1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle 7 * Copyright (C) 1995, 1996 Paul M. Antoine 8 * Copyright (C) 1998 Ulf Carlsson 9 * Copyright (C) 1999 Silicon Graphics, Inc. 10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki 12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved. 13 * Copyright (C) 2014, Imagination Technologies Ltd. 14 */ 15 #include <linux/bitops.h> 16 #include <linux/bug.h> 17 #include <linux/compiler.h> 18 #include <linux/context_tracking.h> 19 #include <linux/cpu_pm.h> 20 #include <linux/kexec.h> 21 #include <linux/init.h> 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/extable.h> 25 #include <linux/mm.h> 26 #include <linux/sched.h> 27 #include <linux/smp.h> 28 #include <linux/spinlock.h> 29 #include <linux/kallsyms.h> 30 #include <linux/bootmem.h> 31 #include <linux/interrupt.h> 32 #include <linux/ptrace.h> 33 #include <linux/kgdb.h> 34 #include <linux/kdebug.h> 35 #include <linux/kprobes.h> 36 #include <linux/notifier.h> 37 #include <linux/kdb.h> 38 #include <linux/irq.h> 39 #include <linux/perf_event.h> 40 41 #include <asm/addrspace.h> 42 #include <asm/bootinfo.h> 43 #include <asm/branch.h> 44 #include <asm/break.h> 45 #include <asm/cop2.h> 46 #include <asm/cpu.h> 47 #include <asm/cpu-type.h> 48 #include <asm/dsp.h> 49 #include <asm/fpu.h> 50 #include <asm/fpu_emulator.h> 51 #include <asm/idle.h> 52 #include <asm/mips-cm.h> 53 #include <asm/mips-r2-to-r6-emul.h> 54 #include <asm/mips-cm.h> 55 #include <asm/mipsregs.h> 56 #include <asm/mipsmtregs.h> 57 #include <asm/module.h> 58 #include <asm/msa.h> 59 #include <asm/pgtable.h> 60 #include <asm/ptrace.h> 61 #include <asm/sections.h> 62 #include <asm/siginfo.h> 63 #include <asm/tlbdebug.h> 64 #include <asm/traps.h> 65 #include <linux/uaccess.h> 66 #include <asm/watch.h> 67 #include <asm/mmu_context.h> 68 #include <asm/types.h> 69 #include <asm/stacktrace.h> 70 #include <asm/uasm.h> 71 72 extern void check_wait(void); 73 extern asmlinkage void rollback_handle_int(void); 74 extern asmlinkage void handle_int(void); 75 extern u32 handle_tlbl[]; 76 extern u32 handle_tlbs[]; 77 extern u32 handle_tlbm[]; 78 extern asmlinkage void handle_adel(void); 79 extern asmlinkage void handle_ades(void); 80 extern asmlinkage void handle_ibe(void); 81 extern asmlinkage void handle_dbe(void); 82 extern asmlinkage void handle_sys(void); 83 extern asmlinkage void handle_bp(void); 84 extern asmlinkage void handle_ri(void); 85 extern asmlinkage void handle_ri_rdhwr_vivt(void); 86 extern asmlinkage void handle_ri_rdhwr(void); 87 extern asmlinkage void handle_cpu(void); 88 extern asmlinkage void handle_ov(void); 89 extern asmlinkage void handle_tr(void); 90 extern asmlinkage void handle_msa_fpe(void); 91 extern asmlinkage void handle_fpe(void); 92 extern asmlinkage void handle_ftlb(void); 93 extern asmlinkage void handle_msa(void); 94 extern asmlinkage void handle_mdmx(void); 95 extern asmlinkage void handle_watch(void); 96 extern asmlinkage void handle_mt(void); 97 extern asmlinkage void handle_dsp(void); 98 extern asmlinkage void handle_mcheck(void); 99 extern asmlinkage void handle_reserved(void); 100 extern void tlb_do_page_fault_0(void); 101 102 void (*board_be_init)(void); 103 int (*board_be_handler)(struct pt_regs *regs, int is_fixup); 104 void (*board_nmi_handler_setup)(void); 105 void (*board_ejtag_handler_setup)(void); 106 void (*board_bind_eic_interrupt)(int irq, int regset); 107 void (*board_ebase_setup)(void); 108 void(*board_cache_error_setup)(void); 109 110 static void show_raw_backtrace(unsigned long reg29) 111 { 112 unsigned long *sp = (unsigned long *)(reg29 & ~3); 113 unsigned long addr; 114 115 printk("Call Trace:"); 116 #ifdef CONFIG_KALLSYMS 117 printk("\n"); 118 #endif 119 while (!kstack_end(sp)) { 120 unsigned long __user *p = 121 (unsigned long __user *)(unsigned long)sp++; 122 if (__get_user(addr, p)) { 123 printk(" (Bad stack address)"); 124 break; 125 } 126 if (__kernel_text_address(addr)) 127 print_ip_sym(addr); 128 } 129 printk("\n"); 130 } 131 132 #ifdef CONFIG_KALLSYMS 133 int raw_show_trace; 134 static int __init set_raw_show_trace(char *str) 135 { 136 raw_show_trace = 1; 137 return 1; 138 } 139 __setup("raw_show_trace", set_raw_show_trace); 140 #endif 141 142 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs) 143 { 144 unsigned long sp = regs->regs[29]; 145 unsigned long ra = regs->regs[31]; 146 unsigned long pc = regs->cp0_epc; 147 148 if (!task) 149 task = current; 150 151 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) { 152 show_raw_backtrace(sp); 153 return; 154 } 155 printk("Call Trace:\n"); 156 do { 157 print_ip_sym(pc); 158 pc = unwind_stack(task, &sp, pc, &ra); 159 } while (pc); 160 pr_cont("\n"); 161 } 162 163 /* 164 * This routine abuses get_user()/put_user() to reference pointers 165 * with at least a bit of error checking ... 166 */ 167 static void show_stacktrace(struct task_struct *task, 168 const struct pt_regs *regs) 169 { 170 const int field = 2 * sizeof(unsigned long); 171 long stackdata; 172 int i; 173 unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; 174 175 printk("Stack :"); 176 i = 0; 177 while ((unsigned long) sp & (PAGE_SIZE - 1)) { 178 if (i && ((i % (64 / field)) == 0)) { 179 pr_cont("\n"); 180 printk(" "); 181 } 182 if (i > 39) { 183 pr_cont(" ..."); 184 break; 185 } 186 187 if (__get_user(stackdata, sp++)) { 188 pr_cont(" (Bad stack address)"); 189 break; 190 } 191 192 pr_cont(" %0*lx", field, stackdata); 193 i++; 194 } 195 pr_cont("\n"); 196 show_backtrace(task, regs); 197 } 198 199 void show_stack(struct task_struct *task, unsigned long *sp) 200 { 201 struct pt_regs regs; 202 mm_segment_t old_fs = get_fs(); 203 if (sp) { 204 regs.regs[29] = (unsigned long)sp; 205 regs.regs[31] = 0; 206 regs.cp0_epc = 0; 207 } else { 208 if (task && task != current) { 209 regs.regs[29] = task->thread.reg29; 210 regs.regs[31] = 0; 211 regs.cp0_epc = task->thread.reg31; 212 #ifdef CONFIG_KGDB_KDB 213 } else if (atomic_read(&kgdb_active) != -1 && 214 kdb_current_regs) { 215 memcpy(®s, kdb_current_regs, sizeof(regs)); 216 #endif /* CONFIG_KGDB_KDB */ 217 } else { 218 prepare_frametrace(®s); 219 } 220 } 221 /* 222 * show_stack() deals exclusively with kernel mode, so be sure to access 223 * the stack in the kernel (not user) address space. 224 */ 225 set_fs(KERNEL_DS); 226 show_stacktrace(task, ®s); 227 set_fs(old_fs); 228 } 229 230 static void show_code(unsigned int __user *pc) 231 { 232 long i; 233 unsigned short __user *pc16 = NULL; 234 235 printk("Code:"); 236 237 if ((unsigned long)pc & 1) 238 pc16 = (unsigned short __user *)((unsigned long)pc & ~1); 239 for(i = -3 ; i < 6 ; i++) { 240 unsigned int insn; 241 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { 242 pr_cont(" (Bad address in epc)\n"); 243 break; 244 } 245 pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); 246 } 247 pr_cont("\n"); 248 } 249 250 static void __show_regs(const struct pt_regs *regs) 251 { 252 const int field = 2 * sizeof(unsigned long); 253 unsigned int cause = regs->cp0_cause; 254 unsigned int exccode; 255 int i; 256 257 show_regs_print_info(KERN_DEFAULT); 258 259 /* 260 * Saved main processor registers 261 */ 262 for (i = 0; i < 32; ) { 263 if ((i % 4) == 0) 264 printk("$%2d :", i); 265 if (i == 0) 266 pr_cont(" %0*lx", field, 0UL); 267 else if (i == 26 || i == 27) 268 pr_cont(" %*s", field, ""); 269 else 270 pr_cont(" %0*lx", field, regs->regs[i]); 271 272 i++; 273 if ((i % 4) == 0) 274 pr_cont("\n"); 275 } 276 277 #ifdef CONFIG_CPU_HAS_SMARTMIPS 278 printk("Acx : %0*lx\n", field, regs->acx); 279 #endif 280 printk("Hi : %0*lx\n", field, regs->hi); 281 printk("Lo : %0*lx\n", field, regs->lo); 282 283 /* 284 * Saved cp0 registers 285 */ 286 printk("epc : %0*lx %pS\n", field, regs->cp0_epc, 287 (void *) regs->cp0_epc); 288 printk("ra : %0*lx %pS\n", field, regs->regs[31], 289 (void *) regs->regs[31]); 290 291 printk("Status: %08x ", (uint32_t) regs->cp0_status); 292 293 if (cpu_has_3kex) { 294 if (regs->cp0_status & ST0_KUO) 295 pr_cont("KUo "); 296 if (regs->cp0_status & ST0_IEO) 297 pr_cont("IEo "); 298 if (regs->cp0_status & ST0_KUP) 299 pr_cont("KUp "); 300 if (regs->cp0_status & ST0_IEP) 301 pr_cont("IEp "); 302 if (regs->cp0_status & ST0_KUC) 303 pr_cont("KUc "); 304 if (regs->cp0_status & ST0_IEC) 305 pr_cont("IEc "); 306 } else if (cpu_has_4kex) { 307 if (regs->cp0_status & ST0_KX) 308 pr_cont("KX "); 309 if (regs->cp0_status & ST0_SX) 310 pr_cont("SX "); 311 if (regs->cp0_status & ST0_UX) 312 pr_cont("UX "); 313 switch (regs->cp0_status & ST0_KSU) { 314 case KSU_USER: 315 pr_cont("USER "); 316 break; 317 case KSU_SUPERVISOR: 318 pr_cont("SUPERVISOR "); 319 break; 320 case KSU_KERNEL: 321 pr_cont("KERNEL "); 322 break; 323 default: 324 pr_cont("BAD_MODE "); 325 break; 326 } 327 if (regs->cp0_status & ST0_ERL) 328 pr_cont("ERL "); 329 if (regs->cp0_status & ST0_EXL) 330 pr_cont("EXL "); 331 if (regs->cp0_status & ST0_IE) 332 pr_cont("IE "); 333 } 334 pr_cont("\n"); 335 336 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; 337 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode); 338 339 if (1 <= exccode && exccode <= 5) 340 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); 341 342 printk("PrId : %08x (%s)\n", read_c0_prid(), 343 cpu_name_string()); 344 } 345 346 /* 347 * FIXME: really the generic show_regs should take a const pointer argument. 