xref: /openbmc/linux/arch/mips/kernel/traps.c (revision 174cd4b1)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
25 #include <linux/mm.h>
26 #include <linux/sched.h>
27 #include <linux/smp.h>
28 #include <linux/spinlock.h>
29 #include <linux/kallsyms.h>
30 #include <linux/bootmem.h>
31 #include <linux/interrupt.h>
32 #include <linux/ptrace.h>
33 #include <linux/kgdb.h>
34 #include <linux/kdebug.h>
35 #include <linux/kprobes.h>
36 #include <linux/notifier.h>
37 #include <linux/kdb.h>
38 #include <linux/irq.h>
39 #include <linux/perf_event.h>
40 
41 #include <asm/addrspace.h>
42 #include <asm/bootinfo.h>
43 #include <asm/branch.h>
44 #include <asm/break.h>
45 #include <asm/cop2.h>
46 #include <asm/cpu.h>
47 #include <asm/cpu-type.h>
48 #include <asm/dsp.h>
49 #include <asm/fpu.h>
50 #include <asm/fpu_emulator.h>
51 #include <asm/idle.h>
52 #include <asm/mips-cm.h>
53 #include <asm/mips-r2-to-r6-emul.h>
54 #include <asm/mips-cm.h>
55 #include <asm/mipsregs.h>
56 #include <asm/mipsmtregs.h>
57 #include <asm/module.h>
58 #include <asm/msa.h>
59 #include <asm/pgtable.h>
60 #include <asm/ptrace.h>
61 #include <asm/sections.h>
62 #include <asm/siginfo.h>
63 #include <asm/tlbdebug.h>
64 #include <asm/traps.h>
65 #include <linux/uaccess.h>
66 #include <asm/watch.h>
67 #include <asm/mmu_context.h>
68 #include <asm/types.h>
69 #include <asm/stacktrace.h>
70 #include <asm/uasm.h>
71 
72 extern void check_wait(void);
73 extern asmlinkage void rollback_handle_int(void);
74 extern asmlinkage void handle_int(void);
75 extern u32 handle_tlbl[];
76 extern u32 handle_tlbs[];
77 extern u32 handle_tlbm[];
78 extern asmlinkage void handle_adel(void);
79 extern asmlinkage void handle_ades(void);
80 extern asmlinkage void handle_ibe(void);
81 extern asmlinkage void handle_dbe(void);
82 extern asmlinkage void handle_sys(void);
83 extern asmlinkage void handle_bp(void);
84 extern asmlinkage void handle_ri(void);
85 extern asmlinkage void handle_ri_rdhwr_vivt(void);
86 extern asmlinkage void handle_ri_rdhwr(void);
87 extern asmlinkage void handle_cpu(void);
88 extern asmlinkage void handle_ov(void);
89 extern asmlinkage void handle_tr(void);
90 extern asmlinkage void handle_msa_fpe(void);
91 extern asmlinkage void handle_fpe(void);
92 extern asmlinkage void handle_ftlb(void);
93 extern asmlinkage void handle_msa(void);
94 extern asmlinkage void handle_mdmx(void);
95 extern asmlinkage void handle_watch(void);
96 extern asmlinkage void handle_mt(void);
97 extern asmlinkage void handle_dsp(void);
98 extern asmlinkage void handle_mcheck(void);
99 extern asmlinkage void handle_reserved(void);
100 extern void tlb_do_page_fault_0(void);
101 
102 void (*board_be_init)(void);
103 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
104 void (*board_nmi_handler_setup)(void);
105 void (*board_ejtag_handler_setup)(void);
106 void (*board_bind_eic_interrupt)(int irq, int regset);
107 void (*board_ebase_setup)(void);
108 void(*board_cache_error_setup)(void);
109 
110 static void show_raw_backtrace(unsigned long reg29)
111 {
112 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
113 	unsigned long addr;
114 
115 	printk("Call Trace:");
116 #ifdef CONFIG_KALLSYMS
117 	printk("\n");
118 #endif
119 	while (!kstack_end(sp)) {
120 		unsigned long __user *p =
121 			(unsigned long __user *)(unsigned long)sp++;
122 		if (__get_user(addr, p)) {
123 			printk(" (Bad stack address)");
124 			break;
125 		}
126 		if (__kernel_text_address(addr))
127 			print_ip_sym(addr);
128 	}
129 	printk("\n");
130 }
131 
132 #ifdef CONFIG_KALLSYMS
133 int raw_show_trace;
134 static int __init set_raw_show_trace(char *str)
135 {
136 	raw_show_trace = 1;
137 	return 1;
138 }
139 __setup("raw_show_trace", set_raw_show_trace);
140 #endif
141 
142 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
143 {
144 	unsigned long sp = regs->regs[29];
145 	unsigned long ra = regs->regs[31];
146 	unsigned long pc = regs->cp0_epc;
147 
148 	if (!task)
149 		task = current;
150 
151 	if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
152 		show_raw_backtrace(sp);
153 		return;
154 	}
155 	printk("Call Trace:\n");
156 	do {
157 		print_ip_sym(pc);
158 		pc = unwind_stack(task, &sp, pc, &ra);
159 	} while (pc);
160 	pr_cont("\n");
161 }
162 
163 /*
164  * This routine abuses get_user()/put_user() to reference pointers
165  * with at least a bit of error checking ...
166  */
167 static void show_stacktrace(struct task_struct *task,
168 	const struct pt_regs *regs)
169 {
170 	const int field = 2 * sizeof(unsigned long);
171 	long stackdata;
172 	int i;
173 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
174 
175 	printk("Stack :");
176 	i = 0;
177 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
178 		if (i && ((i % (64 / field)) == 0)) {
179 			pr_cont("\n");
180 			printk("       ");
181 		}
182 		if (i > 39) {
183 			pr_cont(" ...");
184 			break;
185 		}
186 
187 		if (__get_user(stackdata, sp++)) {
188 			pr_cont(" (Bad stack address)");
189 			break;
190 		}
191 
192 		pr_cont(" %0*lx", field, stackdata);
193 		i++;
194 	}
195 	pr_cont("\n");
196 	show_backtrace(task, regs);
197 }
198 
199 void show_stack(struct task_struct *task, unsigned long *sp)
200 {
201 	struct pt_regs regs;
202 	mm_segment_t old_fs = get_fs();
203 	if (sp) {
204 		regs.regs[29] = (unsigned long)sp;
205 		regs.regs[31] = 0;
206 		regs.cp0_epc = 0;
207 	} else {
208 		if (task && task != current) {
209 			regs.regs[29] = task->thread.reg29;
210 			regs.regs[31] = 0;
211 			regs.cp0_epc = task->thread.reg31;
212 #ifdef CONFIG_KGDB_KDB
213 		} else if (atomic_read(&kgdb_active) != -1 &&
214 			   kdb_current_regs) {
215 			memcpy(&regs, kdb_current_regs, sizeof(regs));
216 #endif /* CONFIG_KGDB_KDB */
217 		} else {
218 			prepare_frametrace(&regs);
219 		}
220 	}
221 	/*
222 	 * show_stack() deals exclusively with kernel mode, so be sure to access
223 	 * the stack in the kernel (not user) address space.
224 	 */
225 	set_fs(KERNEL_DS);
226 	show_stacktrace(task, &regs);
227 	set_fs(old_fs);
228 }
229 
230 static void show_code(unsigned int __user *pc)
231 {
232 	long i;
233 	unsigned short __user *pc16 = NULL;
234 
235 	printk("Code:");
236 
237 	if ((unsigned long)pc & 1)
238 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
239 	for(i = -3 ; i < 6 ; i++) {
240 		unsigned int insn;
241 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
242 			pr_cont(" (Bad address in epc)\n");
243 			break;
244 		}
245 		pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
246 	}
247 	pr_cont("\n");
248 }
249 
250 static void __show_regs(const struct pt_regs *regs)
251 {
252 	const int field = 2 * sizeof(unsigned long);
253 	unsigned int cause = regs->cp0_cause;
254 	unsigned int exccode;
255 	int i;
256 
257 	show_regs_print_info(KERN_DEFAULT);
258 
259 	/*
260 	 * Saved main processor registers
261 	 */
262 	for (i = 0; i < 32; ) {
263 		if ((i % 4) == 0)
264 			printk("$%2d   :", i);
265 		if (i == 0)
266 			pr_cont(" %0*lx", field, 0UL);
267 		else if (i == 26 || i == 27)
268 			pr_cont(" %*s", field, "");
269 		else
270 			pr_cont(" %0*lx", field, regs->regs[i]);
271 
272 		i++;
273 		if ((i % 4) == 0)
274 			pr_cont("\n");
275 	}
276 
277 #ifdef CONFIG_CPU_HAS_SMARTMIPS
278 	printk("Acx    : %0*lx\n", field, regs->acx);
279 #endif
280 	printk("Hi    : %0*lx\n", field, regs->hi);
281 	printk("Lo    : %0*lx\n", field, regs->lo);
282 
283 	/*
284 	 * Saved cp0 registers
285 	 */
286 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
287 	       (void *) regs->cp0_epc);
288 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
289 	       (void *) regs->regs[31]);
290 
291 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
292 
293 	if (cpu_has_3kex) {
294 		if (regs->cp0_status & ST0_KUO)
295 			pr_cont("KUo ");
296 		if (regs->cp0_status & ST0_IEO)
297 			pr_cont("IEo ");
298 		if (regs->cp0_status & ST0_KUP)
299 			pr_cont("KUp ");
300 		if (regs->cp0_status & ST0_IEP)
301 			pr_cont("IEp ");
302 		if (regs->cp0_status & ST0_KUC)
303 			pr_cont("KUc ");
304 		if (regs->cp0_status & ST0_IEC)
305 			pr_cont("IEc ");
306 	} else if (cpu_has_4kex) {
307 		if (regs->cp0_status & ST0_KX)
308 			pr_cont("KX ");
309 		if (regs->cp0_status & ST0_SX)
310 			pr_cont("SX ");
311 		if (regs->cp0_status & ST0_UX)
312 			pr_cont("UX ");
313 		switch (regs->cp0_status & ST0_KSU) {
314 		case KSU_USER:
315 			pr_cont("USER ");
316 			break;
317 		case KSU_SUPERVISOR:
318 			pr_cont("SUPERVISOR ");
319 			break;
320 		case KSU_KERNEL:
321 			pr_cont("KERNEL ");
322 			break;
323 		default:
324 			pr_cont("BAD_MODE ");
325 			break;
326 		}
327 		if (regs->cp0_status & ST0_ERL)
328 			pr_cont("ERL ");
329 		if (regs->cp0_status & ST0_EXL)
330 			pr_cont("EXL ");
331 		if (regs->cp0_status & ST0_IE)
332 			pr_cont("IE ");
333 	}
334 	pr_cont("\n");
335 
336 	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
337 	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
338 
339 	if (1 <= exccode && exccode <= 5)
340 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
341 
342 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
343 	       cpu_name_string());
344 }
345 
346 /*
347  * FIXME: really the generic show_regs should take a const pointer argument.
