1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle 7 * Copyright (C) 1995, 1996 Paul M. Antoine 8 * Copyright (C) 1998 Ulf Carlsson 9 * Copyright (C) 1999 Silicon Graphics, Inc. 10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki 12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved. 13 * Copyright (C) 2014, Imagination Technologies Ltd. 14 */ 15 #include <linux/bug.h> 16 #include <linux/compiler.h> 17 #include <linux/context_tracking.h> 18 #include <linux/cpu_pm.h> 19 #include <linux/kexec.h> 20 #include <linux/init.h> 21 #include <linux/kernel.h> 22 #include <linux/module.h> 23 #include <linux/mm.h> 24 #include <linux/sched.h> 25 #include <linux/smp.h> 26 #include <linux/spinlock.h> 27 #include <linux/kallsyms.h> 28 #include <linux/bootmem.h> 29 #include <linux/interrupt.h> 30 #include <linux/ptrace.h> 31 #include <linux/kgdb.h> 32 #include <linux/kdebug.h> 33 #include <linux/kprobes.h> 34 #include <linux/notifier.h> 35 #include <linux/kdb.h> 36 #include <linux/irq.h> 37 #include <linux/perf_event.h> 38 39 #include <asm/bootinfo.h> 40 #include <asm/branch.h> 41 #include <asm/break.h> 42 #include <asm/cop2.h> 43 #include <asm/cpu.h> 44 #include <asm/cpu-type.h> 45 #include <asm/dsp.h> 46 #include <asm/fpu.h> 47 #include <asm/fpu_emulator.h> 48 #include <asm/idle.h> 49 #include <asm/mipsregs.h> 50 #include <asm/mipsmtregs.h> 51 #include <asm/module.h> 52 #include <asm/msa.h> 53 #include <asm/pgtable.h> 54 #include <asm/ptrace.h> 55 #include <asm/sections.h> 56 #include <asm/tlbdebug.h> 57 #include <asm/traps.h> 58 #include <asm/uaccess.h> 59 #include <asm/watch.h> 60 #include <asm/mmu_context.h> 61 #include <asm/types.h> 62 #include <asm/stacktrace.h> 63 #include <asm/uasm.h> 64 65 extern void check_wait(void); 66 extern asmlinkage void rollback_handle_int(void); 67 extern asmlinkage void handle_int(void); 68 extern u32 handle_tlbl[]; 69 extern u32 handle_tlbs[]; 70 extern u32 handle_tlbm[]; 71 extern asmlinkage void handle_adel(void); 72 extern asmlinkage void handle_ades(void); 73 extern asmlinkage void handle_ibe(void); 74 extern asmlinkage void handle_dbe(void); 75 extern asmlinkage void handle_sys(void); 76 extern asmlinkage void handle_bp(void); 77 extern asmlinkage void handle_ri(void); 78 extern asmlinkage void handle_ri_rdhwr_vivt(void); 79 extern asmlinkage void handle_ri_rdhwr(void); 80 extern asmlinkage void handle_cpu(void); 81 extern asmlinkage void handle_ov(void); 82 extern asmlinkage void handle_tr(void); 83 extern asmlinkage void handle_msa_fpe(void); 84 extern asmlinkage void handle_fpe(void); 85 extern asmlinkage void handle_ftlb(void); 86 extern asmlinkage void handle_msa(void); 87 extern asmlinkage void handle_mdmx(void); 88 extern asmlinkage void handle_watch(void); 89 extern asmlinkage void handle_mt(void); 90 extern asmlinkage void handle_dsp(void); 91 extern asmlinkage void handle_mcheck(void); 92 extern asmlinkage void handle_reserved(void); 93 94 void (*board_be_init)(void); 95 int (*board_be_handler)(struct pt_regs *regs, int is_fixup); 96 void (*board_nmi_handler_setup)(void); 97 void (*board_ejtag_handler_setup)(void); 98 void (*board_bind_eic_interrupt)(int irq, int regset); 99 void (*board_ebase_setup)(void); 100 void(*board_cache_error_setup)(void); 101 102 static void show_raw_backtrace(unsigned long reg29) 103 { 104 unsigned long *sp = (unsigned long *)(reg29 & ~3); 105 unsigned long addr; 106 107 printk("Call Trace:"); 108 #ifdef CONFIG_KALLSYMS 109 printk("\n"); 110 #endif 111 while (!kstack_end(sp)) { 112 unsigned long __user *p = 113 (unsigned long __user *)(unsigned long)sp++; 114 if (__get_user(addr, p)) { 115 printk(" (Bad stack address)"); 116 break; 117 } 118 if (__kernel_text_address(addr)) 119 print_ip_sym(addr); 120 } 121 printk("\n"); 122 } 123 124 #ifdef CONFIG_KALLSYMS 125 int raw_show_trace; 126 static int __init set_raw_show_trace(char *str) 127 { 128 raw_show_trace = 1; 129 return 1; 130 } 131 __setup("raw_show_trace", set_raw_show_trace); 132 #endif 133 134 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs) 135 { 136 unsigned long sp = regs->regs[29]; 137 unsigned long ra = regs->regs[31]; 138 unsigned long pc = regs->cp0_epc; 139 140 if (!task) 141 task = current; 142 143 if (raw_show_trace || !__kernel_text_address(pc)) { 144 show_raw_backtrace(sp); 145 return; 146 } 147 printk("Call Trace:\n"); 148 do { 149 print_ip_sym(pc); 150 pc = unwind_stack(task, &sp, pc, &ra); 151 } while (pc); 152 printk("\n"); 153 } 154 155 /* 156 * This routine abuses get_user()/put_user() to reference pointers 157 * with at least a bit of error checking ... 158 */ 159 static void show_stacktrace(struct task_struct *task, 160 const struct pt_regs *regs) 161 { 162 const int field = 2 * sizeof(unsigned long); 163 long stackdata; 164 int i; 165 unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; 166 167 printk("Stack :"); 168 i = 0; 169 while ((unsigned long) sp & (PAGE_SIZE - 1)) { 170 if (i && ((i % (64 / field)) == 0)) 171 printk("\n "); 172 if (i > 39) { 173 printk(" ..."); 174 break; 175 } 176 177 if (__get_user(stackdata, sp++)) { 178 printk(" (Bad stack address)"); 179 break; 180 } 181 182 printk(" %0*lx", field, stackdata); 183 i++; 184 } 185 printk("\n"); 186 show_backtrace(task, regs); 187 } 188 189 void show_stack(struct task_struct *task, unsigned long *sp) 190 { 191 struct pt_regs regs; 192 if (sp) { 193 regs.regs[29] = (unsigned long)sp; 194 regs.regs[31] = 0; 195 regs.cp0_epc = 0; 196 } else { 197 if (task && task != current) { 198 regs.regs[29] = task->thread.reg29; 199 regs.regs[31] = 0; 200 regs.cp0_epc = task->thread.reg31; 201 #ifdef CONFIG_KGDB_KDB 202 } else if (atomic_read(&kgdb_active) != -1 && 203 kdb_current_regs) { 204 memcpy(®s, kdb_current_regs, sizeof(regs)); 205 #endif /* CONFIG_KGDB_KDB */ 206 } else { 207 prepare_frametrace(®s); 208 } 209 } 210 show_stacktrace(task, ®s); 211 } 212 213 static void show_code(unsigned int __user *pc) 214 { 215 long i; 216 unsigned short __user *pc16 = NULL; 217 218 printk("\nCode:"); 219 220 if ((unsigned long)pc & 1) 221 pc16 = (unsigned short __user *)((unsigned long)pc & ~1); 222 for(i = -3 ; i < 6 ; i++) { 223 unsigned int insn; 224 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { 225 printk(" (Bad address in epc)\n"); 226 break; 227 } 228 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); 229 } 230 } 231 232 static void __show_regs(const struct pt_regs *regs) 233 { 234 const int field = 2 * sizeof(unsigned long); 235 unsigned int cause = regs->cp0_cause; 236 int i; 237 238 show_regs_print_info(KERN_DEFAULT); 239 240 /* 241 * Saved main processor registers 242 */ 243 for (i = 0; i < 32; ) { 244 if ((i % 4) == 0) 245 printk("$%2d :", i); 246 if (i == 0) 247 printk(" %0*lx", field, 0UL); 248 else if (i == 26 || i == 27) 249 printk(" %*s", field, ""); 250 else 251 printk(" %0*lx", field, regs->regs[i]); 252 253 i++; 254 if ((i % 4) == 0) 255 printk("\n"); 256 } 257 258 #ifdef CONFIG_CPU_HAS_SMARTMIPS 259 printk("Acx : %0*lx\n", field, regs->acx); 260 #endif 261 printk("Hi : %0*lx\n", field, regs->hi); 262 printk("Lo : %0*lx\n", field, regs->lo); 263 264 /* 265 * Saved cp0 registers 266 */ 267 printk("epc : %0*lx %pS\n", field, regs->cp0_epc, 268 (void *) regs->cp0_epc); 269 printk(" %s\n", print_tainted()); 270 printk("ra : %0*lx %pS\n", field, regs->regs[31], 271 (void *) regs->regs[31]); 272 273 printk("Status: %08x ", (uint32_t) regs->cp0_status); 274 275 if (cpu_has_3kex) { 276 if (regs->cp0_status & ST0_KUO) 277 printk("KUo "); 278 if (regs->cp0_status & ST0_IEO) 279 printk("IEo "); 280 if (regs->cp0_status & ST0_KUP) 281 printk("KUp "); 282 if (regs->cp0_status & ST0_IEP) 283 printk("IEp "); 284 if (regs->cp0_status & ST0_KUC) 285 printk("KUc "); 286 if (regs->cp0_status & ST0_IEC) 287 printk("IEc "); 288 } else if (cpu_has_4kex) { 289 if (regs->cp0_status & ST0_KX) 290 printk("KX "); 291 if (regs->cp0_status & ST0_SX) 292 printk("SX "); 293 if (regs->cp0_status & ST0_UX) 294 printk("UX "); 295 switch (regs->cp0_status & ST0_KSU) { 296 case KSU_USER: 297 printk("USER "); 298 break; 299 case KSU_SUPERVISOR: 300 printk("SUPERVISOR "); 301 break; 302 case KSU_KERNEL: 303 printk("KERNEL "); 304 break; 305 default: 306 printk("BAD_MODE "); 307 break; 308 } 309 if (regs->cp0_status & ST0_ERL) 310 printk("ERL "); 311 if (regs->cp0_status & ST0_EXL) 312 printk("EXL "); 313 if (regs->cp0_status & ST0_IE) 314 printk("IE "); 315 } 316 printk("\n"); 317 318 printk("Cause : %08x\n", cause); 319 320 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; 321 if (1 <= cause && cause <= 5) 322 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); 323 324 printk("PrId : %08x (%s)\n", read_c0_prid(), 325 cpu_name_string()); 326 } 327 328 /* 329 * FIXME: really the generic show_regs should take a const pointer argument. 330 */ 331 void show_regs(struct pt_regs *regs) 332 { 333 __show_regs((struct pt_regs *)regs); 334 } 335 336 void show_registers(struct pt_regs *regs) 337 { 338 const int field = 2 * sizeof(unsigned long); 339 mm_segment_t old_fs = get_fs(); 340 341 __show_regs(regs); 342 print_modules(); 343 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", 344 current->comm, current->pid, current_thread_info(), current, 345 field, current_thread_info()->tp_value); 346 if (cpu_has_userlocal) { 347 unsigned long tls; 348 349 tls = read_c0_userlocal(); 350 if (tls != current_thread_info()->tp_value) 351 printk("*HwTLS: %0*lx\n", field, tls); 352 } 353 354 if (!user_mode(regs)) 355 /* Necessary for getting the correct stack content */ 356 set_fs(KERNEL_DS); 357 show_stacktrace(current, regs); 358 show_code((unsigned int __user *) regs->cp0_epc); 359 printk("\n"); 360 set_fs(old_fs); 361 } 362 363 static int regs_to_trapnr(struct pt_regs *regs) 364 { 365 return (regs->cp0_cause >> 2) & 0x1f; 366 } 367 368 static DEFINE_RAW_SPINLOCK(die_lock); 369 370 void __noreturn die(const char *str, struct pt_regs *regs) 371 { 372 static int die_counter; 373 int sig = SIGSEGV; 374 375 oops_enter(); 376 377 if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), 378 SIGSEGV) == NOTIFY_STOP) 379 sig = 0; 380 381 console_verbose(); 382 raw_spin_lock_irq(&die_lock); 383 bust_spinlocks(1); 384 385 printk("%s[#%d]:\n", str, ++die_counter); 386 show_registers(regs); 387 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 388 raw_spin_unlock_irq(&die_lock); 389 390 oops_exit(); 391 392 if (in_interrupt()) 393 panic("Fatal exception in interrupt"); 394 395 if (panic_on_oops) { 396 printk(KERN_EMERG "Fatal exception: panic in 5 seconds"); 397 ssleep(5); 398 panic("Fatal exception"); 399 } 400 401 if (regs && kexec_should_crash(current)) 402 crash_kexec(regs); 403 404 do_exit(sig); 405 } 406 407 extern struct exception_table_entry __start___dbe_table[]; 408 extern struct exception_table_entry __stop___dbe_table[]; 409 410 __asm__( 411 " .section __dbe_table, \"a\"\n" 412 " .previous \n"); 413 414 /* Given an address, look for it in the exception tables. */ 415 static const struct exception_table_entry *search_dbe_tables(unsigned long addr) 416 { 417 const struct exception_table_entry *e; 418 419 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr); 420 if (!e) 421 e = search_module_dbetables(addr); 422 return e; 423 } 424 425 asmlinkage void do_be(struct pt_regs *regs) 426 { 427 const int field = 2 * sizeof(unsigned long); 428 const struct exception_table_entry *fixup = NULL; 429 int data = regs->cp0_cause & 4; 430 int action = MIPS_BE_FATAL; 431 enum ctx_state prev_state; 432 433 prev_state = exception_enter(); 434 /* XXX For now. Fixme, this searches the wrong table ... */ 435 if (data && !user_mode(regs)) 436 fixup = search_dbe_tables(exception_epc(regs)); 437 438 if (fixup) 439 action = MIPS_BE_FIXUP; 440 441 if (board_be_handler) 442 action = board_be_handler(regs, fixup != NULL); 443 444 switch (action) { 445 case MIPS_BE_DISCARD: 446 goto out; 447 case MIPS_BE_FIXUP: 448 if (fixup) { 449 regs->cp0_epc = fixup->nextinsn; 450 goto out; 451 } 452 break; 453 default: 454 break; 455 } 456 457 /* 458 * Assume it would be too dangerous to continue ... 459 */ 460 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", 461 data ? "Data" : "Instruction", 462 field, regs->cp0_epc, field, regs->regs[31]); 463 if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), 464 SIGBUS) == NOTIFY_STOP) 465 goto out; 466 467 die_if_kernel("Oops", regs); 468 force_sig(SIGBUS, current); 469 470 out: 471 exception_exit(prev_state); 472 } 473 474 /* 475 * ll/sc, rdhwr, sync emulation 476 */ 477 478 #define OPCODE 0xfc000000 479 #define BASE 0x03e00000 480 #define RT 0x001f0000 481 #define OFFSET 0x0000ffff 482 #define LL 0xc0000000 483 #define SC 0xe0000000 484 #define SPEC0 0x00000000 485 #define SPEC3 0x7c000000 486 #define RD 0x0000f800 487 #define FUNC 0x0000003f 488 #define SYNC 0x0000000f 489 #define RDHWR 0x0000003b 490 491 /* microMIPS definitions */ 492 #define MM_POOL32A_FUNC 0xfc00ffff 493 #define MM_RDHWR 0x00006b3c 494 #define MM_RS 0x001f0000 495 #define MM_RT 0x03e00000 496 497 /* 498 * The ll_bit is cleared by r*_switch.S 499 */ 500 501 unsigned int ll_bit; 502 struct task_struct *ll_task; 503 504 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) 505 { 506 unsigned long value, __user *vaddr; 507 long offset; 508 509 /* 510 * analyse the ll instruction that just caused a ri exception 511 * and put the referenced address to addr. 512 */ 513 514 /* sign extend offset */ 515 offset = opcode & OFFSET; 516 offset <<= 16; 517 offset >>= 16; 518 519 vaddr = (unsigned long __user *) 520 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 521 522 if ((unsigned long)vaddr & 3) 523 return SIGBUS; 524 if (get_user(value, vaddr)) 525 return SIGSEGV; 526 527 preempt_disable(); 528 529 if (ll_task == NULL || ll_task == current) { 530 ll_bit = 1; 531 } else { 532 ll_bit = 0; 533 } 534 ll_task = current; 535 536 preempt_enable(); 537 538 regs->regs[(opcode & RT) >> 16] = value; 539 540 return 0; 541 } 542 543 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) 544 { 545 unsigned long __user *vaddr; 546 unsigned long reg; 547 long offset; 548 549 /* 550 * analyse the sc instruction that just caused a ri exception 551 * and put the referenced address to addr. 552 */ 553 554 /* sign extend offset */ 555 offset = opcode & OFFSET; 556 offset <<= 16; 557 offset >>= 16; 558 559 vaddr = (unsigned long __user *) 560 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 561 reg = (opcode & RT) >> 16; 562 563 if ((unsigned long)vaddr & 3) 564 return SIGBUS; 565 566 preempt_disable(); 567 568 if (ll_bit == 0 || ll_task != current) { 569 regs->regs[reg] = 0; 570 preempt_enable(); 571 return 0; 572 } 573 574 preempt_enable(); 575 576 if (put_user(regs->regs[reg], vaddr)) 577 return SIGSEGV; 578 579 regs->regs[reg] = 1; 580 581 return 0; 582 } 583 584 /* 585 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both 586 * opcodes are supposed to result in coprocessor unusable exceptions if 587 * executed on ll/sc-less processors. That's the theory. In practice a 588 * few processors such as NEC's VR4100 throw reserved instruction exceptions 589 * instead, so we're doing the emulation thing in both exception handlers. 