348 */ 349 void show_regs(struct pt_regs *regs) 350 { 351 __show_regs((struct pt_regs *)regs); 352 } 353 354 void show_registers(struct pt_regs *regs) 355 { 356 const int field = 2 * sizeof(unsigned long); 357 mm_segment_t old_fs = get_fs(); 358 359 __show_regs(regs); 360 print_modules(); 361 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", 362 current->comm, current->pid, current_thread_info(), current, 363 field, current_thread_info()->tp_value); 364 if (cpu_has_userlocal) { 365 unsigned long tls; 366 367 tls = read_c0_userlocal(); 368 if (tls != current_thread_info()->tp_value) 369 printk("*HwTLS: %0*lx\n", field, tls); 370 } 371 372 if (!user_mode(regs)) 373 /* Necessary for getting the correct stack content */ 374 set_fs(KERNEL_DS); 375 show_stacktrace(current, regs); 376 show_code((unsigned int __user *) regs->cp0_epc); 377 printk("\n"); 378 set_fs(old_fs); 379 } 380 381 static DEFINE_RAW_SPINLOCK(die_lock); 382 383 void __noreturn die(const char *str, struct pt_regs *regs) 384 { 385 static int die_counter; 386 int sig = SIGSEGV; 387 388 oops_enter(); 389 390 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr, 391 SIGSEGV) == NOTIFY_STOP) 392 sig = 0; 393 394 console_verbose(); 395 raw_spin_lock_irq(&die_lock); 396 bust_spinlocks(1); 397 398 printk("%s[#%d]:\n", str, ++die_counter); 399 show_registers(regs); 400 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 401 raw_spin_unlock_irq(&die_lock); 402 403 oops_exit(); 404 405 if (in_interrupt()) 406 panic("Fatal exception in interrupt"); 407 408 if (panic_on_oops) 409 panic("Fatal exception"); 410 411 if (regs && kexec_should_crash(current)) 412 crash_kexec(regs); 413 414 do_exit(sig); 415 } 416 417 extern struct exception_table_entry __start___dbe_table[]; 418 extern struct exception_table_entry __stop___dbe_table[]; 419 420 __asm__( 421 " .section __dbe_table, \"a\"\n" 422 " .previous \n"); 423 424 /* Given an address, look for it in the exception tables. */ 425 static const struct exception_table_entry *search_dbe_tables(unsigned long addr) 426 { 427 const struct exception_table_entry *e; 428 429 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr); 430 if (!e) 431 e = search_module_dbetables(addr); 432 return e; 433 } 434 435 asmlinkage void do_be(struct pt_regs *regs) 436 { 437 const int field = 2 * sizeof(unsigned long); 438 const struct exception_table_entry *fixup = NULL; 439 int data = regs->cp0_cause & 4; 440 int action = MIPS_BE_FATAL; 441 enum ctx_state prev_state; 442 443 prev_state = exception_enter(); 444 /* XXX For now. Fixme, this searches the wrong table ... */ 445 if (data && !user_mode(regs)) 446 fixup = search_dbe_tables(exception_epc(regs)); 447 448 if (fixup) 449 action = MIPS_BE_FIXUP; 450 451 if (board_be_handler) 452 action = board_be_handler(regs, fixup != NULL); 453 else 454 mips_cm_error_report(); 455 456 switch (action) { 457 case MIPS_BE_DISCARD: 458 goto out; 459 case MIPS_BE_FIXUP: 460 if (fixup) { 461 regs->cp0_epc = fixup->nextinsn; 462 goto out; 463 } 464 break; 465 default: 466 break; 467 } 468 469 /* 470 * Assume it would be too dangerous to continue ... 471 */ 472 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", 473 data ? "Data" : "Instruction", 474 field, regs->cp0_epc, field, regs->regs[31]); 475 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr, 476 SIGBUS) == NOTIFY_STOP) 477 goto out; 478 479 die_if_kernel("Oops", regs); 480 force_sig(SIGBUS, current); 481 482 out: 483 exception_exit(prev_state); 484 } 485 486 /* 487 * ll/sc, rdhwr, sync emulation 488 */ 489 490 #define OPCODE 0xfc000000 491 #define BASE 0x03e00000 492 #define RT 0x001f0000 493 #define OFFSET 0x0000ffff 494 #define LL 0xc0000000 495 #define SC 0xe0000000 496 #define SPEC0 0x00000000 497 #define SPEC3 0x7c000000 498 #define RD 0x0000f800 499 #define FUNC 0x0000003f 500 #define SYNC 0x0000000f 501 #define RDHWR 0x0000003b 502 503 /* microMIPS definitions */ 504 #define MM_POOL32A_FUNC 0xfc00ffff 505 #define MM_RDHWR 0x00006b3c 506 #define MM_RS 0x001f0000 507 #define MM_RT 0x03e00000 508 509 /* 510 * The ll_bit is cleared by r*_switch.S 511 */ 512 513 unsigned int ll_bit; 514 struct task_struct *ll_task; 515 516 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) 517 { 518 unsigned long value, __user *vaddr; 519 long offset; 520 521 /* 522 * analyse the ll instruction that just caused a ri exception 523 * and put the referenced address to addr. 524 */ 525 526 /* sign extend offset */ 527 offset = opcode & OFFSET; 528 offset <<= 16; 529 offset >>= 16; 530 531 vaddr = (unsigned long __user *) 532 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 533 534 if ((unsigned long)vaddr & 3) 535 return SIGBUS; 536 if (get_user(value, vaddr)) 537 return SIGSEGV; 538 539 preempt_disable(); 540 541 if (ll_task == NULL || ll_task == current) { 542 ll_bit = 1; 543 } else { 544 ll_bit = 0; 545 } 546 ll_task = current; 547 548 preempt_enable(); 549 550 regs->regs[(opcode & RT) >> 16] = value; 551 552 return 0; 553 } 554 555 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) 556 { 557 unsigned long __user *vaddr; 558 unsigned long reg; 559 long offset; 560 561 /* 562 * analyse the sc instruction that just caused a ri exception 563 * and put the referenced address to addr. 564 */ 565 566 /* sign extend offset */ 567 offset = opcode & OFFSET; 568 offset <<= 16; 569 offset >>= 16; 570 571 vaddr = (unsigned long __user *) 572 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 573 reg = (opcode & RT) >> 16; 574 575 if ((unsigned long)vaddr & 3) 576 return SIGBUS; 577 578 preempt_disable(); 579 580 if (ll_bit == 0 || ll_task != current) { 581 regs->regs[reg] = 0; 582 preempt_enable(); 583 return 0; 584 } 585 586 preempt_enable(); 587 588 if (put_user(regs->regs[reg], vaddr)) 589 return SIGSEGV; 590 591 regs->regs[reg] = 1; 592 593 return 0; 594 } 595 596 /* 597 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both 598 * opcodes are supposed to result in coprocessor unusable exceptions if 599 * executed on ll/sc-less processors. That's the theory. In practice a 600 * few processors such as NEC's VR4100 throw reserved instruction exceptions 601 * instead, so we're doing the emulation thing in both exception handlers. 602 */ 603 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) 604 { 605 if ((opcode & OPCODE) == LL) { 606 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 607 1, regs, 0); 608 return simulate_ll(regs, opcode); 609 } 610 if ((opcode & OPCODE) == SC) { 611 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 612 1, regs, 0); 613 return simulate_sc(regs, opcode); 614 } 615 616 return -1; /* Must be something else ... */ 617 } 618 619 /* 620 * Simulate trapping 'rdhwr' instructions to provide user accessible 621 * registers not implemented in hardware. 