xref: /openbmc/linux/arch/mips/kernel/traps.c (revision 1491eaf9)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
25 #include <linux/mm.h>
26 #include <linux/sched.h>
27 #include <linux/smp.h>
28 #include <linux/spinlock.h>
29 #include <linux/kallsyms.h>
30 #include <linux/bootmem.h>
31 #include <linux/interrupt.h>
32 #include <linux/ptrace.h>
33 #include <linux/kgdb.h>
34 #include <linux/kdebug.h>
35 #include <linux/kprobes.h>
36 #include <linux/notifier.h>
37 #include <linux/kdb.h>
38 #include <linux/irq.h>
39 #include <linux/perf_event.h>
40 
41 #include <asm/addrspace.h>
42 #include <asm/bootinfo.h>
43 #include <asm/branch.h>
44 #include <asm/break.h>
45 #include <asm/cop2.h>
46 #include <asm/cpu.h>
47 #include <asm/cpu-type.h>
48 #include <asm/dsp.h>
49 #include <asm/fpu.h>
50 #include <asm/fpu_emulator.h>
51 #include <asm/idle.h>
52 #include <asm/mips-r2-to-r6-emul.h>
53 #include <asm/mipsregs.h>
54 #include <asm/mipsmtregs.h>
55 #include <asm/module.h>
56 #include <asm/msa.h>
57 #include <asm/pgtable.h>
58 #include <asm/ptrace.h>
59 #include <asm/sections.h>
60 #include <asm/siginfo.h>
61 #include <asm/tlbdebug.h>
62 #include <asm/traps.h>
63 #include <asm/uaccess.h>
64 #include <asm/watch.h>
65 #include <asm/mmu_context.h>
66 #include <asm/types.h>
67 #include <asm/stacktrace.h>
68 #include <asm/uasm.h>
69 
70 extern void check_wait(void);
71 extern asmlinkage void rollback_handle_int(void);
72 extern asmlinkage void handle_int(void);
73 extern u32 handle_tlbl[];
74 extern u32 handle_tlbs[];
75 extern u32 handle_tlbm[];
76 extern asmlinkage void handle_adel(void);
77 extern asmlinkage void handle_ades(void);
78 extern asmlinkage void handle_ibe(void);
79 extern asmlinkage void handle_dbe(void);
80 extern asmlinkage void handle_sys(void);
81 extern asmlinkage void handle_bp(void);
82 extern asmlinkage void handle_ri(void);
83 extern asmlinkage void handle_ri_rdhwr_vivt(void);
84 extern asmlinkage void handle_ri_rdhwr(void);
85 extern asmlinkage void handle_cpu(void);
86 extern asmlinkage void handle_ov(void);
87 extern asmlinkage void handle_tr(void);
88 extern asmlinkage void handle_msa_fpe(void);
89 extern asmlinkage void handle_fpe(void);
90 extern asmlinkage void handle_ftlb(void);
91 extern asmlinkage void handle_msa(void);
92 extern asmlinkage void handle_mdmx(void);
93 extern asmlinkage void handle_watch(void);
94 extern asmlinkage void handle_mt(void);
95 extern asmlinkage void handle_dsp(void);
96 extern asmlinkage void handle_mcheck(void);
97 extern asmlinkage void handle_reserved(void);
98 extern void tlb_do_page_fault_0(void);
99 
100 void (*board_be_init)(void);
101 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
102 void (*board_nmi_handler_setup)(void);
103 void (*board_ejtag_handler_setup)(void);
104 void (*board_bind_eic_interrupt)(int irq, int regset);
105 void (*board_ebase_setup)(void);
106 void(*board_cache_error_setup)(void);
107 
108 static void show_raw_backtrace(unsigned long reg29)
109 {
110 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
111 	unsigned long addr;
112 
113 	printk("Call Trace:");
114 #ifdef CONFIG_KALLSYMS
115 	printk("\n");
116 #endif
117 	while (!kstack_end(sp)) {
118 		unsigned long __user *p =
119 			(unsigned long __user *)(unsigned long)sp++;
120 		if (__get_user(addr, p)) {
121 			printk(" (Bad stack address)");
122 			break;
123 		}
124 		if (__kernel_text_address(addr))
125 			print_ip_sym(addr);
126 	}
127 	printk("\n");
128 }
129 
130 #ifdef CONFIG_KALLSYMS
131 int raw_show_trace;
132 static int __init set_raw_show_trace(char *str)
133 {
134 	raw_show_trace = 1;
135 	return 1;
136 }
137 __setup("raw_show_trace", set_raw_show_trace);
138 #endif
139 
140 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
141 {
142 	unsigned long sp = regs->regs[29];
143 	unsigned long ra = regs->regs[31];
144 	unsigned long pc = regs->cp0_epc;
145 
146 	if (!task)
147 		task = current;
148 
149 	if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
150 		show_raw_backtrace(sp);
151 		return;
152 	}
153 	printk("Call Trace:\n");
154 	do {
155 		print_ip_sym(pc);
156 		pc = unwind_stack(task, &sp, pc, &ra);
157 	} while (pc);
158 	printk("\n");
159 }
160 
161 /*
162  * This routine abuses get_user()/put_user() to reference pointers
163  * with at least a bit of error checking ...
164  */
165 static void show_stacktrace(struct task_struct *task,
166 	const struct pt_regs *regs)
167 {
168 	const int field = 2 * sizeof(unsigned long);
169 	long stackdata;
170 	int i;
171 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
172 
173 	printk("Stack :");
174 	i = 0;
175 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
176 		if (i && ((i % (64 / field)) == 0))
177 			printk("\n	 ");
178 		if (i > 39) {
179 			printk(" ...");
180 			break;
181 		}
182 
183 		if (__get_user(stackdata, sp++)) {
184 			printk(" (Bad stack address)");
185 			break;
186 		}
187 
188 		printk(" %0*lx", field, stackdata);
189 		i++;
190 	}
191 	printk("\n");
192 	show_backtrace(task, regs);
193 }
194 
195 void show_stack(struct task_struct *task, unsigned long *sp)
196 {
197 	struct pt_regs regs;
198 	mm_segment_t old_fs = get_fs();
199 	if (sp) {
200 		regs.regs[29] = (unsigned long)sp;
201 		regs.regs[31] = 0;
202 		regs.cp0_epc = 0;
203 	} else {
204 		if (task && task != current) {
205 			regs.regs[29] = task->thread.reg29;
206 			regs.regs[31] = 0;
207 			regs.cp0_epc = task->thread.reg31;
208 #ifdef CONFIG_KGDB_KDB
209 		} else if (atomic_read(&kgdb_active) != -1 &&
210 			   kdb_current_regs) {
211 			memcpy(&regs, kdb_current_regs, sizeof(regs));
212 #endif /* CONFIG_KGDB_KDB */
213 		} else {
214 			prepare_frametrace(&regs);
215 		}
216 	}
217 	/*
218 	 * show_stack() deals exclusively with kernel mode, so be sure to access
219 	 * the stack in the kernel (not user) address space.
220 	 */
221 	set_fs(KERNEL_DS);
222 	show_stacktrace(task, &regs);
223 	set_fs(old_fs);
224 }
225 
226 static void show_code(unsigned int __user *pc)
227 {
228 	long i;
229 	unsigned short __user *pc16 = NULL;
230 
231 	printk("\nCode:");
232 
233 	if ((unsigned long)pc & 1)
234 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
235 	for(i = -3 ; i < 6 ; i++) {
236 		unsigned int insn;
237 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
238 			printk(" (Bad address in epc)\n");
239 			break;
240 		}
241 		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
242 	}
243 }
244 
245 static void __show_regs(const struct pt_regs *regs)
246 {
247 	const int field = 2 * sizeof(unsigned long);
248 	unsigned int cause = regs->cp0_cause;
249 	unsigned int exccode;
250 	int i;
251 
252 	show_regs_print_info(KERN_DEFAULT);
253 
254 	/*
255 	 * Saved main processor registers
256 	 */
257 	for (i = 0; i < 32; ) {
258 		if ((i % 4) == 0)
259 			printk("$%2d   :", i);
260 		if (i == 0)
261 			printk(" %0*lx", field, 0UL);
262 		else if (i == 26 || i == 27)
263 			printk(" %*s", field, "");
264 		else
265 			printk(" %0*lx", field, regs->regs[i]);
266 
267 		i++;
268 		if ((i % 4) == 0)
269 			printk("\n");
270 	}
271 
272 #ifdef CONFIG_CPU_HAS_SMARTMIPS
273 	printk("Acx    : %0*lx\n", field, regs->acx);
274 #endif
275 	printk("Hi    : %0*lx\n", field, regs->hi);
276 	printk("Lo    : %0*lx\n", field, regs->lo);
277 
278 	/*
279 	 * Saved cp0 registers
280 	 */
281 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
282 	       (void *) regs->cp0_epc);
283 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
284 	       (void *) regs->regs[31]);
285 
286 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
287 
288 	if (cpu_has_3kex) {
289 		if (regs->cp0_status & ST0_KUO)
290 			printk("KUo ");
291 		if (regs->cp0_status & ST0_IEO)
292 			printk("IEo ");
293 		if (regs->cp0_status & ST0_KUP)
294 			printk("KUp ");
295 		if (regs->cp0_status & ST0_IEP)
296 			printk("IEp ");
297 		if (regs->cp0_status & ST0_KUC)
298 			printk("KUc ");
299 		if (regs->cp0_status & ST0_IEC)
300 			printk("IEc ");
301 	} else if (cpu_has_4kex) {
302 		if (regs->cp0_status & ST0_KX)
303 			printk("KX ");
304 		if (regs->cp0_status & ST0_SX)
305 			printk("SX ");
306 		if (regs->cp0_status & ST0_UX)
307 			printk("UX ");
308 		switch (regs->cp0_status & ST0_KSU) {
309 		case KSU_USER:
310 			printk("USER ");
311 			break;
312 		case KSU_SUPERVISOR:
313 			printk("SUPERVISOR ");
314 			break;
315 		case KSU_KERNEL:
316 			printk("KERNEL ");
317 			break;
318 		default:
319 			printk("BAD_MODE ");
320 			break;
321 		}
322 		if (regs->cp0_status & ST0_ERL)
323 			printk("ERL ");
324 		if (regs->cp0_status & ST0_EXL)
325 			printk("EXL ");
326 		if (regs->cp0_status & ST0_IE)
327 			printk("IE ");
328 	}
329 	printk("\n");
330 
331 	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
332 	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
333 
334 	if (1 <= exccode && exccode <= 5)
335 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
336 
337 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
338 	       cpu_name_string());
339 }
340 
341 /*
342  * FIXME: really the generic show_regs should take a const pointer argument.