590 */ 591 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) 592 { 593 if ((opcode & OPCODE) == LL) { 594 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 595 1, regs, 0); 596 return simulate_ll(regs, opcode); 597 } 598 if ((opcode & OPCODE) == SC) { 599 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 600 1, regs, 0); 601 return simulate_sc(regs, opcode); 602 } 603 604 return -1; /* Must be something else ... */ 605 } 606 607 /* 608 * Simulate trapping 'rdhwr' instructions to provide user accessible 609 * registers not implemented in hardware. 610 */ 611 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt) 612 { 613 struct thread_info *ti = task_thread_info(current); 614 615 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 616 1, regs, 0); 617 switch (rd) { 618 case 0: /* CPU number */ 619 regs->regs[rt] = smp_processor_id(); 620 return 0; 621 case 1: /* SYNCI length */ 622 regs->regs[rt] = min(current_cpu_data.dcache.linesz, 623 current_cpu_data.icache.linesz); 624 return 0; 625 case 2: /* Read count register */ 626 regs->regs[rt] = read_c0_count(); 627 return 0; 628 case 3: /* Count register resolution */ 629 switch (current_cpu_type()) { 630 case CPU_20KC: 631 case CPU_25KF: 632 regs->regs[rt] = 1; 633 break; 634 default: 635 regs->regs[rt] = 2; 636 } 637 return 0; 638 case 29: 639 regs->regs[rt] = ti->tp_value; 640 return 0; 641 default: 642 return -1; 643 } 644 } 645 646 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode) 647 { 648 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { 649 int rd = (opcode & RD) >> 11; 650 int rt = (opcode & RT) >> 16; 651 652 simulate_rdhwr(regs, rd, rt); 653 return 0; 654 } 655 656 /* Not ours. */ 657 return -1; 658 } 659 660 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode) 661 { 662 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) { 663 int rd = (opcode & MM_RS) >> 16; 664 int rt = (opcode & MM_RT) >> 21; 665 simulate_rdhwr(regs, rd, rt); 666 return 0; 667 } 668 669 /* Not ours. */ 670 return -1; 671 } 672 673 static int simulate_sync(struct pt_regs *regs, unsigned int opcode) 674 { 675 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) { 676 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 677 1, regs, 0); 678 return 0; 679 } 680 681 return -1; /* Must be something else ... */ 682 } 683 684 asmlinkage void do_ov(struct pt_regs *regs) 685 { 686 enum ctx_state prev_state; 687 siginfo_t info; 688 689 prev_state = exception_enter(); 690 die_if_kernel("Integer overflow", regs); 691 692 info.si_code = FPE_INTOVF; 693 info.si_signo = SIGFPE; 694 info.si_errno = 0; 695 info.si_addr = (void __user *) regs->cp0_epc; 696 force_sig_info(SIGFPE, &info, current); 697 exception_exit(prev_state); 698 } 699 700 int process_fpemu_return(int sig, void __user *fault_addr) 701 { 702 if (sig == SIGSEGV || sig == SIGBUS) { 703 struct siginfo si = {0}; 704 si.si_addr = fault_addr; 705 si.si_signo = sig; 706 if (sig == SIGSEGV) { 707 down_read(¤t->mm->mmap_sem); 708 if (find_vma(current->mm, (unsigned long)fault_addr)) 709 si.si_code = SEGV_ACCERR; 710 else 711 si.si_code = SEGV_MAPERR; 712 up_read(¤t->mm->mmap_sem); 713 } else { 714 si.si_code = BUS_ADRERR; 715 } 716 force_sig_info(sig, &si, current); 717 return 1; 718 } else if (sig) { 719 force_sig(sig, current); 720 return 1; 721 } else { 722 return 0; 723 } 724 } 725 726 /* 727 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX 728 */ 729 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) 730 { 731 enum ctx_state prev_state; 732 siginfo_t info = {0}; 733 734 prev_state = exception_enter(); 735 if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), 736 SIGFPE) == NOTIFY_STOP) 737 goto out; 738 die_if_kernel("FP exception in kernel code", regs); 739 740 if (fcr31 & FPU_CSR_UNI_X) { 741 int sig; 742 void __user *fault_addr = NULL; 743 744 /* 745 * Unimplemented operation exception. If we've got the full 746 * software emulator on-board, let's use it... 747 * 748 * Force FPU to dump state into task/thread context. We're 749 * moving a lot of data here for what is probably a single 750 * instruction, but the alternative is to pre-decode the FP 751 * register operands before invoking the emulator, which seems 752 * a bit extreme for what should be an infrequent event. 753 */ 754 /* Ensure 'resume' not overwrite saved fp context again. */ 755 lose_fpu(1); 756 757 /* Run the emulator */ 758 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 759 &fault_addr); 760 761 /* 762 * We can't allow the emulated instruction to leave any of 763 * the cause bit set in $fcr31. 764 */ 765 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 766 767 /* Restore the hardware register state */ 768 own_fpu(1); /* Using the FPU again. */ 769 770 /* If something went wrong, signal */ 771 process_fpemu_return(sig, fault_addr); 772 773 goto out; 774 } else if (fcr31 & FPU_CSR_INV_X) 775 info.si_code = FPE_FLTINV; 776 else if (fcr31 & FPU_CSR_DIV_X) 777 info.si_code = FPE_FLTDIV; 778 else if (fcr31 & FPU_CSR_OVF_X) 779 info.si_code = FPE_FLTOVF; 780 else if (fcr31 & FPU_CSR_UDF_X) 781 info.si_code = FPE_FLTUND; 782 else if (fcr31 & FPU_CSR_INE_X) 783 info.si_code = FPE_FLTRES; 784 else 785 info.si_code = __SI_FAULT; 786 info.si_signo = SIGFPE; 787 info.si_errno = 0; 788 info.si_addr = (void __user *) regs->cp0_epc; 789 force_sig_info(SIGFPE, &info, current); 790 791 out: 792 exception_exit(prev_state); 793 } 794 795 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code, 796 const char *str) 797 { 798 siginfo_t info; 799 char b[40]; 800 801 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 802 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 803 return; 804 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 805 806 if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), 807 SIGTRAP) == NOTIFY_STOP) 808 return; 809 810 /* 811 * A short test says that IRIX 5.3 sends SIGTRAP for all trap 812 * insns, even for trap and break codes that indicate arithmetic 813 * failures. Weird ... 814 * But should we continue the brokenness??? --macro 815 */ 816 switch (code) { 817 case BRK_OVERFLOW: 818 case BRK_DIVZERO: 819 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 820 die_if_kernel(b, regs); 821 if (code == BRK_DIVZERO) 822 info.si_code = FPE_INTDIV; 823 else 824 info.si_code = FPE_INTOVF; 825 info.si_signo = SIGFPE; 826 info.si_errno = 0; 827 info.si_addr = (void __user *) regs->cp0_epc; 828 force_sig_info(SIGFPE, &info, current); 829 break; 830 case BRK_BUG: 831 die_if_kernel("Kernel bug detected", regs); 832 force_sig(SIGTRAP, current); 833 break; 834 case BRK_MEMU: 835 /* 836 * Address errors may be deliberately induced by the FPU 837 * emulator to retake control of the CPU after executing the 838 * instruction in the delay slot of an emulated branch. 839 * 840 * Terminate if exception was recognized as a delay slot return 841 * otherwise handle as normal. 