622 */ 623 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt) 624 { 625 struct thread_info *ti = task_thread_info(current); 626 627 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 628 1, regs, 0); 629 switch (rd) { 630 case MIPS_HWR_CPUNUM: /* CPU number */ 631 regs->regs[rt] = smp_processor_id(); 632 return 0; 633 case MIPS_HWR_SYNCISTEP: /* SYNCI length */ 634 regs->regs[rt] = min(current_cpu_data.dcache.linesz, 635 current_cpu_data.icache.linesz); 636 return 0; 637 case MIPS_HWR_CC: /* Read count register */ 638 regs->regs[rt] = read_c0_count(); 639 return 0; 640 case MIPS_HWR_CCRES: /* Count register resolution */ 641 switch (current_cpu_type()) { 642 case CPU_20KC: 643 case CPU_25KF: 644 regs->regs[rt] = 1; 645 break; 646 default: 647 regs->regs[rt] = 2; 648 } 649 return 0; 650 case MIPS_HWR_ULR: /* Read UserLocal register */ 651 regs->regs[rt] = ti->tp_value; 652 return 0; 653 default: 654 return -1; 655 } 656 } 657 658 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode) 659 { 660 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { 661 int rd = (opcode & RD) >> 11; 662 int rt = (opcode & RT) >> 16; 663 664 simulate_rdhwr(regs, rd, rt); 665 return 0; 666 } 667 668 /* Not ours. */ 669 return -1; 670 } 671 672 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode) 673 { 674 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) { 675 int rd = (opcode & MM_RS) >> 16; 676 int rt = (opcode & MM_RT) >> 21; 677 simulate_rdhwr(regs, rd, rt); 678 return 0; 679 } 680 681 /* Not ours. */ 682 return -1; 683 } 684 685 static int simulate_sync(struct pt_regs *regs, unsigned int opcode) 686 { 687 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) { 688 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 689 1, regs, 0); 690 return 0; 691 } 692 693 return -1; /* Must be something else ... */ 694 } 695 696 asmlinkage void do_ov(struct pt_regs *regs) 697 { 698 enum ctx_state prev_state; 699 siginfo_t info = { 700 .si_signo = SIGFPE, 701 .si_code = FPE_INTOVF, 702 .si_addr = (void __user *)regs->cp0_epc, 703 }; 704 705 prev_state = exception_enter(); 706 die_if_kernel("Integer overflow", regs); 707 708 force_sig_info(SIGFPE, &info, current); 709 exception_exit(prev_state); 710 } 711 712 /* 713 * Send SIGFPE according to FCSR Cause bits, which must have already 714 * been masked against Enable bits. This is impotant as Inexact can 715 * happen together with Overflow or Underflow, and `ptrace' can set 716 * any bits. 717 */ 718 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr, 719 struct task_struct *tsk) 720 { 721 struct siginfo si = { .si_addr = fault_addr, .si_signo = SIGFPE }; 722 723 if (fcr31 & FPU_CSR_INV_X) 724 si.si_code = FPE_FLTINV; 725 else if (fcr31 & FPU_CSR_DIV_X) 726 si.si_code = FPE_FLTDIV; 727 else if (fcr31 & FPU_CSR_OVF_X) 728 si.si_code = FPE_FLTOVF; 729 else if (fcr31 & FPU_CSR_UDF_X) 730 si.si_code = FPE_FLTUND; 731 else if (fcr31 & FPU_CSR_INE_X) 732 si.si_code = FPE_FLTRES; 733 else 734 si.si_code = __SI_FAULT; 735 force_sig_info(SIGFPE, &si, tsk); 736 } 737 738 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31) 739 { 740 struct siginfo si = { 0 }; 741 struct vm_area_struct *vma; 742 743 switch (sig) { 744 case 0: 745 return 0; 746 747 case SIGFPE: 748 force_fcr31_sig(fcr31, fault_addr, current); 749 return 1; 750 751 case SIGBUS: 752 si.si_addr = fault_addr; 753 si.si_signo = sig; 754 si.si_code = BUS_ADRERR; 755 force_sig_info(sig, &si, current); 756 return 1; 757 758 case SIGSEGV: 759 si.si_addr = fault_addr; 760 si.si_signo = sig; 761 down_read(¤t->mm->mmap_sem); 762 vma = find_vma(current->mm, (unsigned long)fault_addr); 763 if (vma && (vma->vm_start <= (unsigned long)fault_addr)) 764 si.si_code = SEGV_ACCERR; 765 else 766 si.si_code = SEGV_MAPERR; 767 up_read(¤t->mm->mmap_sem); 768 force_sig_info(sig, &si, current); 769 return 1; 770 771 default: 772 force_sig(sig, current); 773 return 1; 774 } 775 } 776 777 static int simulate_fp(struct pt_regs *regs, unsigned int opcode, 778 unsigned long old_epc, unsigned long old_ra) 779 { 780 union mips_instruction inst = { .word = opcode }; 781 void __user *fault_addr; 782 unsigned long fcr31; 783 int sig; 784 785 /* If it's obviously not an FP instruction, skip it */ 786 switch (inst.i_format.opcode) { 787 case cop1_op: 788 case cop1x_op: 789 case lwc1_op: 790 case ldc1_op: 791 case swc1_op: 792 case sdc1_op: 793 break; 794 795 default: 796 return -1; 797 } 798 799 /* 800 * do_ri skipped over the instruction via compute_return_epc, undo 801 * that for the FPU emulator. 802 */ 803 regs->cp0_epc = old_epc; 804 regs->regs[31] = old_ra; 805 806 /* Save the FP context to struct thread_struct */ 807 lose_fpu(1); 808 809 /* Run the emulator */ 810 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 811 &fault_addr); 812 813 /* 814 * We can't allow the emulated instruction to leave any 815 * enabled Cause bits set in $fcr31. 816 */ 817 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); 818 current->thread.fpu.fcr31 &= ~fcr31; 819 820 /* Restore the hardware register state */ 821 own_fpu(1); 822 823 /* Send a signal if required. */ 824 process_fpemu_return(sig, fault_addr, fcr31); 825 826 return 0; 827 } 828 829 /* 830 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX 831 */ 832 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) 833 { 834 enum ctx_state prev_state; 835 void __user *fault_addr; 836 int sig; 837 838 prev_state = exception_enter(); 839 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr, 840 SIGFPE) == NOTIFY_STOP) 841 goto out; 842 843 /* Clear FCSR.Cause before enabling interrupts */ 844 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31)); 845 local_irq_enable(); 846 847 die_if_kernel("FP exception in kernel code", regs); 848 849 if (fcr31 & FPU_CSR_UNI_X) { 850 /* 851 * Unimplemented operation exception. If we've got the full 852 * software emulator on-board, let's use it... 853 * 854 * Force FPU to dump state into task/thread context. We're 855 * moving a lot of data here for what is probably a single 856 * instruction, but the alternative is to pre-decode the FP 857 * register operands before invoking the emulator, which seems 858 * a bit extreme for what should be an infrequent event. 859 */ 860 /* Ensure 'resume' not overwrite saved fp context again. */ 861 lose_fpu(1); 862 863 /* Run the emulator */ 864 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 865 &fault_addr); 866 867 /* 868 * We can't allow the emulated instruction to leave any 869 * enabled Cause bits set in $fcr31. 870 */ 871 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); 872 current->thread.fpu.fcr31 &= ~fcr31; 873 874 /* Restore the hardware register state */ 875 own_fpu(1); /* Using the FPU again. */ 876 } else { 877 sig = SIGFPE; 878 fault_addr = (void __user *) regs->cp0_epc; 879 } 880 881 /* Send a signal if required. */ 882 process_fpemu_return(sig, fault_addr, fcr31); 883 884 out: 885 exception_exit(prev_state); 886 } 887 888 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code, 889 const char *str) 890 { 891 siginfo_t info = { 0 }; 892 char b[40]; 893 894 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 895 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr, 896 SIGTRAP) == NOTIFY_STOP) 897 return; 898 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 899 900 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr, 901 SIGTRAP) == NOTIFY_STOP) 902 return; 903 904 /* 905 * A short test says that IRIX 5.3 sends SIGTRAP for all trap 906 * insns, even for trap and break codes that indicate arithmetic 907 * failures. Weird ... 908 * But should we continue the brokenness??? --macro 909 */ 910 switch (code) { 911 case BRK_OVERFLOW: 912 case BRK_DIVZERO: 913 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 914 die_if_kernel(b, regs); 915 if (code == BRK_DIVZERO) 916 info.si_code = FPE_INTDIV; 917 else 918 info.si_code = FPE_INTOVF; 919 info.si_signo = SIGFPE; 920 info.si_addr = (void __user *) regs->cp0_epc; 921 force_sig_info(SIGFPE, &info, current); 922 break; 923 case BRK_BUG: 924 die_if_kernel("Kernel bug detected", regs); 925 force_sig(SIGTRAP, current); 926 break; 927 case BRK_MEMU: 928 /* 929 * This breakpoint code is used by the FPU emulator to retake 930 * control of the CPU after executing the instruction from the 931 * delay slot of an emulated branch. 932 * 933 * Terminate if exception was recognized as a delay slot return 934 * otherwise handle as normal. 935 */ 936 if (do_dsemulret(regs)) 937 return; 938 939 die_if_kernel("Math emu break/trap", regs); 940 force_sig(SIGTRAP, current); 941 break; 942 default: 943 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 944 die_if_kernel(b, regs); 945 if (si_code) { 946 info.si_signo = SIGTRAP; 947 info.si_code = si_code; 948 force_sig_info(SIGTRAP, &info, current); 949 } else { 950 force_sig(SIGTRAP, current); 951 } 952 } 953 } 954 955 asmlinkage void do_bp(struct pt_regs *regs) 956 { 957 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 958 unsigned int opcode, bcode; 959 enum ctx_state prev_state; 960 mm_segment_t seg; 961 962 seg = get_fs(); 963 if (!user_mode(regs)) 964 set_fs(KERNEL_DS); 965 966 prev_state = exception_enter(); 967 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 968 if (get_isa16_mode(regs->cp0_epc)) { 969 u16 instr[2]; 970 971 if (__get_user(instr[0], (u16 __user *)epc)) 972 goto out_sigsegv; 973 974 if (!cpu_has_mmips) { 975 /* MIPS16e mode */ 976 bcode = (instr[0] >> 5) & 0x3f; 977 } else if (mm_insn_16bit(instr[0])) { 978 /* 16-bit microMIPS BREAK */ 979 bcode = instr[0] & 0xf; 980 } else { 981 /* 32-bit microMIPS BREAK */ 982 if (__get_user(instr[1], (u16 __user *)(epc + 2))) 983 goto out_sigsegv; 984 opcode = (instr[0] << 16) | instr[1]; 985 bcode = (opcode >> 6) & ((1 << 20) - 1); 986 } 987 } else { 988 if (__get_user(opcode, (unsigned int __user *)epc)) 989 goto out_sigsegv; 990 bcode = (opcode >> 6) & ((1 << 20) - 1); 991 } 992 993 /* 994 * There is the ancient bug in the MIPS assemblers that the break 995 * code starts left to bit 16 instead to bit 6 in the opcode. 