1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle 7 * Copyright (C) 1995, 1996 Paul M. Antoine 8 * Copyright (C) 1998 Ulf Carlsson 9 * Copyright (C) 1999 Silicon Graphics, Inc. 10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 11 * Copyright (C) 2000, 01 MIPS Technologies, Inc. 12 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki 13 */ 14 #include <linux/bug.h> 15 #include <linux/compiler.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/mm.h> 20 #include <linux/sched.h> 21 #include <linux/smp.h> 22 #include <linux/spinlock.h> 23 #include <linux/kallsyms.h> 24 #include <linux/bootmem.h> 25 #include <linux/interrupt.h> 26 #include <linux/ptrace.h> 27 #include <linux/kgdb.h> 28 #include <linux/kdebug.h> 29 #include <linux/kprobes.h> 30 #include <linux/notifier.h> 31 #include <linux/kdb.h> 32 #include <linux/irq.h> 33 #include <linux/perf_event.h> 34 35 #include <asm/bootinfo.h> 36 #include <asm/branch.h> 37 #include <asm/break.h> 38 #include <asm/cop2.h> 39 #include <asm/cpu.h> 40 #include <asm/dsp.h> 41 #include <asm/fpu.h> 42 #include <asm/fpu_emulator.h> 43 #include <asm/mipsregs.h> 44 #include <asm/mipsmtregs.h> 45 #include <asm/module.h> 46 #include <asm/pgtable.h> 47 #include <asm/ptrace.h> 48 #include <asm/sections.h> 49 #include <asm/tlbdebug.h> 50 #include <asm/traps.h> 51 #include <asm/uaccess.h> 52 #include <asm/watch.h> 53 #include <asm/mmu_context.h> 54 #include <asm/types.h> 55 #include <asm/stacktrace.h> 56 #include <asm/uasm.h> 57 58 extern void check_wait(void); 59 extern asmlinkage void r4k_wait(void); 60 extern asmlinkage void rollback_handle_int(void); 61 extern asmlinkage void handle_int(void); 62 extern asmlinkage void handle_tlbm(void); 63 extern asmlinkage void handle_tlbl(void); 64 extern asmlinkage void handle_tlbs(void); 65 extern asmlinkage void handle_adel(void); 66 extern asmlinkage void handle_ades(void); 67 extern asmlinkage void handle_ibe(void); 68 extern asmlinkage void handle_dbe(void); 69 extern asmlinkage void handle_sys(void); 70 extern asmlinkage void handle_bp(void); 71 extern asmlinkage void handle_ri(void); 72 extern asmlinkage void handle_ri_rdhwr_vivt(void); 73 extern asmlinkage void handle_ri_rdhwr(void); 74 extern asmlinkage void handle_cpu(void); 75 extern asmlinkage void handle_ov(void); 76 extern asmlinkage void handle_tr(void); 77 extern asmlinkage void handle_fpe(void); 78 extern asmlinkage void handle_mdmx(void); 79 extern asmlinkage void handle_watch(void); 80 extern asmlinkage void handle_mt(void); 81 extern asmlinkage void handle_dsp(void); 82 extern asmlinkage void handle_mcheck(void); 83 extern asmlinkage void handle_reserved(void); 84 85 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp, 86 struct mips_fpu_struct *ctx, int has_fpu, 87 void *__user *fault_addr); 88 89 void (*board_be_init)(void); 90 int (*board_be_handler)(struct pt_regs *regs, int is_fixup); 91 void (*board_nmi_handler_setup)(void); 92 void (*board_ejtag_handler_setup)(void); 93 void (*board_bind_eic_interrupt)(int irq, int regset); 94 void (*board_ebase_setup)(void); 95 void __cpuinitdata(*board_cache_error_setup)(void); 96 97 static void show_raw_backtrace(unsigned long reg29) 98 { 99 unsigned long *sp = (unsigned long *)(reg29 & ~3); 100 unsigned long addr; 101 102 printk("Call Trace:"); 103 #ifdef CONFIG_KALLSYMS 104 printk("\n"); 