842 */ 843 if (do_dsemulret(regs)) 844 return; 845 846 die_if_kernel("Math emu break/trap", regs); 847 force_sig(SIGTRAP, current); 848 break; 849 default: 850 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 851 die_if_kernel(b, regs); 852 force_sig(SIGTRAP, current); 853 } 854 } 855 856 asmlinkage void do_bp(struct pt_regs *regs) 857 { 858 unsigned int opcode, bcode; 859 enum ctx_state prev_state; 860 unsigned long epc; 861 u16 instr[2]; 862 mm_segment_t seg; 863 864 seg = get_fs(); 865 if (!user_mode(regs)) 866 set_fs(KERNEL_DS); 867 868 prev_state = exception_enter(); 869 if (get_isa16_mode(regs->cp0_epc)) { 870 /* Calculate EPC. */ 871 epc = exception_epc(regs); 872 if (cpu_has_mmips) { 873 if ((__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc)) || 874 (__get_user(instr[1], (u16 __user *)msk_isa16_mode(epc + 2))))) 875 goto out_sigsegv; 876 opcode = (instr[0] << 16) | instr[1]; 877 } else { 878 /* MIPS16e mode */ 879 if (__get_user(instr[0], 880 (u16 __user *)msk_isa16_mode(epc))) 881 goto out_sigsegv; 882 bcode = (instr[0] >> 6) & 0x3f; 883 do_trap_or_bp(regs, bcode, "Break"); 884 goto out; 885 } 886 } else { 887 if (__get_user(opcode, 888 (unsigned int __user *) exception_epc(regs))) 889 goto out_sigsegv; 890 } 891 892 /* 893 * There is the ancient bug in the MIPS assemblers that the break 894 * code starts left to bit 16 instead to bit 6 in the opcode. 895 * Gas is bug-compatible, but not always, grrr... 896 * We handle both cases with a simple heuristics. --macro 897 */ 898 bcode = ((opcode >> 6) & ((1 << 20) - 1)); 899 if (bcode >= (1 << 10)) 900 bcode >>= 10; 901 902 /* 903 * notify the kprobe handlers, if instruction is likely to 904 * pertain to them. 905 */ 906 switch (bcode) { 907 case BRK_KPROBE_BP: 908 if (notify_die(DIE_BREAK, "debug", regs, bcode, 909 regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 910 goto out; 911 else 912 break; 913 case BRK_KPROBE_SSTEPBP: 914 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, 915 regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 916 goto out; 917 else 918 break; 919 default: 920 break; 921 } 922 923 do_trap_or_bp(regs, bcode, "Break"); 924 925 out: 926 set_fs(seg); 927 exception_exit(prev_state); 928 return; 929 930 out_sigsegv: 931 force_sig(SIGSEGV, current); 932 goto out; 933 } 934 935 asmlinkage void do_tr(struct pt_regs *regs) 936 { 937 u32 opcode, tcode = 0; 938 enum ctx_state prev_state; 939 u16 instr[2]; 940 mm_segment_t seg; 941 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 942 943 seg = get_fs(); 944 if (!user_mode(regs)) 945 set_fs(get_ds()); 946 947 prev_state = exception_enter(); 948 if (get_isa16_mode(regs->cp0_epc)) { 949 if (__get_user(instr[0], (u16 __user *)(epc + 0)) || 950 __get_user(instr[1], (u16 __user *)(epc + 2))) 951 goto out_sigsegv; 952 opcode = (instr[0] << 16) | instr[1]; 953 /* Immediate versions don't provide a code. */ 954 if (!(opcode & OPCODE)) 955 tcode = (opcode >> 12) & ((1 << 4) - 1); 956 } else { 957 if (__get_user(opcode, (u32 __user *)epc)) 958 goto out_sigsegv; 959 /* Immediate versions don't provide a code. */ 960 if (!(opcode & OPCODE)) 961 tcode = (opcode >> 6) & ((1 << 10) - 1); 962 } 963 964 do_trap_or_bp(regs, tcode, "Trap"); 965 966 out: 967 set_fs(seg); 968 exception_exit(prev_state); 969 return; 970 971 out_sigsegv: 972 force_sig(SIGSEGV, current); 973 goto out; 974 } 975 976 asmlinkage void do_ri(struct pt_regs *regs) 977 { 978 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); 979 unsigned long old_epc = regs->cp0_epc; 980 unsigned long old31 = regs->regs[31]; 981 enum ctx_state prev_state; 982 unsigned int opcode = 0; 983 int status = -1; 984 985 prev_state = exception_enter(); 986 if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), 987 SIGILL) == NOTIFY_STOP) 988 goto out; 989 990 die_if_kernel("Reserved instruction in kernel code", regs); 991 992 if (unlikely(compute_return_epc(regs) < 0)) 993 goto out; 994 995 if (get_isa16_mode(regs->cp0_epc)) { 996 unsigned short mmop[2] = { 0 }; 997 998 if (unlikely(get_user(mmop[0], epc) < 0)) 999 status = SIGSEGV; 1000 if (unlikely(get_user(mmop[1], epc) < 0)) 1001 status = SIGSEGV; 1002 opcode = (mmop[0] << 16) | mmop[1]; 1003 1004 if (status < 0) 1005 status = simulate_rdhwr_mm(regs, opcode); 1006 } else { 1007 if (unlikely(get_user(opcode, epc) < 0)) 1008 status = SIGSEGV; 1009 1010 if (!cpu_has_llsc && status < 0) 1011 status = simulate_llsc(regs, opcode); 1012 1013 if (status < 0) 1014 status = simulate_rdhwr_normal(regs, opcode); 1015 1016 if (status < 0) 1017 status = simulate_sync(regs, opcode); 1018 } 1019 1020 if (status < 0) 1021 status = SIGILL; 1022 1023 if (unlikely(status > 0)) { 1024 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1025 regs->regs[31] = old31; 1026 force_sig(status, current); 1027 } 1028 1029 out: 1030 exception_exit(prev_state); 1031 } 1032 1033 /* 1034 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've 1035 * emulated more than some threshold number of instructions, force migration to 1036 * a "CPU" that has FP support. 1037 */ 1038 static void mt_ase_fp_affinity(void) 1039 { 1040 #ifdef CONFIG_MIPS_MT_FPAFF 1041 if (mt_fpemul_threshold > 0 && 1042 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { 1043 /* 1044 * If there's no FPU present, or if the application has already 1045 * restricted the allowed set to exclude any CPUs with FPUs, 1046 * we'll skip the procedure. 1047 */ 1048 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) { 1049 cpumask_t tmask; 1050 1051 current->thread.user_cpus_allowed 1052 = current->cpus_allowed; 1053 cpus_and(tmask, current->cpus_allowed, 1054 mt_fpu_cpumask); 1055 set_cpus_allowed_ptr(current, &tmask); 1056 set_thread_flag(TIF_FPUBOUND); 1057 } 1058 } 1059 #endif /* CONFIG_MIPS_MT_FPAFF */ 1060 } 1061 1062 /* 1063 * No lock; only written during early bootup by CPU 0. 1064 */ 1065 static RAW_NOTIFIER_HEAD(cu2_chain); 1066 1067 int __ref register_cu2_notifier(struct notifier_block *nb) 1068 { 1069 return raw_notifier_chain_register(&cu2_chain, nb); 1070 } 1071 1072 int cu2_notifier_call_chain(unsigned long val, void *v) 1073 { 1074 return raw_notifier_call_chain(&cu2_chain, val, v); 1075 } 1076 1077 static int default_cu2_call(struct notifier_block *nfb, unsigned long action, 1078 void *data) 1079 { 1080 struct pt_regs *regs = data; 1081 1082 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid " 1083 "instruction", regs); 1084 force_sig(SIGILL, current); 1085 1086 return NOTIFY_OK; 1087 } 1088 1089 static int enable_restore_fp_context(int msa) 1090 { 1091 int err, was_fpu_owner; 1092 1093 if (!used_math()) { 1094 /* First time FP context user. */ 1095 err = init_fpu(); 1096 if (msa && !err) 1097 enable_msa(); 1098 if (!err) 1099 set_used_math(); 1100 return err; 1101 } 1102 1103 /* 1104 * This task has formerly used the FP context. 1105 * 1106 * If this thread has no live MSA vector context then we can simply 1107 * restore the scalar FP context. If it has live MSA vector context 1108 * (that is, it has or may have used MSA since last performing a 1109 * function call) then we'll need to restore the vector context. This 1110 * applies even if we're currently only executing a scalar FP 1111 * instruction. This is because if we were to later execute an MSA 1112 * instruction then we'd either have to: 1113 * 1114 * - Restore the vector context & clobber any registers modified by 1115 * scalar FP instructions between now & then. 1116 * 1117 * or 1118 * 1119 * - Not restore the vector context & lose the most significant bits 1120 * of all vector registers. 