996 * Gas is bug-compatible, but not always, grrr... 997 * We handle both cases with a simple heuristics. --macro 998 */ 999 if (bcode >= (1 << 10)) 1000 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10); 1001 1002 /* 1003 * notify the kprobe handlers, if instruction is likely to 1004 * pertain to them. 1005 */ 1006 switch (bcode) { 1007 case BRK_UPROBE: 1008 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode, 1009 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1010 goto out; 1011 else 1012 break; 1013 case BRK_UPROBE_XOL: 1014 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode, 1015 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1016 goto out; 1017 else 1018 break; 1019 case BRK_KPROBE_BP: 1020 if (notify_die(DIE_BREAK, "debug", regs, bcode, 1021 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1022 goto out; 1023 else 1024 break; 1025 case BRK_KPROBE_SSTEPBP: 1026 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, 1027 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1028 goto out; 1029 else 1030 break; 1031 default: 1032 break; 1033 } 1034 1035 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break"); 1036 1037 out: 1038 set_fs(seg); 1039 exception_exit(prev_state); 1040 return; 1041 1042 out_sigsegv: 1043 force_sig(SIGSEGV, current); 1044 goto out; 1045 } 1046 1047 asmlinkage void do_tr(struct pt_regs *regs) 1048 { 1049 u32 opcode, tcode = 0; 1050 enum ctx_state prev_state; 1051 u16 instr[2]; 1052 mm_segment_t seg; 1053 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 1054 1055 seg = get_fs(); 1056 if (!user_mode(regs)) 1057 set_fs(get_ds()); 1058 1059 prev_state = exception_enter(); 1060 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1061 if (get_isa16_mode(regs->cp0_epc)) { 1062 if (__get_user(instr[0], (u16 __user *)(epc + 0)) || 1063 __get_user(instr[1], (u16 __user *)(epc + 2))) 1064 goto out_sigsegv; 1065 opcode = (instr[0] << 16) | instr[1]; 1066 /* Immediate versions don't provide a code. */ 1067 if (!(opcode & OPCODE)) 1068 tcode = (opcode >> 12) & ((1 << 4) - 1); 1069 } else { 1070 if (__get_user(opcode, (u32 __user *)epc)) 1071 goto out_sigsegv; 1072 /* Immediate versions don't provide a code. */ 1073 if (!(opcode & OPCODE)) 1074 tcode = (opcode >> 6) & ((1 << 10) - 1); 1075 } 1076 1077 do_trap_or_bp(regs, tcode, 0, "Trap"); 1078 1079 out: 1080 set_fs(seg); 1081 exception_exit(prev_state); 1082 return; 1083 1084 out_sigsegv: 1085 force_sig(SIGSEGV, current); 1086 goto out; 1087 } 1088 1089 asmlinkage void do_ri(struct pt_regs *regs) 1090 { 1091 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); 1092 unsigned long old_epc = regs->cp0_epc; 1093 unsigned long old31 = regs->regs[31]; 1094 enum ctx_state prev_state; 1095 unsigned int opcode = 0; 1096 int status = -1; 1097 1098 /* 1099 * Avoid any kernel code. Just emulate the R2 instruction 1100 * as quickly as possible. 1101 */ 1102 if (mipsr2_emulation && cpu_has_mips_r6 && 1103 likely(user_mode(regs)) && 1104 likely(get_user(opcode, epc) >= 0)) { 1105 unsigned long fcr31 = 0; 1106 1107 status = mipsr2_decoder(regs, opcode, &fcr31); 1108 switch (status) { 1109 case 0: 1110 case SIGEMT: 1111 return; 1112 case SIGILL: 1113 goto no_r2_instr; 1114 default: 1115 process_fpemu_return(status, 1116 ¤t->thread.cp0_baduaddr, 1117 fcr31); 1118 return; 1119 } 1120 } 1121 1122 no_r2_instr: 1123 1124 prev_state = exception_enter(); 1125 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1126 1127 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr, 1128 SIGILL) == NOTIFY_STOP) 1129 goto out; 1130 1131 die_if_kernel("Reserved instruction in kernel code", regs); 1132 1133 if (unlikely(compute_return_epc(regs) < 0)) 1134 goto out; 1135 1136 if (!get_isa16_mode(regs->cp0_epc)) { 1137 if (unlikely(get_user(opcode, epc) < 0)) 1138 status = SIGSEGV; 1139 1140 if (!cpu_has_llsc && status < 0) 1141 status = simulate_llsc(regs, opcode); 1142 1143 if (status < 0) 1144 status = simulate_rdhwr_normal(regs, opcode); 1145 1146 if (status < 0) 1147 status = simulate_sync(regs, opcode); 1148 1149 if (status < 0) 1150 status = simulate_fp(regs, opcode, old_epc, old31); 1151 } else if (cpu_has_mmips) { 1152 unsigned short mmop[2] = { 0 }; 1153 1154 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0)) 1155 status = SIGSEGV; 1156 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0)) 1157 status = SIGSEGV; 1158 opcode = mmop[0]; 1159 opcode = (opcode << 16) | mmop[1]; 1160 1161 if (status < 0) 1162 status = simulate_rdhwr_mm(regs, opcode); 1163 } 1164 1165 if (status < 0) 1166 status = SIGILL; 1167 1168 if (unlikely(status > 0)) { 1169 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1170 regs->regs[31] = old31; 1171 force_sig(status, current); 1172 } 1173 1174 out: 1175 exception_exit(prev_state); 1176 } 1177 1178 /* 1179 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've 1180 * emulated more than some threshold number of instructions, force migration to 1181 * a "CPU" that has FP support. 1182 */ 1183 static void mt_ase_fp_affinity(void) 1184 { 1185 #ifdef CONFIG_MIPS_MT_FPAFF 1186 if (mt_fpemul_threshold > 0 && 1187 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { 1188 /* 1189 * If there's no FPU present, or if the application has already 1190 * restricted the allowed set to exclude any CPUs with FPUs, 1191 * we'll skip the procedure. 1192 */ 1193 if (cpumask_intersects(¤t->cpus_allowed, &mt_fpu_cpumask)) { 1194 cpumask_t tmask; 1195 1196 current->thread.user_cpus_allowed 1197 = current->cpus_allowed; 1198 cpumask_and(&tmask, ¤t->cpus_allowed, 1199 &mt_fpu_cpumask); 1200 set_cpus_allowed_ptr(current, &tmask); 1201 set_thread_flag(TIF_FPUBOUND); 1202 } 1203 } 1204 #endif /* CONFIG_MIPS_MT_FPAFF */ 1205 } 1206 1207 /* 1208 * No lock; only written during early bootup by CPU 0. 1209 */ 1210 static RAW_NOTIFIER_HEAD(cu2_chain); 1211 1212 int __ref register_cu2_notifier(struct notifier_block *nb) 1213 { 1214 return raw_notifier_chain_register(&cu2_chain, nb); 1215 } 1216 1217 int cu2_notifier_call_chain(unsigned long val, void *v) 1218 { 1219 return raw_notifier_call_chain(&cu2_chain, val, v); 1220 } 1221 1222 static int default_cu2_call(struct notifier_block *nfb, unsigned long action, 1223 void *data) 1224 { 1225 struct pt_regs *regs = data; 1226 1227 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid " 1228 "instruction", regs); 1229 force_sig(SIGILL, current); 1230 1231 return NOTIFY_OK; 1232 } 1233 1234 static int wait_on_fp_mode_switch(atomic_t *p) 1235 { 1236 /* 1237 * The FP mode for this task is currently being switched. That may 1238 * involve modifications to the format of this tasks FP context which 1239 * make it unsafe to proceed with execution for the moment. Instead, 1240 * schedule some other task. 1241 */ 1242 schedule(); 1243 return 0; 1244 } 1245 1246 static int enable_restore_fp_context(int msa) 1247 { 1248 int err, was_fpu_owner, prior_msa; 1249 1250 /* 1251 * If an FP mode switch is currently underway, wait for it to 1252 * complete before proceeding. 1253 */ 1254 wait_on_atomic_t(¤t->mm->context.fp_mode_switching, 1255 wait_on_fp_mode_switch, TASK_KILLABLE); 1256 1257 if (!used_math()) { 1258 /* First time FP context user. */ 1259 preempt_disable(); 1260 err = init_fpu(); 1261 if (msa && !err) { 1262 enable_msa(); 1263 init_msa_upper(); 1264 set_thread_flag(TIF_USEDMSA); 1265 set_thread_flag(TIF_MSA_CTX_LIVE); 1266 } 1267 preempt_enable(); 1268 if (!err) 1269 set_used_math(); 1270 return err; 1271 } 1272 1273 /* 1274 * This task has formerly used the FP context. 1275 * 1276 * If this thread has no live MSA vector context then we can simply 1277 * restore the scalar FP context. If it has live MSA vector context 1278 * (that is, it has or may have used MSA since last performing a 1279 * function call) then we'll need to restore the vector context. This 1280 * applies even if we're currently only executing a scalar FP 1281 * instruction. This is because if we were to later execute an MSA 1282 * instruction then we'd either have to: 1283 * 1284 * - Restore the vector context & clobber any registers modified by 1285 * scalar FP instructions between now & then. 1286 * 1287 * or 1288 * 1289 * - Not restore the vector context & lose the most significant bits 1290 * of all vector registers. 