348  */
349 void show_regs(struct pt_regs *regs)
350 {
351 	__show_regs((struct pt_regs *)regs);
352 }
353 
354 void show_registers(struct pt_regs *regs)
355 {
356 	const int field = 2 * sizeof(unsigned long);
357 	mm_segment_t old_fs = get_fs();
358 
359 	__show_regs(regs);
360 	print_modules();
361 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
362 	       current->comm, current->pid, current_thread_info(), current,
363 	      field, current_thread_info()->tp_value);
364 	if (cpu_has_userlocal) {
365 		unsigned long tls;
366 
367 		tls = read_c0_userlocal();
368 		if (tls != current_thread_info()->tp_value)
369 			printk("*HwTLS: %0*lx\n", field, tls);
370 	}
371 
372 	if (!user_mode(regs))
373 		/* Necessary for getting the correct stack content */
374 		set_fs(KERNEL_DS);
375 	show_stacktrace(current, regs);
376 	show_code((unsigned int __user *) regs->cp0_epc);
377 	printk("\n");
378 	set_fs(old_fs);
379 }
380 
381 static DEFINE_RAW_SPINLOCK(die_lock);
382 
383 void __noreturn die(const char *str, struct pt_regs *regs)
384 {
385 	static int die_counter;
386 	int sig = SIGSEGV;
387 
388 	oops_enter();
389 
390 	if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
391 		       SIGSEGV) == NOTIFY_STOP)
392 		sig = 0;
393 
394 	console_verbose();
395 	raw_spin_lock_irq(&die_lock);
396 	bust_spinlocks(1);
397 
398 	printk("%s[#%d]:\n", str, ++die_counter);
399 	show_registers(regs);
400 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
401 	raw_spin_unlock_irq(&die_lock);
402 
403 	oops_exit();
404 
405 	if (in_interrupt())
406 		panic("Fatal exception in interrupt");
407 
408 	if (panic_on_oops)
409 		panic("Fatal exception");
410 
411 	if (regs && kexec_should_crash(current))
412 		crash_kexec(regs);
413 
414 	do_exit(sig);
415 }
416 
417 extern struct exception_table_entry __start___dbe_table[];
418 extern struct exception_table_entry __stop___dbe_table[];
419 
420 __asm__(
421 "	.section	__dbe_table, \"a\"\n"
422 "	.previous			\n");
423 
424 /* Given an address, look for it in the exception tables. */
425 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
426 {
427 	const struct exception_table_entry *e;
428 
429 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
430 	if (!e)
431 		e = search_module_dbetables(addr);
432 	return e;
433 }
434 
435 asmlinkage void do_be(struct pt_regs *regs)
436 {
437 	const int field = 2 * sizeof(unsigned long);
438 	const struct exception_table_entry *fixup = NULL;
439 	int data = regs->cp0_cause & 4;
440 	int action = MIPS_BE_FATAL;
441 	enum ctx_state prev_state;
442 
443 	prev_state = exception_enter();
444 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
445 	if (data && !user_mode(regs))
446 		fixup = search_dbe_tables(exception_epc(regs));
447 
448 	if (fixup)
449 		action = MIPS_BE_FIXUP;
450 
451 	if (board_be_handler)
452 		action = board_be_handler(regs, fixup != NULL);
453 	else
454 		mips_cm_error_report();
455 
456 	switch (action) {
457 	case MIPS_BE_DISCARD:
458 		goto out;
459 	case MIPS_BE_FIXUP:
460 		if (fixup) {
461 			regs->cp0_epc = fixup->nextinsn;
462 			goto out;
463 		}
464 		break;
465 	default:
466 		break;
467 	}
468 
469 	/*
470 	 * Assume it would be too dangerous to continue ...
471 	 */
472 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
473 	       data ? "Data" : "Instruction",
474 	       field, regs->cp0_epc, field, regs->regs[31]);
475 	if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
476 		       SIGBUS) == NOTIFY_STOP)
477 		goto out;
478 
479 	die_if_kernel("Oops", regs);
480 	force_sig(SIGBUS, current);
481 
482 out:
483 	exception_exit(prev_state);
484 }
485 
486 /*
487  * ll/sc, rdhwr, sync emulation
488  */
489 
490 #define OPCODE 0xfc000000
491 #define BASE   0x03e00000
492 #define RT     0x001f0000
493 #define OFFSET 0x0000ffff
494 #define LL     0xc0000000
495 #define SC     0xe0000000
496 #define SPEC0  0x00000000
497 #define SPEC3  0x7c000000
498 #define RD     0x0000f800
499 #define FUNC   0x0000003f
500 #define SYNC   0x0000000f
501 #define RDHWR  0x0000003b
502 
503 /*  microMIPS definitions   */
504 #define MM_POOL32A_FUNC 0xfc00ffff
505 #define MM_RDHWR        0x00006b3c
506 #define MM_RS           0x001f0000
507 #define MM_RT           0x03e00000
508 
509 /*
510  * The ll_bit is cleared by r*_switch.S
511  */
512 
513 unsigned int ll_bit;
514 struct task_struct *ll_task;
515 
516 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
517 {
518 	unsigned long value, __user *vaddr;
519 	long offset;
520 
521 	/*
522 	 * analyse the ll instruction that just caused a ri exception
523 	 * and put the referenced address to addr.
524 	 */
525 
526 	/* sign extend offset */
527 	offset = opcode & OFFSET;
528 	offset <<= 16;
529 	offset >>= 16;
530 
531 	vaddr = (unsigned long __user *)
532 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
533 
534 	if ((unsigned long)vaddr & 3)
535 		return SIGBUS;
536 	if (get_user(value, vaddr))
537 		return SIGSEGV;
538 
539 	preempt_disable();
540 
541 	if (ll_task == NULL || ll_task == current) {
542 		ll_bit = 1;
543 	} else {
544 		ll_bit = 0;
545 	}
546 	ll_task = current;
547 
548 	preempt_enable();
549 
550 	regs->regs[(opcode & RT) >> 16] = value;
551 
552 	return 0;
553 }
554 
555 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
556 {
557 	unsigned long __user *vaddr;
558 	unsigned long reg;
559 	long offset;
560 
561 	/*
562 	 * analyse the sc instruction that just caused a ri exception
563 	 * and put the referenced address to addr.
564 	 */
565 
566 	/* sign extend offset */
567 	offset = opcode & OFFSET;
568 	offset <<= 16;
569 	offset >>= 16;
570 
571 	vaddr = (unsigned long __user *)
572 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
573 	reg = (opcode & RT) >> 16;
574 
575 	if ((unsigned long)vaddr & 3)
576 		return SIGBUS;
577 
578 	preempt_disable();
579 
580 	if (ll_bit == 0 || ll_task != current) {
581 		regs->regs[reg] = 0;
582 		preempt_enable();
583 		return 0;
584 	}
585 
586 	preempt_enable();
587 
588 	if (put_user(regs->regs[reg], vaddr))
589 		return SIGSEGV;
590 
591 	regs->regs[reg] = 1;
592 
593 	return 0;
594 }
595 
596 /*
597  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
598  * opcodes are supposed to result in coprocessor unusable exceptions if
599  * executed on ll/sc-less processors.  That's the theory.  In practice a
600  * few processors such as NEC's VR4100 throw reserved instruction exceptions
601  * instead, so we're doing the emulation thing in both exception handlers.
602  */
603 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
604 {
605 	if ((opcode & OPCODE) == LL) {
606 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
607 				1, regs, 0);
608 		return simulate_ll(regs, opcode);
609 	}
610 	if ((opcode & OPCODE) == SC) {
611 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
612 				1, regs, 0);
613 		return simulate_sc(regs, opcode);
614 	}
615 
616 	return -1;			/* Must be something else ... */
617 }
618 
619 /*
620  * Simulate trapping 'rdhwr' instructions to provide user accessible
621  * registers not implemented in hardware.