1121 * 1122 * Neither of those options is acceptable. We cannot restore the least 1123 * significant bits of the registers now & only restore the most 1124 * significant bits later because the most significant bits of any 1125 * vector registers whose aliased FP register is modified now will have 1126 * been zeroed. We'd have no way to know that when restoring the vector 1127 * context & thus may load an outdated value for the most significant 1128 * bits of a vector register. 1129 */ 1130 if (!msa && !thread_msa_context_live()) 1131 return own_fpu(1); 1132 1133 /* 1134 * This task is using or has previously used MSA. Thus we require 1135 * that Status.FR == 1. 1136 */ 1137 was_fpu_owner = is_fpu_owner(); 1138 err = own_fpu(0); 1139 if (err) 1140 return err; 1141 1142 enable_msa(); 1143 write_msa_csr(current->thread.fpu.msacsr); 1144 set_thread_flag(TIF_USEDMSA); 1145 1146 /* 1147 * If this is the first time that the task is using MSA and it has 1148 * previously used scalar FP in this time slice then we already nave 1149 * FP context which we shouldn't clobber. 1150 */ 1151 if (!test_and_set_thread_flag(TIF_MSA_CTX_LIVE) && was_fpu_owner) 1152 return 0; 1153 1154 /* We need to restore the vector context. */ 1155 restore_msa(current); 1156 return 0; 1157 } 1158 1159 asmlinkage void do_cpu(struct pt_regs *regs) 1160 { 1161 enum ctx_state prev_state; 1162 unsigned int __user *epc; 1163 unsigned long old_epc, old31; 1164 unsigned int opcode; 1165 unsigned int cpid; 1166 int status, err; 1167 unsigned long __maybe_unused flags; 1168 1169 prev_state = exception_enter(); 1170 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; 1171 1172 if (cpid != 2) 1173 die_if_kernel("do_cpu invoked from kernel context!", regs); 1174 1175 switch (cpid) { 1176 case 0: 1177 epc = (unsigned int __user *)exception_epc(regs); 1178 old_epc = regs->cp0_epc; 1179 old31 = regs->regs[31]; 1180 opcode = 0; 1181 status = -1; 1182 1183 if (unlikely(compute_return_epc(regs) < 0)) 1184 goto out; 1185 1186 if (get_isa16_mode(regs->cp0_epc)) { 1187 unsigned short mmop[2] = { 0 }; 1188 1189 if (unlikely(get_user(mmop[0], epc) < 0)) 1190 status = SIGSEGV; 1191 if (unlikely(get_user(mmop[1], epc) < 0)) 1192 status = SIGSEGV; 1193 opcode = (mmop[0] << 16) | mmop[1]; 1194 1195 if (status < 0) 1196 status = simulate_rdhwr_mm(regs, opcode); 1197 } else { 1198 if (unlikely(get_user(opcode, epc) < 0)) 1199 status = SIGSEGV; 1200 1201 if (!cpu_has_llsc && status < 0) 1202 status = simulate_llsc(regs, opcode); 1203 1204 if (status < 0) 1205 status = simulate_rdhwr_normal(regs, opcode); 1206 } 1207 1208 if (status < 0) 1209 status = SIGILL; 1210 1211 if (unlikely(status > 0)) { 1212 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1213 regs->regs[31] = old31; 1214 force_sig(status, current); 1215 } 1216 1217 goto out; 1218 1219 case 3: 1220 /* 1221 * Old (MIPS I and MIPS II) processors will set this code 1222 * for COP1X opcode instructions that replaced the original 1223 * COP3 space. We don't limit COP1 space instructions in 1224 * the emulator according to the CPU ISA, so we want to 1225 * treat COP1X instructions consistently regardless of which 1226 * code the CPU chose. Therefore we redirect this trap to 1227 * the FP emulator too. 1228 * 1229 * Then some newer FPU-less processors use this code 1230 * erroneously too, so they are covered by this choice 1231 * as well. 1232 */ 1233 if (raw_cpu_has_fpu) 1234 break; 1235 /* Fall through. */ 1236 1237 case 1: 1238 err = enable_restore_fp_context(0); 1239 1240 if (!raw_cpu_has_fpu || err) { 1241 int sig; 1242 void __user *fault_addr = NULL; 1243 sig = fpu_emulator_cop1Handler(regs, 1244 ¤t->thread.fpu, 1245 0, &fault_addr); 1246 if (!process_fpemu_return(sig, fault_addr) && !err) 1247 mt_ase_fp_affinity(); 1248 } 1249 1250 goto out; 1251 1252 case 2: 1253 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); 1254 goto out; 1255 } 1256 1257 force_sig(SIGILL, current); 1258 1259 out: 1260 exception_exit(prev_state); 1261 } 1262 1263 asmlinkage void do_msa_fpe(struct pt_regs *regs) 1264 { 1265 enum ctx_state prev_state; 1266 1267 prev_state = exception_enter(); 1268 die_if_kernel("do_msa_fpe invoked from kernel context!", regs); 1269 force_sig(SIGFPE, current); 1270 exception_exit(prev_state); 1271 } 1272 1273 asmlinkage void do_msa(struct pt_regs *regs) 1274 { 1275 enum ctx_state prev_state; 1276 int err; 1277 1278 prev_state = exception_enter(); 1279 1280 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) { 1281 force_sig(SIGILL, current); 1282 goto out; 1283 } 1284 1285 die_if_kernel("do_msa invoked from kernel context!", regs); 1286 1287 err = enable_restore_fp_context(1); 1288 if (err) 1289 force_sig(SIGILL, current); 1290 out: 1291 exception_exit(prev_state); 1292 } 1293 1294 asmlinkage void do_mdmx(struct pt_regs *regs) 1295 { 1296 enum ctx_state prev_state; 1297 1298 prev_state = exception_enter(); 1299 force_sig(SIGILL, current); 1300 exception_exit(prev_state); 1301 } 1302 1303 /* 1304 * Called with interrupts disabled. 1305 */ 1306 asmlinkage void do_watch(struct pt_regs *regs) 1307 { 1308 enum ctx_state prev_state; 1309 u32 cause; 1310 1311 prev_state = exception_enter(); 1312 /* 1313 * Clear WP (bit 22) bit of cause register so we don't loop 1314 * forever. 1315 */ 1316 cause = read_c0_cause(); 1317 cause &= ~(1 << 22); 1318 write_c0_cause(cause); 1319 1320 /* 1321 * If the current thread has the watch registers loaded, save 1322 * their values and send SIGTRAP. Otherwise another thread 1323 * left the registers set, clear them and continue. 1324 */ 1325 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { 1326 mips_read_watch_registers(); 1327 local_irq_enable(); 1328 force_sig(SIGTRAP, current); 1329 } else { 1330 mips_clear_watch_registers(); 1331 local_irq_enable(); 1332 } 1333 exception_exit(prev_state); 1334 } 1335 1336 asmlinkage void do_mcheck(struct pt_regs *regs) 1337 { 1338 const int field = 2 * sizeof(unsigned long); 1339 int multi_match = regs->cp0_status & ST0_TS; 1340 enum ctx_state prev_state; 1341 1342 prev_state = exception_enter(); 1343 show_regs(regs); 1344 1345 if (multi_match) { 1346 printk("Index : %0x\n", read_c0_index()); 1347 printk("Pagemask: %0x\n", read_c0_pagemask()); 1348 printk("EntryHi : %0*lx\n", field, read_c0_entryhi()); 1349 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0()); 1350 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1()); 1351 printk("\n"); 1352 dump_tlb_all(); 1353 } 1354 1355 show_code((unsigned int __user *) regs->cp0_epc); 1356 1357 /* 1358 * Some chips may have other causes of machine check (e.g. SB1 1359 * graduation timer) 1360 */ 1361 panic("Caught Machine Check exception - %scaused by multiple " 1362 "matching entries in the TLB.", 1363 (multi_match) ? "" : "not "); 1364 } 1365 1366 asmlinkage void do_mt(struct pt_regs *regs) 1367 { 1368 int subcode; 1369 1370 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) 1371 >> VPECONTROL_EXCPT_SHIFT; 1372 switch (subcode) { 1373 case 0: 1374 printk(KERN_DEBUG "Thread Underflow\n"); 1375 break; 1376 case 1: 1377 printk(KERN_DEBUG "Thread Overflow\n"); 1378 break; 1379 case 2: 1380 printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); 1381 break; 1382 case 3: 1383 printk(KERN_DEBUG "Gating Storage Exception\n"); 1384 break; 1385 case 4: 1386 printk(KERN_DEBUG "YIELD Scheduler Exception\n"); 1387 break; 1388 case 5: 1389 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n"); 1390 break; 1391 default: 1392 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", 1393 subcode); 1394 break; 1395 } 1396 die_if_kernel("MIPS MT Thread exception in kernel", regs); 1397 1398 force_sig(SIGILL, current); 1399 } 1400 1401 1402 asmlinkage void do_dsp(struct pt_regs *regs) 1403 { 1404 if (cpu_has_dsp) 1405 panic("Unexpected DSP exception"); 1406 1407 force_sig(SIGILL, current); 1408 } 1409 1410 asmlinkage void do_reserved(struct pt_regs *regs) 1411 { 1412 /* 1413 * Game over - no way to handle this if it ever occurs. Most probably 1414 * caused by a new unknown cpu type or after another deadly 1415 * hard/software error. 