc, &ra); 158 } while (pc); 159 pr_cont("\n"); 160 } 161 162 /* 163 * This routine abuses get_user()/put_user() to reference pointers 164 * with at least a bit of error checking ... 165 */ 166 static void show_stacktrace(struct task_struct *task, 167 const struct pt_regs *regs) 168 { 169 const int field = 2 * sizeof(unsigned long); 170 long stackdata; 171 int i; 172 unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; 173 174 printk("Stack :"); 175 i = 0; 176 while ((unsigned long) sp & (PAGE_SIZE - 1)) { 177 if (i && ((i % (64 / field)) == 0)) { 178 pr_cont("\n"); 179 printk(" "); 180 } 181 if (i > 39) { 182 pr_cont(" ..."); 183 break; 184 } 185 186 if (__get_user(stackdata, sp++)) { 187 pr_cont(" (Bad stack address)"); 188 break; 189 } 190 191 pr_cont(" %0*lx", field, stackdata); 192 i++; 193 } 194 pr_cont("\n"); 195 show_backtrace(task, regs); 196 } 197 198 void show_stack(struct task_struct *task, unsigned long *sp) 199 { 200 struct pt_regs regs; 201 mm_segment_t old_fs = get_fs(); 202 203 regs.cp0_status = KSU_KERNEL; 204 if (sp) { 205 regs.regs[29] = (unsigned long)sp; 206 regs.regs[31] = 0; 207 regs.cp0_epc = 0; 208 } else { 209 if (task && task != current) { 210 regs.regs[29] = task->thread.reg29; 211 regs.regs[31] = 0; 212 regs.cp0_epc = task->thread.reg31; 213 #ifdef CONFIG_KGDB_KDB 214 } else if (atomic_read(&kgdb_active) != -1 && 215 kdb_current_regs) { 216 memcpy(®s, kdb_current_regs, sizeof(regs)); 217 #endif /* CONFIG_KGDB_KDB */ 218 } else { 219 prepare_frametrace(®s); 220 } 221 } 222 /* 223 * show_stack() deals exclusively with kernel mode, so be sure to access 224 * the stack in the kernel (not user) address space. 225 */ 226 set_fs(KERNEL_DS); 227 show_stacktrace(task, ®s); 228 set_fs(old_fs); 229 } 230 231 static void show_code(unsigned int __user *pc) 232 { 233 long i; 234 unsigned short __user *pc16 = NULL; 235 236 printk("Code:"); 237 238 if ((unsigned long)pc & 1) 239 pc16 = (unsigned short __user *)((unsigned long)pc & ~1); 240 for(i = -3 ; i < 6 ; i++) { 241 unsigned int insn; 242 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { 243 pr_cont(" (Bad address in epc)\n"); 244 break; 245 } 246 pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); 247 } 248 pr_cont("\n"); 249 } 250 251 static void __show_regs(const struct pt_regs *regs) 252 { 253 const int field = 2 * sizeof(unsigned long); 254 unsigned int cause = regs->cp0_cause; 255 unsigned int exccode; 256 int i; 257 258 show_regs_print_info(KERN_DEFAULT); 259 260 /* 261 * Saved main processor registers 262 */ 263 for (i = 0; i < 32; ) { 264 if ((i % 4) == 0) 265 printk("$%2d :", i); 266 if (i == 0) 267 pr_cont(" %0*lx", field, 0UL); 268 else if (i == 26 || i == 27) 269 pr_cont(" %*s", field, ""); 270 else 271 pr_cont(" %0*lx", field, regs->regs[i]); 272 273 i++; 274 if ((i % 4) == 0) 275 pr_cont("\n"); 276 } 277 278 #ifdef CONFIG_CPU_HAS_SMARTMIPS 279 printk("Acx : %0*lx\n", field, regs->acx); 280 #endif 281 if (MIPS_ISA_REV < 6) { 282 printk("Hi : %0*lx\n", field, regs->hi); 283 printk("Lo : %0*lx\n", field, regs->lo); 284 } 285 286 /* 287 * Saved cp0 registers 288 */ 289 printk("epc : %0*lx %pS\n", field, regs->cp0_epc, 290 (void *) regs->cp0_epc); 291 printk("ra : %0*lx %pS\n", field, regs->regs[31], 292 (void *) regs->regs[31]); 293 294 printk("Status: %08x ", (uint32_t) regs->cp0_status); 295 296 if (cpu_has_3kex) { 297 if (regs->cp0_status & ST0_KUO) 298 pr_cont("KUo "); 299 if (regs->cp0_status & ST0_IEO) 300 pr_cont("IEo "); 301 if (regs->cp0_status & ST0_KUP) 302 pr_cont("KUp "); 303 if (regs->cp0_status & ST0_IEP) 304 pr_cont("IEp "); 305 if (regs->cp0_status & ST0_KUC) 306 pr_cont("KUc "); 307 if (regs->cp0_status & ST0_IEC) 308 pr_cont("IEc "); 309 } else if (cpu_has_4kex) { 310 if (regs->cp0_status & ST0_KX) 311 pr_cont("KX "); 312 if (regs->cp0_status & ST0_SX) 313 pr_cont("SX "); 314 if (regs->cp0_status & ST0_UX) 315 pr_cont("UX "); 316 switch (regs->cp0_status & ST0_KSU) { 317 case KSU_USER: 318 pr_cont("USER "); 319 break; 320 case KSU_SUPERVISOR: 321 pr_cont("SUPERVISOR "); 322 break; 323 case KSU_KERNEL: 324 pr_cont("KERNEL "); 325 break; 326 default: 327 pr_cont("BAD_MODE "); 328 break; 329 } 330 if (regs->cp0_status & ST0_ERL) 331 pr_cont("ERL "); 332 if (regs->cp0_status & ST0_EXL) 333 pr_cont("EXL "); 334 if (regs->cp0_status & ST0_IE) 335 pr_cont("IE "); 336 } 337 pr_cont("\n"); 338 339 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; 340 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode); 341 342 if (1 <= exccode && exccode <= 5) 343 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); 344 345 printk("PrId : %08x (%s)\n", read_c0_prid(), 346 cpu_name_string()); 347 } 348 349 /* 350 * FIXME: really the generic show_regs should take a const pointer argument. 351 */ 352 void show_regs(struct pt_regs *regs) 353 { 354 __show_regs(regs); 355 dump_stack(); 356 } 357 358 void show_registers(struct pt_regs *regs) 359 { 360 const int field = 2 * sizeof(unsigned long); 361 mm_segment_t old_fs = get_fs(); 362 363 __show_regs(regs); 364 print_modules(); 365 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", 366 current->comm, current->pid, current_thread_info(), current, 367 field, current_thread_info()->tp_value); 368 if (cpu_has_userlocal) { 369 unsigned long tls; 370 371 tls = read_c0_userlocal(); 372 if (tls != current_thread_info()->tp_value) 373 printk("*HwTLS: %0*lx\n", field, tls); 374 } 375 376 if (!user_mode(regs)) 377 /* Necessary for getting the correct stack content */ 378 set_fs(KERNEL_DS); 379 show_stacktrace(current, regs); 380 show_code((unsigned int __user *) regs->cp0_epc); 381 printk("\n"); 382 set_fs(old_fs); 383 } 384 385 static DEFINE_RAW_SPINLOCK(die_lock); 386 387 void __noreturn die(const char *str, struct pt_regs *regs) 388 { 389 static int die_counter; 390 int sig = SIGSEGV; 391 392 oops_enter(); 393 394 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr, 395 SIGSEGV) == NOTIFY_STOP) 396 sig = 0; 397 398 console_verbose(); 399 raw_spin_lock_irq(&die_lock); 400 bust_spinlocks(1); 401 402 printk("%s[#%d]:\n", str, ++die_counter); 403 show_registers(regs); 404 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 405 raw_spin_unlock_irq(&die_lock); 406 407 oops_exit(); 408 409 if (in_interrupt()) 410 panic("Fatal exception in interrupt"); 411 412 if (panic_on_oops) 413 panic("Fatal exception"); 414 415 if (regs && kexec_should_crash(current)) 416 crash_kexec(regs); 417 418 do_exit(sig); 419 } 420 421 extern struct exception_table_entry __start___dbe_table[]; 422 extern struct exception_table_entry __stop___dbe_table[]; 423 424 __asm__( 425 " .section __dbe_table, \"a\"\n" 426 " .previous \n"); 427 428 /* Given an address, look for it in the exception tables. */ 429 static const struct exception_table_entry *search_dbe_tables(unsigned long addr) 430 { 431 const struct exception_table_entry *e; 432 433 e = search_extable(__start___dbe_table, 434 __stop___dbe_table - __start___dbe_table, addr); 435 if (!e) 436 e = search_module_dbetables(addr); 437 return e; 438 } 439 440 asmlinkage void do_be(struct pt_regs *regs) 441 { 442 const int field = 2 * sizeof(unsigned long); 443 const struct exception_table_entry *fixup = NULL; 444 int data = regs->cp0_cause & 4; 445 int action = MIPS_BE_FATAL; 446 enum ctx_state prev_state; 447 448 prev_state = exception_enter(); 449 /* XXX For now. Fixme, this searches the wrong table ... */ 450 if (data && !user_mode(regs)) 451 fixup = search_dbe_tables(exception_epc(regs)); 452 453 if (fixup) 454 action = MIPS_BE_FIXUP; 455 456 if (board_be_handler) 457 action = board_be_handler(regs, fixup != NULL); 458 else 459 mips_cm_error_report(); 460 461 switch (action) { 462 case MIPS_BE_DISCARD: 463 goto out; 464 case MIPS_BE_FIXUP: 465 if (fixup) { 466 regs->cp0_epc = fixup->nextinsn; 467 goto out; 468 } 469 break; 470 default: 471 break; 472 } 473 474 /* 475 * Assume it would be too dangerous to continue ... 