622  */
623 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
624 {
625 	struct thread_info *ti = task_thread_info(current);
626 
627 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
628 			1, regs, 0);
629 	switch (rd) {
630 	case MIPS_HWR_CPUNUM:		/* CPU number */
631 		regs->regs[rt] = smp_processor_id();
632 		return 0;
633 	case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
634 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
635 				     current_cpu_data.icache.linesz);
636 		return 0;
637 	case MIPS_HWR_CC:		/* Read count register */
638 		regs->regs[rt] = read_c0_count();
639 		return 0;
640 	case MIPS_HWR_CCRES:		/* Count register resolution */
641 		switch (current_cpu_type()) {
642 		case CPU_20KC:
643 		case CPU_25KF:
644 			regs->regs[rt] = 1;
645 			break;
646 		default:
647 			regs->regs[rt] = 2;
648 		}
649 		return 0;
650 	case MIPS_HWR_ULR:		/* Read UserLocal register */
651 		regs->regs[rt] = ti->tp_value;
652 		return 0;
653 	default:
654 		return -1;
655 	}
656 }
657 
658 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
659 {
660 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
661 		int rd = (opcode & RD) >> 11;
662 		int rt = (opcode & RT) >> 16;
663 
664 		simulate_rdhwr(regs, rd, rt);
665 		return 0;
666 	}
667 
668 	/* Not ours.  */
669 	return -1;
670 }
671 
672 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
673 {
674 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
675 		int rd = (opcode & MM_RS) >> 16;
676 		int rt = (opcode & MM_RT) >> 21;
677 		simulate_rdhwr(regs, rd, rt);
678 		return 0;
679 	}
680 
681 	/* Not ours.  */
682 	return -1;
683 }
684 
685 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
686 {
687 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
688 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
689 				1, regs, 0);
690 		return 0;
691 	}
692 
693 	return -1;			/* Must be something else ... */
694 }
695 
696 asmlinkage void do_ov(struct pt_regs *regs)
697 {
698 	enum ctx_state prev_state;
699 	siginfo_t info = {
700 		.si_signo = SIGFPE,
701 		.si_code = FPE_INTOVF,
702 		.si_addr = (void __user *)regs->cp0_epc,
703 	};
704 
705 	prev_state = exception_enter();
706 	die_if_kernel("Integer overflow", regs);
707 
708 	force_sig_info(SIGFPE, &info, current);
709 	exception_exit(prev_state);
710 }
711 
712 /*
713  * Send SIGFPE according to FCSR Cause bits, which must have already
714  * been masked against Enable bits.  This is impotant as Inexact can
715  * happen together with Overflow or Underflow, and `ptrace' can set
716  * any bits.
717  */
718 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
719 		     struct task_struct *tsk)
720 {
721 	struct siginfo si = { .si_addr = fault_addr, .si_signo = SIGFPE };
722 
723 	if (fcr31 & FPU_CSR_INV_X)
724 		si.si_code = FPE_FLTINV;
725 	else if (fcr31 & FPU_CSR_DIV_X)
726 		si.si_code = FPE_FLTDIV;
727 	else if (fcr31 & FPU_CSR_OVF_X)
728 		si.si_code = FPE_FLTOVF;
729 	else if (fcr31 & FPU_CSR_UDF_X)
730 		si.si_code = FPE_FLTUND;
731 	else if (fcr31 & FPU_CSR_INE_X)
732 		si.si_code = FPE_FLTRES;
733 	else
734 		si.si_code = __SI_FAULT;
735 	force_sig_info(SIGFPE, &si, tsk);
736 }
737 
738 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
739 {
740 	struct siginfo si = { 0 };
741 	struct vm_area_struct *vma;
742 
743 	switch (sig) {
744 	case 0:
745 		return 0;
746 
747 	case SIGFPE:
748 		force_fcr31_sig(fcr31, fault_addr, current);
749 		return 1;
750 
751 	case SIGBUS:
752 		si.si_addr = fault_addr;
753 		si.si_signo = sig;
754 		si.si_code = BUS_ADRERR;
755 		force_sig_info(sig, &si, current);
756 		return 1;
757 
758 	case SIGSEGV:
759 		si.si_addr = fault_addr;
760 		si.si_signo = sig;
761 		down_read(&current->mm->mmap_sem);
762 		vma = find_vma(current->mm, (unsigned long)fault_addr);
763 		if (vma && (vma->vm_start <= (unsigned long)fault_addr))
764 			si.si_code = SEGV_ACCERR;
765 		else
766 			si.si_code = SEGV_MAPERR;
767 		up_read(&current->mm->mmap_sem);
768 		force_sig_info(sig, &si, current);
769 		return 1;
770 
771 	default:
772 		force_sig(sig, current);
773 		return 1;
774 	}
775 }
776 
777 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
778 		       unsigned long old_epc, unsigned long old_ra)
779 {
780 	union mips_instruction inst = { .word = opcode };
781 	void __user *fault_addr;
782 	unsigned long fcr31;
783 	int sig;
784 
785 	/* If it's obviously not an FP instruction, skip it */
786 	switch (inst.i_format.opcode) {
787 	case cop1_op:
788 	case cop1x_op:
789 	case lwc1_op:
790 	case ldc1_op:
791 	case swc1_op:
792 	case sdc1_op:
793 		break;
794 
795 	default:
796 		return -1;
797 	}
798 
799 	/*
800 	 * do_ri skipped over the instruction via compute_return_epc, undo
801 	 * that for the FPU emulator.
802 	 */
803 	regs->cp0_epc = old_epc;
804 	regs->regs[31] = old_ra;
805 
806 	/* Save the FP context to struct thread_struct */
807 	lose_fpu(1);
808 
809 	/* Run the emulator */
810 	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
811 				       &fault_addr);
812 
813 	/*
814 	 * We can't allow the emulated instruction to leave any
815 	 * enabled Cause bits set in $fcr31.
816 	 */
817 	fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
818 	current->thread.fpu.fcr31 &= ~fcr31;
819 
820 	/* Restore the hardware register state */
821 	own_fpu(1);
822 
823 	/* Send a signal if required.  */
824 	process_fpemu_return(sig, fault_addr, fcr31);
825 
826 	return 0;
827 }
828 
829 /*
830  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
831  */
832 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
833 {
834 	enum ctx_state prev_state;
835 	void __user *fault_addr;
836 	int sig;
837 
838 	prev_state = exception_enter();
839 	if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
840 		       SIGFPE) == NOTIFY_STOP)
841 		goto out;
842 
843 	/* Clear FCSR.Cause before enabling interrupts */
844 	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
845 	local_irq_enable();
846 
847 	die_if_kernel("FP exception in kernel code", regs);
848 
849 	if (fcr31 & FPU_CSR_UNI_X) {
850 		/*
851 		 * Unimplemented operation exception.  If we've got the full
852 		 * software emulator on-board, let's use it...
853 		 *
854 		 * Force FPU to dump state into task/thread context.  We're
855 		 * moving a lot of data here for what is probably a single
856 		 * instruction, but the alternative is to pre-decode the FP
857 		 * register operands before invoking the emulator, which seems
858 		 * a bit extreme for what should be an infrequent event.
859 		 */
860 		/* Ensure 'resume' not overwrite saved fp context again. */
861 		lose_fpu(1);
862 
863 		/* Run the emulator */
864 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
865 					       &fault_addr);
866 
867 		/*
868 		 * We can't allow the emulated instruction to leave any
869 		 * enabled Cause bits set in $fcr31.
870 		 */
871 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
872 		current->thread.fpu.fcr31 &= ~fcr31;
873 
874 		/* Restore the hardware register state */
875 		own_fpu(1);	/* Using the FPU again.	 */
876 	} else {
877 		sig = SIGFPE;
878 		fault_addr = (void __user *) regs->cp0_epc;
879 	}
880 
881 	/* Send a signal if required.  */
882 	process_fpemu_return(sig, fault_addr, fcr31);
883 
884 out:
885 	exception_exit(prev_state);
886 }
887 
888 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
889 	const char *str)
890 {
891 	siginfo_t info = { 0 };
892 	char b[40];
893 
894 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
895 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
896 			 SIGTRAP) == NOTIFY_STOP)
897 		return;
898 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
899 
900 	if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
901 		       SIGTRAP) == NOTIFY_STOP)
902 		return;
903 
904 	/*
905 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
906 	 * insns, even for trap and break codes that indicate arithmetic
907 	 * failures.  Weird ...
908 	 * But should we continue the brokenness???  --macro
909 	 */
910 	switch (code) {
911 	case BRK_OVERFLOW:
912 	case BRK_DIVZERO:
913 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
914 		die_if_kernel(b, regs);
915 		if (code == BRK_DIVZERO)
916 			info.si_code = FPE_INTDIV;
917 		else
918 			info.si_code = FPE_INTOVF;
919 		info.si_signo = SIGFPE;
920 		info.si_addr = (void __user *) regs->cp0_epc;
921 		force_sig_info(SIGFPE, &info, current);
922 		break;
923 	case BRK_BUG:
924 		die_if_kernel("Kernel bug detected", regs);
925 		force_sig(SIGTRAP, current);
926 		break;
927 	case BRK_MEMU:
928 		/*
929 		 * This breakpoint code is used by the FPU emulator to retake
930 		 * control of the CPU after executing the instruction from the
931 		 * delay slot of an emulated branch.
932 		 *
933 		 * Terminate if exception was recognized as a delay slot return
934 		 * otherwise handle as normal.
935 		 */
936 		if (do_dsemulret(regs))
937 			return;
938 
939 		die_if_kernel("Math emu break/trap", regs);
940 		force_sig(SIGTRAP, current);
941 		break;
942 	default:
943 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
944 		die_if_kernel(b, regs);
945 		if (si_code) {
946 			info.si_signo = SIGTRAP;
947 			info.si_code = si_code;
948 			force_sig_info(SIGTRAP, &info, current);
949 		} else {
950 			force_sig(SIGTRAP, current);
951 		}
952 	}
953 }
954 
955 asmlinkage void do_bp(struct pt_regs *regs)
956 {
957 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
958 	unsigned int opcode, bcode;
959 	enum ctx_state prev_state;
960 	mm_segment_t seg;
961 
962 	seg = get_fs();
963 	if (!user_mode(regs))
964 		set_fs(KERNEL_DS);
965 
966 	prev_state = exception_enter();
967 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
968 	if (get_isa16_mode(regs->cp0_epc)) {
969 		u16 instr[2];
970 
971 		if (__get_user(instr[0], (u16 __user *)epc))
972 			goto out_sigsegv;
973 
974 		if (!cpu_has_mmips) {
975 			/* MIPS16e mode */
976 			bcode = (instr[0] >> 5) & 0x3f;
977 		} else if (mm_insn_16bit(instr[0])) {
978 			/* 16-bit microMIPS BREAK */
979 			bcode = instr[0] & 0xf;
980 		} else {
981 			/* 32-bit microMIPS BREAK */
982 			if (__get_user(instr[1], (u16 __user *)(epc + 2)))
983 				goto out_sigsegv;
984 			opcode = (instr[0] << 16) | instr[1];
985 			bcode = (opcode >> 6) & ((1 << 20) - 1);
986 		}
987 	} else {
988 		if (__get_user(opcode, (unsigned int __user *)epc))
989 			goto out_sigsegv;
990 		bcode = (opcode >> 6) & ((1 << 20) - 1);
991 	}
992 
993 	/*
994 	 * There is the ancient bug in the MIPS assemblers that the break
995 	 * code starts left to bit 16 instead to bit 6 in the opcode.