343  */
344 void show_regs(struct pt_regs *regs)
345 {
346 	__show_regs((struct pt_regs *)regs);
347 }
348 
349 void show_registers(struct pt_regs *regs)
350 {
351 	const int field = 2 * sizeof(unsigned long);
352 	mm_segment_t old_fs = get_fs();
353 
354 	__show_regs(regs);
355 	print_modules();
356 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
357 	       current->comm, current->pid, current_thread_info(), current,
358 	      field, current_thread_info()->tp_value);
359 	if (cpu_has_userlocal) {
360 		unsigned long tls;
361 
362 		tls = read_c0_userlocal();
363 		if (tls != current_thread_info()->tp_value)
364 			printk("*HwTLS: %0*lx\n", field, tls);
365 	}
366 
367 	if (!user_mode(regs))
368 		/* Necessary for getting the correct stack content */
369 		set_fs(KERNEL_DS);
370 	show_stacktrace(current, regs);
371 	show_code((unsigned int __user *) regs->cp0_epc);
372 	printk("\n");
373 	set_fs(old_fs);
374 }
375 
376 static DEFINE_RAW_SPINLOCK(die_lock);
377 
378 void __noreturn die(const char *str, struct pt_regs *regs)
379 {
380 	static int die_counter;
381 	int sig = SIGSEGV;
382 
383 	oops_enter();
384 
385 	if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
386 		       SIGSEGV) == NOTIFY_STOP)
387 		sig = 0;
388 
389 	console_verbose();
390 	raw_spin_lock_irq(&die_lock);
391 	bust_spinlocks(1);
392 
393 	printk("%s[#%d]:\n", str, ++die_counter);
394 	show_registers(regs);
395 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
396 	raw_spin_unlock_irq(&die_lock);
397 
398 	oops_exit();
399 
400 	if (in_interrupt())
401 		panic("Fatal exception in interrupt");
402 
403 	if (panic_on_oops)
404 		panic("Fatal exception");
405 
406 	if (regs && kexec_should_crash(current))
407 		crash_kexec(regs);
408 
409 	do_exit(sig);
410 }
411 
412 extern struct exception_table_entry __start___dbe_table[];
413 extern struct exception_table_entry __stop___dbe_table[];
414 
415 __asm__(
416 "	.section	__dbe_table, \"a\"\n"
417 "	.previous			\n");
418 
419 /* Given an address, look for it in the exception tables. */
420 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
421 {
422 	const struct exception_table_entry *e;
423 
424 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
425 	if (!e)
426 		e = search_module_dbetables(addr);
427 	return e;
428 }
429 
430 asmlinkage void do_be(struct pt_regs *regs)
431 {
432 	const int field = 2 * sizeof(unsigned long);
433 	const struct exception_table_entry *fixup = NULL;
434 	int data = regs->cp0_cause & 4;
435 	int action = MIPS_BE_FATAL;
436 	enum ctx_state prev_state;
437 
438 	prev_state = exception_enter();
439 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
440 	if (data && !user_mode(regs))
441 		fixup = search_dbe_tables(exception_epc(regs));
442 
443 	if (fixup)
444 		action = MIPS_BE_FIXUP;
445 
446 	if (board_be_handler)
447 		action = board_be_handler(regs, fixup != NULL);
448 
449 	switch (action) {
450 	case MIPS_BE_DISCARD:
451 		goto out;
452 	case MIPS_BE_FIXUP:
453 		if (fixup) {
454 			regs->cp0_epc = fixup->nextinsn;
455 			goto out;
456 		}
457 		break;
458 	default:
459 		break;
460 	}
461 
462 	/*
463 	 * Assume it would be too dangerous to continue ...
464 	 */
465 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
466 	       data ? "Data" : "Instruction",
467 	       field, regs->cp0_epc, field, regs->regs[31]);
468 	if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
469 		       SIGBUS) == NOTIFY_STOP)
470 		goto out;
471 
472 	die_if_kernel("Oops", regs);
473 	force_sig(SIGBUS, current);
474 
475 out:
476 	exception_exit(prev_state);
477 }
478 
479 /*
480  * ll/sc, rdhwr, sync emulation
481  */
482 
483 #define OPCODE 0xfc000000
484 #define BASE   0x03e00000
485 #define RT     0x001f0000
486 #define OFFSET 0x0000ffff
487 #define LL     0xc0000000
488 #define SC     0xe0000000
489 #define SPEC0  0x00000000
490 #define SPEC3  0x7c000000
491 #define RD     0x0000f800
492 #define FUNC   0x0000003f
493 #define SYNC   0x0000000f
494 #define RDHWR  0x0000003b
495 
496 /*  microMIPS definitions   */
497 #define MM_POOL32A_FUNC 0xfc00ffff
498 #define MM_RDHWR        0x00006b3c
499 #define MM_RS           0x001f0000
500 #define MM_RT           0x03e00000
501 
502 /*
503  * The ll_bit is cleared by r*_switch.S
504  */
505 
506 unsigned int ll_bit;
507 struct task_struct *ll_task;
508 
509 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
510 {
511 	unsigned long value, __user *vaddr;
512 	long offset;
513 
514 	/*
515 	 * analyse the ll instruction that just caused a ri exception
516 	 * and put the referenced address to addr.
517 	 */
518 
519 	/* sign extend offset */
520 	offset = opcode & OFFSET;
521 	offset <<= 16;
522 	offset >>= 16;
523 
524 	vaddr = (unsigned long __user *)
525 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
526 
527 	if ((unsigned long)vaddr & 3)
528 		return SIGBUS;
529 	if (get_user(value, vaddr))
530 		return SIGSEGV;
531 
532 	preempt_disable();
533 
534 	if (ll_task == NULL || ll_task == current) {
535 		ll_bit = 1;
536 	} else {
537 		ll_bit = 0;
538 	}
539 	ll_task = current;
540 
541 	preempt_enable();
542 
543 	regs->regs[(opcode & RT) >> 16] = value;
544 
545 	return 0;
546 }
547 
548 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
549 {
550 	unsigned long __user *vaddr;
551 	unsigned long reg;
552 	long offset;
553 
554 	/*
555 	 * analyse the sc instruction that just caused a ri exception
556 	 * and put the referenced address to addr.
557 	 */
558 
559 	/* sign extend offset */
560 	offset = opcode & OFFSET;
561 	offset <<= 16;
562 	offset >>= 16;
563 
564 	vaddr = (unsigned long __user *)
565 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
566 	reg = (opcode & RT) >> 16;
567 
568 	if ((unsigned long)vaddr & 3)
569 		return SIGBUS;
570 
571 	preempt_disable();
572 
573 	if (ll_bit == 0 || ll_task != current) {
574 		regs->regs[reg] = 0;
575 		preempt_enable();
576 		return 0;
577 	}
578 
579 	preempt_enable();
580 
581 	if (put_user(regs->regs[reg], vaddr))
582 		return SIGSEGV;
583 
584 	regs->regs[reg] = 1;
585 
586 	return 0;
587 }
588 
589 /*
590  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
591  * opcodes are supposed to result in coprocessor unusable exceptions if
592  * executed on ll/sc-less processors.  That's the theory.  In practice a
593  * few processors such as NEC's VR4100 throw reserved instruction exceptions
594  * instead, so we're doing the emulation thing in both exception handlers.
595  */
596 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
597 {
598 	if ((opcode & OPCODE) == LL) {
599 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
600 				1, regs, 0);
601 		return simulate_ll(regs, opcode);
602 	}
603 	if ((opcode & OPCODE) == SC) {
604 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
605 				1, regs, 0);
606 		return simulate_sc(regs, opcode);
607 	}
608 
609 	return -1;			/* Must be something else ... */
610 }
611 
612 /*
613  * Simulate trapping 'rdhwr' instructions to provide user accessible
614  * registers not implemented in hardware.