476 */ 477 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", 478 data ? "Data" : "Instruction", 479 field, regs->cp0_epc, field, regs->regs[31]); 480 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr, 481 SIGBUS) == NOTIFY_STOP) 482 goto out; 483 484 die_if_kernel("Oops", regs); 485 force_sig(SIGBUS); 486 487 out: 488 exception_exit(prev_state); 489 } 490 491 /* 492 * ll/sc, rdhwr, sync emulation 493 */ 494 495 #define OPCODE 0xfc000000 496 #define BASE 0x03e00000 497 #define RT 0x001f0000 498 #define OFFSET 0x0000ffff 499 #define LL 0xc0000000 500 #define SC 0xe0000000 501 #define SPEC0 0x00000000 502 #define SPEC3 0x7c000000 503 #define RD 0x0000f800 504 #define FUNC 0x0000003f 505 #define SYNC 0x0000000f 506 #define RDHWR 0x0000003b 507 508 /* microMIPS definitions */ 509 #define MM_POOL32A_FUNC 0xfc00ffff 510 #define MM_RDHWR 0x00006b3c 511 #define MM_RS 0x001f0000 512 #define MM_RT 0x03e00000 513 514 /* 515 * The ll_bit is cleared by r*_switch.S 516 */ 517 518 unsigned int ll_bit; 519 struct task_struct *ll_task; 520 521 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) 522 { 523 unsigned long value, __user *vaddr; 524 long offset; 525 526 /* 527 * analyse the ll instruction that just caused a ri exception 528 * and put the referenced address to addr. 529 */ 530 531 /* sign extend offset */ 532 offset = opcode & OFFSET; 533 offset <<= 16; 534 offset >>= 16; 535 536 vaddr = (unsigned long __user *) 537 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 538 539 if ((unsigned long)vaddr & 3) 540 return SIGBUS; 541 if (get_user(value, vaddr)) 542 return SIGSEGV; 543 544 preempt_disable(); 545 546 if (ll_task == NULL || ll_task == current) { 547 ll_bit = 1; 548 } else { 549 ll_bit = 0; 550 } 551 ll_task = current; 552 553 preempt_enable(); 554 555 regs->regs[(opcode & RT) >> 16] = value; 556 557 return 0; 558 } 559 560 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) 561 { 562 unsigned long __user *vaddr; 563 unsigned long reg; 564 long offset; 565 566 /* 567 * analyse the sc instruction that just caused a ri exception 568 * and put the referenced address to addr. 569 */ 570 571 /* sign extend offset */ 572 offset = opcode & OFFSET; 573 offset <<= 16; 574 offset >>= 16; 575 576 vaddr = (unsigned long __user *) 577 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 578 reg = (opcode & RT) >> 16; 579 580 if ((unsigned long)vaddr & 3) 581 return SIGBUS; 582 583 preempt_disable(); 584 585 if (ll_bit == 0 || ll_task != current) { 586 regs->regs[reg] = 0; 587 preempt_enable(); 588 return 0; 589 } 590 591 preempt_enable(); 592 593 if (put_user(regs->regs[reg], vaddr)) 594 return SIGSEGV; 595 596 regs->regs[reg] = 1; 597 598 return 0; 599 } 600 601 /* 602 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both 603 * opcodes are supposed to result in coprocessor unusable exceptions if 604 * executed on ll/sc-less processors. That's the theory. In practice a 605 * few processors such as NEC's VR4100 throw reserved instruction exceptions 606 * instead, so we're doing the emulation thing in both exception handlers. 607 */ 608 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) 609 { 610 if ((opcode & OPCODE) == LL) { 611 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 612 1, regs, 0); 613 return simulate_ll(regs, opcode); 614 } 615 if ((opcode & OPCODE) == SC) { 616 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 617 1, regs, 0); 618 return simulate_sc(regs, opcode); 619 } 620 621 return -1; /* Must be something else ... */ 622 } 623 624 /* 625 * Simulate trapping 'rdhwr' instructions to provide user accessible 626 * registers not implemented in hardware. 627 */ 628 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt) 629 { 630 struct thread_info *ti = task_thread_info(current); 631 632 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 633 1, regs, 0); 634 switch (rd) { 635 case MIPS_HWR_CPUNUM: /* CPU number */ 636 regs->regs[rt] = smp_processor_id(); 637 return 0; 638 case MIPS_HWR_SYNCISTEP: /* SYNCI length */ 639 regs->regs[rt] = min(current_cpu_data.dcache.linesz, 640 current_cpu_data.icache.linesz); 641 return 0; 642 case MIPS_HWR_CC: /* Read count register */ 643 regs->regs[rt] = read_c0_count(); 644 return 0; 645 case MIPS_HWR_CCRES: /* Count register resolution */ 646 switch (current_cpu_type()) { 647 case CPU_20KC: 648 case CPU_25KF: 649 regs->regs[rt] = 1; 650 break; 651 default: 652 regs->regs[rt] = 2; 653 } 654 return 0; 655 case MIPS_HWR_ULR: /* Read UserLocal register */ 656 regs->regs[rt] = ti->tp_value; 657 return 0; 658 default: 659 return -1; 660 } 661 } 662 663 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode) 664 { 665 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { 666 int rd = (opcode & RD) >> 11; 667 int rt = (opcode & RT) >> 16; 668 669 simulate_rdhwr(regs, rd, rt); 670 return 0; 671 } 672 673 /* Not ours. */ 674 return -1; 675 } 676 677 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode) 678 { 679 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) { 680 int rd = (opcode & MM_RS) >> 16; 681 int rt = (opcode & MM_RT) >> 21; 682 simulate_rdhwr(regs, rd, rt); 683 return 0; 684 } 685 686 /* Not ours. */ 687 return -1; 688 } 689 690 static int simulate_sync(struct pt_regs *regs, unsigned int opcode) 691 { 692 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) { 693 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 694 1, regs, 0); 695 return 0; 696 } 697 698 return -1; /* Must be something else ... */ 699 } 700 701 asmlinkage void do_ov(struct pt_regs *regs) 702 { 703 enum ctx_state prev_state; 704 705 prev_state = exception_enter(); 706 die_if_kernel("Integer overflow", regs); 707 708 force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc); 709 exception_exit(prev_state); 710 } 711 712 #ifdef CONFIG_MIPS_FP_SUPPORT 713 714 /* 715 * Send SIGFPE according to FCSR Cause bits, which must have already 716 * been masked against Enable bits. This is impotant as Inexact can 717 * happen together with Overflow or Underflow, and `ptrace' can set 718 * any bits. 719 */ 720 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr, 721 struct task_struct *tsk) 722 { 723 int si_code = FPE_FLTUNK; 724 725 if (fcr31 & FPU_CSR_INV_X) 726 si_code = FPE_FLTINV; 727 else if (fcr31 & FPU_CSR_DIV_X) 728 si_code = FPE_FLTDIV; 729 else if (fcr31 & FPU_CSR_OVF_X) 730 si_code = FPE_FLTOVF; 731 else if (fcr31 & FPU_CSR_UDF_X) 732 si_code = FPE_FLTUND; 733 else if (fcr31 & FPU_CSR_INE_X) 734 si_code = FPE_FLTRES; 735 736 force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk); 737 } 738 739 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31) 740 { 741 int si_code; 742 struct vm_area_struct *vma; 743 744 switch (sig) { 745 case 0: 746 return 0; 747 748 case SIGFPE: 749 force_fcr31_sig(fcr31, fault_addr, current); 750 return 1; 751 752 case SIGBUS: 753 force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr); 754 return 1; 755 756 case SIGSEGV: 757 down_read(¤t->mm->mmap_sem); 758 vma = find_vma(current->mm, (unsigned long)fault_addr); 759 if (vma && (vma->vm_start <= (unsigned long)fault_addr)) 760 si_code = SEGV_ACCERR; 761 else 762 si_code = SEGV_MAPERR; 763 up_read(¤t->mm->mmap_sem); 764 force_sig_fault(SIGSEGV, si_code, fault_addr); 765 return 1; 766 767 default: 768 force_sig(sig); 769 return 1; 770 } 771 } 772 773 static int simulate_fp(struct pt_regs *regs, unsigned int opcode, 774 unsigned long old_epc, unsigned long old_ra) 775 { 776 union mips_instruction inst = { .word = opcode }; 777 void __user *fault_addr; 778 unsigned long fcr31; 779 int sig; 780 781 /* If it's obviously not an FP instruction, skip it */ 782 switch (inst.i_format.opcode) { 783 case cop1_op: 784 case cop1x_op: 785 case lwc1_op: 786 case ldc1_op: 787 case swc1_op: 788 case sdc1_op: 789 break; 790 791 default: 792 return -1; 793 } 794 795 /* 796 * do_ri skipped over the instruction via compute_return_epc, undo 797 * that for the FPU emulator. 