996 	 * Gas is bug-compatible, but not always, grrr...
997 	 * We handle both cases with a simple heuristics.  --macro
998 	 */
999 	if (bcode >= (1 << 10))
1000 		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1001 
1002 	/*
1003 	 * notify the kprobe handlers, if instruction is likely to
1004 	 * pertain to them.
1005 	 */
1006 	switch (bcode) {
1007 	case BRK_UPROBE:
1008 		if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1009 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1010 			goto out;
1011 		else
1012 			break;
1013 	case BRK_UPROBE_XOL:
1014 		if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1015 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1016 			goto out;
1017 		else
1018 			break;
1019 	case BRK_KPROBE_BP:
1020 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
1021 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1022 			goto out;
1023 		else
1024 			break;
1025 	case BRK_KPROBE_SSTEPBP:
1026 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1027 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1028 			goto out;
1029 		else
1030 			break;
1031 	default:
1032 		break;
1033 	}
1034 
1035 	do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1036 
1037 out:
1038 	set_fs(seg);
1039 	exception_exit(prev_state);
1040 	return;
1041 
1042 out_sigsegv:
1043 	force_sig(SIGSEGV, current);
1044 	goto out;
1045 }
1046 
1047 asmlinkage void do_tr(struct pt_regs *regs)
1048 {
1049 	u32 opcode, tcode = 0;
1050 	enum ctx_state prev_state;
1051 	u16 instr[2];
1052 	mm_segment_t seg;
1053 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1054 
1055 	seg = get_fs();
1056 	if (!user_mode(regs))
1057 		set_fs(get_ds());
1058 
1059 	prev_state = exception_enter();
1060 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1061 	if (get_isa16_mode(regs->cp0_epc)) {
1062 		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1063 		    __get_user(instr[1], (u16 __user *)(epc + 2)))
1064 			goto out_sigsegv;
1065 		opcode = (instr[0] << 16) | instr[1];
1066 		/* Immediate versions don't provide a code.  */
1067 		if (!(opcode & OPCODE))
1068 			tcode = (opcode >> 12) & ((1 << 4) - 1);
1069 	} else {
1070 		if (__get_user(opcode, (u32 __user *)epc))
1071 			goto out_sigsegv;
1072 		/* Immediate versions don't provide a code.  */
1073 		if (!(opcode & OPCODE))
1074 			tcode = (opcode >> 6) & ((1 << 10) - 1);
1075 	}
1076 
1077 	do_trap_or_bp(regs, tcode, 0, "Trap");
1078 
1079 out:
1080 	set_fs(seg);
1081 	exception_exit(prev_state);
1082 	return;
1083 
1084 out_sigsegv:
1085 	force_sig(SIGSEGV, current);
1086 	goto out;
1087 }
1088 
1089 asmlinkage void do_ri(struct pt_regs *regs)
1090 {
1091 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1092 	unsigned long old_epc = regs->cp0_epc;
1093 	unsigned long old31 = regs->regs[31];
1094 	enum ctx_state prev_state;
1095 	unsigned int opcode = 0;
1096 	int status = -1;
1097 
1098 	/*
1099 	 * Avoid any kernel code. Just emulate the R2 instruction
1100 	 * as quickly as possible.
1101 	 */
1102 	if (mipsr2_emulation && cpu_has_mips_r6 &&
1103 	    likely(user_mode(regs)) &&
1104 	    likely(get_user(opcode, epc) >= 0)) {
1105 		unsigned long fcr31 = 0;
1106 
1107 		status = mipsr2_decoder(regs, opcode, &fcr31);
1108 		switch (status) {
1109 		case 0:
1110 		case SIGEMT:
1111 			return;
1112 		case SIGILL:
1113 			goto no_r2_instr;
1114 		default:
1115 			process_fpemu_return(status,
1116 					     &current->thread.cp0_baduaddr,
1117 					     fcr31);
1118 			return;
1119 		}
1120 	}
1121 
1122 no_r2_instr:
1123 
1124 	prev_state = exception_enter();
1125 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1126 
1127 	if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1128 		       SIGILL) == NOTIFY_STOP)
1129 		goto out;
1130 
1131 	die_if_kernel("Reserved instruction in kernel code", regs);
1132 
1133 	if (unlikely(compute_return_epc(regs) < 0))
1134 		goto out;
1135 
1136 	if (!get_isa16_mode(regs->cp0_epc)) {
1137 		if (unlikely(get_user(opcode, epc) < 0))
1138 			status = SIGSEGV;
1139 
1140 		if (!cpu_has_llsc && status < 0)
1141 			status = simulate_llsc(regs, opcode);
1142 
1143 		if (status < 0)
1144 			status = simulate_rdhwr_normal(regs, opcode);
1145 
1146 		if (status < 0)
1147 			status = simulate_sync(regs, opcode);
1148 
1149 		if (status < 0)
1150 			status = simulate_fp(regs, opcode, old_epc, old31);
1151 	} else if (cpu_has_mmips) {
1152 		unsigned short mmop[2] = { 0 };
1153 
1154 		if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1155 			status = SIGSEGV;
1156 		if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1157 			status = SIGSEGV;
1158 		opcode = mmop[0];
1159 		opcode = (opcode << 16) | mmop[1];
1160 
1161 		if (status < 0)
1162 			status = simulate_rdhwr_mm(regs, opcode);
1163 	}
1164 
1165 	if (status < 0)
1166 		status = SIGILL;
1167 
1168 	if (unlikely(status > 0)) {
1169 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1170 		regs->regs[31] = old31;
1171 		force_sig(status, current);
1172 	}
1173 
1174 out:
1175 	exception_exit(prev_state);
1176 }
1177 
1178 /*
1179  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1180  * emulated more than some threshold number of instructions, force migration to
1181  * a "CPU" that has FP support.
1182  */
1183 static void mt_ase_fp_affinity(void)
1184 {
1185 #ifdef CONFIG_MIPS_MT_FPAFF
1186 	if (mt_fpemul_threshold > 0 &&
1187 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1188 		/*
1189 		 * If there's no FPU present, or if the application has already
1190 		 * restricted the allowed set to exclude any CPUs with FPUs,
1191 		 * we'll skip the procedure.
1192 		 */
1193 		if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1194 			cpumask_t tmask;
1195 
1196 			current->thread.user_cpus_allowed
1197 				= current->cpus_allowed;
1198 			cpumask_and(&tmask, &current->cpus_allowed,
1199 				    &mt_fpu_cpumask);
1200 			set_cpus_allowed_ptr(current, &tmask);
1201 			set_thread_flag(TIF_FPUBOUND);
1202 		}
1203 	}
1204 #endif /* CONFIG_MIPS_MT_FPAFF */
1205 }
1206 
1207 /*
1208  * No lock; only written during early bootup by CPU 0.
1209  */
1210 static RAW_NOTIFIER_HEAD(cu2_chain);
1211 
1212 int __ref register_cu2_notifier(struct notifier_block *nb)
1213 {
1214 	return raw_notifier_chain_register(&cu2_chain, nb);
1215 }
1216 
1217 int cu2_notifier_call_chain(unsigned long val, void *v)
1218 {
1219 	return raw_notifier_call_chain(&cu2_chain, val, v);
1220 }
1221 
1222 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1223 	void *data)
1224 {
1225 	struct pt_regs *regs = data;
1226 
1227 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1228 			      "instruction", regs);
1229 	force_sig(SIGILL, current);
1230 
1231 	return NOTIFY_OK;
1232 }
1233 
1234 static int wait_on_fp_mode_switch(atomic_t *p)
1235 {
1236 	/*
1237 	 * The FP mode for this task is currently being switched. That may
1238 	 * involve modifications to the format of this tasks FP context which
1239 	 * make it unsafe to proceed with execution for the moment. Instead,
1240 	 * schedule some other task.
1241 	 */
1242 	schedule();
1243 	return 0;
1244 }
1245 
1246 static int enable_restore_fp_context(int msa)
1247 {
1248 	int err, was_fpu_owner, prior_msa;
1249 
1250 	/*
1251 	 * If an FP mode switch is currently underway, wait for it to
1252 	 * complete before proceeding.
1253 	 */
1254 	wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1255 			 wait_on_fp_mode_switch, TASK_KILLABLE);
1256 
1257 	if (!used_math()) {
1258 		/* First time FP context user. */
1259 		preempt_disable();
1260 		err = init_fpu();
1261 		if (msa && !err) {
1262 			enable_msa();
1263 			init_msa_upper();
1264 			set_thread_flag(TIF_USEDMSA);
1265 			set_thread_flag(TIF_MSA_CTX_LIVE);
1266 		}
1267 		preempt_enable();
1268 		if (!err)
1269 			set_used_math();
1270 		return err;
1271 	}
1272 
1273 	/*
1274 	 * This task has formerly used the FP context.
1275 	 *
1276 	 * If this thread has no live MSA vector context then we can simply
1277 	 * restore the scalar FP context. If it has live MSA vector context
1278 	 * (that is, it has or may have used MSA since last performing a
1279 	 * function call) then we'll need to restore the vector context. This
1280 	 * applies even if we're currently only executing a scalar FP
1281 	 * instruction. This is because if we were to later execute an MSA
1282 	 * instruction then we'd either have to:
1283 	 *
1284 	 *  - Restore the vector context & clobber any registers modified by
1285 	 *    scalar FP instructions between now & then.
1286 	 *
1287 	 * or
1288 	 *
1289 	 *  - Not restore the vector context & lose the most significant bits
1290 	 *    of all vector registers.