1416 */ 1417 show_regs(regs); 1418 panic("Caught reserved exception %ld - should not happen.", 1419 (regs->cp0_cause & 0x7f) >> 2); 1420 } 1421 1422 static int __initdata l1parity = 1; 1423 static int __init nol1parity(char *s) 1424 { 1425 l1parity = 0; 1426 return 1; 1427 } 1428 __setup("nol1par", nol1parity); 1429 static int __initdata l2parity = 1; 1430 static int __init nol2parity(char *s) 1431 { 1432 l2parity = 0; 1433 return 1; 1434 } 1435 __setup("nol2par", nol2parity); 1436 1437 /* 1438 * Some MIPS CPUs can enable/disable for cache parity detection, but do 1439 * it different ways. 1440 */ 1441 static inline void parity_protection_init(void) 1442 { 1443 switch (current_cpu_type()) { 1444 case CPU_24K: 1445 case CPU_34K: 1446 case CPU_74K: 1447 case CPU_1004K: 1448 case CPU_1074K: 1449 case CPU_INTERAPTIV: 1450 case CPU_PROAPTIV: 1451 case CPU_P5600: 1452 { 1453 #define ERRCTL_PE 0x80000000 1454 #define ERRCTL_L2P 0x00800000 1455 unsigned long errctl; 1456 unsigned int l1parity_present, l2parity_present; 1457 1458 errctl = read_c0_ecc(); 1459 errctl &= ~(ERRCTL_PE|ERRCTL_L2P); 1460 1461 /* probe L1 parity support */ 1462 write_c0_ecc(errctl | ERRCTL_PE); 1463 back_to_back_c0_hazard(); 1464 l1parity_present = (read_c0_ecc() & ERRCTL_PE); 1465 1466 /* probe L2 parity support */ 1467 write_c0_ecc(errctl|ERRCTL_L2P); 1468 back_to_back_c0_hazard(); 1469 l2parity_present = (read_c0_ecc() & ERRCTL_L2P); 1470 1471 if (l1parity_present && l2parity_present) { 1472 if (l1parity) 1473 errctl |= ERRCTL_PE; 1474 if (l1parity ^ l2parity) 1475 errctl |= ERRCTL_L2P; 1476 } else if (l1parity_present) { 1477 if (l1parity) 1478 errctl |= ERRCTL_PE; 1479 } else if (l2parity_present) { 1480 if (l2parity) 1481 errctl |= ERRCTL_L2P; 1482 } else { 1483 /* No parity available */ 1484 } 1485 1486 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); 1487 1488 write_c0_ecc(errctl); 1489 back_to_back_c0_hazard(); 1490 errctl = read_c0_ecc(); 1491 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); 1492 1493 if (l1parity_present) 1494 printk(KERN_INFO "Cache parity protection %sabled\n", 1495 (errctl & ERRCTL_PE) ? "en" : "dis"); 1496 1497 if (l2parity_present) { 1498 if (l1parity_present && l1parity) 1499 errctl ^= ERRCTL_L2P; 1500 printk(KERN_INFO "L2 cache parity protection %sabled\n", 1501 (errctl & ERRCTL_L2P) ? "en" : "dis"); 1502 } 1503 } 1504 break; 1505 1506 case CPU_5KC: 1507 case CPU_5KE: 1508 case CPU_LOONGSON1: 1509 write_c0_ecc(0x80000000); 1510 back_to_back_c0_hazard(); 1511 /* Set the PE bit (bit 31) in the c0_errctl register. */ 1512 printk(KERN_INFO "Cache parity protection %sabled\n", 1513 (read_c0_ecc() & 0x80000000) ? "en" : "dis"); 1514 break; 1515 case CPU_20KC: 1516 case CPU_25KF: 1517 /* Clear the DE bit (bit 16) in the c0_status register. */ 1518 printk(KERN_INFO "Enable cache parity protection for " 1519 "MIPS 20KC/25KF CPUs.\n"); 1520 clear_c0_status(ST0_DE); 1521 break; 1522 default: 1523 break; 1524 } 1525 } 1526 1527 asmlinkage void cache_parity_error(void) 1528 { 1529 const int field = 2 * sizeof(unsigned long); 1530 unsigned int reg_val; 1531 1532 /* For the moment, report the problem and hang. */ 1533 printk("Cache error exception:\n"); 1534 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1535 reg_val = read_c0_cacheerr(); 1536 printk("c0_cacheerr == %08x\n", reg_val); 1537 1538 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1539 reg_val & (1<<30) ? "secondary" : "primary", 1540 reg_val & (1<<31) ? "data" : "insn"); 1541 if (cpu_has_mips_r2 && 1542 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { 1543 pr_err("Error bits: %s%s%s%s%s%s%s%s\n", 1544 reg_val & (1<<29) ? "ED " : "", 1545 reg_val & (1<<28) ? "ET " : "", 1546 reg_val & (1<<27) ? "ES " : "", 1547 reg_val & (1<<26) ? "EE " : "", 1548 reg_val & (1<<25) ? "EB " : "", 1549 reg_val & (1<<24) ? "EI " : "", 1550 reg_val & (1<<23) ? "E1 " : "", 1551 reg_val & (1<<22) ? "E0 " : ""); 1552 } else { 1553 pr_err("Error bits: %s%s%s%s%s%s%s\n", 1554 reg_val & (1<<29) ? "ED " : "", 1555 reg_val & (1<<28) ? "ET " : "", 1556 reg_val & (1<<26) ? "EE " : "", 1557 reg_val & (1<<25) ? "EB " : "", 1558 reg_val & (1<<24) ? "EI " : "", 1559 reg_val & (1<<23) ? "E1 " : "", 1560 reg_val & (1<<22) ? "E0 " : ""); 1561 } 1562 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); 1563 1564 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) 1565 if (reg_val & (1<<22)) 1566 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); 1567 1568 if (reg_val & (1<<23)) 1569 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); 1570 #endif 1571 1572 panic("Can't handle the cache error!"); 1573 } 1574 1575 asmlinkage void do_ftlb(void) 1576 { 1577 const int field = 2 * sizeof(unsigned long); 1578 unsigned int reg_val; 1579 1580 /* For the moment, report the problem and hang. */ 1581 if (cpu_has_mips_r2 && 1582 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { 1583 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n", 1584 read_c0_ecc()); 1585 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1586 reg_val = read_c0_cacheerr(); 1587 pr_err("c0_cacheerr == %08x\n", reg_val); 1588 1589 if ((reg_val & 0xc0000000) == 0xc0000000) { 1590 pr_err("Decoded c0_cacheerr: FTLB parity error\n"); 1591 } else { 1592 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1593 reg_val & (1<<30) ? "secondary" : "primary", 1594 reg_val & (1<<31) ? "data" : "insn"); 1595 } 1596 } else { 1597 pr_err("FTLB error exception\n"); 1598 } 1599 /* Just print the cacheerr bits for now */ 1600 cache_parity_error(); 1601 } 1602 1603 /* 1604 * SDBBP EJTAG debug exception handler. 1605 * We skip the instruction and return to the next instruction. 1606 */ 1607 void ejtag_exception_handler(struct pt_regs *regs) 1608 { 1609 const int field = 2 * sizeof(unsigned long); 1610 unsigned long depc, old_epc, old_ra; 1611 unsigned int debug; 1612 1613 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); 1614 depc = read_c0_depc(); 1615 debug = read_c0_debug(); 1616 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); 1617 if (debug & 0x80000000) { 1618 /* 1619 * In branch delay slot. 1620 * We cheat a little bit here and use EPC to calculate the 1621 * debug return address (DEPC). EPC is restored after the 1622 * calculation. 1623 */ 1624 old_epc = regs->cp0_epc; 1625 old_ra = regs->regs[31]; 1626 regs->cp0_epc = depc; 1627 compute_return_epc(regs); 1628 depc = regs->cp0_epc; 1629 regs->cp0_epc = old_epc; 1630 regs->regs[31] = old_ra; 1631 } else 1632 depc += 4; 1633 write_c0_depc(depc); 1634 1635 #if 0 1636 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); 1637 write_c0_debug(debug | 0x100); 1638 #endif 1639 } 1640 1641 /* 1642 * NMI exception handler. 1643 * No lock; only written during early bootup by CPU 0. 