615  */
616 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
617 {
618 	struct thread_info *ti = task_thread_info(current);
619 
620 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
621 			1, regs, 0);
622 	switch (rd) {
623 	case MIPS_HWR_CPUNUM:		/* CPU number */
624 		regs->regs[rt] = smp_processor_id();
625 		return 0;
626 	case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
627 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
628 				     current_cpu_data.icache.linesz);
629 		return 0;
630 	case MIPS_HWR_CC:		/* Read count register */
631 		regs->regs[rt] = read_c0_count();
632 		return 0;
633 	case MIPS_HWR_CCRES:		/* Count register resolution */
634 		switch (current_cpu_type()) {
635 		case CPU_20KC:
636 		case CPU_25KF:
637 			regs->regs[rt] = 1;
638 			break;
639 		default:
640 			regs->regs[rt] = 2;
641 		}
642 		return 0;
643 	case MIPS_HWR_ULR:		/* Read UserLocal register */
644 		regs->regs[rt] = ti->tp_value;
645 		return 0;
646 	default:
647 		return -1;
648 	}
649 }
650 
651 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
652 {
653 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
654 		int rd = (opcode & RD) >> 11;
655 		int rt = (opcode & RT) >> 16;
656 
657 		simulate_rdhwr(regs, rd, rt);
658 		return 0;
659 	}
660 
661 	/* Not ours.  */
662 	return -1;
663 }
664 
665 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
666 {
667 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
668 		int rd = (opcode & MM_RS) >> 16;
669 		int rt = (opcode & MM_RT) >> 21;
670 		simulate_rdhwr(regs, rd, rt);
671 		return 0;
672 	}
673 
674 	/* Not ours.  */
675 	return -1;
676 }
677 
678 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
679 {
680 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
681 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
682 				1, regs, 0);
683 		return 0;
684 	}
685 
686 	return -1;			/* Must be something else ... */
687 }
688 
689 asmlinkage void do_ov(struct pt_regs *regs)
690 {
691 	enum ctx_state prev_state;
692 	siginfo_t info = {
693 		.si_signo = SIGFPE,
694 		.si_code = FPE_INTOVF,
695 		.si_addr = (void __user *)regs->cp0_epc,
696 	};
697 
698 	prev_state = exception_enter();
699 	die_if_kernel("Integer overflow", regs);
700 
701 	force_sig_info(SIGFPE, &info, current);
702 	exception_exit(prev_state);
703 }
704 
705 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
706 {
707 	struct siginfo si = { 0 };
708 	struct vm_area_struct *vma;
709 
710 	switch (sig) {
711 	case 0:
712 		return 0;
713 
714 	case SIGFPE:
715 		si.si_addr = fault_addr;
716 		si.si_signo = sig;
717 		/*
718 		 * Inexact can happen together with Overflow or Underflow.
719 		 * Respect the mask to deliver the correct exception.
720 		 */
721 		fcr31 &= (fcr31 & FPU_CSR_ALL_E) <<
722 			 (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E));
723 		if (fcr31 & FPU_CSR_INV_X)
724 			si.si_code = FPE_FLTINV;
725 		else if (fcr31 & FPU_CSR_DIV_X)
726 			si.si_code = FPE_FLTDIV;
727 		else if (fcr31 & FPU_CSR_OVF_X)
728 			si.si_code = FPE_FLTOVF;
729 		else if (fcr31 & FPU_CSR_UDF_X)
730 			si.si_code = FPE_FLTUND;
731 		else if (fcr31 & FPU_CSR_INE_X)
732 			si.si_code = FPE_FLTRES;
733 		else
734 			si.si_code = __SI_FAULT;
735 		force_sig_info(sig, &si, current);
736 		return 1;
737 
738 	case SIGBUS:
739 		si.si_addr = fault_addr;
740 		si.si_signo = sig;
741 		si.si_code = BUS_ADRERR;
742 		force_sig_info(sig, &si, current);
743 		return 1;
744 
745 	case SIGSEGV:
746 		si.si_addr = fault_addr;
747 		si.si_signo = sig;
748 		down_read(&current->mm->mmap_sem);
749 		vma = find_vma(current->mm, (unsigned long)fault_addr);
750 		if (vma && (vma->vm_start <= (unsigned long)fault_addr))
751 			si.si_code = SEGV_ACCERR;
752 		else
753 			si.si_code = SEGV_MAPERR;
754 		up_read(&current->mm->mmap_sem);
755 		force_sig_info(sig, &si, current);
756 		return 1;
757 
758 	default:
759 		force_sig(sig, current);
760 		return 1;
761 	}
762 }
763 
764 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
765 		       unsigned long old_epc, unsigned long old_ra)
766 {
767 	union mips_instruction inst = { .word = opcode };
768 	void __user *fault_addr;
769 	unsigned long fcr31;
770 	int sig;
771 
772 	/* If it's obviously not an FP instruction, skip it */
773 	switch (inst.i_format.opcode) {
774 	case cop1_op:
775 	case cop1x_op:
776 	case lwc1_op:
777 	case ldc1_op:
778 	case swc1_op:
779 	case sdc1_op:
780 		break;
781 
782 	default:
783 		return -1;
784 	}
785 
786 	/*
787 	 * do_ri skipped over the instruction via compute_return_epc, undo
788 	 * that for the FPU emulator.
789 	 */
790 	regs->cp0_epc = old_epc;
791 	regs->regs[31] = old_ra;
792 
793 	/* Save the FP context to struct thread_struct */
794 	lose_fpu(1);
795 
796 	/* Run the emulator */
797 	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
798 				       &fault_addr);
799 	fcr31 = current->thread.fpu.fcr31;
800 
801 	/*
802 	 * We can't allow the emulated instruction to leave any of
803 	 * the cause bits set in $fcr31.
804 	 */
805 	current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
806 
807 	/* Restore the hardware register state */
808 	own_fpu(1);
809 
810 	/* Send a signal if required.  */
811 	process_fpemu_return(sig, fault_addr, fcr31);
812 
813 	return 0;
814 }
815 
816 /*
817  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
818  */
819 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
820 {
821 	enum ctx_state prev_state;
822 	void __user *fault_addr;
823 	int sig;
824 
825 	prev_state = exception_enter();
826 	if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
827 		       SIGFPE) == NOTIFY_STOP)
828 		goto out;
829 
830 	/* Clear FCSR.Cause before enabling interrupts */
831 	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X);
832 	local_irq_enable();
833 
834 	die_if_kernel("FP exception in kernel code", regs);
835 
836 	if (fcr31 & FPU_CSR_UNI_X) {
837 		/*
838 		 * Unimplemented operation exception.  If we've got the full
839 		 * software emulator on-board, let's use it...
840 		 *
841 		 * Force FPU to dump state into task/thread context.  We're
842 		 * moving a lot of data here for what is probably a single
843 		 * instruction, but the alternative is to pre-decode the FP
844 		 * register operands before invoking the emulator, which seems
845 		 * a bit extreme for what should be an infrequent event.
846 		 */
847 		/* Ensure 'resume' not overwrite saved fp context again. */
848 		lose_fpu(1);
849 
850 		/* Run the emulator */
851 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
852 					       &fault_addr);
853 		fcr31 = current->thread.fpu.fcr31;
854 
855 		/*
856 		 * We can't allow the emulated instruction to leave any of
857 		 * the cause bits set in $fcr31.
858 		 */
859 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
860 
861 		/* Restore the hardware register state */
862 		own_fpu(1);	/* Using the FPU again.	 */
863 	} else {
864 		sig = SIGFPE;
865 		fault_addr = (void __user *) regs->cp0_epc;
866 	}
867 
868 	/* Send a signal if required.  */
869 	process_fpemu_return(sig, fault_addr, fcr31);
870 
871 out:
872 	exception_exit(prev_state);
873 }
874 
875 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
876 	const char *str)
877 {
878 	siginfo_t info = { 0 };
879 	char b[40];
880 
881 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
882 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
883 			 SIGTRAP) == NOTIFY_STOP)
884 		return;
885 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
886 
887 	if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
888 		       SIGTRAP) == NOTIFY_STOP)
889 		return;
890 
891 	/*
892 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
893 	 * insns, even for trap and break codes that indicate arithmetic
894 	 * failures.  Weird ...
895 	 * But should we continue the brokenness???  --macro
896 	 */
897 	switch (code) {
898 	case BRK_OVERFLOW:
899 	case BRK_DIVZERO:
900 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
901 		die_if_kernel(b, regs);
902 		if (code == BRK_DIVZERO)
903 			info.si_code = FPE_INTDIV;
904 		else
905 			info.si_code = FPE_INTOVF;
906 		info.si_signo = SIGFPE;
907 		info.si_addr = (void __user *) regs->cp0_epc;
908 		force_sig_info(SIGFPE, &info, current);
909 		break;
910 	case BRK_BUG:
911 		die_if_kernel("Kernel bug detected", regs);
912 		force_sig(SIGTRAP, current);
913 		break;
914 	case BRK_MEMU:
915 		/*
916 		 * This breakpoint code is used by the FPU emulator to retake
917 		 * control of the CPU after executing the instruction from the
918 		 * delay slot of an emulated branch.
919 		 *
920 		 * Terminate if exception was recognized as a delay slot return
921 		 * otherwise handle as normal.