1291 	 *
1292 	 * Neither of those options is acceptable. We cannot restore the least
1293 	 * significant bits of the registers now & only restore the most
1294 	 * significant bits later because the most significant bits of any
1295 	 * vector registers whose aliased FP register is modified now will have
1296 	 * been zeroed. We'd have no way to know that when restoring the vector
1297 	 * context & thus may load an outdated value for the most significant
1298 	 * bits of a vector register.
1299 	 */
1300 	if (!msa && !thread_msa_context_live())
1301 		return own_fpu(1);
1302 
1303 	/*
1304 	 * This task is using or has previously used MSA. Thus we require
1305 	 * that Status.FR == 1.
1306 	 */
1307 	preempt_disable();
1308 	was_fpu_owner = is_fpu_owner();
1309 	err = own_fpu_inatomic(0);
1310 	if (err)
1311 		goto out;
1312 
1313 	enable_msa();
1314 	write_msa_csr(current->thread.fpu.msacsr);
1315 	set_thread_flag(TIF_USEDMSA);
1316 
1317 	/*
1318 	 * If this is the first time that the task is using MSA and it has
1319 	 * previously used scalar FP in this time slice then we already nave
1320 	 * FP context which we shouldn't clobber. We do however need to clear
1321 	 * the upper 64b of each vector register so that this task has no
1322 	 * opportunity to see data left behind by another.
1323 	 */
1324 	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1325 	if (!prior_msa && was_fpu_owner) {
1326 		init_msa_upper();
1327 
1328 		goto out;
1329 	}
1330 
1331 	if (!prior_msa) {
1332 		/*
1333 		 * Restore the least significant 64b of each vector register
1334 		 * from the existing scalar FP context.
1335 		 */
1336 		_restore_fp(current);
1337 
1338 		/*
1339 		 * The task has not formerly used MSA, so clear the upper 64b
1340 		 * of each vector register such that it cannot see data left
1341 		 * behind by another task.
1342 		 */
1343 		init_msa_upper();
1344 	} else {
1345 		/* We need to restore the vector context. */
1346 		restore_msa(current);
1347 
1348 		/* Restore the scalar FP control & status register */
1349 		if (!was_fpu_owner)
1350 			write_32bit_cp1_register(CP1_STATUS,
1351 						 current->thread.fpu.fcr31);
1352 	}
1353 
1354 out:
1355 	preempt_enable();
1356 
1357 	return 0;
1358 }
1359 
1360 asmlinkage void do_cpu(struct pt_regs *regs)
1361 {
1362 	enum ctx_state prev_state;
1363 	unsigned int __user *epc;
1364 	unsigned long old_epc, old31;
1365 	void __user *fault_addr;
1366 	unsigned int opcode;
1367 	unsigned long fcr31;
1368 	unsigned int cpid;
1369 	int status, err;
1370 	int sig;
1371 
1372 	prev_state = exception_enter();
1373 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1374 
1375 	if (cpid != 2)
1376 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1377 
1378 	switch (cpid) {
1379 	case 0:
1380 		epc = (unsigned int __user *)exception_epc(regs);
1381 		old_epc = regs->cp0_epc;
1382 		old31 = regs->regs[31];
1383 		opcode = 0;
1384 		status = -1;
1385 
1386 		if (unlikely(compute_return_epc(regs) < 0))
1387 			break;
1388 
1389 		if (!get_isa16_mode(regs->cp0_epc)) {
1390 			if (unlikely(get_user(opcode, epc) < 0))
1391 				status = SIGSEGV;
1392 
1393 			if (!cpu_has_llsc && status < 0)
1394 				status = simulate_llsc(regs, opcode);
1395 		}
1396 
1397 		if (status < 0)
1398 			status = SIGILL;
1399 
1400 		if (unlikely(status > 0)) {
1401 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1402 			regs->regs[31] = old31;
1403 			force_sig(status, current);
1404 		}
1405 
1406 		break;
1407 
1408 	case 3:
1409 		/*
1410 		 * The COP3 opcode space and consequently the CP0.Status.CU3
1411 		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1412 		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1413 		 * up the space has been reused for COP1X instructions, that
1414 		 * are enabled by the CP0.Status.CU1 bit and consequently
1415 		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1416 		 * exceptions.  Some FPU-less processors that implement one
1417 		 * of these ISAs however use this code erroneously for COP1X
1418 		 * instructions.  Therefore we redirect this trap to the FP
1419 		 * emulator too.
1420 		 */
1421 		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1422 			force_sig(SIGILL, current);
1423 			break;
1424 		}
1425 		/* Fall through.  */
1426 
1427 	case 1:
1428 		err = enable_restore_fp_context(0);
1429 
1430 		if (raw_cpu_has_fpu && !err)
1431 			break;
1432 
1433 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1434 					       &fault_addr);
1435 
1436 		/*
1437 		 * We can't allow the emulated instruction to leave
1438 		 * any enabled Cause bits set in $fcr31.
1439 		 */
1440 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1441 		current->thread.fpu.fcr31 &= ~fcr31;
1442 
1443 		/* Send a signal if required.  */
1444 		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1445 			mt_ase_fp_affinity();
1446 
1447 		break;
1448 
1449 	case 2:
1450 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1451 		break;
1452 	}
1453 
1454 	exception_exit(prev_state);
1455 }
1456 
1457 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1458 {
1459 	enum ctx_state prev_state;
1460 
1461 	prev_state = exception_enter();
1462 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1463 	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1464 		       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1465 		goto out;
1466 
1467 	/* Clear MSACSR.Cause before enabling interrupts */
1468 	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1469 	local_irq_enable();
1470 
1471 	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1472 	force_sig(SIGFPE, current);
1473 out:
1474 	exception_exit(prev_state);
1475 }
1476 
1477 asmlinkage void do_msa(struct pt_regs *regs)
1478 {
1479 	enum ctx_state prev_state;
1480 	int err;
1481 
1482 	prev_state = exception_enter();
1483 
1484 	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1485 		force_sig(SIGILL, current);
1486 		goto out;
1487 	}
1488 
1489 	die_if_kernel("do_msa invoked from kernel context!", regs);
1490 
1491 	err = enable_restore_fp_context(1);
1492 	if (err)
1493 		force_sig(SIGILL, current);
1494 out:
1495 	exception_exit(prev_state);
1496 }
1497 
1498 asmlinkage void do_mdmx(struct pt_regs *regs)
1499 {
1500 	enum ctx_state prev_state;
1501 
1502 	prev_state = exception_enter();
1503 	force_sig(SIGILL, current);
1504 	exception_exit(prev_state);
1505 }
1506 
1507 /*
1508  * Called with interrupts disabled.
1509  */
1510 asmlinkage void do_watch(struct pt_regs *regs)
1511 {
1512 	siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT };
1513 	enum ctx_state prev_state;
1514 
1515 	prev_state = exception_enter();
1516 	/*
1517 	 * Clear WP (bit 22) bit of cause register so we don't loop
1518 	 * forever.
1519 	 */
1520 	clear_c0_cause(CAUSEF_WP);
1521 
1522 	/*
1523 	 * If the current thread has the watch registers loaded, save
1524 	 * their values and send SIGTRAP.  Otherwise another thread
1525 	 * left the registers set, clear them and continue.
1526 	 */
1527 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1528 		mips_read_watch_registers();
1529 		local_irq_enable();
1530 		force_sig_info(SIGTRAP, &info, current);
1531 	} else {
1532 		mips_clear_watch_registers();
1533 		local_irq_enable();
1534 	}
1535 	exception_exit(prev_state);
1536 }
1537 
1538 asmlinkage void do_mcheck(struct pt_regs *regs)
1539 {
1540 	int multi_match = regs->cp0_status & ST0_TS;
1541 	enum ctx_state prev_state;
1542 	mm_segment_t old_fs = get_fs();
1543 
1544 	prev_state = exception_enter();
1545 	show_regs(regs);
1546 
1547 	if (multi_match) {
1548 		dump_tlb_regs();
1549 		pr_info("\n");
1550 		dump_tlb_all();
1551 	}
1552 
1553 	if (!user_mode(regs))
1554 		set_fs(KERNEL_DS);
1555 
1556 	show_code((unsigned int __user *) regs->cp0_epc);
1557 
1558 	set_fs(old_fs);
1559 
1560 	/*
1561 	 * Some chips may have other causes of machine check (e.g. SB1
1562 	 * graduation timer)
1563 	 */
1564 	panic("Caught Machine Check exception - %scaused by multiple "
1565 	      "matching entries in the TLB.",
1566 	      (multi_match) ? "" : "not ");
1567 }
1568 
1569 asmlinkage void do_mt(struct pt_regs *regs)
1570 {
1571 	int subcode;
1572 
1573 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1574 			>> VPECONTROL_EXCPT_SHIFT;
1575 	switch (subcode) {
1576 	case 0:
1577 		printk(KERN_DEBUG "Thread Underflow\n");
1578 		break;
1579 	case 1:
1580 		printk(KERN_DEBUG "Thread Overflow\n");
1581 		break;
1582 	case 2:
1583 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1584 		break;
1585 	case 3:
1586 		printk(KERN_DEBUG "Gating Storage Exception\n");
1587 		break;
1588 	case 4:
1589 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1590 		break;
1591 	case 5:
1592 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1593 		break;
1594 	default:
1595 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1596 			subcode);
1597 		break;
1598 	}
1599 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1600 
1601 	force_sig(SIGILL, current);
1602 }
1603 
1604 
1605 asmlinkage void do_dsp(struct pt_regs *regs)
1606 {
1607 	if (cpu_has_dsp)
1608 		panic("Unexpected DSP exception");
1609 
1610 	force_sig(SIGILL, current);
1611 }
1612 
1613 asmlinkage void do_reserved(struct pt_regs *regs)
1614 {
1615 	/*
1616 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1617 	 * caused by a new unknown cpu type or after another deadly
1618 	 * hard/software error.