798 */ 799 regs->cp0_epc = old_epc; 800 regs->regs[31] = old_ra; 801 802 /* Run the emulator */ 803 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 804 &fault_addr); 805 806 /* 807 * We can't allow the emulated instruction to leave any 808 * enabled Cause bits set in $fcr31. 809 */ 810 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); 811 current->thread.fpu.fcr31 &= ~fcr31; 812 813 /* Restore the hardware register state */ 814 own_fpu(1); 815 816 /* Send a signal if required. */ 817 process_fpemu_return(sig, fault_addr, fcr31); 818 819 return 0; 820 } 821 822 /* 823 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX 824 */ 825 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) 826 { 827 enum ctx_state prev_state; 828 void __user *fault_addr; 829 int sig; 830 831 prev_state = exception_enter(); 832 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr, 833 SIGFPE) == NOTIFY_STOP) 834 goto out; 835 836 /* Clear FCSR.Cause before enabling interrupts */ 837 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31)); 838 local_irq_enable(); 839 840 die_if_kernel("FP exception in kernel code", regs); 841 842 if (fcr31 & FPU_CSR_UNI_X) { 843 /* 844 * Unimplemented operation exception. If we've got the full 845 * software emulator on-board, let's use it... 846 * 847 * Force FPU to dump state into task/thread context. We're 848 * moving a lot of data here for what is probably a single 849 * instruction, but the alternative is to pre-decode the FP 850 * register operands before invoking the emulator, which seems 851 * a bit extreme for what should be an infrequent event. 852 */ 853 854 /* Run the emulator */ 855 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 856 &fault_addr); 857 858 /* 859 * We can't allow the emulated instruction to leave any 860 * enabled Cause bits set in $fcr31. 861 */ 862 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); 863 current->thread.fpu.fcr31 &= ~fcr31; 864 865 /* Restore the hardware register state */ 866 own_fpu(1); /* Using the FPU again. */ 867 } else { 868 sig = SIGFPE; 869 fault_addr = (void __user *) regs->cp0_epc; 870 } 871 872 /* Send a signal if required. */ 873 process_fpemu_return(sig, fault_addr, fcr31); 874 875 out: 876 exception_exit(prev_state); 877 } 878 879 /* 880 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've 881 * emulated more than some threshold number of instructions, force migration to 882 * a "CPU" that has FP support. 883 */ 884 static void mt_ase_fp_affinity(void) 885 { 886 #ifdef CONFIG_MIPS_MT_FPAFF 887 if (mt_fpemul_threshold > 0 && 888 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { 889 /* 890 * If there's no FPU present, or if the application has already 891 * restricted the allowed set to exclude any CPUs with FPUs, 892 * we'll skip the procedure. 893 */ 894 if (cpumask_intersects(¤t->cpus_mask, &mt_fpu_cpumask)) { 895 cpumask_t tmask; 896 897 current->thread.user_cpus_allowed 898 = current->cpus_mask; 899 cpumask_and(&tmask, ¤t->cpus_mask, 900 &mt_fpu_cpumask); 901 set_cpus_allowed_ptr(current, &tmask); 902 set_thread_flag(TIF_FPUBOUND); 903 } 904 } 905 #endif /* CONFIG_MIPS_MT_FPAFF */ 906 } 907 908 #else /* !CONFIG_MIPS_FP_SUPPORT */ 909 910 static int simulate_fp(struct pt_regs *regs, unsigned int opcode, 911 unsigned long old_epc, unsigned long old_ra) 912 { 913 return -1; 914 } 915 916 #endif /* !CONFIG_MIPS_FP_SUPPORT */ 917 918 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code, 919 const char *str) 920 { 921 char b[40]; 922 923 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 924 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr, 925 SIGTRAP) == NOTIFY_STOP) 926 return; 927 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 928 929 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr, 930 SIGTRAP) == NOTIFY_STOP) 931 return; 932 933 /* 934 * A short test says that IRIX 5.3 sends SIGTRAP for all trap 935 * insns, even for trap and break codes that indicate arithmetic 936 * failures. Weird ... 937 * But should we continue the brokenness??? --macro 938 */ 939 switch (code) { 940 case BRK_OVERFLOW: 941 case BRK_DIVZERO: 942 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 943 die_if_kernel(b, regs); 944 force_sig_fault(SIGFPE, 945 code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF, 946 (void __user *) regs->cp0_epc); 947 break; 948 case BRK_BUG: 949 die_if_kernel("Kernel bug detected", regs); 950 force_sig(SIGTRAP); 951 break; 952 case BRK_MEMU: 953 /* 954 * This breakpoint code is used by the FPU emulator to retake 955 * control of the CPU after executing the instruction from the 956 * delay slot of an emulated branch. 957 * 958 * Terminate if exception was recognized as a delay slot return 959 * otherwise handle as normal. 960 */ 961 if (do_dsemulret(regs)) 962 return; 963 964 die_if_kernel("Math emu break/trap", regs); 965 force_sig(SIGTRAP); 966 break; 967 default: 968 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 969 die_if_kernel(b, regs); 970 if (si_code) { 971 force_sig_fault(SIGTRAP, si_code, NULL); 972 } else { 973 force_sig(SIGTRAP); 974 } 975 } 976 } 977 978 asmlinkage void do_bp(struct pt_regs *regs) 979 { 980 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 981 unsigned int opcode, bcode; 982 enum ctx_state prev_state; 983 mm_segment_t seg; 984 985 seg = get_fs(); 986 if (!user_mode(regs)) 987 set_fs(KERNEL_DS); 988 989 prev_state = exception_enter(); 990 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 991 if (get_isa16_mode(regs->cp0_epc)) { 992 u16 instr[2]; 993 994 if (__get_user(instr[0], (u16 __user *)epc)) 995 goto out_sigsegv; 996 997 if (!cpu_has_mmips) { 998 /* MIPS16e mode */ 999 bcode = (instr[0] >> 5) & 0x3f; 1000 } else if (mm_insn_16bit(instr[0])) { 1001 /* 16-bit microMIPS BREAK */ 1002 bcode = instr[0] & 0xf; 1003 } else { 1004 /* 32-bit microMIPS BREAK */ 1005 if (__get_user(instr[1], (u16 __user *)(epc + 2))) 1006 goto out_sigsegv; 1007 opcode = (instr[0] << 16) | instr[1]; 1008 bcode = (opcode >> 6) & ((1 << 20) - 1); 1009 } 1010 } else { 1011 if (__get_user(opcode, (unsigned int __user *)epc)) 1012 goto out_sigsegv; 1013 bcode = (opcode >> 6) & ((1 << 20) - 1); 1014 } 1015 1016 /* 1017 * There is the ancient bug in the MIPS assemblers that the break 1018 * code starts left to bit 16 instead to bit 6 in the opcode. 1019 * Gas is bug-compatible, but not always, grrr... 1020 * We handle both cases with a simple heuristics. --macro 1021 */ 1022 if (bcode >= (1 << 10)) 1023 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10); 1024 1025 /* 1026 * notify the kprobe handlers, if instruction is likely to 1027 * pertain to them. 1028 */ 1029 switch (bcode) { 1030 case BRK_UPROBE: 1031 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode, 1032 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1033 goto out; 1034 else 1035 break; 1036 case BRK_UPROBE_XOL: 1037 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode, 1038 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1039 goto out; 1040 else 1041 break; 1042 case BRK_KPROBE_BP: 1043 if (notify_die(DIE_BREAK, "debug", regs, bcode, 1044 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1045 goto out; 1046 else 1047 break; 1048 case BRK_KPROBE_SSTEPBP: 1049 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, 1050 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1051 goto out; 1052 else 1053 break; 1054 default: 1055 break; 1056 } 1057 1058 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break"); 1059 1060 out: 1061 set_fs(seg); 1062 exception_exit(prev_state); 1063 return; 1064 1065 out_sigsegv: 1066 force_sig(SIGSEGV); 1067 goto out; 1068 } 1069 1070 asmlinkage void do_tr(struct pt_regs *regs) 1071 { 1072 u32 opcode, tcode = 0; 1073 enum ctx_state prev_state; 1074 u16 instr[2]; 1075 mm_segment_t seg; 1076 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 1077 1078 seg = get_fs(); 1079 if (!user_mode(regs)) 1080 set_fs(KERNEL_DS); 1081 1082 prev_state = exception_enter(); 1083 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1084 if (get_isa16_mode(regs->cp0_epc)) { 1085 if (__get_user(instr[0], (u16 __user *)(epc + 0)) || 1086 __get_user(instr[1], (u16 __user *)(epc + 2))) 1087 goto out_sigsegv; 1088 opcode = (instr[0] << 16) | instr[1]; 1089 /* Immediate versions don't provide a code. */ 1090 if (!