922 		 */
923 		if (do_dsemulret(regs))
924 			return;
925 
926 		die_if_kernel("Math emu break/trap", regs);
927 		force_sig(SIGTRAP, current);
928 		break;
929 	default:
930 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
931 		die_if_kernel(b, regs);
932 		if (si_code) {
933 			info.si_signo = SIGTRAP;
934 			info.si_code = si_code;
935 			force_sig_info(SIGTRAP, &info, current);
936 		} else {
937 			force_sig(SIGTRAP, current);
938 		}
939 	}
940 }
941 
942 asmlinkage void do_bp(struct pt_regs *regs)
943 {
944 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
945 	unsigned int opcode, bcode;
946 	enum ctx_state prev_state;
947 	mm_segment_t seg;
948 
949 	seg = get_fs();
950 	if (!user_mode(regs))
951 		set_fs(KERNEL_DS);
952 
953 	prev_state = exception_enter();
954 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
955 	if (get_isa16_mode(regs->cp0_epc)) {
956 		u16 instr[2];
957 
958 		if (__get_user(instr[0], (u16 __user *)epc))
959 			goto out_sigsegv;
960 
961 		if (!cpu_has_mmips) {
962 			/* MIPS16e mode */
963 			bcode = (instr[0] >> 5) & 0x3f;
964 		} else if (mm_insn_16bit(instr[0])) {
965 			/* 16-bit microMIPS BREAK */
966 			bcode = instr[0] & 0xf;
967 		} else {
968 			/* 32-bit microMIPS BREAK */
969 			if (__get_user(instr[1], (u16 __user *)(epc + 2)))
970 				goto out_sigsegv;
971 			opcode = (instr[0] << 16) | instr[1];
972 			bcode = (opcode >> 6) & ((1 << 20) - 1);
973 		}
974 	} else {
975 		if (__get_user(opcode, (unsigned int __user *)epc))
976 			goto out_sigsegv;
977 		bcode = (opcode >> 6) & ((1 << 20) - 1);
978 	}
979 
980 	/*
981 	 * There is the ancient bug in the MIPS assemblers that the break
982 	 * code starts left to bit 16 instead to bit 6 in the opcode.
983 	 * Gas is bug-compatible, but not always, grrr...
984 	 * We handle both cases with a simple heuristics.  --macro
985 	 */
986 	if (bcode >= (1 << 10))
987 		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
988 
989 	/*
990 	 * notify the kprobe handlers, if instruction is likely to
991 	 * pertain to them.
992 	 */
993 	switch (bcode) {
994 	case BRK_UPROBE:
995 		if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
996 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
997 			goto out;
998 		else
999 			break;
1000 	case BRK_UPROBE_XOL:
1001 		if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1002 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1003 			goto out;
1004 		else
1005 			break;
1006 	case BRK_KPROBE_BP:
1007 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
1008 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1009 			goto out;
1010 		else
1011 			break;
1012 	case BRK_KPROBE_SSTEPBP:
1013 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1014 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1015 			goto out;
1016 		else
1017 			break;
1018 	default:
1019 		break;
1020 	}
1021 
1022 	do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1023 
1024 out:
1025 	set_fs(seg);
1026 	exception_exit(prev_state);
1027 	return;
1028 
1029 out_sigsegv:
1030 	force_sig(SIGSEGV, current);
1031 	goto out;
1032 }
1033 
1034 asmlinkage void do_tr(struct pt_regs *regs)
1035 {
1036 	u32 opcode, tcode = 0;
1037 	enum ctx_state prev_state;
1038 	u16 instr[2];
1039 	mm_segment_t seg;
1040 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1041 
1042 	seg = get_fs();
1043 	if (!user_mode(regs))
1044 		set_fs(get_ds());
1045 
1046 	prev_state = exception_enter();
1047 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1048 	if (get_isa16_mode(regs->cp0_epc)) {
1049 		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1050 		    __get_user(instr[1], (u16 __user *)(epc + 2)))
1051 			goto out_sigsegv;
1052 		opcode = (instr[0] << 16) | instr[1];
1053 		/* Immediate versions don't provide a code.  */
1054 		if (!(opcode & OPCODE))
1055 			tcode = (opcode >> 12) & ((1 << 4) - 1);
1056 	} else {
1057 		if (__get_user(opcode, (u32 __user *)epc))
1058 			goto out_sigsegv;
1059 		/* Immediate versions don't provide a code.  */
1060 		if (!(opcode & OPCODE))
1061 			tcode = (opcode >> 6) & ((1 << 10) - 1);
1062 	}
1063 
1064 	do_trap_or_bp(regs, tcode, 0, "Trap");
1065 
1066 out:
1067 	set_fs(seg);
1068 	exception_exit(prev_state);
1069 	return;
1070 
1071 out_sigsegv:
1072 	force_sig(SIGSEGV, current);
1073 	goto out;
1074 }
1075 
1076 asmlinkage void do_ri(struct pt_regs *regs)
1077 {
1078 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1079 	unsigned long old_epc = regs->cp0_epc;
1080 	unsigned long old31 = regs->regs[31];
1081 	enum ctx_state prev_state;
1082 	unsigned int opcode = 0;
1083 	int status = -1;
1084 
1085 	/*
1086 	 * Avoid any kernel code. Just emulate the R2 instruction
1087 	 * as quickly as possible.
1088 	 */
1089 	if (mipsr2_emulation && cpu_has_mips_r6 &&
1090 	    likely(user_mode(regs)) &&
1091 	    likely(get_user(opcode, epc) >= 0)) {
1092 		unsigned long fcr31 = 0;
1093 
1094 		status = mipsr2_decoder(regs, opcode, &fcr31);
1095 		switch (status) {
1096 		case 0:
1097 		case SIGEMT:
1098 			task_thread_info(current)->r2_emul_return = 1;
1099 			return;
1100 		case SIGILL:
1101 			goto no_r2_instr;
1102 		default:
1103 			process_fpemu_return(status,
1104 					     &current->thread.cp0_baduaddr,
1105 					     fcr31);
1106 			task_thread_info(current)->r2_emul_return = 1;
1107 			return;
1108 		}
1109 	}
1110 
1111 no_r2_instr:
1112 
1113 	prev_state = exception_enter();
1114 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1115 
1116 	if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1117 		       SIGILL) == NOTIFY_STOP)
1118 		goto out;
1119 
1120 	die_if_kernel("Reserved instruction in kernel code", regs);
1121 
1122 	if (unlikely(compute_return_epc(regs) < 0))
1123 		goto out;
1124 
1125 	if (!get_isa16_mode(regs->cp0_epc)) {
1126 		if (unlikely(get_user(opcode, epc) < 0))
1127 			status = SIGSEGV;
1128 
1129 		if (!cpu_has_llsc && status < 0)
1130 			status = simulate_llsc(regs, opcode);
1131 
1132 		if (status < 0)
1133 			status = simulate_rdhwr_normal(regs, opcode);
1134 
1135 		if (status < 0)
1136 			status = simulate_sync(regs, opcode);
1137 
1138 		if (status < 0)
1139 			status = simulate_fp(regs, opcode, old_epc, old31);
1140 	} else if (cpu_has_mmips) {
1141 		unsigned short mmop[2] = { 0 };
1142 
1143 		if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1144 			status = SIGSEGV;
1145 		if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1146 			status = SIGSEGV;
1147 		opcode = mmop[0];
1148 		opcode = (opcode << 16) | mmop[1];
1149 
1150 		if (status < 0)
1151 			status = simulate_rdhwr_mm(regs, opcode);
1152 	}
1153 
1154 	if (status < 0)
1155 		status = SIGILL;
1156 
1157 	if (unlikely(status > 0)) {
1158 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1159 		regs->regs[31] = old31;
1160 		force_sig(status, current);
1161 	}
1162 
1163 out:
1164 	exception_exit(prev_state);
1165 }
1166 
1167 /*
1168  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1169  * emulated more than some threshold number of instructions, force migration to
1170  * a "CPU" that has FP support.
1171  */
1172 static void mt_ase_fp_affinity(void)
1173 {
1174 #ifdef CONFIG_MIPS_MT_FPAFF
1175 	if (mt_fpemul_threshold > 0 &&
1176 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1177 		/*
1178 		 * If there's no FPU present, or if the application has already
1179 		 * restricted the allowed set to exclude any CPUs with FPUs,
1180 		 * we'll skip the procedure.
1181 		 */
1182 		if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1183 			cpumask_t tmask;
1184 
1185 			current->thread.user_cpus_allowed
1186 				= current->cpus_allowed;
1187 			cpumask_and(&tmask, &current->cpus_allowed,
1188 				    &mt_fpu_cpumask);
1189 			set_cpus_allowed_ptr(current, &tmask);
1190 			set_thread_flag(TIF_FPUBOUND);
1191 		}
1192 	}
1193 #endif /* CONFIG_MIPS_MT_FPAFF */
1194 }
1195 
1196 /*
1197  * No lock; only written during early bootup by CPU 0.
1198  */
1199 static RAW_NOTIFIER_HEAD(cu2_chain);
1200 
1201 int __ref register_cu2_notifier(struct notifier_block *nb)
1202 {
1203 	return raw_notifier_chain_register(&cu2_chain, nb);
1204 }
1205 
1206 int cu2_notifier_call_chain(unsigned long val, void *v)
1207 {
1208 	return raw_notifier_call_chain(&cu2_chain, val, v);
1209 }
1210 
1211 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1212 	void *data)
1213 {
1214 	struct pt_regs *regs = data;
1215 
1216 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1217 			      "instruction", regs);
1218 	force_sig(SIGILL, current);
1219 
1220 	return NOTIFY_OK;
1221 }
1222 
1223 static int wait_on_fp_mode_switch(atomic_t *p)
1224 {
1225 	/*
1226 	 * The FP mode for this task is currently being switched. That may
1227 	 * involve modifications to the format of this tasks FP context which
1228 	 * make it unsafe to proceed with execution for the moment. Instead,
1229 	 * schedule some other task.
1230 	 */
1231 	schedule();
1232 	return 0;
1233 }
1234 
1235 static int enable_restore_fp_context(int msa)
1236 {
1237 	int err, was_fpu_owner, prior_msa;
1238 
1239 	/*
1240 	 * If an FP mode switch is currently underway, wait for it to
1241 	 * complete before proceeding.