1644 */ 1645 static RAW_NOTIFIER_HEAD(nmi_chain); 1646 1647 int register_nmi_notifier(struct notifier_block *nb) 1648 { 1649 return raw_notifier_chain_register(&nmi_chain, nb); 1650 } 1651 1652 void __noreturn nmi_exception_handler(struct pt_regs *regs) 1653 { 1654 char str[100]; 1655 1656 raw_notifier_call_chain(&nmi_chain, 0, regs); 1657 bust_spinlocks(1); 1658 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n", 1659 smp_processor_id(), regs->cp0_epc); 1660 regs->cp0_epc = read_c0_errorepc(); 1661 die(str, regs); 1662 } 1663 1664 #define VECTORSPACING 0x100 /* for EI/VI mode */ 1665 1666 unsigned long ebase; 1667 unsigned long exception_handlers[32]; 1668 unsigned long vi_handlers[64]; 1669 1670 void __init *set_except_vector(int n, void *addr) 1671 { 1672 unsigned long handler = (unsigned long) addr; 1673 unsigned long old_handler; 1674 1675 #ifdef CONFIG_CPU_MICROMIPS 1676 /* 1677 * Only the TLB handlers are cache aligned with an even 1678 * address. All other handlers are on an odd address and 1679 * require no modification. Otherwise, MIPS32 mode will 1680 * be entered when handling any TLB exceptions. That 1681 * would be bad...since we must stay in microMIPS mode. 1682 */ 1683 if (!(handler & 0x1)) 1684 handler |= 1; 1685 #endif 1686 old_handler = xchg(&exception_handlers[n], handler); 1687 1688 if (n == 0 && cpu_has_divec) { 1689 #ifdef CONFIG_CPU_MICROMIPS 1690 unsigned long jump_mask = ~((1 << 27) - 1); 1691 #else 1692 unsigned long jump_mask = ~((1 << 28) - 1); 1693 #endif 1694 u32 *buf = (u32 *)(ebase + 0x200); 1695 unsigned int k0 = 26; 1696 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { 1697 uasm_i_j(&buf, handler & ~jump_mask); 1698 uasm_i_nop(&buf); 1699 } else { 1700 UASM_i_LA(&buf, k0, handler); 1701 uasm_i_jr(&buf, k0); 1702 uasm_i_nop(&buf); 1703 } 1704 local_flush_icache_range(ebase + 0x200, (unsigned long)buf); 1705 } 1706 return (void *)old_handler; 1707 } 1708 1709 static void do_default_vi(void) 1710 { 1711 show_regs(get_irq_regs()); 1712 panic("Caught unexpected vectored interrupt."); 1713 } 1714 1715 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) 1716 { 1717 unsigned long handler; 1718 unsigned long old_handler = vi_handlers[n]; 1719 int srssets = current_cpu_data.srsets; 1720 u16 *h; 1721 unsigned char *b; 1722 1723 BUG_ON(!cpu_has_veic && !cpu_has_vint); 1724 1725 if (addr == NULL) { 1726 handler = (unsigned long) do_default_vi; 1727 srs = 0; 1728 } else 1729 handler = (unsigned long) addr; 1730 vi_handlers[n] = handler; 1731 1732 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); 1733 1734 if (srs >= srssets) 1735 panic("Shadow register set %d not supported", srs); 1736 1737 if (cpu_has_veic) { 1738 if (board_bind_eic_interrupt) 1739 board_bind_eic_interrupt(n, srs); 1740 } else if (cpu_has_vint) { 1741 /* SRSMap is only defined if shadow sets are implemented */ 1742 if (srssets > 1) 1743 change_c0_srsmap(0xf << n*4, srs << n*4); 1744 } 1745 1746 if (srs == 0) { 1747 /* 1748 * If no shadow set is selected then use the default handler 1749 * that does normal register saving and standard interrupt exit 1750 */ 1751 extern char except_vec_vi, except_vec_vi_lui; 1752 extern char except_vec_vi_ori, except_vec_vi_end; 1753 extern char rollback_except_vec_vi; 1754 char *vec_start = using_rollback_handler() ? 1755 &rollback_except_vec_vi : &except_vec_vi; 1756 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN) 1757 const int lui_offset = &except_vec_vi_lui - vec_start + 2; 1758 const int ori_offset = &except_vec_vi_ori - vec_start + 2; 1759 #else 1760 const int lui_offset = &except_vec_vi_lui - vec_start; 1761 const int ori_offset = &except_vec_vi_ori - vec_start; 1762 #endif 1763 const int handler_len = &except_vec_vi_end - vec_start; 1764 1765 if (handler_len > VECTORSPACING) { 1766 /* 1767 * Sigh... panicing won't help as the console 1768 * is probably not configured :( 1769 */ 1770 panic("VECTORSPACING too small"); 1771 } 1772 1773 set_handler(((unsigned long)b - ebase), vec_start, 1774 #ifdef CONFIG_CPU_MICROMIPS 1775 (handler_len - 1)); 1776 #else 1777 handler_len); 1778 #endif 1779 h = (u16 *)(b + lui_offset); 1780 *h = (handler >> 16) & 0xffff; 1781 h = (u16 *)(b + ori_offset); 1782 *h = (handler & 0xffff); 1783 local_flush_icache_range((unsigned long)b, 1784 (unsigned long)(b+handler_len)); 1785 } 1786 else { 1787 /* 1788 * In other cases jump directly to the interrupt handler. It 1789 * is the handler's responsibility to save registers if required 1790 * (eg hi/lo) and return from the exception using "eret". 1791 */ 1792 u32 insn; 1793 1794 h = (u16 *)b; 1795 /* j handler */ 1796 #ifdef CONFIG_CPU_MICROMIPS 1797 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1); 1798 #else 1799 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2); 1800 #endif 1801 h[0] = (insn >> 16) & 0xffff; 1802 h[1] = insn & 0xffff; 1803 h[2] = 0; 1804 h[3] = 0; 1805 local_flush_icache_range((unsigned long)b, 1806 (unsigned long)(b+8)); 1807 } 1808 1809 return (void *)old_handler; 1810 } 1811 1812 void *set_vi_handler(int n, vi_handler_t addr) 1813 { 1814 return set_vi_srs_handler(n, addr, 0); 1815 } 1816 1817 extern void tlb_init(void); 1818 1819 /* 1820 * Timer interrupt 1821 */ 1822 int cp0_compare_irq; 1823 EXPORT_SYMBOL_GPL(cp0_compare_irq); 1824 int cp0_compare_irq_shift; 1825 1826 /* 1827 * Performance counter IRQ or -1 if shared with timer 1828 */ 1829 int cp0_perfcount_irq; 1830 EXPORT_SYMBOL_GPL(cp0_perfcount_irq); 1831 1832 static int noulri; 1833 1834 static int __init ulri_disable(char *s) 1835 { 1836 pr_info("Disabling ulri\n"); 1837 noulri = 1; 1838 1839 return 1; 1840 } 1841 __setup("noulri", ulri_disable); 1842 1843 /* configure STATUS register */ 1844 static void configure_status(void) 1845 { 1846 /* 1847 * Disable coprocessors and select 32-bit or 64-bit addressing 1848 * and the 16/32 or 32/32 FPR register model. Reset the BEV 1849 * flag that some firmware may have left set and the TS bit (for 1850 * IP27). Set XX for ISA IV code to work. 1851 */ 1852 unsigned int status_set = ST0_CU0; 1853 #ifdef CONFIG_64BIT 1854 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; 1855 #endif 1856 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV) 1857 status_set |= ST0_XX; 1858 if (cpu_has_dsp) 1859 status_set |= ST0_MX; 1860 1861 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, 1862 status_set); 1863 } 1864 1865 /* configure HWRENA register */ 1866 static void configure_hwrena(void) 1867 { 1868 unsigned int hwrena = cpu_hwrena_impl_bits; 1869 1870 if (cpu_has_mips_r2) 1871 hwrena |= 0x0000000f; 1872 1873 if (!noulri && cpu_has_userlocal) 1874 hwrena |= (1 << 29); 1875 1876 if (hwrena) 1877 write_c0_hwrena(hwrena); 1878 } 1879 1880 static void configure_exception_vector(void) 1881 { 1882 if (cpu_has_veic || cpu_has_vint) { 1883 unsigned long sr = set_c0_status(ST0_BEV); 1884 write_c0_ebase(ebase); 1885 write_c0_status(sr); 1886 /* Setting vector spacing enables EI/VI mode */ 1887 change_c0_intctl(0x3e0, VECTORSPACING); 1888 } 1889 if (cpu_has_divec) { 1890 if (cpu_has_mipsmt) { 1891 unsigned int vpflags = dvpe(); 1892 set_c0_cause(CAUSEF_IV); 1893 evpe(vpflags); 1894 } else 1895 set_c0_cause(CAUSEF_IV); 1896 } 1897 } 1898 1899 void per_cpu_trap_init(bool is_boot_cpu) 1900 { 1901 unsigned int cpu = smp_processor_id(); 1902 1903 configure_status(); 1904 configure_hwrena(); 1905 1906 configure_exception_vector(); 1907 1908 /* 1909 * Before R2 both interrupt numbers were fixed to 7, so on R2 only: 1910 * 1911 * o read IntCtl.IPTI to determine the timer interrupt 1912 * o read IntCtl.IPPCI to determine the performance counter interrupt 