1291 * 1292 * Neither of those options is acceptable. We cannot restore the least 1293 * significant bits of the registers now & only restore the most 1294 * significant bits later because the most significant bits of any 1295 * vector registers whose aliased FP register is modified now will have 1296 * been zeroed. We'd have no way to know that when restoring the vector 1297 * context & thus may load an outdated value for the most significant 1298 * bits of a vector register. 1299 */ 1300 if (!msa && !thread_msa_context_live()) 1301 return own_fpu(1); 1302 1303 /* 1304 * This task is using or has previously used MSA. Thus we require 1305 * that Status.FR == 1. 1306 */ 1307 preempt_disable(); 1308 was_fpu_owner = is_fpu_owner(); 1309 err = own_fpu_inatomic(0); 1310 if (err) 1311 goto out; 1312 1313 enable_msa(); 1314 write_msa_csr(current->thread.fpu.msacsr); 1315 set_thread_flag(TIF_USEDMSA); 1316 1317 /* 1318 * If this is the first time that the task is using MSA and it has 1319 * previously used scalar FP in this time slice then we already nave 1320 * FP context which we shouldn't clobber. We do however need to clear 1321 * the upper 64b of each vector register so that this task has no 1322 * opportunity to see data left behind by another. 1323 */ 1324 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE); 1325 if (!prior_msa && was_fpu_owner) { 1326 init_msa_upper(); 1327 1328 goto out; 1329 } 1330 1331 if (!prior_msa) { 1332 /* 1333 * Restore the least significant 64b of each vector register 1334 * from the existing scalar FP context. 1335 */ 1336 _restore_fp(current); 1337 1338 /* 1339 * The task has not formerly used MSA, so clear the upper 64b 1340 * of each vector register such that it cannot see data left 1341 * behind by another task. 1342 */ 1343 init_msa_upper(); 1344 } else { 1345 /* We need to restore the vector context. */ 1346 restore_msa(current); 1347 1348 /* Restore the scalar FP control & status register */ 1349 if (!was_fpu_owner) 1350 write_32bit_cp1_register(CP1_STATUS, 1351 current->thread.fpu.fcr31); 1352 } 1353 1354 out: 1355 preempt_enable(); 1356 1357 return 0; 1358 } 1359 1360 asmlinkage void do_cpu(struct pt_regs *regs) 1361 { 1362 enum ctx_state prev_state; 1363 unsigned int __user *epc; 1364 unsigned long old_epc, old31; 1365 void __user *fault_addr; 1366 unsigned int opcode; 1367 unsigned long fcr31; 1368 unsigned int cpid; 1369 int status, err; 1370 int sig; 1371 1372 prev_state = exception_enter(); 1373 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; 1374 1375 if (cpid != 2) 1376 die_if_kernel("do_cpu invoked from kernel context!", regs); 1377 1378 switch (cpid) { 1379 case 0: 1380 epc = (unsigned int __user *)exception_epc(regs); 1381 old_epc = regs->cp0_epc; 1382 old31 = regs->regs[31]; 1383 opcode = 0; 1384 status = -1; 1385 1386 if (unlikely(compute_return_epc(regs) < 0)) 1387 break; 1388 1389 if (!get_isa16_mode(regs->cp0_epc)) { 1390 if (unlikely(get_user(opcode, epc) < 0)) 1391 status = SIGSEGV; 1392 1393 if (!cpu_has_llsc && status < 0) 1394 status = simulate_llsc(regs, opcode); 1395 } 1396 1397 if (status < 0) 1398 status = SIGILL; 1399 1400 if (unlikely(status > 0)) { 1401 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1402 regs->regs[31] = old31; 1403 force_sig(status, current); 1404 } 1405 1406 break; 1407 1408 case 3: 1409 /* 1410 * The COP3 opcode space and consequently the CP0.Status.CU3 1411 * bit and the CP0.Cause.CE=3 encoding have been removed as 1412 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs 1413 * up the space has been reused for COP1X instructions, that 1414 * are enabled by the CP0.Status.CU1 bit and consequently 1415 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable 1416 * exceptions. Some FPU-less processors that implement one 1417 * of these ISAs however use this code erroneously for COP1X 1418 * instructions. Therefore we redirect this trap to the FP 1419 * emulator too. 1420 */ 1421 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) { 1422 force_sig(SIGILL, current); 1423 break; 1424 } 1425 /* Fall through. */ 1426 1427 case 1: 1428 err = enable_restore_fp_context(0); 1429 1430 if (raw_cpu_has_fpu && !err) 1431 break; 1432 1433 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0, 1434 &fault_addr); 1435 1436 /* 1437 * We can't allow the emulated instruction to leave 1438 * any enabled Cause bits set in $fcr31. 1439 */ 1440 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); 1441 current->thread.fpu.fcr31 &= ~fcr31; 1442 1443 /* Send a signal if required. */ 1444 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err) 1445 mt_ase_fp_affinity(); 1446 1447 break; 1448 1449 case 2: 1450 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); 1451 break; 1452 } 1453 1454 exception_exit(prev_state); 1455 } 1456 1457 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr) 1458 { 1459 enum ctx_state prev_state; 1460 1461 prev_state = exception_enter(); 1462 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1463 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0, 1464 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP) 1465 goto out; 1466 1467 /* Clear MSACSR.Cause before enabling interrupts */ 1468 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF); 1469 local_irq_enable(); 1470 1471 die_if_kernel("do_msa_fpe invoked from kernel context!", regs); 1472 force_sig(SIGFPE, current); 1473 out: 1474 exception_exit(prev_state); 1475 } 1476 1477 asmlinkage void do_msa(struct pt_regs *regs) 1478 { 1479 enum ctx_state prev_state; 1480 int err; 1481 1482 prev_state = exception_enter(); 1483 1484 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) { 1485 force_sig(SIGILL, current); 1486 goto out; 1487 } 1488 1489 die_if_kernel("do_msa invoked from kernel context!", regs); 1490 1491 err = enable_restore_fp_context(1); 1492 if (err) 1493 force_sig(SIGILL, current); 1494 out: 1495 exception_exit(prev_state); 1496 } 1497 1498 asmlinkage void do_mdmx(struct pt_regs *regs) 1499 { 1500 enum ctx_state prev_state; 1501 1502 prev_state = exception_enter(); 1503 force_sig(SIGILL, current); 1504 exception_exit(prev_state); 1505 } 1506 1507 /* 1508 * Called with interrupts disabled. 1509 */ 1510 asmlinkage void do_watch(struct pt_regs *regs) 1511 { 1512 siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT }; 1513 enum ctx_state prev_state; 1514 1515 prev_state = exception_enter(); 1516 /* 1517 * Clear WP (bit 22) bit of cause register so we don't loop 1518 * forever. 1519 */ 1520 clear_c0_cause(CAUSEF_WP); 1521 1522 /* 1523 * If the current thread has the watch registers loaded, save 1524 * their values and send SIGTRAP. Otherwise another thread 1525 * left the registers set, clear them and continue. 1526 */ 1527 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { 1528 mips_read_watch_registers(); 1529 local_irq_enable(); 1530 force_sig_info(SIGTRAP, &info, current); 1531 } else { 1532 mips_clear_watch_registers(); 1533 local_irq_enable(); 1534 } 1535 exception_exit(prev_state); 1536 } 1537 1538 asmlinkage void do_mcheck(struct pt_regs *regs) 1539 { 1540 int multi_match = regs->cp0_status & ST0_TS; 1541 enum ctx_state prev_state; 1542 mm_segment_t old_fs = get_fs(); 1543 1544 prev_state = exception_enter(); 1545 show_regs(regs); 1546 1547 if (multi_match) { 1548 dump_tlb_regs(); 1549 pr_info("\n"); 1550 dump_tlb_all(); 1551 } 1552 1553 if (!user_mode(regs)) 1554 set_fs(KERNEL_DS); 1555 1556 show_code((unsigned int __user *) regs->cp0_epc); 1557 1558 set_fs(old_fs); 1559 1560 /* 1561 * Some chips may have other causes of machine check (e.g. SB1 1562 * graduation timer) 1563 */ 1564 panic("Caught Machine Check exception - %scaused by multiple " 1565 "matching entries in the TLB.", 1566 (multi_match) ? "" : "not "); 1567 } 1568 1569 asmlinkage void do_mt(struct pt_regs *regs) 1570 { 1571 int subcode; 1572 1573 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) 1574 >> VPECONTROL_EXCPT_SHIFT; 1575 switch (subcode) { 1576 case 0: 1577 printk(KERN_DEBUG "Thread Underflow\n"); 1578 break; 1579 case 1: 1580 printk(KERN_DEBUG "Thread Overflow\n"); 1581 break; 1582 case 2: 1583 printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); 1584 break; 1585 case 3: 1586 printk(KERN_DEBUG "Gating Storage Exception\n"); 1587 break; 1588 case 4: 1589 printk(KERN_DEBUG "YIELD Scheduler Exception\n"); 1590 break; 1591 case 5: 1592 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n"); 1593 break; 1594 default: 1595 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", 1596 subcode); 1597 break; 1598 } 1599 die_if_kernel("MIPS MT Thread exception in kernel", regs); 1600 1601 force_sig(SIGILL, current); 1602 } 1603 1604 1605 asmlinkage void do_dsp(struct pt_regs *regs) 1606 { 1607 if (cpu_has_dsp) 1608 panic("Unexpected DSP exception"); 1609 1610 force_sig(SIGILL, current); 1611 } 1612 1613 asmlinkage void do_reserved(struct pt_regs *regs) 1614 { 1615 /* 1616 * Game over - no way to handle this if it ever occurs. Most probably 1617 * caused by a new unknown cpu type or after another deadly 1618 * hard/software error. 