1242 	 */
1243 	wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1244 			 wait_on_fp_mode_switch, TASK_KILLABLE);
1245 
1246 	if (!used_math()) {
1247 		/* First time FP context user. */
1248 		preempt_disable();
1249 		err = init_fpu();
1250 		if (msa && !err) {
1251 			enable_msa();
1252 			init_msa_upper();
1253 			set_thread_flag(TIF_USEDMSA);
1254 			set_thread_flag(TIF_MSA_CTX_LIVE);
1255 		}
1256 		preempt_enable();
1257 		if (!err)
1258 			set_used_math();
1259 		return err;
1260 	}
1261 
1262 	/*
1263 	 * This task has formerly used the FP context.
1264 	 *
1265 	 * If this thread has no live MSA vector context then we can simply
1266 	 * restore the scalar FP context. If it has live MSA vector context
1267 	 * (that is, it has or may have used MSA since last performing a
1268 	 * function call) then we'll need to restore the vector context. This
1269 	 * applies even if we're currently only executing a scalar FP
1270 	 * instruction. This is because if we were to later execute an MSA
1271 	 * instruction then we'd either have to:
1272 	 *
1273 	 *  - Restore the vector context & clobber any registers modified by
1274 	 *    scalar FP instructions between now & then.
1275 	 *
1276 	 * or
1277 	 *
1278 	 *  - Not restore the vector context & lose the most significant bits
1279 	 *    of all vector registers.
1280 	 *
1281 	 * Neither of those options is acceptable. We cannot restore the least
1282 	 * significant bits of the registers now & only restore the most
1283 	 * significant bits later because the most significant bits of any
1284 	 * vector registers whose aliased FP register is modified now will have
1285 	 * been zeroed. We'd have no way to know that when restoring the vector
1286 	 * context & thus may load an outdated value for the most significant
1287 	 * bits of a vector register.
1288 	 */
1289 	if (!msa && !thread_msa_context_live())
1290 		return own_fpu(1);
1291 
1292 	/*
1293 	 * This task is using or has previously used MSA. Thus we require
1294 	 * that Status.FR == 1.
1295 	 */
1296 	preempt_disable();
1297 	was_fpu_owner = is_fpu_owner();
1298 	err = own_fpu_inatomic(0);
1299 	if (err)
1300 		goto out;
1301 
1302 	enable_msa();
1303 	write_msa_csr(current->thread.fpu.msacsr);
1304 	set_thread_flag(TIF_USEDMSA);
1305 
1306 	/*
1307 	 * If this is the first time that the task is using MSA and it has
1308 	 * previously used scalar FP in this time slice then we already nave
1309 	 * FP context which we shouldn't clobber. We do however need to clear
1310 	 * the upper 64b of each vector register so that this task has no
1311 	 * opportunity to see data left behind by another.
1312 	 */
1313 	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1314 	if (!prior_msa && was_fpu_owner) {
1315 		init_msa_upper();
1316 
1317 		goto out;
1318 	}
1319 
1320 	if (!prior_msa) {
1321 		/*
1322 		 * Restore the least significant 64b of each vector register
1323 		 * from the existing scalar FP context.
1324 		 */
1325 		_restore_fp(current);
1326 
1327 		/*
1328 		 * The task has not formerly used MSA, so clear the upper 64b
1329 		 * of each vector register such that it cannot see data left
1330 		 * behind by another task.
1331 		 */
1332 		init_msa_upper();
1333 	} else {
1334 		/* We need to restore the vector context. */
1335 		restore_msa(current);
1336 
1337 		/* Restore the scalar FP control & status register */
1338 		if (!was_fpu_owner)
1339 			write_32bit_cp1_register(CP1_STATUS,
1340 						 current->thread.fpu.fcr31);
1341 	}
1342 
1343 out:
1344 	preempt_enable();
1345 
1346 	return 0;
1347 }
1348 
1349 asmlinkage void do_cpu(struct pt_regs *regs)
1350 {
1351 	enum ctx_state prev_state;
1352 	unsigned int __user *epc;
1353 	unsigned long old_epc, old31;
1354 	void __user *fault_addr;
1355 	unsigned int opcode;
1356 	unsigned long fcr31;
1357 	unsigned int cpid;
1358 	int status, err;
1359 	int sig;
1360 
1361 	prev_state = exception_enter();
1362 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1363 
1364 	if (cpid != 2)
1365 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1366 
1367 	switch (cpid) {
1368 	case 0:
1369 		epc = (unsigned int __user *)exception_epc(regs);
1370 		old_epc = regs->cp0_epc;
1371 		old31 = regs->regs[31];
1372 		opcode = 0;
1373 		status = -1;
1374 
1375 		if (unlikely(compute_return_epc(regs) < 0))
1376 			break;
1377 
1378 		if (!get_isa16_mode(regs->cp0_epc)) {
1379 			if (unlikely(get_user(opcode, epc) < 0))
1380 				status = SIGSEGV;
1381 
1382 			if (!cpu_has_llsc && status < 0)
1383 				status = simulate_llsc(regs, opcode);
1384 		}
1385 
1386 		if (status < 0)
1387 			status = SIGILL;
1388 
1389 		if (unlikely(status > 0)) {
1390 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1391 			regs->regs[31] = old31;
1392 			force_sig(status, current);
1393 		}
1394 
1395 		break;
1396 
1397 	case 3:
1398 		/*
1399 		 * The COP3 opcode space and consequently the CP0.Status.CU3
1400 		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1401 		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1402 		 * up the space has been reused for COP1X instructions, that
1403 		 * are enabled by the CP0.Status.CU1 bit and consequently
1404 		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1405 		 * exceptions.  Some FPU-less processors that implement one
1406 		 * of these ISAs however use this code erroneously for COP1X
1407 		 * instructions.  Therefore we redirect this trap to the FP
1408 		 * emulator too.
1409 		 */
1410 		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1411 			force_sig(SIGILL, current);
1412 			break;
1413 		}
1414 		/* Fall through.  */
1415 
1416 	case 1:
1417 		err = enable_restore_fp_context(0);
1418 
1419 		if (raw_cpu_has_fpu && !err)
1420 			break;
1421 
1422 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1423 					       &fault_addr);
1424 		fcr31 = current->thread.fpu.fcr31;
1425 
1426 		/*
1427 		 * We can't allow the emulated instruction to leave
1428 		 * any of the cause bits set in $fcr31.
1429 		 */
1430 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
1431 
1432 		/* Send a signal if required.  */
1433 		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1434 			mt_ase_fp_affinity();
1435 
1436 		break;
1437 
1438 	case 2:
1439 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1440 		break;
1441 	}
1442 
1443 	exception_exit(prev_state);
1444 }
1445 
1446 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1447 {
1448 	enum ctx_state prev_state;
1449 
1450 	prev_state = exception_enter();
1451 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1452 	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1453 		       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1454 		goto out;
1455 
1456 	/* Clear MSACSR.Cause before enabling interrupts */
1457 	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1458 	local_irq_enable();
1459 
1460 	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1461 	force_sig(SIGFPE, current);
1462 out:
1463 	exception_exit(prev_state);
1464 }
1465 
1466 asmlinkage void do_msa(struct pt_regs *regs)
1467 {
1468 	enum ctx_state prev_state;
1469 	int err;
1470 
1471 	prev_state = exception_enter();
1472 
1473 	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1474 		force_sig(SIGILL, current);
1475 		goto out;
1476 	}
1477 
1478 	die_if_kernel("do_msa invoked from kernel context!", regs);
1479 
1480 	err = enable_restore_fp_context(1);
1481 	if (err)
1482 		force_sig(SIGILL, current);
1483 out:
1484 	exception_exit(prev_state);
1485 }
1486 
1487 asmlinkage void do_mdmx(struct pt_regs *regs)
1488 {
1489 	enum ctx_state prev_state;
1490 
1491 	prev_state = exception_enter();
1492 	force_sig(SIGILL, current);
1493 	exception_exit(prev_state);
1494 }
1495 
1496 /*
1497  * Called with interrupts disabled.
1498  */
1499 asmlinkage void do_watch(struct pt_regs *regs)
1500 {
1501 	siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT };
1502 	enum ctx_state prev_state;
1503 
1504 	prev_state = exception_enter();
1505 	/*
1506 	 * Clear WP (bit 22) bit of cause register so we don't loop
1507 	 * forever.
1508 	 */
1509 	clear_c0_cause(CAUSEF_WP);
1510 
1511 	/*
1512 	 * If the current thread has the watch registers loaded, save
1513 	 * their values and send SIGTRAP.  Otherwise another thread
1514 	 * left the registers set, clear them and continue.