1913 */ 1914 if (cpu_has_mips_r2) { 1915 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; 1916 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; 1917 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; 1918 if (cp0_perfcount_irq == cp0_compare_irq) 1919 cp0_perfcount_irq = -1; 1920 } else { 1921 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; 1922 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ; 1923 cp0_perfcount_irq = -1; 1924 } 1925 1926 if (!cpu_data[cpu].asid_cache) 1927 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION; 1928 1929 atomic_inc(&init_mm.mm_count); 1930 current->active_mm = &init_mm; 1931 BUG_ON(current->mm); 1932 enter_lazy_tlb(&init_mm, current); 1933 1934 /* Boot CPU's cache setup in setup_arch(). */ 1935 if (!is_boot_cpu) 1936 cpu_cache_init(); 1937 tlb_init(); 1938 TLBMISS_HANDLER_SETUP(); 1939 } 1940 1941 /* Install CPU exception handler */ 1942 void set_handler(unsigned long offset, void *addr, unsigned long size) 1943 { 1944 #ifdef CONFIG_CPU_MICROMIPS 1945 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size); 1946 #else 1947 memcpy((void *)(ebase + offset), addr, size); 1948 #endif 1949 local_flush_icache_range(ebase + offset, ebase + offset + size); 1950 } 1951 1952 static char panic_null_cerr[] = 1953 "Trying to set NULL cache error exception handler"; 1954 1955 /* 1956 * Install uncached CPU exception handler. 1957 * This is suitable only for the cache error exception which is the only 1958 * exception handler that is being run uncached. 1959 */ 1960 void set_uncached_handler(unsigned long offset, void *addr, 1961 unsigned long size) 1962 { 1963 unsigned long uncached_ebase = CKSEG1ADDR(ebase); 1964 1965 if (!addr) 1966 panic(panic_null_cerr); 1967 1968 memcpy((void *)(uncached_ebase + offset), addr, size); 1969 } 1970 1971 static int __initdata rdhwr_noopt; 1972 static int __init set_rdhwr_noopt(char *str) 1973 { 1974 rdhwr_noopt = 1; 1975 return 1; 1976 } 1977 1978 __setup("rdhwr_noopt", set_rdhwr_noopt); 1979 1980 void __init trap_init(void) 1981 { 1982 extern char except_vec3_generic; 1983 extern char except_vec4; 1984 extern char except_vec3_r4000; 1985 unsigned long i; 1986 1987 check_wait(); 1988 1989 #if defined(CONFIG_KGDB) 1990 if (kgdb_early_setup) 1991 return; /* Already done */ 1992 #endif 1993 1994 if (cpu_has_veic || cpu_has_vint) { 1995 unsigned long size = 0x200 + VECTORSPACING*64; 1996 ebase = (unsigned long) 1997 __alloc_bootmem(size, 1 << fls(size), 0); 1998 } else { 1999 #ifdef CONFIG_KVM_GUEST 2000 #define KVM_GUEST_KSEG0 0x40000000 2001 ebase = KVM_GUEST_KSEG0; 2002 #else 2003 ebase = CKSEG0; 2004 #endif 2005 if (cpu_has_mips_r2) 2006 ebase += (read_c0_ebase() & 0x3ffff000); 2007 } 2008 2009 if (cpu_has_mmips) { 2010 unsigned int config3 = read_c0_config3(); 2011 2012 if (IS_ENABLED(CONFIG_CPU_MICROMIPS)) 2013 write_c0_config3(config3 | MIPS_CONF3_ISA_OE); 2014 else 2015 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE); 2016 } 2017 2018 if (board_ebase_setup) 2019 board_ebase_setup(); 2020 per_cpu_trap_init(true); 2021 2022 /* 2023 * Copy the generic exception handlers to their final destination. 2024 * This will be overriden later as suitable for a particular 2025 * configuration. 2026 */ 2027 set_handler(0x180, &except_vec3_generic, 0x80); 2028 2029 /* 2030 * Setup default vectors 2031 */ 2032 for (i = 0; i <= 31; i++) 2033 set_except_vector(i, handle_reserved); 2034 2035 /* 2036 * Copy the EJTAG debug exception vector handler code to it's final 2037 * destination. 2038 */ 2039 if (cpu_has_ejtag && board_ejtag_handler_setup) 2040 board_ejtag_handler_setup(); 2041 2042 /* 2043 * Only some CPUs have the watch exceptions. 2044 */ 2045 if (cpu_has_watch) 2046 set_except_vector(23, handle_watch); 2047 2048 /* 2049 * Initialise interrupt handlers 2050 */ 2051 if (cpu_has_veic || cpu_has_vint) { 2052 int nvec = cpu_has_veic ? 64 : 8; 2053 for (i = 0; i < nvec; i++) 2054 set_vi_handler(i, NULL); 2055 } 2056 else if (cpu_has_divec) 2057 set_handler(0x200, &except_vec4, 0x8); 2058 2059 /* 2060 * Some CPUs can enable/disable for cache parity detection, but does 2061 * it different ways. 2062 */ 2063 parity_protection_init(); 2064 2065 /* 2066 * The Data Bus Errors / Instruction Bus Errors are signaled 2067 * by external hardware. Therefore these two exceptions 2068 * may have board specific handlers. 2069 */ 2070 if (board_be_init) 2071 board_be_init(); 2072 2073 set_except_vector(0, using_rollback_handler() ? rollback_handle_int 2074 : handle_int); 2075 set_except_vector(1, handle_tlbm); 2076 set_except_vector(2, handle_tlbl); 2077 set_except_vector(3, handle_tlbs); 2078 2079 set_except_vector(4, handle_adel); 2080 set_except_vector(5, handle_ades); 2081 2082 set_except_vector(6, handle_ibe); 2083 set_except_vector(7, handle_dbe); 2084 2085 set_except_vector(8, handle_sys); 2086 set_except_vector(9, handle_bp); 2087 set_except_vector(10, rdhwr_noopt ? handle_ri : 2088 (cpu_has_vtag_icache ? 2089 handle_ri_rdhwr_vivt : handle_ri_rdhwr)); 2090 set_except_vector(11, handle_cpu); 2091 set_except_vector(12, handle_ov); 2092 set_except_vector(13, handle_tr); 2093 set_except_vector(14, handle_msa_fpe); 2094 2095 if (current_cpu_type() == CPU_R6000 || 2096 current_cpu_type() == CPU_R6000A) { 2097 /* 2098 * The R6000 is the only R-series CPU that features a machine 2099 * check exception (similar to the R4000 cache error) and 2100 * unaligned ldc1/sdc1 exception. The handlers have not been 2101 * written yet. Well, anyway there is no R6000 machine on the 2102 * current list of targets for Linux/MIPS. 2103 * (Duh, crap, there is someone with a triple R6k machine) 2104 */ 2105 //set_except_vector(14, handle_mc); 2106 //set_except_vector(15, handle_ndc); 2107 } 2108 2109 2110 if (board_nmi_handler_setup) 2111 board_nmi_handler_setup(); 2112 2113 if (cpu_has_fpu && !cpu_has_nofpuex) 2114 set_except_vector(15, handle_fpe); 2115 2116 set_except_vector(16, handle_ftlb); 2117 set_except_vector(21, handle_msa); 2118 set_except_vector(22, handle_mdmx); 2119 2120 if (cpu_has_mcheck) 2121 set_except_vector(24, handle_mcheck); 2122 2123 if (cpu_has_mipsmt) 2124 set_except_vector(25, handle_mt); 2125 2126 set_except_vector(26, handle_dsp); 2127 2128 if (board_cache_error_setup) 2129 board_cache_error_setup(); 2130 2131 if (cpu_has_vce) 2132 /* Special exception: R4[04]00 uses also the divec space. */ 2133 set_handler(0x180, &except_vec3_r4000, 0x100); 2134 else if (cpu_has_4kex) 2135 set_handler(0x180, &except_vec3_generic, 0x80); 2136 else 2137 set_handler(0x080, &except_vec3_generic, 0x80); 2138 2139 local_flush_icache_range(ebase, ebase + 0x400); 2140 2141 sort_extable(__start___dbe_table, __stop___dbe_table); 2142 2143 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */ 2144 } 2145 2146 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd, 2147 void *v) 2148 { 2149 switch (cmd) { 2150 case CPU_PM_ENTER_FAILED: 2151 case CPU_PM_EXIT: 2152 configure_status(); 2153 configure_hwrena(); 2154 configure_exception_vector(); 2155 2156 /* Restore register with CPU number for TLB handlers */ 2157 TLBMISS_HANDLER_RESTORE(); 2158 2159 break; 2160 } 2161 2162 return NOTIFY_OK; 2163 } 2164 2165 static struct notifier_block trap_pm_notifier_block = { 2166 .notifier_call = trap_pm_notifier, 2167 }; 2168 2169 static int __init trap_pm_init(void) 2170 { 2171 return cpu_pm_register_notifier(&trap_pm_notifier_block); 2172 } 2173 arch_initcall(trap_pm_init); 2174