1619 */ 1620 show_regs(regs); 1621 panic("Caught reserved exception %ld - should not happen.", 1622 (regs->cp0_cause & 0x7f) >> 2); 1623 } 1624 1625 static int __initdata l1parity = 1; 1626 static int __init nol1parity(char *s) 1627 { 1628 l1parity = 0; 1629 return 1; 1630 } 1631 __setup("nol1par", nol1parity); 1632 static int __initdata l2parity = 1; 1633 static int __init nol2parity(char *s) 1634 { 1635 l2parity = 0; 1636 return 1; 1637 } 1638 __setup("nol2par", nol2parity); 1639 1640 /* 1641 * Some MIPS CPUs can enable/disable for cache parity detection, but do 1642 * it different ways. 1643 */ 1644 static inline void parity_protection_init(void) 1645 { 1646 #define ERRCTL_PE 0x80000000 1647 #define ERRCTL_L2P 0x00800000 1648 1649 if (mips_cm_revision() >= CM_REV_CM3) { 1650 ulong gcr_ectl, cp0_ectl; 1651 1652 /* 1653 * With CM3 systems we need to ensure that the L1 & L2 1654 * parity enables are set to the same value, since this 1655 * is presumed by the hardware engineers. 1656 * 1657 * If the user disabled either of L1 or L2 ECC checking, 1658 * disable both. 1659 */ 1660 l1parity &= l2parity; 1661 l2parity &= l1parity; 1662 1663 /* Probe L1 ECC support */ 1664 cp0_ectl = read_c0_ecc(); 1665 write_c0_ecc(cp0_ectl | ERRCTL_PE); 1666 back_to_back_c0_hazard(); 1667 cp0_ectl = read_c0_ecc(); 1668 1669 /* Probe L2 ECC support */ 1670 gcr_ectl = read_gcr_err_control(); 1671 1672 if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT_MSK) || 1673 !(cp0_ectl & ERRCTL_PE)) { 1674 /* 1675 * One of L1 or L2 ECC checking isn't supported, 1676 * so we cannot enable either. 1677 */ 1678 l1parity = l2parity = 0; 1679 } 1680 1681 /* Configure L1 ECC checking */ 1682 if (l1parity) 1683 cp0_ectl |= ERRCTL_PE; 1684 else 1685 cp0_ectl &= ~ERRCTL_PE; 1686 write_c0_ecc(cp0_ectl); 1687 back_to_back_c0_hazard(); 1688 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity); 1689 1690 /* Configure L2 ECC checking */ 1691 if (l2parity) 1692 gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK; 1693 else 1694 gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK; 1695 write_gcr_err_control(gcr_ectl); 1696 gcr_ectl = read_gcr_err_control(); 1697 gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK; 1698 WARN_ON(!!gcr_ectl != l2parity); 1699 1700 pr_info("Cache parity protection %sabled\n", 1701 l1parity ? "en" : "dis"); 1702 return; 1703 } 1704 1705 switch (current_cpu_type()) { 1706 case CPU_24K: 1707 case CPU_34K: 1708 case CPU_74K: 1709 case CPU_1004K: 1710 case CPU_1074K: 1711 case CPU_INTERAPTIV: 1712 case CPU_PROAPTIV: 1713 case CPU_P5600: 1714 case CPU_QEMU_GENERIC: 1715 case CPU_P6600: 1716 { 1717 unsigned long errctl; 1718 unsigned int l1parity_present, l2parity_present; 1719 1720 errctl = read_c0_ecc(); 1721 errctl &= ~(ERRCTL_PE|ERRCTL_L2P); 1722 1723 /* probe L1 parity support */ 1724 write_c0_ecc(errctl | ERRCTL_PE); 1725 back_to_back_c0_hazard(); 1726 l1parity_present = (read_c0_ecc() & ERRCTL_PE); 1727 1728 /* probe L2 parity support */ 1729 write_c0_ecc(errctl|ERRCTL_L2P); 1730 back_to_back_c0_hazard(); 1731 l2parity_present = (read_c0_ecc() & ERRCTL_L2P); 1732 1733 if (l1parity_present && l2parity_present) { 1734 if (l1parity) 1735 errctl |= ERRCTL_PE; 1736 if (l1parity ^ l2parity) 1737 errctl |= ERRCTL_L2P; 1738 } else if (l1parity_present) { 1739 if (l1parity) 1740 errctl |= ERRCTL_PE; 1741 } else if (l2parity_present) { 1742 if (l2parity) 1743 errctl |= ERRCTL_L2P; 1744 } else { 1745 /* No parity available */ 1746 } 1747 1748 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); 1749 1750 write_c0_ecc(errctl); 1751 back_to_back_c0_hazard(); 1752 errctl = read_c0_ecc(); 1753 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); 1754 1755 if (l1parity_present) 1756 printk(KERN_INFO "Cache parity protection %sabled\n", 1757 (errctl & ERRCTL_PE) ? "en" : "dis"); 1758 1759 if (l2parity_present) { 1760 if (l1parity_present && l1parity) 1761 errctl ^= ERRCTL_L2P; 1762 printk(KERN_INFO "L2 cache parity protection %sabled\n", 1763 (errctl & ERRCTL_L2P) ? "en" : "dis"); 1764 } 1765 } 1766 break; 1767 1768 case CPU_5KC: 1769 case CPU_5KE: 1770 case CPU_LOONGSON1: 1771 write_c0_ecc(0x80000000); 1772 back_to_back_c0_hazard(); 1773 /* Set the PE bit (bit 31) in the c0_errctl register. */ 1774 printk(KERN_INFO "Cache parity protection %sabled\n", 1775 (read_c0_ecc() & 0x80000000) ? "en" : "dis"); 1776 break; 1777 case CPU_20KC: 1778 case CPU_25KF: 1779 /* Clear the DE bit (bit 16) in the c0_status register. */ 1780 printk(KERN_INFO "Enable cache parity protection for " 1781 "MIPS 20KC/25KF CPUs.\n"); 1782 clear_c0_status(ST0_DE); 1783 break; 1784 default: 1785 break; 1786 } 1787 } 1788 1789 asmlinkage void cache_parity_error(void) 1790 { 1791 const int field = 2 * sizeof(unsigned long); 1792 unsigned int reg_val; 1793 1794 /* For the moment, report the problem and hang. */ 1795 printk("Cache error exception:\n"); 1796 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1797 reg_val = read_c0_cacheerr(); 1798 printk("c0_cacheerr == %08x\n", reg_val); 1799 1800 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1801 reg_val & (1<<30) ? "secondary" : "primary", 1802 reg_val & (1<<31) ? "data" : "insn"); 1803 if ((cpu_has_mips_r2_r6) && 1804 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { 1805 pr_err("Error bits: %s%s%s%s%s%s%s%s\n", 1806 reg_val & (1<<29) ? "ED " : "", 1807 reg_val & (1<<28) ? "ET " : "", 1808 reg_val & (1<<27) ? "ES " : "", 1809 reg_val & (1<<26) ? "EE " : "", 1810 reg_val & (1<<25) ? "EB " : "", 1811 reg_val & (1<<24) ? "EI " : "", 1812 reg_val & (1<<23) ? "E1 " : "", 1813 reg_val & (1<<22) ? "E0 " : ""); 1814 } else { 1815 pr_err("Error bits: %s%s%s%s%s%s%s\n", 1816 reg_val & (1<<29) ? "ED " : "", 1817 reg_val & (1<<28) ? "ET " : "", 1818 reg_val & (1<<26) ? "EE " : "", 1819 reg_val & (1<<25) ? "EB " : "", 1820 reg_val & (1<<24) ? "EI " : "", 1821 reg_val & (1<<23) ? "E1 " : "", 1822 reg_val & (1<<22) ? "E0 " : ""); 1823 } 1824 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); 1825 1826 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) 1827 if (reg_val & (1<<22)) 1828 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); 1829 1830 if (reg_val & (1<<23)) 1831 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); 1832 #endif 1833 1834 panic("Can't handle the cache error!"); 1835 } 1836 1837 asmlinkage void do_ftlb(void) 1838 { 1839 const int field = 2 * sizeof(unsigned long); 1840 unsigned int reg_val; 1841 1842 /* For the moment, report the problem and hang. */ 1843 if ((cpu_has_mips_r2_r6) && 1844 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) || 1845 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) { 1846 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n", 1847 read_c0_ecc()); 1848 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1849 reg_val = read_c0_cacheerr(); 1850 pr_err("c0_cacheerr == %08x\n", reg_val); 1851 1852 if ((reg_val & 0xc0000000) == 0xc0000000) { 1853 pr_err("Decoded c0_cacheerr: FTLB parity error\n"); 1854 } else { 1855 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1856 reg_val & (1<<30) ? "secondary" : "primary", 1857 reg_val & (1<<31) ? "data" : "insn"); 1858 } 1859 } else { 1860 pr_err("FTLB error exception\n"); 1861 } 1862 /* Just print the cacheerr bits for now */ 1863 cache_parity_error(); 1864 } 1865 1866 /* 1867 * SDBBP EJTAG debug exception handler. 1868 * We skip the instruction and return to the next instruction. 1869 */ 1870 void ejtag_exception_handler(struct pt_regs *regs) 1871 { 1872 const int field = 2 * sizeof(unsigned long); 1873 unsigned long depc, old_epc, old_ra; 1874 unsigned int debug; 1875 1876 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); 1877 depc = read_c0_depc(); 1878 debug = read_c0_debug(); 1879 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); 1880 if (debug & 0x80000000) { 1881 /* 1882 * In branch delay slot. 1883 * We cheat a little bit here and use EPC to calculate the 1884 * debug return address (DEPC). EPC is restored after the 1885 * calculation. 1886 */ 1887 old_epc = regs->cp0_epc; 1888 old_ra = regs->regs[31]; 1889 regs->cp0_epc = depc; 1890 compute_return_epc(regs); 1891 depc = regs->cp0_epc; 1892 regs->cp0_epc = old_epc; 1893 regs->regs[31] = old_ra; 1894 } else 1895 depc += 4; 1896 write_c0_depc(depc); 1897 1898 #if 0 1899 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); 1900 write_c0_debug(debug | 0x100); 1901 #endif 1902 } 1903 1904 /* 1905 * NMI exception handler. 