(opcode & OPCODE)) 1091 tcode = (opcode >> 12) & ((1 << 4) - 1); 1092 } else { 1093 if (__get_user(opcode, (u32 __user *)epc)) 1094 goto out_sigsegv; 1095 /* Immediate versions don't provide a code. */ 1096 if (!(opcode & OPCODE)) 1097 tcode = (opcode >> 6) & ((1 << 10) - 1); 1098 } 1099 1100 do_trap_or_bp(regs, tcode, 0, "Trap"); 1101 1102 out: 1103 set_fs(seg); 1104 exception_exit(prev_state); 1105 return; 1106 1107 out_sigsegv: 1108 force_sig(SIGSEGV); 1109 goto out; 1110 } 1111 1112 asmlinkage void do_ri(struct pt_regs *regs) 1113 { 1114 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); 1115 unsigned long old_epc = regs->cp0_epc; 1116 unsigned long old31 = regs->regs[31]; 1117 enum ctx_state prev_state; 1118 unsigned int opcode = 0; 1119 int status = -1; 1120 1121 /* 1122 * Avoid any kernel code. Just emulate the R2 instruction 1123 * as quickly as possible. 1124 */ 1125 if (mipsr2_emulation && cpu_has_mips_r6 && 1126 likely(user_mode(regs)) && 1127 likely(get_user(opcode, epc) >= 0)) { 1128 unsigned long fcr31 = 0; 1129 1130 status = mipsr2_decoder(regs, opcode, &fcr31); 1131 switch (status) { 1132 case 0: 1133 case SIGEMT: 1134 return; 1135 case SIGILL: 1136 goto no_r2_instr; 1137 default: 1138 process_fpemu_return(status, 1139 ¤t->thread.cp0_baduaddr, 1140 fcr31); 1141 return; 1142 } 1143 } 1144 1145 no_r2_instr: 1146 1147 prev_state = exception_enter(); 1148 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1149 1150 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr, 1151 SIGILL) == NOTIFY_STOP) 1152 goto out; 1153 1154 die_if_kernel("Reserved instruction in kernel code", regs); 1155 1156 if (unlikely(compute_return_epc(regs) < 0)) 1157 goto out; 1158 1159 if (!get_isa16_mode(regs->cp0_epc)) { 1160 if (unlikely(get_user(opcode, epc) < 0)) 1161 status = SIGSEGV; 1162 1163 if (!cpu_has_llsc && status < 0) 1164 status = simulate_llsc(regs, opcode); 1165 1166 if (status < 0) 1167 status = simulate_rdhwr_normal(regs, opcode); 1168 1169 if (status < 0) 1170 status = simulate_sync(regs, opcode); 1171 1172 if (status < 0) 1173 status = simulate_fp(regs, opcode, old_epc, old31); 1174 } else if (cpu_has_mmips) { 1175 unsigned short mmop[2] = { 0 }; 1176 1177 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0)) 1178 status = SIGSEGV; 1179 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0)) 1180 status = SIGSEGV; 1181 opcode = mmop[0]; 1182 opcode = (opcode << 16) | mmop[1]; 1183 1184 if (status < 0) 1185 status = simulate_rdhwr_mm(regs, opcode); 1186 } 1187 1188 if (status < 0) 1189 status = SIGILL; 1190 1191 if (unlikely(status > 0)) { 1192 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1193 regs->regs[31] = old31; 1194 force_sig(status); 1195 } 1196 1197 out: 1198 exception_exit(prev_state); 1199 } 1200 1201 /* 1202 * No lock; only written during early bootup by CPU 0. 1203 */ 1204 static RAW_NOTIFIER_HEAD(cu2_chain); 1205 1206 int __ref register_cu2_notifier(struct notifier_block *nb) 1207 { 1208 return raw_notifier_chain_register(&cu2_chain, nb); 1209 } 1210 1211 int cu2_notifier_call_chain(unsigned long val, void *v) 1212 { 1213 return raw_notifier_call_chain(&cu2_chain, val, v); 1214 } 1215 1216 static int default_cu2_call(struct notifier_block *nfb, unsigned long action, 1217 void *data) 1218 { 1219 struct pt_regs *regs = data; 1220 1221 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid " 1222 "instruction", regs); 1223 force_sig(SIGILL); 1224 1225 return NOTIFY_OK; 1226 } 1227 1228 #ifdef CONFIG_MIPS_FP_SUPPORT 1229 1230 static int enable_restore_fp_context(int msa) 1231 { 1232 int err, was_fpu_owner, prior_msa; 1233 bool first_fp; 1234 1235 /* Initialize context if it hasn't been used already */ 1236 first_fp = init_fp_ctx(current); 1237 1238 if (first_fp) { 1239 preempt_disable(); 1240 err = own_fpu_inatomic(1); 1241 if (msa && !err) { 1242 enable_msa(); 1243 set_thread_flag(TIF_USEDMSA); 1244 set_thread_flag(TIF_MSA_CTX_LIVE); 1245 } 1246 preempt_enable(); 1247 return err; 1248 } 1249 1250 /* 1251 * This task has formerly used the FP context. 1252 * 1253 * If this thread has no live MSA vector context then we can simply 1254 * restore the scalar FP context. If it has live MSA vector context 1255 * (that is, it has or may have used MSA since last performing a 1256 * function call) then we'll need to restore the vector context. This 1257 * applies even if we're currently only executing a scalar FP 1258 * instruction. This is because if we were to later execute an MSA 1259 * instruction then we'd either have to: 1260 * 1261 * - Restore the vector context & clobber any registers modified by 1262 * scalar FP instructions between now & then. 1263 * 1264 * or 1265 * 1266 * - Not restore the vector context & lose the most significant bits 1267 * of all vector registers. 1268 * 1269 * Neither of those options is acceptable. We cannot restore the least 1270 * significant bits of the registers now & only restore the most 1271 * significant bits later because the most significant bits of any 1272 * vector registers whose aliased FP register is modified now will have 1273 * been zeroed. We'd have no way to know that when restoring the vector 1274 * context & thus may load an outdated value for the most significant 1275 * bits of a vector register. 1276 */ 1277 if (!msa && !thread_msa_context_live()) 1278 return own_fpu(1); 1279 1280 /* 1281 * This task is using or has previously used MSA. Thus we require 1282 * that Status.FR == 1. 1283 */ 1284 preempt_disable(); 1285 was_fpu_owner = is_fpu_owner(); 1286 err = own_fpu_inatomic(0); 1287 if (err) 1288 goto out; 1289 1290 enable_msa(); 1291 write_msa_csr(current->thread.fpu.msacsr); 1292 set_thread_flag(TIF_USEDMSA); 1293 1294 /* 1295 * If this is the first time that the task is using MSA and it has 1296 * previously used scalar FP in this time slice then we already nave 1297 * FP context which we shouldn't clobber. We do however need to clear 1298 * the upper 64b of each vector register so that this task has no 1299 * opportunity to see data left behind by another. 1300 */ 1301 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE); 1302 if (!prior_msa && was_fpu_owner) { 1303 init_msa_upper(); 1304 1305 goto out; 1306 } 1307 1308 if (!prior_msa) { 1309 /* 1310 * Restore the least significant 64b of each vector register 1311 * from the existing scalar FP context. 1312 */ 1313 _restore_fp(current); 1314 1315 /* 1316 * The task has not formerly used MSA, so clear the upper 64b 1317 * of each vector register such that it cannot see data left 1318 * behind by another task. 1319 */ 1320 init_msa_upper(); 1321 } else { 1322 /* We need to restore the vector context. */ 1323 restore_msa(current); 1324 1325 /* Restore the scalar FP control & status register */ 1326 if (!was_fpu_owner) 1327 write_32bit_cp1_register(CP1_STATUS, 1328 current->thread.fpu.fcr31); 1329 } 1330 1331 out: 1332 preempt_enable(); 1333 1334 return 0; 1335 } 1336 1337 #else /* !CONFIG_MIPS_FP_SUPPORT */ 1338 1339 static int enable_restore_fp_context(int msa) 1340 { 1341 return SIGILL; 1342 } 1343 1344 #endif /* CONFIG_MIPS_FP_SUPPORT */ 1345 1346 asmlinkage void do_cpu(struct pt_regs *regs) 1347 { 1348 enum ctx_state prev_state; 1349 unsigned int __user *epc; 1350 unsigned long old_epc, old31; 1351 unsigned int opcode; 1352 unsigned int cpid; 1353 int status; 1354 1355 prev_state = exception_enter(); 1356 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; 1357 1358 if (cpid != 2) 1359 die_if_kernel("do_cpu invoked from kernel context!", regs); 1360 1361 switch (cpid) { 1362 case 0: 