1619 	 */
1620 	show_regs(regs);
1621 	panic("Caught reserved exception %ld - should not happen.",
1622 	      (regs->cp0_cause & 0x7f) >> 2);
1623 }
1624 
1625 static int __initdata l1parity = 1;
1626 static int __init nol1parity(char *s)
1627 {
1628 	l1parity = 0;
1629 	return 1;
1630 }
1631 __setup("nol1par", nol1parity);
1632 static int __initdata l2parity = 1;
1633 static int __init nol2parity(char *s)
1634 {
1635 	l2parity = 0;
1636 	return 1;
1637 }
1638 __setup("nol2par", nol2parity);
1639 
1640 /*
1641  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1642  * it different ways.
1643  */
1644 static inline void parity_protection_init(void)
1645 {
1646 #define ERRCTL_PE	0x80000000
1647 #define ERRCTL_L2P	0x00800000
1648 
1649 	if (mips_cm_revision() >= CM_REV_CM3) {
1650 		ulong gcr_ectl, cp0_ectl;
1651 
1652 		/*
1653 		 * With CM3 systems we need to ensure that the L1 & L2
1654 		 * parity enables are set to the same value, since this
1655 		 * is presumed by the hardware engineers.
1656 		 *
1657 		 * If the user disabled either of L1 or L2 ECC checking,
1658 		 * disable both.
1659 		 */
1660 		l1parity &= l2parity;
1661 		l2parity &= l1parity;
1662 
1663 		/* Probe L1 ECC support */
1664 		cp0_ectl = read_c0_ecc();
1665 		write_c0_ecc(cp0_ectl | ERRCTL_PE);
1666 		back_to_back_c0_hazard();
1667 		cp0_ectl = read_c0_ecc();
1668 
1669 		/* Probe L2 ECC support */
1670 		gcr_ectl = read_gcr_err_control();
1671 
1672 		if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT_MSK) ||
1673 		    !(cp0_ectl & ERRCTL_PE)) {
1674 			/*
1675 			 * One of L1 or L2 ECC checking isn't supported,
1676 			 * so we cannot enable either.
1677 			 */
1678 			l1parity = l2parity = 0;
1679 		}
1680 
1681 		/* Configure L1 ECC checking */
1682 		if (l1parity)
1683 			cp0_ectl |= ERRCTL_PE;
1684 		else
1685 			cp0_ectl &= ~ERRCTL_PE;
1686 		write_c0_ecc(cp0_ectl);
1687 		back_to_back_c0_hazard();
1688 		WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1689 
1690 		/* Configure L2 ECC checking */
1691 		if (l2parity)
1692 			gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK;
1693 		else
1694 			gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK;
1695 		write_gcr_err_control(gcr_ectl);
1696 		gcr_ectl = read_gcr_err_control();
1697 		gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK;
1698 		WARN_ON(!!gcr_ectl != l2parity);
1699 
1700 		pr_info("Cache parity protection %sabled\n",
1701 			l1parity ? "en" : "dis");
1702 		return;
1703 	}
1704 
1705 	switch (current_cpu_type()) {
1706 	case CPU_24K:
1707 	case CPU_34K:
1708 	case CPU_74K:
1709 	case CPU_1004K:
1710 	case CPU_1074K:
1711 	case CPU_INTERAPTIV:
1712 	case CPU_PROAPTIV:
1713 	case CPU_P5600:
1714 	case CPU_QEMU_GENERIC:
1715 	case CPU_P6600:
1716 		{
1717 			unsigned long errctl;
1718 			unsigned int l1parity_present, l2parity_present;
1719 
1720 			errctl = read_c0_ecc();
1721 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1722 
1723 			/* probe L1 parity support */
1724 			write_c0_ecc(errctl | ERRCTL_PE);
1725 			back_to_back_c0_hazard();
1726 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1727 
1728 			/* probe L2 parity support */
1729 			write_c0_ecc(errctl|ERRCTL_L2P);
1730 			back_to_back_c0_hazard();
1731 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1732 
1733 			if (l1parity_present && l2parity_present) {
1734 				if (l1parity)
1735 					errctl |= ERRCTL_PE;
1736 				if (l1parity ^ l2parity)
1737 					errctl |= ERRCTL_L2P;
1738 			} else if (l1parity_present) {
1739 				if (l1parity)
1740 					errctl |= ERRCTL_PE;
1741 			} else if (l2parity_present) {
1742 				if (l2parity)
1743 					errctl |= ERRCTL_L2P;
1744 			} else {
1745 				/* No parity available */
1746 			}
1747 
1748 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1749 
1750 			write_c0_ecc(errctl);
1751 			back_to_back_c0_hazard();
1752 			errctl = read_c0_ecc();
1753 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1754 
1755 			if (l1parity_present)
1756 				printk(KERN_INFO "Cache parity protection %sabled\n",
1757 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1758 
1759 			if (l2parity_present) {
1760 				if (l1parity_present && l1parity)
1761 					errctl ^= ERRCTL_L2P;
1762 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1763 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1764 			}
1765 		}
1766 		break;
1767 
1768 	case CPU_5KC:
1769 	case CPU_5KE:
1770 	case CPU_LOONGSON1:
1771 		write_c0_ecc(0x80000000);
1772 		back_to_back_c0_hazard();
1773 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1774 		printk(KERN_INFO "Cache parity protection %sabled\n",
1775 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1776 		break;
1777 	case CPU_20KC:
1778 	case CPU_25KF:
1779 		/* Clear the DE bit (bit 16) in the c0_status register. */
1780 		printk(KERN_INFO "Enable cache parity protection for "
1781 		       "MIPS 20KC/25KF CPUs.\n");
1782 		clear_c0_status(ST0_DE);
1783 		break;
1784 	default:
1785 		break;
1786 	}
1787 }
1788 
1789 asmlinkage void cache_parity_error(void)
1790 {
1791 	const int field = 2 * sizeof(unsigned long);
1792 	unsigned int reg_val;
1793 
1794 	/* For the moment, report the problem and hang. */
1795 	printk("Cache error exception:\n");
1796 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1797 	reg_val = read_c0_cacheerr();
1798 	printk("c0_cacheerr == %08x\n", reg_val);
1799 
1800 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1801 	       reg_val & (1<<30) ? "secondary" : "primary",
1802 	       reg_val & (1<<31) ? "data" : "insn");
1803 	if ((cpu_has_mips_r2_r6) &&
1804 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1805 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1806 			reg_val & (1<<29) ? "ED " : "",
1807 			reg_val & (1<<28) ? "ET " : "",
1808 			reg_val & (1<<27) ? "ES " : "",
1809 			reg_val & (1<<26) ? "EE " : "",
1810 			reg_val & (1<<25) ? "EB " : "",
1811 			reg_val & (1<<24) ? "EI " : "",
1812 			reg_val & (1<<23) ? "E1 " : "",
1813 			reg_val & (1<<22) ? "E0 " : "");
1814 	} else {
1815 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1816 			reg_val & (1<<29) ? "ED " : "",
1817 			reg_val & (1<<28) ? "ET " : "",
1818 			reg_val & (1<<26) ? "EE " : "",
1819 			reg_val & (1<<25) ? "EB " : "",
1820 			reg_val & (1<<24) ? "EI " : "",
1821 			reg_val & (1<<23) ? "E1 " : "",
1822 			reg_val & (1<<22) ? "E0 " : "");
1823 	}
1824 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1825 
1826 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1827 	if (reg_val & (1<<22))
1828 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1829 
1830 	if (reg_val & (1<<23))
1831 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1832 #endif
1833 
1834 	panic("Can't handle the cache error!");
1835 }
1836 
1837 asmlinkage void do_ftlb(void)
1838 {
1839 	const int field = 2 * sizeof(unsigned long);
1840 	unsigned int reg_val;
1841 
1842 	/* For the moment, report the problem and hang. */
1843 	if ((cpu_has_mips_r2_r6) &&
1844 	    (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1845 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1846 		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1847 		       read_c0_ecc());
1848 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1849 		reg_val = read_c0_cacheerr();
1850 		pr_err("c0_cacheerr == %08x\n", reg_val);
1851 
1852 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1853 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1854 		} else {
1855 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1856 			       reg_val & (1<<30) ? "secondary" : "primary",
1857 			       reg_val & (1<<31) ? "data" : "insn");
1858 		}
1859 	} else {
1860 		pr_err("FTLB error exception\n");
1861 	}
1862 	/* Just print the cacheerr bits for now */
1863 	cache_parity_error();
1864 }
1865 
1866 /*
1867  * SDBBP EJTAG debug exception handler.
1868  * We skip the instruction and return to the next instruction.
1869  */
1870 void ejtag_exception_handler(struct pt_regs *regs)
1871 {
1872 	const int field = 2 * sizeof(unsigned long);
1873 	unsigned long depc, old_epc, old_ra;
1874 	unsigned int debug;
1875 
1876 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1877 	depc = read_c0_depc();
1878 	debug = read_c0_debug();
1879 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1880 	if (debug & 0x80000000) {
1881 		/*
1882 		 * In branch delay slot.
1883 		 * We cheat a little bit here and use EPC to calculate the
1884 		 * debug return address (DEPC). EPC is restored after the
1885 		 * calculation.
1886 		 */
1887 		old_epc = regs->cp0_epc;
1888 		old_ra = regs->regs[31];
1889 		regs->cp0_epc = depc;
1890 		compute_return_epc(regs);
1891 		depc = regs->cp0_epc;
1892 		regs->cp0_epc = old_epc;
1893 		regs->regs[31] = old_ra;
1894 	} else
1895 		depc += 4;
1896 	write_c0_depc(depc);
1897 
1898 #if 0
1899 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1900 	write_c0_debug(debug | 0x100);
1901 #endif
1902 }
1903 
1904 /*
1905  * NMI exception handler.
1906  * No lock; only written during early bootup by CPU 0.