1906 * No lock; only written during early bootup by CPU 0. 1907 */ 1908 static RAW_NOTIFIER_HEAD(nmi_chain); 1909 1910 int register_nmi_notifier(struct notifier_block *nb) 1911 { 1912 return raw_notifier_chain_register(&nmi_chain, nb); 1913 } 1914 1915 void __noreturn nmi_exception_handler(struct pt_regs *regs) 1916 { 1917 char str[100]; 1918 1919 nmi_enter(); 1920 raw_notifier_call_chain(&nmi_chain, 0, regs); 1921 bust_spinlocks(1); 1922 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n", 1923 smp_processor_id(), regs->cp0_epc); 1924 regs->cp0_epc = read_c0_errorepc(); 1925 die(str, regs); 1926 nmi_exit(); 1927 } 1928 1929 #define VECTORSPACING 0x100 /* for EI/VI mode */ 1930 1931 unsigned long ebase; 1932 EXPORT_SYMBOL_GPL(ebase); 1933 unsigned long exception_handlers[32]; 1934 unsigned long vi_handlers[64]; 1935 1936 void __init *set_except_vector(int n, void *addr) 1937 { 1938 unsigned long handler = (unsigned long) addr; 1939 unsigned long old_handler; 1940 1941 #ifdef CONFIG_CPU_MICROMIPS 1942 /* 1943 * Only the TLB handlers are cache aligned with an even 1944 * address. All other handlers are on an odd address and 1945 * require no modification. Otherwise, MIPS32 mode will 1946 * be entered when handling any TLB exceptions. That 1947 * would be bad...since we must stay in microMIPS mode. 1948 */ 1949 if (!(handler & 0x1)) 1950 handler |= 1; 1951 #endif 1952 old_handler = xchg(&exception_handlers[n], handler); 1953 1954 if (n == 0 && cpu_has_divec) { 1955 #ifdef CONFIG_CPU_MICROMIPS 1956 unsigned long jump_mask = ~((1 << 27) - 1); 1957 #else 1958 unsigned long jump_mask = ~((1 << 28) - 1); 1959 #endif 1960 u32 *buf = (u32 *)(ebase + 0x200); 1961 unsigned int k0 = 26; 1962 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { 1963 uasm_i_j(&buf, handler & ~jump_mask); 1964 uasm_i_nop(&buf); 1965 } else { 1966 UASM_i_LA(&buf, k0, handler); 1967 uasm_i_jr(&buf, k0); 1968 uasm_i_nop(&buf); 1969 } 1970 local_flush_icache_range(ebase + 0x200, (unsigned long)buf); 1971 } 1972 return (void *)old_handler; 1973 } 1974 1975 static void do_default_vi(void) 1976 { 1977 show_regs(get_irq_regs()); 1978 panic("Caught unexpected vectored interrupt."); 1979 } 1980 1981 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) 1982 { 1983 unsigned long handler; 1984 unsigned long old_handler = vi_handlers[n]; 1985 int srssets = current_cpu_data.srsets; 1986 u16 *h; 1987 unsigned char *b; 1988 1989 BUG_ON(!cpu_has_veic && !cpu_has_vint); 1990 1991 if (addr == NULL) { 1992 handler = (unsigned long) do_default_vi; 1993 srs = 0; 1994 } else 1995 handler = (unsigned long) addr; 1996 vi_handlers[n] = handler; 1997 1998 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); 1999 2000 if (srs >= srssets) 2001 panic("Shadow register set %d not supported", srs); 2002 2003 if (cpu_has_veic) { 2004 if (board_bind_eic_interrupt) 2005 board_bind_eic_interrupt(n, srs); 2006 } else if (cpu_has_vint) { 2007 /* SRSMap is only defined if shadow sets are implemented */ 2008 if (srssets > 1) 2009 change_c0_srsmap(0xf << n*4, srs << n*4); 2010 } 2011 2012 if (srs == 0) { 2013 /* 2014 * If no shadow set is selected then use the default handler 2015 * that does normal register saving and standard interrupt exit 2016 */ 2017 extern char except_vec_vi, except_vec_vi_lui; 2018 extern char except_vec_vi_ori, except_vec_vi_end; 2019 extern char rollback_except_vec_vi; 2020 char *vec_start = using_rollback_handler() ? 2021 &rollback_except_vec_vi : &except_vec_vi; 2022 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN) 2023 const int lui_offset = &except_vec_vi_lui - vec_start + 2; 2024 const int ori_offset = &except_vec_vi_ori - vec_start + 2; 2025 #else 2026 const int lui_offset = &except_vec_vi_lui - vec_start; 2027 const int ori_offset = &except_vec_vi_ori - vec_start; 2028 #endif 2029 const int handler_len = &except_vec_vi_end - vec_start; 2030 2031 if (handler_len > VECTORSPACING) { 2032 /* 2033 * Sigh... panicing won't help as the console 2034 * is probably not configured :( 2035 */ 2036 panic("VECTORSPACING too small"); 2037 } 2038 2039 set_handler(((unsigned long)b - ebase), vec_start, 2040 #ifdef CONFIG_CPU_MICROMIPS 2041 (handler_len - 1)); 2042 #else 2043 handler_len); 2044 #endif 2045 h = (u16 *)(b + lui_offset); 2046 *h = (handler >> 16) & 0xffff; 2047 h = (u16 *)(b + ori_offset); 2048 *h = (handler & 0xffff); 2049 local_flush_icache_range((unsigned long)b, 2050 (unsigned long)(b+handler_len)); 2051 } 2052 else { 2053 /* 2054 * In other cases jump directly to the interrupt handler. It 2055 * is the handler's responsibility to save registers if required 2056 * (eg hi/lo) and return from the exception using "eret". 2057 */ 2058 u32 insn; 2059 2060 h = (u16 *)b; 2061 /* j handler */ 2062 #ifdef CONFIG_CPU_MICROMIPS 2063 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1); 2064 #else 2065 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2); 2066 #endif 2067 h[0] = (insn >> 16) & 0xffff; 2068 h[1] = insn & 0xffff; 2069 h[2] = 0; 2070 h[3] = 0; 2071 local_flush_icache_range((unsigned long)b, 2072 (unsigned long)(b+8)); 2073 } 2074 2075 return (void *)old_handler; 2076 } 2077 2078 void *set_vi_handler(int n, vi_handler_t addr) 2079 { 2080 return set_vi_srs_handler(n, addr, 0); 2081 } 2082 2083 extern void tlb_init(void); 2084 2085 /* 2086 * Timer interrupt 2087 */ 2088 int cp0_compare_irq; 2089 EXPORT_SYMBOL_GPL(cp0_compare_irq); 2090 int cp0_compare_irq_shift; 2091 2092 /* 2093 * Performance counter IRQ or -1 if shared with timer 2094 */ 2095 int cp0_perfcount_irq; 2096 EXPORT_SYMBOL_GPL(cp0_perfcount_irq); 2097 2098 /* 2099 * Fast debug channel IRQ or -1 if not present 2100 */ 2101 int cp0_fdc_irq; 2102 EXPORT_SYMBOL_GPL(cp0_fdc_irq); 2103 2104 static int noulri; 2105 2106 static int __init ulri_disable(char *s) 2107 { 2108 pr_info("Disabling ulri\n"); 2109 noulri = 1; 2110 2111 return 1; 2112 } 2113 __setup("noulri", ulri_disable); 2114 2115 /* configure STATUS register */ 2116 static void configure_status(void) 2117 { 2118 /* 2119 * Disable coprocessors and select 32-bit or 64-bit addressing 2120 * and the 16/32 or 32/32 FPR register model. Reset the BEV 2121 * flag that some firmware may have left set and the TS bit (for 2122 * IP27). Set XX for ISA IV code to work. 2123 */ 2124 unsigned int status_set = ST0_CU0; 2125 #ifdef CONFIG_64BIT 2126 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; 2127 #endif 2128 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV) 2129 status_set |= ST0_XX; 2130 if (cpu_has_dsp) 2131 status_set |= ST0_MX; 2132 2133 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, 2134 status_set); 2135 } 2136 2137 unsigned int hwrena; 2138 EXPORT_SYMBOL_GPL(hwrena); 2139 2140 /* configure HWRENA register */ 2141 static void configure_hwrena(void) 2142 { 2143 hwrena = cpu_hwrena_impl_bits; 2144 2145 if (cpu_has_mips_r2_r6) 2146 hwrena |= MIPS_HWRENA_CPUNUM | 2147 MIPS_HWRENA_SYNCISTEP | 2148 MIPS_HWRENA_CC | 2149 MIPS_HWRENA_CCRES; 2150 2151 if (!noulri && cpu_has_userlocal) 2152 hwrena |= MIPS_HWRENA_ULR; 2153 2154 if (hwrena) 2155 write_c0_hwrena(hwrena); 2156 } 2157 2158 static void configure_exception_vector(void) 2159 { 2160 if (cpu_has_veic || cpu_has_vint) { 2161 unsigned long sr = set_c0_status(ST0_BEV); 2162 /* If available, use WG to set top bits of EBASE */ 2163 if (cpu_has_ebase_wg) { 2164 #ifdef CONFIG_64BIT 2165 write_c0_ebase_64(ebase | MIPS_EBASE_WG); 2166 #else 2167 write_c0_ebase(ebase | MIPS_EBASE_WG); 2168 #endif 2169 } 2170 write_c0_ebase(ebase); 2171 write_c0_status(sr); 2172 /* Setting vector spacing enables EI/VI mode */ 2173 change_c0_intctl(0x3e0, VECTORSPACING); 2174 } 2175 if (cpu_has_divec) { 2176 if (cpu_has_mipsmt) { 2177 unsigned int vpflags = dvpe(); 2178 set_c0_cause(CAUSEF_IV); 2179 evpe(vpflags); 2180 } else 2181 set_c0_cause(CAUSEF_IV); 2182 } 2183 } 2184 2185 void per_cpu_trap_init(bool is_boot_cpu) 2186 { 2187 unsigned int cpu = smp_processor_id(); 2188 2189 configure_status(); 2190 configure_hwrena(); 2191 2192 configure_exception_vector(); 2193 2194 /* 2195 * Before R2 both interrupt numbers were fixed to 7, so on R2 only: 2196 * 2197 * o read IntCtl.IPTI to determine the timer interrupt 2198 * o read IntCtl.IPPCI to determine the performance counter interrupt 2199 * o read IntCtl.IPFDC to determine the fast debug channel interrupt 2200 */ 2201 if (cpu_has_mips_r2_r6) { 2202 /* 2203 * We shouldn't trust a secondary core has a sane EBASE register 2204 * so use the one calculated by the boot CPU. 2205 */ 2206 if (!is_boot_cpu) { 2207 /* If available, use WG to set top bits of EBASE */ 2208 if (cpu_has_ebase_wg) { 2209 #ifdef CONFIG_64BIT 2210 write_c0_ebase_64(ebase | MIPS_EBASE_WG); 2211 #else 2212 write_c0_ebase(ebase | MIPS_EBASE_WG); 2213 #endif 2214 } 2215 write_c0_ebase(ebase); 2216 } 2217 2218 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; 2219 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; 2220 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; 2221 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7; 2222 if (!cp0_fdc_irq) 2223 cp0_fdc_irq = -1; 2224 2225 } else { 2226 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; 2227 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ; 2228 cp0_perfcount_irq = -1; 2229 cp0_fdc_irq = -1; 2230 } 2231 2232 if (!cpu_data[cpu].asid_cache) 2233 cpu_data[cpu].asid_cache = asid_first_version(cpu); 2234 2235 mmgrab(&init_mm); 2236 current->active_mm = &init_mm; 2237 BUG_ON(current->mm); 2238 enter_lazy_tlb(&init_mm, current); 2239 2240 /* Boot CPU's cache setup in setup_arch(). */ 2241 if (!is_boot_cpu) 2242 cpu_cache_init(); 2243 tlb_init(); 2244 TLBMISS_HANDLER_SETUP(); 2245 } 2246 2247 /* Install CPU exception handler */ 2248 void set_handler(unsigned long offset, void *addr, unsigned long size) 2249 { 2250 #ifdef CONFIG_CPU_MICROMIPS 2251 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size); 2252 #else 2253 memcpy((void *)(ebase + offset), addr, size); 2254 #endif 2255 local_flush_icache_range(ebase + offset, ebase + offset + size); 2256 } 2257 2258 static char panic_null_cerr[] = 2259 "Trying to set NULL cache error exception handler"; 2260 2261 /* 2262 * Install uncached CPU exception handler. 2263 * This is suitable only for the cache error exception which is the only 2264 * exception handler that is being run uncached. 2265 */ 2266 void set_uncached_handler(unsigned long offset, void *addr, 2267 unsigned long size) 2268 { 2269 unsigned long uncached_ebase = CKSEG1ADDR(ebase); 2270 2271 if (!addr) 2272 panic(panic_null_cerr); 2273 2274 memcpy((void *)(uncached_ebase + offset), addr, size); 2275 } 2276 2277 static int __initdata rdhwr_noopt; 2278 static int __init set_rdhwr_noopt(char *str) 2279 { 2280 rdhwr_noopt = 1; 2281 return 1; 2282 } 2283 2284 __setup("rdhwr_noopt", set_rdhwr_noopt); 2285 2286 void __init trap_init(void) 2287 { 2288 extern char except_vec3_generic; 2289 extern char except_vec4; 2290 extern char except_vec3_r4000; 2291 unsigned long i; 2292 2293 check_wait(); 2294 2295 if (cpu_has_veic || cpu_has_vint) { 2296 unsigned long size = 0x200 + VECTORSPACING*64; 2297 phys_addr_t ebase_pa; 2298 2299 ebase = (unsigned long) 2300 __alloc_bootmem(size, 1 << fls(size), 0); 2301 2302 /* 2303 * Try to ensure ebase resides in KSeg0 if possible. 2304 * 2305 * It shouldn't generally be in XKPhys on MIPS64 to avoid 2306 * hitting a poorly defined exception base for Cache Errors. 2307 * The allocation is likely to be in the low 512MB of physical, 2308 * in which case we should be able to convert to KSeg0. 2309 * 2310 * EVA is special though as it allows segments to be rearranged 2311 * and to become uncached during cache error handling. 2312 */ 2313 ebase_pa = __pa(ebase); 2314 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000)) 2315 ebase = CKSEG0ADDR(ebase_pa); 2316 } else { 2317 ebase = CAC_BASE; 2318 2319 if (cpu_has_mips_r2_r6) { 2320 if (cpu_has_ebase_wg) { 2321 #ifdef CONFIG_64BIT 2322 ebase = (read_c0_ebase_64() & ~0xfff); 2323 #else 2324 ebase = (read_c0_ebase() & ~0xfff); 2325 #endif 2326 } else { 2327 ebase += (read_c0_ebase() & 0x3ffff000); 2328 } 2329 } 2330 } 2331 2332 if (cpu_has_mmips) { 2333 unsigned int config3 = read_c0_config3(); 2334 2335 if (IS_ENABLED(CONFIG_CPU_MICROMIPS)) 2336 write_c0_config3(config3 | MIPS_CONF3_ISA_OE); 2337 else 2338 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE); 2339 } 2340 2341 if (board_ebase_setup) 2342 board_ebase_setup(); 2343 per_cpu_trap_init(true); 2344 2345 /* 2346 * Copy the generic exception handlers to their final destination. 2347 * This will be overridden later as suitable for a particular 2348 * configuration. 2349 */ 2350 set_handler(0x180, &except_vec3_generic, 0x80); 2351 2352 /* 2353 * Setup default vectors 2354 */ 2355 for (i = 0; i <= 31; i++) 2356 set_except_vector(i, handle_reserved); 2357 2358 /* 2359 * Copy the EJTAG debug exception vector handler code to it's final 2360 * destination. 2361 */ 2362 if (cpu_has_ejtag && board_ejtag_handler_setup) 2363 board_ejtag_handler_setup(); 2364 2365 /* 2366 * Only some CPUs have the watch exceptions. 2367 */ 2368 if (cpu_has_watch) 2369 set_except_vector(EXCCODE_WATCH, handle_watch); 2370 2371 /* 2372 * Initialise interrupt handlers 2373 */ 2374 if (cpu_has_veic || cpu_has_vint) { 2375 int nvec = cpu_has_veic ? 64 : 8; 2376 for (i = 0; i < nvec; i++) 2377 set_vi_handler(i, NULL); 2378 } 2379 else if (cpu_has_divec) 2380 set_handler(0x200, &except_vec4, 0x8); 2381 2382 /* 2383 * Some CPUs can enable/disable for cache parity detection, but does 2384 * it different ways. 2385 */ 2386 parity_protection_init(); 2387 2388 /* 2389 * The Data Bus Errors / Instruction Bus Errors are signaled 2390 * by external hardware. Therefore these two exceptions 2391 * may have board specific handlers. 2392 */ 2393 if (board_be_init) 2394 board_be_init(); 2395 2396 set_except_vector(EXCCODE_INT, using_rollback_handler() ? 2397 rollback_handle_int : handle_int); 2398 set_except_vector(EXCCODE_MOD, handle_tlbm); 2399 set_except_vector(EXCCODE_TLBL, handle_tlbl); 2400 set_except_vector(EXCCODE_TLBS, handle_tlbs); 2401 2402 set_except_vector(EXCCODE_ADEL, handle_adel); 2403 set_except_vector(EXCCODE_ADES, handle_ades); 2404 2405 set_except_vector(EXCCODE_IBE, handle_ibe); 2406 set_except_vector(EXCCODE_DBE, handle_dbe); 2407 2408 set_except_vector(EXCCODE_SYS, handle_sys); 2409 set_except_vector(EXCCODE_BP, handle_bp); 2410 set_except_vector(EXCCODE_RI, rdhwr_noopt ? handle_ri : 2411 (cpu_has_vtag_icache ? 2412 handle_ri_rdhwr_vivt : handle_ri_rdhwr)); 2413 set_except_vector(EXCCODE_CPU, handle_cpu); 2414 set_except_vector(EXCCODE_OV, handle_ov); 2415 set_except_vector(EXCCODE_TR, handle_tr); 2416 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe); 2417 2418 if (current_cpu_type() == CPU_R6000 || 2419 current_cpu_type() == CPU_R6000A) { 2420 /* 2421 * The R6000 is the only R-series CPU that features a machine 2422 * check exception (similar to the R4000 cache error) and 2423 * unaligned ldc1/sdc1 exception. The handlers have not been 2424 * written yet. Well, anyway there is no R6000 machine on the 2425 * current list of targets for Linux/MIPS. 2426 * (Duh, crap, there is someone with a triple R6k machine) 2427 */ 2428 //set_except_vector(14, handle_mc); 2429 //set_except_vector(15, handle_ndc); 2430 } 2431 2432 2433 if (board_nmi_handler_setup) 2434 board_nmi_handler_setup(); 2435 2436 if (cpu_has_fpu && !cpu_has_nofpuex) 2437 set_except_vector(EXCCODE_FPE, handle_fpe); 2438 2439 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb); 2440 2441 if (cpu_has_rixiex) { 2442 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0); 2443 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0); 2444 } 2445 2446 set_except_vector(EXCCODE_MSADIS, handle_msa); 2447 set_except_vector(EXCCODE_MDMX, handle_mdmx); 2448 2449 if (cpu_has_mcheck) 2450 set_except_vector(EXCCODE_MCHECK, handle_mcheck); 2451 2452 if (cpu_has_mipsmt) 2453 set_except_vector(EXCCODE_THREAD, handle_mt); 2454 2455 set_except_vector(EXCCODE_DSPDIS, handle_dsp); 2456 2457 if (board_cache_error_setup) 2458 board_cache_error_setup(); 2459 2460 if (cpu_has_vce) 2461 /* Special exception: R4[04]00 uses also the divec space. */ 2462 set_handler(0x180, &except_vec3_r4000, 0x100); 2463 else if (cpu_has_4kex) 2464 set_handler(0x180, &except_vec3_generic, 0x80); 2465 else 2466 set_handler(0x080, &except_vec3_generic, 0x80); 2467 2468 local_flush_icache_range(ebase, ebase + 0x400); 2469 2470 sort_extable(__start___dbe_table, __stop___dbe_table); 2471 2472 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */ 2473 } 2474 2475 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd, 2476 void *v) 2477 { 2478 switch (cmd) { 2479 case CPU_PM_ENTER_FAILED: 2480 case CPU_PM_EXIT: 2481 configure_status(); 2482 configure_hwrena(); 2483 configure_exception_vector(); 2484 2485 /* Restore register with CPU number for TLB handlers */ 2486 TLBMISS_HANDLER_RESTORE(); 2487 2488 break; 2489 } 2490 2491 return NOTIFY_OK; 2492 } 2493 2494 static struct notifier_block trap_pm_notifier_block = { 2495 .notifier_call = trap_pm_notifier, 2496 }; 2497 2498 static int __init trap_pm_init(void) 2499 { 2500 return cpu_pm_register_notifier(&trap_pm_notifier_block); 2501 } 2502 arch_initcall(trap_pm_init); 2503