1363 epc = (unsigned int __user *)exception_epc(regs); 1364 old_epc = regs->cp0_epc; 1365 old31 = regs->regs[31]; 1366 opcode = 0; 1367 status = -1; 1368 1369 if (unlikely(compute_return_epc(regs) < 0)) 1370 break; 1371 1372 if (!get_isa16_mode(regs->cp0_epc)) { 1373 if (unlikely(get_user(opcode, epc) < 0)) 1374 status = SIGSEGV; 1375 1376 if (!cpu_has_llsc && status < 0) 1377 status = simulate_llsc(regs, opcode); 1378 } 1379 1380 if (status < 0) 1381 status = SIGILL; 1382 1383 if (unlikely(status > 0)) { 1384 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1385 regs->regs[31] = old31; 1386 force_sig(status); 1387 } 1388 1389 break; 1390 1391 #ifdef CONFIG_MIPS_FP_SUPPORT 1392 case 3: 1393 /* 1394 * The COP3 opcode space and consequently the CP0.Status.CU3 1395 * bit and the CP0.Cause.CE=3 encoding have been removed as 1396 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs 1397 * up the space has been reused for COP1X instructions, that 1398 * are enabled by the CP0.Status.CU1 bit and consequently 1399 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable 1400 * exceptions. Some FPU-less processors that implement one 1401 * of these ISAs however use this code erroneously for COP1X 1402 * instructions. Therefore we redirect this trap to the FP 1403 * emulator too. 1404 */ 1405 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) { 1406 force_sig(SIGILL); 1407 break; 1408 } 1409 /* Fall through. */ 1410 1411 case 1: { 1412 void __user *fault_addr; 1413 unsigned long fcr31; 1414 int err, sig; 1415 1416 err = enable_restore_fp_context(0); 1417 1418 if (raw_cpu_has_fpu && !err) 1419 break; 1420 1421 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0, 1422 &fault_addr); 1423 1424 /* 1425 * We can't allow the emulated instruction to leave 1426 * any enabled Cause bits set in $fcr31. 1427 */ 1428 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); 1429 current->thread.fpu.fcr31 &= ~fcr31; 1430 1431 /* Send a signal if required. */ 1432 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err) 1433 mt_ase_fp_affinity(); 1434 1435 break; 1436 } 1437 #else /* CONFIG_MIPS_FP_SUPPORT */ 1438 case 1: 1439 case 3: 1440 force_sig(SIGILL); 1441 break; 1442 #endif /* CONFIG_MIPS_FP_SUPPORT */ 1443 1444 case 2: 1445 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); 1446 break; 1447 } 1448 1449 exception_exit(prev_state); 1450 } 1451 1452 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr) 1453 { 1454 enum ctx_state prev_state; 1455 1456 prev_state = exception_enter(); 1457 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1458 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0, 1459 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP) 1460 goto out; 1461 1462 /* Clear MSACSR.Cause before enabling interrupts */ 1463 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF); 1464 local_irq_enable(); 1465 1466 die_if_kernel("do_msa_fpe invoked from kernel context!", regs); 1467 force_sig(SIGFPE); 1468 out: 1469 exception_exit(prev_state); 1470 } 1471 1472 asmlinkage void do_msa(struct pt_regs *regs) 1473 { 1474 enum ctx_state prev_state; 1475 int err; 1476 1477 prev_state = exception_enter(); 1478 1479 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) { 1480 force_sig(SIGILL); 1481 goto out; 1482 } 1483 1484 die_if_kernel("do_msa invoked from kernel context!", regs); 1485 1486 err = enable_restore_fp_context(1); 1487 if (err) 1488 force_sig(SIGILL); 1489 out: 1490 exception_exit(prev_state); 1491 } 1492 1493 asmlinkage void do_mdmx(struct pt_regs *regs) 1494 { 1495 enum ctx_state prev_state; 1496 1497 prev_state = exception_enter(); 1498 force_sig(SIGILL); 1499 exception_exit(prev_state); 1500 } 1501 1502 /* 1503 * Called with interrupts disabled. 1504 */ 1505 asmlinkage void do_watch(struct pt_regs *regs) 1506 { 1507 enum ctx_state prev_state; 1508 1509 prev_state = exception_enter(); 1510 /* 1511 * Clear WP (bit 22) bit of cause register so we don't loop 1512 * forever. 1513 */ 1514 clear_c0_cause(CAUSEF_WP); 1515 1516 /* 1517 * If the current thread has the watch registers loaded, save 1518 * their values and send SIGTRAP. Otherwise another thread 1519 * left the registers set, clear them and continue. 1520 */ 1521 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { 1522 mips_read_watch_registers(); 1523 local_irq_enable(); 1524 force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL); 1525 } else { 1526 mips_clear_watch_registers(); 1527 local_irq_enable(); 1528 } 1529 exception_exit(prev_state); 1530 } 1531 1532 asmlinkage void do_mcheck(struct pt_regs *regs) 1533 { 1534 int multi_match = regs->cp0_status & ST0_TS; 1535 enum ctx_state prev_state; 1536 mm_segment_t old_fs = get_fs(); 1537 1538 prev_state = exception_enter(); 1539 show_regs(regs); 1540 1541 if (multi_match) { 1542 dump_tlb_regs(); 1543 pr_info("\n"); 1544 dump_tlb_all(); 1545 } 1546 1547 if (!user_mode(regs)) 1548 set_fs(KERNEL_DS); 1549 1550 show_code((unsigned int __user *) regs->cp0_epc); 1551 1552 set_fs(old_fs); 1553 1554 /* 1555 * Some chips may have other causes of machine check (e.g. SB1 1556 * graduation timer) 1557 */ 1558 panic("Caught Machine Check exception - %scaused by multiple " 1559 "matching entries in the TLB.", 1560 (multi_match) ? "" : "not "); 1561 } 1562 1563 asmlinkage void do_mt(struct pt_regs *regs) 1564 { 1565 int subcode; 1566 1567 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) 1568 >> VPECONTROL_EXCPT_SHIFT; 1569 switch (subcode) { 1570 case 0: 1571 printk(KERN_DEBUG "Thread Underflow\n"); 1572 break; 1573 case 1: 1574 printk(KERN_DEBUG "Thread Overflow\n"); 1575 break; 1576 case 2: 1577 printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); 1578 break; 1579 case 3: 1580 printk(KERN_DEBUG "Gating Storage Exception\n"); 1581 break; 1582 case 4: 1583 printk(KERN_DEBUG "YIELD Scheduler Exception\n"); 1584 break; 1585 case 5: 1586 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n"); 1587 break; 1588 default: 1589 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", 1590 subcode); 1591 break; 1592 } 1593 die_if_kernel("MIPS MT Thread exception in kernel", regs); 1594 1595 force_sig(SIGILL); 1596 } 1597 1598 1599 asmlinkage void do_dsp(struct pt_regs *regs) 1600 { 1601 if (cpu_has_dsp) 1602 panic("Unexpected DSP exception"); 1603 1604 force_sig(SIGILL); 1605 } 1606 1607 asmlinkage void do_reserved(struct pt_regs *regs) 1608 { 1609 /* 1610 * Game over - no way to handle this if it ever occurs. Most probably 1611 * caused by a new unknown cpu type or after another deadly 1612 * hard/software error. 1613 */ 1614 show_regs(regs); 1615 panic("Caught reserved exception %ld - should not happen.", 1616 (regs->cp0_cause & 0x7f) >> 2); 1617 } 1618 1619 static int __initdata l1parity = 1; 1620 static int __init nol1parity(char *s) 1621 { 1622 l1parity = 0; 1623 return 1; 1624 } 1625 __setup("nol1par", nol1parity); 1626 static int __initdata l2parity = 1; 1627 static int __init nol2parity(char *s) 1628 { 1629 l2parity = 0; 1630 return 1; 1631 } 1632 __setup("nol2par", nol2parity); 1633 1634 /* 1635 * Some MIPS CPUs can enable/disable for cache parity detection, but do 1636 * it different ways. 1637 */ 1638 static inline void parity_protection_init(void) 1639 { 1640 #define ERRCTL_PE 0x80000000 1641 #define ERRCTL_L2P 0x00800000 1642 1643 if (mips_cm_revision() >= CM_REV_CM3) { 1644 ulong gcr_ectl, cp0_ectl; 1645 1646 /* 1647 * With CM3 systems we need to ensure that the L1 & L2 1648 * parity enables are set to the same value, since this 1649 * is presumed by the hardware engineers. 1650 * 1651 * If the user disabled either of L1 or L2 ECC checking, 1652 * disable both. 1653 */ 1654 l1parity &= l2parity; 1655 l2parity &= l1parity; 1656 1657 /* Probe L1 ECC support */ 1658 cp0_ectl = read_c0_ecc(); 1659 write_c0_ecc(cp0_ectl | ERRCTL_PE); 1660 back_to_back_c0_hazard(); 1661 cp0_ectl = read_c0_ecc(); 1662 1663 /* Probe L2 ECC support */ 1664 gcr_ectl = read_gcr_err_control(); 1665 1666 if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) || 1667 !