1907  */
1908 static RAW_NOTIFIER_HEAD(nmi_chain);
1909 
1910 int register_nmi_notifier(struct notifier_block *nb)
1911 {
1912 	return raw_notifier_chain_register(&nmi_chain, nb);
1913 }
1914 
1915 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1916 {
1917 	char str[100];
1918 
1919 	nmi_enter();
1920 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1921 	bust_spinlocks(1);
1922 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1923 		 smp_processor_id(), regs->cp0_epc);
1924 	regs->cp0_epc = read_c0_errorepc();
1925 	die(str, regs);
1926 	nmi_exit();
1927 }
1928 
1929 #define VECTORSPACING 0x100	/* for EI/VI mode */
1930 
1931 unsigned long ebase;
1932 EXPORT_SYMBOL_GPL(ebase);
1933 unsigned long exception_handlers[32];
1934 unsigned long vi_handlers[64];
1935 
1936 void __init *set_except_vector(int n, void *addr)
1937 {
1938 	unsigned long handler = (unsigned long) addr;
1939 	unsigned long old_handler;
1940 
1941 #ifdef CONFIG_CPU_MICROMIPS
1942 	/*
1943 	 * Only the TLB handlers are cache aligned with an even
1944 	 * address. All other handlers are on an odd address and
1945 	 * require no modification. Otherwise, MIPS32 mode will
1946 	 * be entered when handling any TLB exceptions. That
1947 	 * would be bad...since we must stay in microMIPS mode.
1948 	 */
1949 	if (!(handler & 0x1))
1950 		handler |= 1;
1951 #endif
1952 	old_handler = xchg(&exception_handlers[n], handler);
1953 
1954 	if (n == 0 && cpu_has_divec) {
1955 #ifdef CONFIG_CPU_MICROMIPS
1956 		unsigned long jump_mask = ~((1 << 27) - 1);
1957 #else
1958 		unsigned long jump_mask = ~((1 << 28) - 1);
1959 #endif
1960 		u32 *buf = (u32 *)(ebase + 0x200);
1961 		unsigned int k0 = 26;
1962 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1963 			uasm_i_j(&buf, handler & ~jump_mask);
1964 			uasm_i_nop(&buf);
1965 		} else {
1966 			UASM_i_LA(&buf, k0, handler);
1967 			uasm_i_jr(&buf, k0);
1968 			uasm_i_nop(&buf);
1969 		}
1970 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1971 	}
1972 	return (void *)old_handler;
1973 }
1974 
1975 static void do_default_vi(void)
1976 {
1977 	show_regs(get_irq_regs());
1978 	panic("Caught unexpected vectored interrupt.");
1979 }
1980 
1981 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1982 {
1983 	unsigned long handler;
1984 	unsigned long old_handler = vi_handlers[n];
1985 	int srssets = current_cpu_data.srsets;
1986 	u16 *h;
1987 	unsigned char *b;
1988 
1989 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1990 
1991 	if (addr == NULL) {
1992 		handler = (unsigned long) do_default_vi;
1993 		srs = 0;
1994 	} else
1995 		handler = (unsigned long) addr;
1996 	vi_handlers[n] = handler;
1997 
1998 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1999 
2000 	if (srs >= srssets)
2001 		panic("Shadow register set %d not supported", srs);
2002 
2003 	if (cpu_has_veic) {
2004 		if (board_bind_eic_interrupt)
2005 			board_bind_eic_interrupt(n, srs);
2006 	} else if (cpu_has_vint) {
2007 		/* SRSMap is only defined if shadow sets are implemented */
2008 		if (srssets > 1)
2009 			change_c0_srsmap(0xf << n*4, srs << n*4);
2010 	}
2011 
2012 	if (srs == 0) {
2013 		/*
2014 		 * If no shadow set is selected then use the default handler
2015 		 * that does normal register saving and standard interrupt exit
2016 		 */
2017 		extern char except_vec_vi, except_vec_vi_lui;
2018 		extern char except_vec_vi_ori, except_vec_vi_end;
2019 		extern char rollback_except_vec_vi;
2020 		char *vec_start = using_rollback_handler() ?
2021 			&rollback_except_vec_vi : &except_vec_vi;
2022 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2023 		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2024 		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2025 #else
2026 		const int lui_offset = &except_vec_vi_lui - vec_start;
2027 		const int ori_offset = &except_vec_vi_ori - vec_start;
2028 #endif
2029 		const int handler_len = &except_vec_vi_end - vec_start;
2030 
2031 		if (handler_len > VECTORSPACING) {
2032 			/*
2033 			 * Sigh... panicing won't help as the console
2034 			 * is probably not configured :(
2035 			 */
2036 			panic("VECTORSPACING too small");
2037 		}
2038 
2039 		set_handler(((unsigned long)b - ebase), vec_start,
2040 #ifdef CONFIG_CPU_MICROMIPS
2041 				(handler_len - 1));
2042 #else
2043 				handler_len);
2044 #endif
2045 		h = (u16 *)(b + lui_offset);
2046 		*h = (handler >> 16) & 0xffff;
2047 		h = (u16 *)(b + ori_offset);
2048 		*h = (handler & 0xffff);
2049 		local_flush_icache_range((unsigned long)b,
2050 					 (unsigned long)(b+handler_len));
2051 	}
2052 	else {
2053 		/*
2054 		 * In other cases jump directly to the interrupt handler. It
2055 		 * is the handler's responsibility to save registers if required
2056 		 * (eg hi/lo) and return from the exception using "eret".
2057 		 */
2058 		u32 insn;
2059 
2060 		h = (u16 *)b;
2061 		/* j handler */
2062 #ifdef CONFIG_CPU_MICROMIPS
2063 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2064 #else
2065 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2066 #endif
2067 		h[0] = (insn >> 16) & 0xffff;
2068 		h[1] = insn & 0xffff;
2069 		h[2] = 0;
2070 		h[3] = 0;
2071 		local_flush_icache_range((unsigned long)b,
2072 					 (unsigned long)(b+8));
2073 	}
2074 
2075 	return (void *)old_handler;
2076 }
2077 
2078 void *set_vi_handler(int n, vi_handler_t addr)
2079 {
2080 	return set_vi_srs_handler(n, addr, 0);
2081 }
2082 
2083 extern void tlb_init(void);
2084 
2085 /*
2086  * Timer interrupt
2087  */
2088 int cp0_compare_irq;
2089 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2090 int cp0_compare_irq_shift;
2091 
2092 /*
2093  * Performance counter IRQ or -1 if shared with timer
2094  */
2095 int cp0_perfcount_irq;
2096 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2097 
2098 /*
2099  * Fast debug channel IRQ or -1 if not present
2100  */
2101 int cp0_fdc_irq;
2102 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2103 
2104 static int noulri;
2105 
2106 static int __init ulri_disable(char *s)
2107 {
2108 	pr_info("Disabling ulri\n");
2109 	noulri = 1;
2110 
2111 	return 1;
2112 }
2113 __setup("noulri", ulri_disable);
2114 
2115 /* configure STATUS register */
2116 static void configure_status(void)
2117 {
2118 	/*
2119 	 * Disable coprocessors and select 32-bit or 64-bit addressing
2120 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2121 	 * flag that some firmware may have left set and the TS bit (for
2122 	 * IP27).  Set XX for ISA IV code to work.
2123 	 */
2124 	unsigned int status_set = ST0_CU0;
2125 #ifdef CONFIG_64BIT
2126 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2127 #endif
2128 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2129 		status_set |= ST0_XX;
2130 	if (cpu_has_dsp)
2131 		status_set |= ST0_MX;
2132 
2133 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2134 			 status_set);
2135 }
2136 
2137 unsigned int hwrena;
2138 EXPORT_SYMBOL_GPL(hwrena);
2139 
2140 /* configure HWRENA register */
2141 static void configure_hwrena(void)
2142 {
2143 	hwrena = cpu_hwrena_impl_bits;
2144 
2145 	if (cpu_has_mips_r2_r6)
2146 		hwrena |= MIPS_HWRENA_CPUNUM |
2147 			  MIPS_HWRENA_SYNCISTEP |
2148 			  MIPS_HWRENA_CC |
2149 			  MIPS_HWRENA_CCRES;
2150 
2151 	if (!noulri && cpu_has_userlocal)
2152 		hwrena |= MIPS_HWRENA_ULR;
2153 
2154 	if (hwrena)
2155 		write_c0_hwrena(hwrena);
2156 }
2157 
2158 static void configure_exception_vector(void)
2159 {
2160 	if (cpu_has_veic || cpu_has_vint) {
2161 		unsigned long sr = set_c0_status(ST0_BEV);
2162 		/* If available, use WG to set top bits of EBASE */
2163 		if (cpu_has_ebase_wg) {
2164 #ifdef CONFIG_64BIT
2165 			write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2166 #else
2167 			write_c0_ebase(ebase | MIPS_EBASE_WG);
2168 #endif
2169 		}
2170 		write_c0_ebase(ebase);
2171 		write_c0_status(sr);
2172 		/* Setting vector spacing enables EI/VI mode  */
2173 		change_c0_intctl(0x3e0, VECTORSPACING);
2174 	}
2175 	if (cpu_has_divec) {
2176 		if (cpu_has_mipsmt) {
2177 			unsigned int vpflags = dvpe();
2178 			set_c0_cause(CAUSEF_IV);
2179 			evpe(vpflags);
2180 		} else
2181 			set_c0_cause(CAUSEF_IV);
2182 	}
2183 }
2184 
2185 void per_cpu_trap_init(bool is_boot_cpu)
2186 {
2187 	unsigned int cpu = smp_processor_id();
2188 
2189 	configure_status();
2190 	configure_hwrena();
2191 
2192 	configure_exception_vector();
2193 
2194 	/*
2195 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2196 	 *
2197 	 *  o read IntCtl.IPTI to determine the timer interrupt
2198 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2199 	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2200 	 */
2201 	if (cpu_has_mips_r2_r6) {
2202 		/*
2203 		 * We shouldn't trust a secondary core has a sane EBASE register
2204 		 * so use the one calculated by the boot CPU.