1515 	 */
1516 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1517 		mips_read_watch_registers();
1518 		local_irq_enable();
1519 		force_sig_info(SIGTRAP, &info, current);
1520 	} else {
1521 		mips_clear_watch_registers();
1522 		local_irq_enable();
1523 	}
1524 	exception_exit(prev_state);
1525 }
1526 
1527 asmlinkage void do_mcheck(struct pt_regs *regs)
1528 {
1529 	int multi_match = regs->cp0_status & ST0_TS;
1530 	enum ctx_state prev_state;
1531 	mm_segment_t old_fs = get_fs();
1532 
1533 	prev_state = exception_enter();
1534 	show_regs(regs);
1535 
1536 	if (multi_match) {
1537 		dump_tlb_regs();
1538 		pr_info("\n");
1539 		dump_tlb_all();
1540 	}
1541 
1542 	if (!user_mode(regs))
1543 		set_fs(KERNEL_DS);
1544 
1545 	show_code((unsigned int __user *) regs->cp0_epc);
1546 
1547 	set_fs(old_fs);
1548 
1549 	/*
1550 	 * Some chips may have other causes of machine check (e.g. SB1
1551 	 * graduation timer)
1552 	 */
1553 	panic("Caught Machine Check exception - %scaused by multiple "
1554 	      "matching entries in the TLB.",
1555 	      (multi_match) ? "" : "not ");
1556 }
1557 
1558 asmlinkage void do_mt(struct pt_regs *regs)
1559 {
1560 	int subcode;
1561 
1562 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1563 			>> VPECONTROL_EXCPT_SHIFT;
1564 	switch (subcode) {
1565 	case 0:
1566 		printk(KERN_DEBUG "Thread Underflow\n");
1567 		break;
1568 	case 1:
1569 		printk(KERN_DEBUG "Thread Overflow\n");
1570 		break;
1571 	case 2:
1572 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1573 		break;
1574 	case 3:
1575 		printk(KERN_DEBUG "Gating Storage Exception\n");
1576 		break;
1577 	case 4:
1578 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1579 		break;
1580 	case 5:
1581 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1582 		break;
1583 	default:
1584 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1585 			subcode);
1586 		break;
1587 	}
1588 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1589 
1590 	force_sig(SIGILL, current);
1591 }
1592 
1593 
1594 asmlinkage void do_dsp(struct pt_regs *regs)
1595 {
1596 	if (cpu_has_dsp)
1597 		panic("Unexpected DSP exception");
1598 
1599 	force_sig(SIGILL, current);
1600 }
1601 
1602 asmlinkage void do_reserved(struct pt_regs *regs)
1603 {
1604 	/*
1605 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1606 	 * caused by a new unknown cpu type or after another deadly
1607 	 * hard/software error.
1608 	 */
1609 	show_regs(regs);
1610 	panic("Caught reserved exception %ld - should not happen.",
1611 	      (regs->cp0_cause & 0x7f) >> 2);
1612 }
1613 
1614 static int __initdata l1parity = 1;
1615 static int __init nol1parity(char *s)
1616 {
1617 	l1parity = 0;
1618 	return 1;
1619 }
1620 __setup("nol1par", nol1parity);
1621 static int __initdata l2parity = 1;
1622 static int __init nol2parity(char *s)
1623 {
1624 	l2parity = 0;
1625 	return 1;
1626 }
1627 __setup("nol2par", nol2parity);
1628 
1629 /*
1630  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1631  * it different ways.
1632  */
1633 static inline void parity_protection_init(void)
1634 {
1635 	switch (current_cpu_type()) {
1636 	case CPU_24K:
1637 	case CPU_34K:
1638 	case CPU_74K:
1639 	case CPU_1004K:
1640 	case CPU_1074K:
1641 	case CPU_INTERAPTIV:
1642 	case CPU_PROAPTIV:
1643 	case CPU_P5600:
1644 	case CPU_QEMU_GENERIC:
1645 	case CPU_I6400:
1646 	case CPU_P6600:
1647 		{
1648 #define ERRCTL_PE	0x80000000
1649 #define ERRCTL_L2P	0x00800000
1650 			unsigned long errctl;
1651 			unsigned int l1parity_present, l2parity_present;
1652 
1653 			errctl = read_c0_ecc();
1654 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1655 
1656 			/* probe L1 parity support */
1657 			write_c0_ecc(errctl | ERRCTL_PE);
1658 			back_to_back_c0_hazard();
1659 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1660 
1661 			/* probe L2 parity support */
1662 			write_c0_ecc(errctl|ERRCTL_L2P);
1663 			back_to_back_c0_hazard();
1664 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1665 
1666 			if (l1parity_present && l2parity_present) {
1667 				if (l1parity)
1668 					errctl |= ERRCTL_PE;
1669 				if (l1parity ^ l2parity)
1670 					errctl |= ERRCTL_L2P;
1671 			} else if (l1parity_present) {
1672 				if (l1parity)
1673 					errctl |= ERRCTL_PE;
1674 			} else if (l2parity_present) {
1675 				if (l2parity)
1676 					errctl |= ERRCTL_L2P;
1677 			} else {
1678 				/* No parity available */
1679 			}
1680 
1681 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1682 
1683 			write_c0_ecc(errctl);
1684 			back_to_back_c0_hazard();
1685 			errctl = read_c0_ecc();
1686 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1687 
1688 			if (l1parity_present)
1689 				printk(KERN_INFO "Cache parity protection %sabled\n",
1690 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1691 
1692 			if (l2parity_present) {
1693 				if (l1parity_present && l1parity)
1694 					errctl ^= ERRCTL_L2P;
1695 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1696 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1697 			}
1698 		}
1699 		break;
1700 
1701 	case CPU_5KC:
1702 	case CPU_5KE:
1703 	case CPU_LOONGSON1:
1704 		write_c0_ecc(0x80000000);
1705 		back_to_back_c0_hazard();
1706 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1707 		printk(KERN_INFO "Cache parity protection %sabled\n",
1708 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1709 		break;
1710 	case CPU_20KC:
1711 	case CPU_25KF:
1712 		/* Clear the DE bit (bit 16) in the c0_status register. */
1713 		printk(KERN_INFO "Enable cache parity protection for "
1714 		       "MIPS 20KC/25KF CPUs.\n");
1715 		clear_c0_status(ST0_DE);
1716 		break;
1717 	default:
1718 		break;
1719 	}
1720 }
1721 
1722 asmlinkage void cache_parity_error(void)
1723 {
1724 	const int field = 2 * sizeof(unsigned long);
1725 	unsigned int reg_val;
1726 
1727 	/* For the moment, report the problem and hang. */
1728 	printk("Cache error exception:\n");
1729 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1730 	reg_val = read_c0_cacheerr();
1731 	printk("c0_cacheerr == %08x\n", reg_val);
1732 
1733 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1734 	       reg_val & (1<<30) ? "secondary" : "primary",
1735 	       reg_val & (1<<31) ? "data" : "insn");
1736 	if ((cpu_has_mips_r2_r6) &&
1737 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1738 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1739 			reg_val & (1<<29) ? "ED " : "",
1740 			reg_val & (1<<28) ? "ET " : "",
1741 			reg_val & (1<<27) ? "ES " : "",
1742 			reg_val & (1<<26) ? "EE " : "",
1743 			reg_val & (1<<25) ? "EB " : "",
1744 			reg_val & (1<<24) ? "EI " : "",
1745 			reg_val & (1<<23) ? "E1 " : "",
1746 			reg_val & (1<<22) ? "E0 " : "");
1747 	} else {
1748 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1749 			reg_val & (1<<29) ? "ED " : "",
1750 			reg_val & (1<<28) ? "ET " : "",
1751 			reg_val & (1<<26) ? "EE " : "",
1752 			reg_val & (1<<25) ? "EB " : "",
1753 			reg_val & (1<<24) ? "EI " : "",
1754 			reg_val & (1<<23) ? "E1 " : "",
1755 			reg_val & (1<<22) ? "E0 " : "");
1756 	}
1757 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1758 
1759 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1760 	if (reg_val & (1<<22))
1761 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1762 
1763 	if (reg_val & (1<<23))
1764 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1765 #endif
1766 
1767 	panic("Can't handle the cache error!");
1768 }
1769 
1770 asmlinkage void do_ftlb(void)
1771 {
1772 	const int field = 2 * sizeof(unsigned long);
1773 	unsigned int reg_val;
1774 
1775 	/* For the moment, report the problem and hang. */
1776 	if ((cpu_has_mips_r2_r6) &&
1777 	    (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1778 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1779 		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1780 		       read_c0_ecc());
1781 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1782 		reg_val = read_c0_cacheerr();
1783 		pr_err("c0_cacheerr == %08x\n", reg_val);
1784 
1785 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1786 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1787 		} else {
1788 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1789 			       reg_val & (1<<30) ? "secondary" : "primary",
1790 			       reg_val & (1<<31) ? "data" : "insn");
1791 		}
1792 	} else {
1793 		pr_err("FTLB error exception\n");
1794 	}
1795 	/* Just print the cacheerr bits for now */
1796 	cache_parity_error();
1797 }
1798 
1799 /*
1800  * SDBBP EJTAG debug exception handler.
1801  * We skip the instruction and return to the next instruction.
1802  */
1803 void ejtag_exception_handler(struct pt_regs *regs)
1804 {
1805 	const int field = 2 * sizeof(unsigned long);
1806 	unsigned long depc, old_epc, old_ra;
1807 	unsigned int debug;
1808 
1809 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1810 	depc = read_c0_depc();
1811 	debug = read_c0_debug();
1812 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1813 	if (debug & 0x80000000) {
1814 		/*
1815 		 * In branch delay slot.
1816 		 * We cheat a little bit here and use EPC to calculate the
1817 		 * debug return address (DEPC). EPC is restored after the
1818 		 * calculation.
1819 		 */
1820 		old_epc = regs->cp0_epc;
1821 		old_ra = regs->regs[31];
1822 		regs->cp0_epc = depc;
1823 		compute_return_epc(regs);
1824 		depc = regs->cp0_epc;
1825 		regs->cp0_epc = old_epc;
1826 		regs->regs[31] = old_ra;
1827 	} else
1828 		depc += 4;
1829 	write_c0_depc(depc);
1830 
1831 #if 0
1832 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1833 	write_c0_debug(debug | 0x100);
1834 #endif
1835 }
1836 
1837 /*
1838  * NMI exception handler.