(cp0_ectl & ERRCTL_PE)) { 1668 /* 1669 * One of L1 or L2 ECC checking isn't supported, 1670 * so we cannot enable either. 1671 */ 1672 l1parity = l2parity = 0; 1673 } 1674 1675 /* Configure L1 ECC checking */ 1676 if (l1parity) 1677 cp0_ectl |= ERRCTL_PE; 1678 else 1679 cp0_ectl &= ~ERRCTL_PE; 1680 write_c0_ecc(cp0_ectl); 1681 back_to_back_c0_hazard(); 1682 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity); 1683 1684 /* Configure L2 ECC checking */ 1685 if (l2parity) 1686 gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN; 1687 else 1688 gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN; 1689 write_gcr_err_control(gcr_ectl); 1690 gcr_ectl = read_gcr_err_control(); 1691 gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN; 1692 WARN_ON(!!gcr_ectl != l2parity); 1693 1694 pr_info("Cache parity protection %sabled\n", 1695 l1parity ? "en" : "dis"); 1696 return; 1697 } 1698 1699 switch (current_cpu_type()) { 1700 case CPU_24K: 1701 case CPU_34K: 1702 case CPU_74K: 1703 case CPU_1004K: 1704 case CPU_1074K: 1705 case CPU_INTERAPTIV: 1706 case CPU_PROAPTIV: 1707 case CPU_P5600: 1708 case CPU_QEMU_GENERIC: 1709 case CPU_P6600: 1710 { 1711 unsigned long errctl; 1712 unsigned int l1parity_present, l2parity_present; 1713 1714 errctl = read_c0_ecc(); 1715 errctl &= ~(ERRCTL_PE|ERRCTL_L2P); 1716 1717 /* probe L1 parity support */ 1718 write_c0_ecc(errctl | ERRCTL_PE); 1719 back_to_back_c0_hazard(); 1720 l1parity_present = (read_c0_ecc() & ERRCTL_PE); 1721 1722 /* probe L2 parity support */ 1723 write_c0_ecc(errctl|ERRCTL_L2P); 1724 back_to_back_c0_hazard(); 1725 l2parity_present = (read_c0_ecc() & ERRCTL_L2P); 1726 1727 if (l1parity_present && l2parity_present) { 1728 if (l1parity) 1729 errctl |= ERRCTL_PE; 1730 if (l1parity ^ l2parity) 1731 errctl |= ERRCTL_L2P; 1732 } else if (l1parity_present) { 1733 if (l1parity) 1734 errctl |= ERRCTL_PE; 1735 } else if (l2parity_present) { 1736 if (l2parity) 1737 errctl |= ERRCTL_L2P; 1738 } else { 1739 /* No parity available */ 1740 } 1741 1742 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); 1743 1744 write_c0_ecc(errctl); 1745 back_to_back_c0_hazard(); 1746 errctl = read_c0_ecc(); 1747 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); 1748 1749 if (l1parity_present) 1750 printk(KERN_INFO "Cache parity protection %sabled\n", 1751 (errctl & ERRCTL_PE) ? "en" : "dis"); 1752 1753 if (l2parity_present) { 1754 if (l1parity_present && l1parity) 1755 errctl ^= ERRCTL_L2P; 1756 printk(KERN_INFO "L2 cache parity protection %sabled\n", 1757 (errctl & ERRCTL_L2P) ? "en" : "dis"); 1758 } 1759 } 1760 break; 1761 1762 case CPU_5KC: 1763 case CPU_5KE: 1764 case CPU_LOONGSON1: 1765 write_c0_ecc(0x80000000); 1766 back_to_back_c0_hazard(); 1767 /* Set the PE bit (bit 31) in the c0_errctl register. */ 1768 printk(KERN_INFO "Cache parity protection %sabled\n", 1769 (read_c0_ecc() & 0x80000000) ? "en" : "dis"); 1770 break; 1771 case CPU_20KC: 1772 case CPU_25KF: 1773 /* Clear the DE bit (bit 16) in the c0_status register. */ 1774 printk(KERN_INFO "Enable cache parity protection for " 1775 "MIPS 20KC/25KF CPUs.\n"); 1776 clear_c0_status(ST0_DE); 1777 break; 1778 default: 1779 break; 1780 } 1781 } 1782 1783 asmlinkage void cache_parity_error(void) 1784 { 1785 const int field = 2 * sizeof(unsigned long); 1786 unsigned int reg_val; 1787 1788 /* For the moment, report the problem and hang. */ 1789 printk("Cache error exception:\n"); 1790 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1791 reg_val = read_c0_cacheerr(); 1792 printk("c0_cacheerr == %08x\n", reg_val); 1793 1794 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1795 reg_val & (1<<30) ? "secondary" : "primary", 1796 reg_val & (1<<31) ? "data" : "insn"); 1797 if ((cpu_has_mips_r2_r6) && 1798 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { 1799 pr_err("Error bits: %s%s%s%s%s%s%s%s\n", 1800 reg_val & (1<<29) ? "ED " : "", 1801 reg_val & (1<<28) ? "ET " : "", 1802 reg_val & (1<<27) ? "ES " : "", 1803 reg_val & (1<<26) ? "EE " : "", 1804 reg_val & (1<<25) ? "EB " : "", 1805 reg_val & (1<<24) ? "EI " : "", 1806 reg_val & (1<<23) ? "E1 " : "", 1807 reg_val & (1<<22) ? "E0 " : ""); 1808 } else { 1809 pr_err("Error bits: %s%s%s%s%s%s%s\n", 1810 reg_val & (1<<29) ? "ED " : "", 1811 reg_val & (1<<28) ? "ET " : "", 1812 reg_val & (1<<26) ? "EE " : "", 1813 reg_val & (1<<25) ? "EB " : "", 1814 reg_val & (1<<24) ? "EI " : "", 1815 reg_val & (1<<23) ? "E1 " : "", 1816 reg_val & (1<<22) ? "E0 " : ""); 1817 } 1818 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); 1819 1820 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) 1821 if (reg_val & (1<<22)) 1822 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); 1823 1824 if (reg_val & (1<<23)) 1825 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); 1826 #endif 1827 1828 panic("Can't handle the cache error!"); 1829 } 1830 1831 asmlinkage void do_ftlb(void) 1832 { 1833 const int field = 2 * sizeof(unsigned long); 1834 unsigned int reg_val; 1835 1836 /* For the moment, report the problem and hang. */ 1837 if ((cpu_has_mips_r2_r6) && 1838 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) || 1839 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) { 1840 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n", 1841 read_c0_ecc()); 1842 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1843 reg_val = read_c0_cacheerr(); 1844 pr_err("c0_cacheerr == %08x\n", reg_val); 1845 1846 if ((reg_val & 0xc0000000) == 0xc0000000) { 1847 pr_err("Decoded c0_cacheerr: FTLB parity error\n"); 1848 } else { 1849 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1850 reg_val & (1<<30) ? "secondary" : "primary", 1851 reg_val & (1<<31) ? "data" : "insn"); 1852 } 1853 } else { 1854 pr_err("FTLB error exception\n"); 1855 } 1856 /* Just print the cacheerr bits for now */ 1857 cache_parity_error(); 1858 } 1859 1860 /* 1861 * SDBBP EJTAG debug exception handler. 1862 * We skip the instruction and return to the next instruction. 1863 */ 1864 void ejtag_exception_handler(struct pt_regs *regs) 1865 { 1866 const int field = 2 * sizeof(unsigned long); 1867 unsigned long depc, old_epc, old_ra; 1868 unsigned int debug; 1869 1870 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); 1871 depc = read_c0_depc(); 1872 debug = read_c0_debug(); 1873 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); 1874 if (debug & 0x80000000) { 1875 /* 1876 * In branch delay slot. 1877 * We cheat a little bit here and use EPC to calculate the 1878 * debug return address (DEPC). EPC is restored after the 1879 * calculation. 1880 */ 1881 old_epc = regs->cp0_epc; 1882 old_ra = regs->regs[31]; 1883 regs->cp0_epc = depc; 1884 compute_return_epc(regs); 1885 depc = regs->cp0_epc; 1886 regs->cp0_epc = old_epc; 1887 regs->regs[31] = old_ra; 1888 } else 1889 depc += 4; 1890 write_c0_depc(depc); 1891 1892 #if 0 1893 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); 1894 write_c0_debug(debug | 0x100); 1895 #endif 1896 } 1897 1898 /* 1899 * NMI exception handler. 1900 * No lock; only written during early bootup by CPU 0. 1901 */ 1902 static RAW_NOTIFIER_HEAD(nmi_chain); 1903 1904 int register_nmi_notifier(struct notifier_block *nb) 1905 { 1906 return raw_notifier_chain_register(&nmi_chain, nb); 1907 } 1908 1909 void __noreturn nmi_exception_handler(struct pt_regs *regs) 1910 { 1911 char str[100]; 1912 1913 nmi_enter(); 1914 raw_notifier_call_chain(&nmi_chain, 0, regs); 1915 bust_spinlocks(1); 1916 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n", 1917 smp_processor_id(), regs->cp0_epc); 1918 regs->cp0_epc = read_c0_errorepc(); 1919 die(str, regs); 1920 nmi_exit(); 1921 } 1922 1923 #define VECTORSPACING 0x100 /* for EI/VI mode */ 1924 1925 unsigned long ebase; 1926 EXPORT_SYMBOL_GPL(ebase); 1927 unsigned long exception_handlers[32]; 1928 unsigned long vi_handlers[64]; 1929 1930 void __init *set_except_vector(int n, void *addr) 1931 { 1932 unsigned long handler = (unsigned long) addr; 1933 unsigned long old_handler; 1934 1935 #ifdef CONFIG_CPU_MICROMIPS 1936 /* 1937 * Only the TLB handlers are cache aligned with an even 1938 * address. All other handlers are on an odd address and 1939 * require no modification. Otherwise, MIPS32 mode will 1940 * be entered when handling any TLB exceptions. That 1941 * would be bad...since we must stay in microMIPS mode. 1942 */ 1943 if (!