2205 		 */
2206 		if (!is_boot_cpu) {
2207 			/* If available, use WG to set top bits of EBASE */
2208 			if (cpu_has_ebase_wg) {
2209 #ifdef CONFIG_64BIT
2210 				write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2211 #else
2212 				write_c0_ebase(ebase | MIPS_EBASE_WG);
2213 #endif
2214 			}
2215 			write_c0_ebase(ebase);
2216 		}
2217 
2218 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2219 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2220 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2221 		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2222 		if (!cp0_fdc_irq)
2223 			cp0_fdc_irq = -1;
2224 
2225 	} else {
2226 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2227 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2228 		cp0_perfcount_irq = -1;
2229 		cp0_fdc_irq = -1;
2230 	}
2231 
2232 	if (!cpu_data[cpu].asid_cache)
2233 		cpu_data[cpu].asid_cache = asid_first_version(cpu);
2234 
2235 	mmgrab(&init_mm);
2236 	current->active_mm = &init_mm;
2237 	BUG_ON(current->mm);
2238 	enter_lazy_tlb(&init_mm, current);
2239 
2240 	/* Boot CPU's cache setup in setup_arch(). */
2241 	if (!is_boot_cpu)
2242 		cpu_cache_init();
2243 	tlb_init();
2244 	TLBMISS_HANDLER_SETUP();
2245 }
2246 
2247 /* Install CPU exception handler */
2248 void set_handler(unsigned long offset, void *addr, unsigned long size)
2249 {
2250 #ifdef CONFIG_CPU_MICROMIPS
2251 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2252 #else
2253 	memcpy((void *)(ebase + offset), addr, size);
2254 #endif
2255 	local_flush_icache_range(ebase + offset, ebase + offset + size);
2256 }
2257 
2258 static char panic_null_cerr[] =
2259 	"Trying to set NULL cache error exception handler";
2260 
2261 /*
2262  * Install uncached CPU exception handler.
2263  * This is suitable only for the cache error exception which is the only
2264  * exception handler that is being run uncached.
2265  */
2266 void set_uncached_handler(unsigned long offset, void *addr,
2267 	unsigned long size)
2268 {
2269 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2270 
2271 	if (!addr)
2272 		panic(panic_null_cerr);
2273 
2274 	memcpy((void *)(uncached_ebase + offset), addr, size);
2275 }
2276 
2277 static int __initdata rdhwr_noopt;
2278 static int __init set_rdhwr_noopt(char *str)
2279 {
2280 	rdhwr_noopt = 1;
2281 	return 1;
2282 }
2283 
2284 __setup("rdhwr_noopt", set_rdhwr_noopt);
2285 
2286 void __init trap_init(void)
2287 {
2288 	extern char except_vec3_generic;
2289 	extern char except_vec4;
2290 	extern char except_vec3_r4000;
2291 	unsigned long i;
2292 
2293 	check_wait();
2294 
2295 	if (cpu_has_veic || cpu_has_vint) {
2296 		unsigned long size = 0x200 + VECTORSPACING*64;
2297 		phys_addr_t ebase_pa;
2298 
2299 		ebase = (unsigned long)
2300 			__alloc_bootmem(size, 1 << fls(size), 0);
2301 
2302 		/*
2303 		 * Try to ensure ebase resides in KSeg0 if possible.
2304 		 *
2305 		 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2306 		 * hitting a poorly defined exception base for Cache Errors.
2307 		 * The allocation is likely to be in the low 512MB of physical,
2308 		 * in which case we should be able to convert to KSeg0.
2309 		 *
2310 		 * EVA is special though as it allows segments to be rearranged
2311 		 * and to become uncached during cache error handling.
2312 		 */
2313 		ebase_pa = __pa(ebase);
2314 		if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2315 			ebase = CKSEG0ADDR(ebase_pa);
2316 	} else {
2317 		ebase = CAC_BASE;
2318 
2319 		if (cpu_has_mips_r2_r6) {
2320 			if (cpu_has_ebase_wg) {
2321 #ifdef CONFIG_64BIT
2322 				ebase = (read_c0_ebase_64() & ~0xfff);
2323 #else
2324 				ebase = (read_c0_ebase() & ~0xfff);
2325 #endif
2326 			} else {
2327 				ebase += (read_c0_ebase() & 0x3ffff000);
2328 			}
2329 		}
2330 	}
2331 
2332 	if (cpu_has_mmips) {
2333 		unsigned int config3 = read_c0_config3();
2334 
2335 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2336 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2337 		else
2338 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2339 	}
2340 
2341 	if (board_ebase_setup)
2342 		board_ebase_setup();
2343 	per_cpu_trap_init(true);
2344 
2345 	/*
2346 	 * Copy the generic exception handlers to their final destination.
2347 	 * This will be overridden later as suitable for a particular
2348 	 * configuration.
2349 	 */
2350 	set_handler(0x180, &except_vec3_generic, 0x80);
2351 
2352 	/*
2353 	 * Setup default vectors
2354 	 */
2355 	for (i = 0; i <= 31; i++)
2356 		set_except_vector(i, handle_reserved);
2357 
2358 	/*
2359 	 * Copy the EJTAG debug exception vector handler code to it's final
2360 	 * destination.
2361 	 */
2362 	if (cpu_has_ejtag && board_ejtag_handler_setup)
2363 		board_ejtag_handler_setup();
2364 
2365 	/*
2366 	 * Only some CPUs have the watch exceptions.
2367 	 */
2368 	if (cpu_has_watch)
2369 		set_except_vector(EXCCODE_WATCH, handle_watch);
2370 
2371 	/*
2372 	 * Initialise interrupt handlers
2373 	 */
2374 	if (cpu_has_veic || cpu_has_vint) {
2375 		int nvec = cpu_has_veic ? 64 : 8;
2376 		for (i = 0; i < nvec; i++)
2377 			set_vi_handler(i, NULL);
2378 	}
2379 	else if (cpu_has_divec)
2380 		set_handler(0x200, &except_vec4, 0x8);
2381 
2382 	/*
2383 	 * Some CPUs can enable/disable for cache parity detection, but does
2384 	 * it different ways.
2385 	 */
2386 	parity_protection_init();
2387 
2388 	/*
2389 	 * The Data Bus Errors / Instruction Bus Errors are signaled
2390 	 * by external hardware.  Therefore these two exceptions
2391 	 * may have board specific handlers.
2392 	 */
2393 	if (board_be_init)
2394 		board_be_init();
2395 
2396 	set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2397 					rollback_handle_int : handle_int);
2398 	set_except_vector(EXCCODE_MOD, handle_tlbm);
2399 	set_except_vector(EXCCODE_TLBL, handle_tlbl);
2400 	set_except_vector(EXCCODE_TLBS, handle_tlbs);
2401 
2402 	set_except_vector(EXCCODE_ADEL, handle_adel);
2403 	set_except_vector(EXCCODE_ADES, handle_ades);
2404 
2405 	set_except_vector(EXCCODE_IBE, handle_ibe);
2406 	set_except_vector(EXCCODE_DBE, handle_dbe);
2407 
2408 	set_except_vector(EXCCODE_SYS, handle_sys);
2409 	set_except_vector(EXCCODE_BP, handle_bp);
2410 	set_except_vector(EXCCODE_RI, rdhwr_noopt ? handle_ri :
2411 			  (cpu_has_vtag_icache ?
2412 			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2413 	set_except_vector(EXCCODE_CPU, handle_cpu);
2414 	set_except_vector(EXCCODE_OV, handle_ov);
2415 	set_except_vector(EXCCODE_TR, handle_tr);
2416 	set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2417 
2418 	if (current_cpu_type() == CPU_R6000 ||
2419 	    current_cpu_type() == CPU_R6000A) {
2420 		/*
2421 		 * The R6000 is the only R-series CPU that features a machine
2422 		 * check exception (similar to the R4000 cache error) and
2423 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
2424 		 * written yet.	 Well, anyway there is no R6000 machine on the
2425 		 * current list of targets for Linux/MIPS.
2426 		 * (Duh, crap, there is someone with a triple R6k machine)
2427 		 */
2428 		//set_except_vector(14, handle_mc);
2429 		//set_except_vector(15, handle_ndc);
2430 	}
2431 
2432 
2433 	if (board_nmi_handler_setup)
2434 		board_nmi_handler_setup();
2435 
2436 	if (cpu_has_fpu && !cpu_has_nofpuex)
2437 		set_except_vector(EXCCODE_FPE, handle_fpe);
2438 
2439 	set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2440 
2441 	if (cpu_has_rixiex) {
2442 		set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2443 		set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2444 	}
2445 
2446 	set_except_vector(EXCCODE_MSADIS, handle_msa);
2447 	set_except_vector(EXCCODE_MDMX, handle_mdmx);
2448 
2449 	if (cpu_has_mcheck)
2450 		set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2451 
2452 	if (cpu_has_mipsmt)
2453 		set_except_vector(EXCCODE_THREAD, handle_mt);
2454 
2455 	set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2456 
2457 	if (board_cache_error_setup)
2458 		board_cache_error_setup();
2459 
2460 	if (cpu_has_vce)
2461 		/* Special exception: R4[04]00 uses also the divec space. */
2462 		set_handler(0x180, &except_vec3_r4000, 0x100);
2463 	else if (cpu_has_4kex)
2464 		set_handler(0x180, &except_vec3_generic, 0x80);
2465 	else
2466 		set_handler(0x080, &except_vec3_generic, 0x80);
2467 
2468 	local_flush_icache_range(ebase, ebase + 0x400);
2469 
2470 	sort_extable(__start___dbe_table, __stop___dbe_table);
2471 
2472 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2473 }
2474 
2475 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2476 			    void *v)
2477 {
2478 	switch (cmd) {
2479 	case CPU_PM_ENTER_FAILED:
2480 	case CPU_PM_EXIT:
2481 		configure_status();
2482 		configure_hwrena();
2483 		configure_exception_vector();
2484 
2485 		/* Restore register with CPU number for TLB handlers */
2486 		TLBMISS_HANDLER_RESTORE();
2487 
2488 		break;
2489 	}
2490 
2491 	return NOTIFY_OK;
2492 }
2493 
2494 static struct notifier_block trap_pm_notifier_block = {
2495 	.notifier_call = trap_pm_notifier,
2496 };
2497 
2498 static int __init trap_pm_init(void)
2499 {
2500 	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2501 }
2502 arch_initcall(trap_pm_init);
2503