1839  * No lock; only written during early bootup by CPU 0.
1840  */
1841 static RAW_NOTIFIER_HEAD(nmi_chain);
1842 
1843 int register_nmi_notifier(struct notifier_block *nb)
1844 {
1845 	return raw_notifier_chain_register(&nmi_chain, nb);
1846 }
1847 
1848 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1849 {
1850 	char str[100];
1851 
1852 	nmi_enter();
1853 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1854 	bust_spinlocks(1);
1855 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1856 		 smp_processor_id(), regs->cp0_epc);
1857 	regs->cp0_epc = read_c0_errorepc();
1858 	die(str, regs);
1859 	nmi_exit();
1860 }
1861 
1862 #define VECTORSPACING 0x100	/* for EI/VI mode */
1863 
1864 unsigned long ebase;
1865 EXPORT_SYMBOL_GPL(ebase);
1866 unsigned long exception_handlers[32];
1867 unsigned long vi_handlers[64];
1868 
1869 void __init *set_except_vector(int n, void *addr)
1870 {
1871 	unsigned long handler = (unsigned long) addr;
1872 	unsigned long old_handler;
1873 
1874 #ifdef CONFIG_CPU_MICROMIPS
1875 	/*
1876 	 * Only the TLB handlers are cache aligned with an even
1877 	 * address. All other handlers are on an odd address and
1878 	 * require no modification. Otherwise, MIPS32 mode will
1879 	 * be entered when handling any TLB exceptions. That
1880 	 * would be bad...since we must stay in microMIPS mode.
1881 	 */
1882 	if (!(handler & 0x1))
1883 		handler |= 1;
1884 #endif
1885 	old_handler = xchg(&exception_handlers[n], handler);
1886 
1887 	if (n == 0 && cpu_has_divec) {
1888 #ifdef CONFIG_CPU_MICROMIPS
1889 		unsigned long jump_mask = ~((1 << 27) - 1);
1890 #else
1891 		unsigned long jump_mask = ~((1 << 28) - 1);
1892 #endif
1893 		u32 *buf = (u32 *)(ebase + 0x200);
1894 		unsigned int k0 = 26;
1895 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1896 			uasm_i_j(&buf, handler & ~jump_mask);
1897 			uasm_i_nop(&buf);
1898 		} else {
1899 			UASM_i_LA(&buf, k0, handler);
1900 			uasm_i_jr(&buf, k0);
1901 			uasm_i_nop(&buf);
1902 		}
1903 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1904 	}
1905 	return (void *)old_handler;
1906 }
1907 
1908 static void do_default_vi(void)
1909 {
1910 	show_regs(get_irq_regs());
1911 	panic("Caught unexpected vectored interrupt.");
1912 }
1913 
1914 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1915 {
1916 	unsigned long handler;
1917 	unsigned long old_handler = vi_handlers[n];
1918 	int srssets = current_cpu_data.srsets;
1919 	u16 *h;
1920 	unsigned char *b;
1921 
1922 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1923 
1924 	if (addr == NULL) {
1925 		handler = (unsigned long) do_default_vi;
1926 		srs = 0;
1927 	} else
1928 		handler = (unsigned long) addr;
1929 	vi_handlers[n] = handler;
1930 
1931 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1932 
1933 	if (srs >= srssets)
1934 		panic("Shadow register set %d not supported", srs);
1935 
1936 	if (cpu_has_veic) {
1937 		if (board_bind_eic_interrupt)
1938 			board_bind_eic_interrupt(n, srs);
1939 	} else if (cpu_has_vint) {
1940 		/* SRSMap is only defined if shadow sets are implemented */
1941 		if (srssets > 1)
1942 			change_c0_srsmap(0xf << n*4, srs << n*4);
1943 	}
1944 
1945 	if (srs == 0) {
1946 		/*
1947 		 * If no shadow set is selected then use the default handler
1948 		 * that does normal register saving and standard interrupt exit
1949 		 */
1950 		extern char except_vec_vi, except_vec_vi_lui;
1951 		extern char except_vec_vi_ori, except_vec_vi_end;
1952 		extern char rollback_except_vec_vi;
1953 		char *vec_start = using_rollback_handler() ?
1954 			&rollback_except_vec_vi : &except_vec_vi;
1955 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1956 		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1957 		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1958 #else
1959 		const int lui_offset = &except_vec_vi_lui - vec_start;
1960 		const int ori_offset = &except_vec_vi_ori - vec_start;
1961 #endif
1962 		const int handler_len = &except_vec_vi_end - vec_start;
1963 
1964 		if (handler_len > VECTORSPACING) {
1965 			/*
1966 			 * Sigh... panicing won't help as the console
1967 			 * is probably not configured :(
1968 			 */
1969 			panic("VECTORSPACING too small");
1970 		}
1971 
1972 		set_handler(((unsigned long)b - ebase), vec_start,
1973 #ifdef CONFIG_CPU_MICROMIPS
1974 				(handler_len - 1));
1975 #else
1976 				handler_len);
1977 #endif
1978 		h = (u16 *)(b + lui_offset);
1979 		*h = (handler >> 16) & 0xffff;
1980 		h = (u16 *)(b + ori_offset);
1981 		*h = (handler & 0xffff);
1982 		local_flush_icache_range((unsigned long)b,
1983 					 (unsigned long)(b+handler_len));
1984 	}
1985 	else {
1986 		/*
1987 		 * In other cases jump directly to the interrupt handler. It
1988 		 * is the handler's responsibility to save registers if required
1989 		 * (eg hi/lo) and return from the exception using "eret".
1990 		 */
1991 		u32 insn;
1992 
1993 		h = (u16 *)b;
1994 		/* j handler */
1995 #ifdef CONFIG_CPU_MICROMIPS
1996 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
1997 #else
1998 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
1999 #endif
2000 		h[0] = (insn >> 16) & 0xffff;
2001 		h[1] = insn & 0xffff;
2002 		h[2] = 0;
2003 		h[3] = 0;
2004 		local_flush_icache_range((unsigned long)b,
2005 					 (unsigned long)(b+8));
2006 	}
2007 
2008 	return (void *)old_handler;
2009 }
2010 
2011 void *set_vi_handler(int n, vi_handler_t addr)
2012 {
2013 	return set_vi_srs_handler(n, addr, 0);
2014 }
2015 
2016 extern void tlb_init(void);
2017 
2018 /*
2019  * Timer interrupt
2020  */
2021 int cp0_compare_irq;
2022 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2023 int cp0_compare_irq_shift;
2024 
2025 /*
2026  * Performance counter IRQ or -1 if shared with timer
2027  */
2028 int cp0_perfcount_irq;
2029 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2030 
2031 /*
2032  * Fast debug channel IRQ or -1 if not present
2033  */
2034 int cp0_fdc_irq;
2035 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2036 
2037 static int noulri;
2038 
2039 static int __init ulri_disable(char *s)
2040 {
2041 	pr_info("Disabling ulri\n");
2042 	noulri = 1;
2043 
2044 	return 1;
2045 }
2046 __setup("noulri", ulri_disable);
2047 
2048 /* configure STATUS register */
2049 static void configure_status(void)
2050 {
2051 	/*
2052 	 * Disable coprocessors and select 32-bit or 64-bit addressing
2053 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2054 	 * flag that some firmware may have left set and the TS bit (for
2055 	 * IP27).  Set XX for ISA IV code to work.
2056 	 */
2057 	unsigned int status_set = ST0_CU0;
2058 #ifdef CONFIG_64BIT
2059 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2060 #endif
2061 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2062 		status_set |= ST0_XX;
2063 	if (cpu_has_dsp)
2064 		status_set |= ST0_MX;
2065 
2066 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2067 			 status_set);
2068 }
2069 
2070 unsigned int hwrena;
2071 EXPORT_SYMBOL_GPL(hwrena);
2072 
2073 /* configure HWRENA register */
2074 static void configure_hwrena(void)
2075 {
2076 	hwrena = cpu_hwrena_impl_bits;
2077 
2078 	if (cpu_has_mips_r2_r6)
2079 		hwrena |= MIPS_HWRENA_CPUNUM |
2080 			  MIPS_HWRENA_SYNCISTEP |
2081 			  MIPS_HWRENA_CC |
2082 			  MIPS_HWRENA_CCRES;
2083 
2084 	if (!noulri && cpu_has_userlocal)
2085 		hwrena |= MIPS_HWRENA_ULR;
2086 
2087 	if (hwrena)
2088 		write_c0_hwrena(hwrena);
2089 }
2090 
2091 static void configure_exception_vector(void)
2092 {
2093 	if (cpu_has_veic || cpu_has_vint) {
2094 		unsigned long sr = set_c0_status(ST0_BEV);
2095 		write_c0_ebase(ebase);
2096 		write_c0_status(sr);
2097 		/* Setting vector spacing enables EI/VI mode  */
2098 		change_c0_intctl(0x3e0, VECTORSPACING);
2099 	}
2100 	if (cpu_has_divec) {
2101 		if (cpu_has_mipsmt) {
2102 			unsigned int vpflags = dvpe();
2103 			set_c0_cause(CAUSEF_IV);
2104 			evpe(vpflags);
2105 		} else
2106 			set_c0_cause(CAUSEF_IV);
2107 	}
2108 }
2109 
2110 void per_cpu_trap_init(bool is_boot_cpu)
2111 {
2112 	unsigned int cpu = smp_processor_id();
2113 
2114 	configure_status();
2115 	configure_hwrena();
2116 
2117 	configure_exception_vector();
2118 
2119 	/*
2120 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2121 	 *
2122 	 *  o read IntCtl.IPTI to determine the timer interrupt
2123 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2124 	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2125 	 */
2126 	if (cpu_has_mips_r2_r6) {
2127 		/*
2128 		 * We shouldn't trust a secondary core has a sane EBASE register
2129 		 * so use the one calculated by the boot CPU.