(handler & 0x1)) 1944 handler |= 1; 1945 #endif 1946 old_handler = xchg(&exception_handlers[n], handler); 1947 1948 if (n == 0 && cpu_has_divec) { 1949 #ifdef CONFIG_CPU_MICROMIPS 1950 unsigned long jump_mask = ~((1 << 27) - 1); 1951 #else 1952 unsigned long jump_mask = ~((1 << 28) - 1); 1953 #endif 1954 u32 *buf = (u32 *)(ebase + 0x200); 1955 unsigned int k0 = 26; 1956 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { 1957 uasm_i_j(&buf, handler & ~jump_mask); 1958 uasm_i_nop(&buf); 1959 } else { 1960 UASM_i_LA(&buf, k0, handler); 1961 uasm_i_jr(&buf, k0); 1962 uasm_i_nop(&buf); 1963 } 1964 local_flush_icache_range(ebase + 0x200, (unsigned long)buf); 1965 } 1966 return (void *)old_handler; 1967 } 1968 1969 static void do_default_vi(void) 1970 { 1971 show_regs(get_irq_regs()); 1972 panic("Caught unexpected vectored interrupt."); 1973 } 1974 1975 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) 1976 { 1977 unsigned long handler; 1978 unsigned long old_handler = vi_handlers[n]; 1979 int srssets = current_cpu_data.srsets; 1980 u16 *h; 1981 unsigned char *b; 1982 1983 BUG_ON(!cpu_has_veic && !cpu_has_vint); 1984 1985 if (addr == NULL) { 1986 handler = (unsigned long) do_default_vi; 1987 srs = 0; 1988 } else 1989 handler = (unsigned long) addr; 1990 vi_handlers[n] = handler; 1991 1992 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); 1993 1994 if (srs >= srssets) 1995 panic("Shadow register set %d not supported", srs); 1996 1997 if (cpu_has_veic) { 1998 if (board_bind_eic_interrupt) 1999 board_bind_eic_interrupt(n, srs); 2000 } else if (cpu_has_vint) { 2001 /* SRSMap is only defined if shadow sets are implemented */ 2002 if (srssets > 1) 2003 change_c0_srsmap(0xf << n*4, srs << n*4); 2004 } 2005 2006 if (srs == 0) { 2007 /* 2008 * If no shadow set is selected then use the default handler 2009 * that does normal register saving and standard interrupt exit 2010 */ 2011 extern char except_vec_vi, except_vec_vi_lui; 2012 extern char except_vec_vi_ori, except_vec_vi_end; 2013 extern char rollback_except_vec_vi; 2014 char *vec_start = using_rollback_handler() ? 2015 &rollback_except_vec_vi : &except_vec_vi; 2016 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN) 2017 const int lui_offset = &except_vec_vi_lui - vec_start + 2; 2018 const int ori_offset = &except_vec_vi_ori - vec_start + 2; 2019 #else 2020 const int lui_offset = &except_vec_vi_lui - vec_start; 2021 const int ori_offset = &except_vec_vi_ori - vec_start; 2022 #endif 2023 const int handler_len = &except_vec_vi_end - vec_start; 2024 2025 if (handler_len > VECTORSPACING) { 2026 /* 2027 * Sigh... panicing won't help as the console 2028 * is probably not configured :( 2029 */ 2030 panic("VECTORSPACING too small"); 2031 } 2032 2033 set_handler(((unsigned long)b - ebase), vec_start, 2034 #ifdef CONFIG_CPU_MICROMIPS 2035 (handler_len - 1)); 2036 #else 2037 handler_len); 2038 #endif 2039 h = (u16 *)(b + lui_offset); 2040 *h = (handler >> 16) & 0xffff; 2041 h = (u16 *)(b + ori_offset); 2042 *h = (handler & 0xffff); 2043 local_flush_icache_range((unsigned long)b, 2044 (unsigned long)(b+handler_len)); 2045 } 2046 else { 2047 /* 2048 * In other cases jump directly to the interrupt handler. It 2049 * is the handler's responsibility to save registers if required 2050 * (eg hi/lo) and return from the exception using "eret". 2051 */ 2052 u32 insn; 2053 2054 h = (u16 *)b; 2055 /* j handler */ 2056 #ifdef CONFIG_CPU_MICROMIPS 2057 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1); 2058 #else 2059 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2); 2060 #endif 2061 h[0] = (insn >> 16) & 0xffff; 2062 h[1] = insn & 0xffff; 2063 h[2] = 0; 2064 h[3] = 0; 2065 local_flush_icache_range((unsigned long)b, 2066 (unsigned long)(b+8)); 2067 } 2068 2069 return (void *)old_handler; 2070 } 2071 2072 void *set_vi_handler(int n, vi_handler_t addr) 2073 { 2074 return set_vi_srs_handler(n, addr, 0); 2075 } 2076 2077 extern void tlb_init(void); 2078 2079 /* 2080 * Timer interrupt 2081 */ 2082 int cp0_compare_irq; 2083 EXPORT_SYMBOL_GPL(cp0_compare_irq); 2084 int cp0_compare_irq_shift; 2085 2086 /* 2087 * Performance counter IRQ or -1 if shared with timer 2088 */ 2089 int cp0_perfcount_irq; 2090 EXPORT_SYMBOL_GPL(cp0_perfcount_irq); 2091 2092 /* 2093 * Fast debug channel IRQ or -1 if not present 2094 */ 2095 int cp0_fdc_irq; 2096 EXPORT_SYMBOL_GPL(cp0_fdc_irq); 2097 2098 static int noulri; 2099 2100 static int __init ulri_disable(char *s) 2101 { 2102 pr_info("Disabling ulri\n"); 2103 noulri = 1; 2104 2105 return 1; 2106 } 2107 __setup("noulri", ulri_disable); 2108 2109 /* configure STATUS register */ 2110 static void configure_status(void) 2111 { 2112 /* 2113 * Disable coprocessors and select 32-bit or 64-bit addressing 2114 * and the 16/32 or 32/32 FPR register model. Reset the BEV 2115 * flag that some firmware may have left set and the TS bit (for 2116 * IP27). Set XX for ISA IV code to work. 2117 */ 2118 unsigned int status_set = ST0_CU0; 2119 #ifdef CONFIG_64BIT 2120 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; 2121 #endif 2122 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV) 2123 status_set |= ST0_XX; 2124 if (cpu_has_dsp) 2125 status_set |= ST0_MX; 2126 2127 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, 2128 status_set); 2129 } 2130 2131 unsigned int hwrena; 2132 EXPORT_SYMBOL_GPL(hwrena); 2133 2134 /* configure HWRENA register */ 2135 static void configure_hwrena(void) 2136 { 2137 hwrena = cpu_hwrena_impl_bits; 2138 2139 if (cpu_has_mips_r2_r6) 2140 hwrena |= MIPS_HWRENA_CPUNUM | 2141 MIPS_HWRENA_SYNCISTEP | 2142 MIPS_HWRENA_CC | 2143 MIPS_HWRENA_CCRES; 2144 2145 if (!noulri && cpu_has_userlocal) 2146 hwrena |= MIPS_HWRENA_ULR; 2147 2148 if (hwrena) 2149 write_c0_hwrena(hwrena); 2150 } 2151 2152 static void configure_exception_vector(void) 2153 { 2154 if (cpu_has_mips_r2_r6) { 2155 unsigned long sr = set_c0_status(ST0_BEV); 2156 /* If available, use WG to set top bits of EBASE */ 2157 if (cpu_has_ebase_wg) { 2158 #ifdef CONFIG_64BIT 2159 write_c0_ebase_64(ebase | MIPS_EBASE_WG); 2160 #else 2161 write_c0_ebase(ebase | MIPS_EBASE_WG); 2162 #endif 2163 } 2164 write_c0_ebase(ebase); 2165 write_c0_status(sr); 2166 } 2167 if (cpu_has_veic || cpu_has_vint) { 2168 /* Setting vector spacing enables EI/VI mode */ 2169 change_c0_intctl(0x3e0, VECTORSPACING); 2170 } 2171 if (cpu_has_divec) { 2172 if (cpu_has_mipsmt) { 2173 unsigned int vpflags = dvpe(); 2174 set_c0_cause(CAUSEF_IV); 2175 evpe(vpflags); 2176 } else 2177 set_c0_cause(CAUSEF_IV); 2178 } 2179 } 2180 2181 void per_cpu_trap_init(bool is_boot_cpu) 2182 { 2183 unsigned int cpu = smp_processor_id(); 2184 2185 configure_status(); 2186 configure_hwrena(); 2187 2188 configure_exception_vector(); 2189 2190 /* 2191 * Before R2 both interrupt numbers were fixed to 7, so on R2 only: 2192 * 2193 * o read IntCtl.IPTI to determine the timer interrupt 2194 * o read IntCtl.IPPCI to determine the performance counter interrupt 2195 * o read IntCtl.IPFDC to determine the fast debug channel interrupt 2196 */ 2197 if (cpu_has_mips_r2_r6) { 2198 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; 2199 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; 2200 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; 2201 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7; 2202 if (!cp0_fdc_irq) 2203 cp0_fdc_irq = -1; 2204 2205 } else { 2206 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; 2207 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ; 2208 cp0_perfcount_irq = -1; 2209 cp0_fdc_irq = -1; 2210 } 2211 2212 if (cpu_has_mmid) 2213 cpu_data[cpu].asid_cache = 0; 2214 else if (!cpu_data[cpu].asid_cache) 2215 cpu_data[cpu].asid_cache = asid_first_version(cpu); 2216 2217 mmgrab(&init_mm); 2218 current->active_mm = &init_mm; 2219 BUG_ON(current->mm); 2220 enter_lazy_tlb(&init_mm, current); 2221 2222 /* Boot CPU's cache setup in setup_arch(). */ 2223 if (!is_boot_cpu) 2224 cpu_cache_init(); 2225 tlb_init(); 2226 TLBMISS_HANDLER_SETUP(); 2227 } 2228 2229 /* Install CPU exception handler */ 2230 void set_handler(unsigned long offset, void *addr, unsigned long size) 2231 { 2232 #ifdef CONFIG_CPU_MICROMIPS 2233 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size); 2234 #else 2235 memcpy((void *)(ebase + offset), addr, size); 2236 #endif 2237 local_flush_icache_range(ebase + offset, ebase + offset + size); 2238 } 2239 2240 static const char panic_null_cerr[] = 2241 "Trying to set NULL cache error exception handler\n"; 2242 2243 /* 2244 * Install uncached CPU exception handler. 2245 * This is suitable only for the cache error exception which is the only 2246 * exception handler that is being run uncached. 2247 */ 2248 void set_uncached_handler(unsigned long offset, void *addr, 2249 unsigned long size) 2250 { 2251 unsigned long uncached_ebase = CKSEG1ADDR(ebase); 2252 2253 if (!addr) 2254 panic(panic_null_cerr); 2255 2256 memcpy((void *)(uncached_ebase + offset), addr, size); 2257 } 2258 2259 static int __initdata rdhwr_noopt; 2260 static int __init set_rdhwr_noopt(char *str) 2261 { 2262 rdhwr_noopt = 1; 2263 return 1; 2264 } 2265 2266 __setup("rdhwr_noopt", set_rdhwr_noopt); 2267 2268 void __init trap_init(void) 2269 { 2270 extern char except_vec3_generic; 2271 extern char except_vec4; 2272 extern char except_vec3_r4000; 2273 unsigned long i, vec_size; 2274 phys_addr_t ebase_pa; 2275 2276 check_wait(); 2277 2278 if (!cpu_has_mips_r2_r6) { 2279 ebase = CAC_BASE; 2280 ebase_pa = virt_to_phys((void *)ebase); 2281 vec_size = 0x400; 2282 2283 memblock_reserve(ebase_pa, vec_size); 2284 } else { 2285 if (cpu_has_veic || cpu_has_vint) 2286 vec_size = 0x200 + VECTORSPACING*64; 2287 else 2288 vec_size = PAGE_SIZE; 2289 2290 ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size)); 2291 if (!ebase_pa) 2292 panic("%s: Failed to allocate %lu bytes align=0x%x\n", 2293 __func__, vec_size, 1 << fls(vec_size)); 2294 2295 /* 2296 * Try to ensure ebase resides in KSeg0 if possible. 2297 * 2298 * It shouldn't generally be in XKPhys on MIPS64 to avoid 2299 * hitting a poorly defined exception base for Cache Errors. 2300 * The allocation is likely to be in the low 512MB of physical, 2301 * in which case we should be able to convert to KSeg0. 2302 * 2303 * EVA is special though as it allows segments to be rearranged 2304 * and to become uncached during cache error handling. 2305 */ 2306 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000)) 2307 ebase = CKSEG0ADDR(ebase_pa); 2308 else 2309 ebase = (unsigned long)phys_to_virt(ebase_pa); 2310 } 2311 2312 if (cpu_has_mmips) { 2313 unsigned int config3 = read_c0_config3(); 2314 2315 if (IS_ENABLED(CONFIG_CPU_MICROMIPS)) 2316 write_c0_config3(config3 | MIPS_CONF3_ISA_OE); 2317 else 2318 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE); 2319 } 2320 2321 if (board_ebase_setup) 2322 board_ebase_setup(); 2323 per_cpu_trap_init(true); 2324 memblock_set_bottom_up(false); 2325 2326 /* 2327 * Copy the generic exception handlers to their final destination. 2328 * This will be overridden later as suitable for a particular 2329 * configuration. 2330 */ 2331 set_handler(0x180, &except_vec3_generic, 0x80); 2332 2333 /* 2334 * Setup default vectors 2335 */ 2336 for (i = 0; i <= 31; i++) 2337 set_except_vector(i, handle_reserved); 2338 2339 /* 2340 * Copy the EJTAG debug exception vector handler code to it's final 2341 * destination. 2342 */ 2343 if (cpu_has_ejtag && board_ejtag_handler_setup) 2344 board_ejtag_handler_setup(); 2345 2346 /* 2347 * Only some CPUs have the watch exceptions. 2348 */ 2349 if (cpu_has_watch) 2350 set_except_vector(EXCCODE_WATCH, handle_watch); 2351 2352 /* 2353 * Initialise interrupt handlers 2354 */ 2355 if (cpu_has_veic || cpu_has_vint) { 2356 int nvec = cpu_has_veic ? 64 : 8; 2357 for (i = 0; i < nvec; i++) 2358 set_vi_handler(i, NULL); 2359 } 2360 else if (cpu_has_divec) 2361 set_handler(0x200, &except_vec4, 0x8); 2362 2363 /* 2364 * Some CPUs can enable/disable for cache parity detection, but does 2365 * it different ways. 2366 */ 2367 parity_protection_init(); 2368 2369 /* 2370 * The Data Bus Errors / Instruction Bus Errors are signaled 2371 * by external hardware. Therefore these two exceptions 2372 * may have board specific handlers. 2373 */ 2374 if (board_be_init) 2375 board_be_init(); 2376 2377 set_except_vector(EXCCODE_INT, using_rollback_handler() ? 2378 rollback_handle_int : handle_int); 2379 set_except_vector(EXCCODE_MOD, handle_tlbm); 2380 set_except_vector(EXCCODE_TLBL, handle_tlbl); 2381 set_except_vector(EXCCODE_TLBS, handle_tlbs); 2382 2383 set_except_vector(EXCCODE_ADEL, handle_adel); 2384 set_except_vector(EXCCODE_ADES, handle_ades); 2385 2386 set_except_vector(EXCCODE_IBE, handle_ibe); 2387 set_except_vector(EXCCODE_DBE, handle_dbe); 2388 2389 set_except_vector(EXCCODE_SYS, handle_sys); 2390 set_except_vector(EXCCODE_BP, handle_bp); 2391 2392 if (rdhwr_noopt) 2393 set_except_vector(EXCCODE_RI, handle_ri); 2394 else { 2395 if (cpu_has_vtag_icache) 2396 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp); 2397 else if (current_cpu_type() == CPU_LOONGSON3) 2398 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp); 2399 else 2400 set_except_vector(EXCCODE_RI, handle_ri_rdhwr); 2401 } 2402 2403 set_except_vector(EXCCODE_CPU, handle_cpu); 2404 set_except_vector(EXCCODE_OV, handle_ov); 2405 set_except_vector(EXCCODE_TR, handle_tr); 2406 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe); 2407 2408 if (board_nmi_handler_setup) 2409 board_nmi_handler_setup(); 2410 2411 if (cpu_has_fpu && !cpu_has_nofpuex) 2412 set_except_vector(EXCCODE_FPE, handle_fpe); 2413 2414 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb); 2415 2416 if (cpu_has_rixiex) { 2417 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0); 2418 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0); 2419 } 2420 2421 set_except_vector(EXCCODE_MSADIS, handle_msa); 2422 set_except_vector(EXCCODE_MDMX, handle_mdmx); 2423 2424 if (cpu_has_mcheck) 2425 set_except_vector(EXCCODE_MCHECK, handle_mcheck); 2426 2427 if (cpu_has_mipsmt) 2428 set_except_vector(EXCCODE_THREAD, handle_mt); 2429 2430 set_except_vector(EXCCODE_DSPDIS, handle_dsp); 2431 2432 if (board_cache_error_setup) 2433 board_cache_error_setup(); 2434 2435 if (cpu_has_vce) 2436 /* Special exception: R4[04]00 uses also the divec space. */ 2437 set_handler(0x180, &except_vec3_r4000, 0x100); 2438 else if (cpu_has_4kex) 2439 set_handler(0x180, &except_vec3_generic, 0x80); 2440 else 2441 set_handler(0x080, &except_vec3_generic, 0x80); 2442 2443 local_flush_icache_range(ebase, ebase + vec_size); 2444 2445 sort_extable(__start___dbe_table, __stop___dbe_table); 2446 2447 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */ 2448 } 2449 2450 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd, 2451 void *v) 2452 { 2453 switch (cmd) { 2454 case CPU_PM_ENTER_FAILED: 2455 case CPU_PM_EXIT: 2456 configure_status(); 2457 configure_hwrena(); 2458 configure_exception_vector(); 2459 2460 /* Restore register with CPU number for TLB handlers */ 2461 TLBMISS_HANDLER_RESTORE(); 2462 2463 break; 2464 } 2465 2466 return NOTIFY_OK; 2467 } 2468 2469 static struct notifier_block trap_pm_notifier_block = { 2470 .notifier_call = trap_pm_notifier, 2471 }; 2472 2473 static int __init trap_pm_init(void) 2474 { 2475 return cpu_pm_register_notifier(&trap_pm_notifier_block); 2476 } 2477 arch_initcall(trap_pm_init); 2478