2130 		 */
2131 		if (!is_boot_cpu)
2132 			write_c0_ebase(ebase);
2133 
2134 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2135 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2136 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2137 		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2138 		if (!cp0_fdc_irq)
2139 			cp0_fdc_irq = -1;
2140 
2141 	} else {
2142 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2143 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2144 		cp0_perfcount_irq = -1;
2145 		cp0_fdc_irq = -1;
2146 	}
2147 
2148 	if (!cpu_data[cpu].asid_cache)
2149 		cpu_data[cpu].asid_cache = asid_first_version(cpu);
2150 
2151 	atomic_inc(&init_mm.mm_count);
2152 	current->active_mm = &init_mm;
2153 	BUG_ON(current->mm);
2154 	enter_lazy_tlb(&init_mm, current);
2155 
2156 	/* Boot CPU's cache setup in setup_arch(). */
2157 	if (!is_boot_cpu)
2158 		cpu_cache_init();
2159 	tlb_init();
2160 	TLBMISS_HANDLER_SETUP();
2161 }
2162 
2163 /* Install CPU exception handler */
2164 void set_handler(unsigned long offset, void *addr, unsigned long size)
2165 {
2166 #ifdef CONFIG_CPU_MICROMIPS
2167 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2168 #else
2169 	memcpy((void *)(ebase + offset), addr, size);
2170 #endif
2171 	local_flush_icache_range(ebase + offset, ebase + offset + size);
2172 }
2173 
2174 static char panic_null_cerr[] =
2175 	"Trying to set NULL cache error exception handler";
2176 
2177 /*
2178  * Install uncached CPU exception handler.
2179  * This is suitable only for the cache error exception which is the only
2180  * exception handler that is being run uncached.
2181  */
2182 void set_uncached_handler(unsigned long offset, void *addr,
2183 	unsigned long size)
2184 {
2185 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2186 
2187 	if (!addr)
2188 		panic(panic_null_cerr);
2189 
2190 	memcpy((void *)(uncached_ebase + offset), addr, size);
2191 }
2192 
2193 static int __initdata rdhwr_noopt;
2194 static int __init set_rdhwr_noopt(char *str)
2195 {
2196 	rdhwr_noopt = 1;
2197 	return 1;
2198 }
2199 
2200 __setup("rdhwr_noopt", set_rdhwr_noopt);
2201 
2202 void __init trap_init(void)
2203 {
2204 	extern char except_vec3_generic;
2205 	extern char except_vec4;
2206 	extern char except_vec3_r4000;
2207 	unsigned long i;
2208 
2209 	check_wait();
2210 
2211 	if (cpu_has_veic || cpu_has_vint) {
2212 		unsigned long size = 0x200 + VECTORSPACING*64;
2213 		ebase = (unsigned long)
2214 			__alloc_bootmem(size, 1 << fls(size), 0);
2215 	} else {
2216 		ebase = CAC_BASE;
2217 
2218 		if (cpu_has_mips_r2_r6)
2219 			ebase += (read_c0_ebase() & 0x3ffff000);
2220 	}
2221 
2222 	if (cpu_has_mmips) {
2223 		unsigned int config3 = read_c0_config3();
2224 
2225 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2226 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2227 		else
2228 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2229 	}
2230 
2231 	if (board_ebase_setup)
2232 		board_ebase_setup();
2233 	per_cpu_trap_init(true);
2234 
2235 	/*
2236 	 * Copy the generic exception handlers to their final destination.
2237 	 * This will be overridden later as suitable for a particular
2238 	 * configuration.
2239 	 */
2240 	set_handler(0x180, &except_vec3_generic, 0x80);
2241 
2242 	/*
2243 	 * Setup default vectors
2244 	 */
2245 	for (i = 0; i <= 31; i++)
2246 		set_except_vector(i, handle_reserved);
2247 
2248 	/*
2249 	 * Copy the EJTAG debug exception vector handler code to it's final
2250 	 * destination.
2251 	 */
2252 	if (cpu_has_ejtag && board_ejtag_handler_setup)
2253 		board_ejtag_handler_setup();
2254 
2255 	/*
2256 	 * Only some CPUs have the watch exceptions.
2257 	 */
2258 	if (cpu_has_watch)
2259 		set_except_vector(EXCCODE_WATCH, handle_watch);
2260 
2261 	/*
2262 	 * Initialise interrupt handlers
2263 	 */
2264 	if (cpu_has_veic || cpu_has_vint) {
2265 		int nvec = cpu_has_veic ? 64 : 8;
2266 		for (i = 0; i < nvec; i++)
2267 			set_vi_handler(i, NULL);
2268 	}
2269 	else if (cpu_has_divec)
2270 		set_handler(0x200, &except_vec4, 0x8);
2271 
2272 	/*
2273 	 * Some CPUs can enable/disable for cache parity detection, but does
2274 	 * it different ways.
2275 	 */
2276 	parity_protection_init();
2277 
2278 	/*
2279 	 * The Data Bus Errors / Instruction Bus Errors are signaled
2280 	 * by external hardware.  Therefore these two exceptions
2281 	 * may have board specific handlers.
2282 	 */
2283 	if (board_be_init)
2284 		board_be_init();
2285 
2286 	set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2287 					rollback_handle_int : handle_int);
2288 	set_except_vector(EXCCODE_MOD, handle_tlbm);
2289 	set_except_vector(EXCCODE_TLBL, handle_tlbl);
2290 	set_except_vector(EXCCODE_TLBS, handle_tlbs);
2291 
2292 	set_except_vector(EXCCODE_ADEL, handle_adel);
2293 	set_except_vector(EXCCODE_ADES, handle_ades);
2294 
2295 	set_except_vector(EXCCODE_IBE, handle_ibe);
2296 	set_except_vector(EXCCODE_DBE, handle_dbe);
2297 
2298 	set_except_vector(EXCCODE_SYS, handle_sys);
2299 	set_except_vector(EXCCODE_BP, handle_bp);
2300 	set_except_vector(EXCCODE_RI, rdhwr_noopt ? handle_ri :
2301 			  (cpu_has_vtag_icache ?
2302 			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2303 	set_except_vector(EXCCODE_CPU, handle_cpu);
2304 	set_except_vector(EXCCODE_OV, handle_ov);
2305 	set_except_vector(EXCCODE_TR, handle_tr);
2306 	set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2307 
2308 	if (current_cpu_type() == CPU_R6000 ||
2309 	    current_cpu_type() == CPU_R6000A) {
2310 		/*
2311 		 * The R6000 is the only R-series CPU that features a machine
2312 		 * check exception (similar to the R4000 cache error) and
2313 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
2314 		 * written yet.	 Well, anyway there is no R6000 machine on the
2315 		 * current list of targets for Linux/MIPS.
2316 		 * (Duh, crap, there is someone with a triple R6k machine)
2317 		 */
2318 		//set_except_vector(14, handle_mc);
2319 		//set_except_vector(15, handle_ndc);
2320 	}
2321 
2322 
2323 	if (board_nmi_handler_setup)
2324 		board_nmi_handler_setup();
2325 
2326 	if (cpu_has_fpu && !cpu_has_nofpuex)
2327 		set_except_vector(EXCCODE_FPE, handle_fpe);
2328 
2329 	set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2330 
2331 	if (cpu_has_rixiex) {
2332 		set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2333 		set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2334 	}
2335 
2336 	set_except_vector(EXCCODE_MSADIS, handle_msa);
2337 	set_except_vector(EXCCODE_MDMX, handle_mdmx);
2338 
2339 	if (cpu_has_mcheck)
2340 		set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2341 
2342 	if (cpu_has_mipsmt)
2343 		set_except_vector(EXCCODE_THREAD, handle_mt);
2344 
2345 	set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2346 
2347 	if (board_cache_error_setup)
2348 		board_cache_error_setup();
2349 
2350 	if (cpu_has_vce)
2351 		/* Special exception: R4[04]00 uses also the divec space. */
2352 		set_handler(0x180, &except_vec3_r4000, 0x100);
2353 	else if (cpu_has_4kex)
2354 		set_handler(0x180, &except_vec3_generic, 0x80);
2355 	else
2356 		set_handler(0x080, &except_vec3_generic, 0x80);
2357 
2358 	local_flush_icache_range(ebase, ebase + 0x400);
2359 
2360 	sort_extable(__start___dbe_table, __stop___dbe_table);
2361 
2362 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2363 }
2364 
2365 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2366 			    void *v)
2367 {
2368 	switch (cmd) {
2369 	case CPU_PM_ENTER_FAILED:
2370 	case CPU_PM_EXIT:
2371 		configure_status();
2372 		configure_hwrena();
2373 		configure_exception_vector();
2374 
2375 		/* Restore register with CPU number for TLB handlers */
2376 		TLBMISS_HANDLER_RESTORE();
2377 
2378 		break;
2379 	}
2380 
2381 	return NOTIFY_OK;
2382 }
2383 
2384 static struct notifier_block trap_pm_notifier_block = {
2385 	.notifier_call = trap_pm_notifier,
2386 };
2387 
2388 static int __init trap_pm_init(void)
2389 {
2390 	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2391 }
2392 arch_initcall(trap_pm_init);
2393