105 #endif 106 while (!kstack_end(sp)) { 107 unsigned long __user *p = 108 (unsigned long __user *)(unsigned long)sp++; 109 if (__get_user(addr, p)) { 110 printk(" (Bad stack address)"); 111 break; 112 } 113 if (__kernel_text_address(addr)) 114 print_ip_sym(addr); 115 } 116 printk("\n"); 117 } 118 119 #ifdef CONFIG_KALLSYMS 120 int raw_show_trace; 121 static int __init set_raw_show_trace(char *str) 122 { 123 raw_show_trace = 1; 124 return 1; 125 } 126 __setup("raw_show_trace", set_raw_show_trace); 127 #endif 128 129 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs) 130 { 131 unsigned long sp = regs->regs[29]; 132 unsigned long ra = regs->regs[31]; 133 unsigned long pc = regs->cp0_epc; 134 135 if (!task) 136 task = current; 137 138 if (raw_show_trace || !__kernel_text_address(pc)) { 139 show_raw_backtrace(sp); 140 return; 141 } 142 printk("Call Trace:\n"); 143 do { 144 print_ip_sym(pc); 145 pc = unwind_stack(task, &sp, pc, &ra); 146 } while (pc); 147 printk("\n"); 148 } 149 150 /* 151 * This routine abuses get_user()/put_user() to reference pointers 152 * with at least a bit of error checking ... 153 */ 154 static void show_stacktrace(struct task_struct *task, 155 const struct pt_regs *regs) 156 { 157 const int field = 2 * sizeof(unsigned long); 158 long stackdata; 159 int i; 160 unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; 161 162 printk("Stack :"); 163 i = 0; 164 while ((unsigned long) sp & (PAGE_SIZE - 1)) { 165 if (i && ((i % (64 / field)) == 0)) 166 printk("\n "); 167 if (i > 39) { 168 printk(" ..."); 169 break; 170 } 171 172 if (__get_user(stackdata, sp++)) { 173 printk(" (Bad stack address)"); 174 break; 175 } 176 177 printk(" %0*lx", field, stackdata); 178 i++; 179 } 180 printk("\n"); 181 show_backtrace(task, regs); 182 } 183 184 void show_stack(struct task_struct *task, unsigned long *sp) 185 { 186 struct pt_regs regs; 187 if (sp) { 188 regs.regs[29] = (unsigned long)sp; 189 regs.regs[31] = 0; 190 regs.cp0_epc = 0; 191 } else { 192 if (task && task != current) { 193 regs.regs[29] = task->thread.reg29; 194 regs.regs[31] = 0; 195 regs.cp0_epc = task->thread.reg31; 196 #ifdef CONFIG_KGDB_KDB 197 } else if (atomic_read(&kgdb_active) != -1 && 198 kdb_current_regs) { 199 memcpy(®s, kdb_current_regs, sizeof(regs)); 200 #endif /* CONFIG_KGDB_KDB */ 201 } else { 202 prepare_frametrace(®s); 203 } 204 } 205 show_stacktrace(task, ®s); 206 } 207 208 /* 209 * The architecture-independent dump_stack generator 210 */ 211 void dump_stack(void) 212 { 213 struct pt_regs regs; 214 215 prepare_frametrace(®s); 216 show_backtrace(current, ®s); 217 } 218 219 EXPORT_SYMBOL(dump_stack); 220 221 static void show_code(unsigned int __user *pc) 222 { 223 long i; 224 unsigned short __user *pc16 = NULL; 225 226 printk("\nCode:"); 227 228 if ((unsigned long)pc & 1) 229 pc16 = (unsigned short __user *)((unsigned long)pc & ~1); 230 for(i = -3 ; i < 6 ; i++) { 231 unsigned int insn; 232 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { 233 printk(" (Bad address in epc)\n"); 234 break; 235 } 236 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); 237 } 238 } 239 240 static void __show_regs(const struct pt_regs *regs) 241 { 242 const int field = 2 * sizeof(unsigned long); 243 unsigned int cause = regs->cp0_cause; 244 int i; 245 246 printk("Cpu %d\n", smp_processor_id()); 247 248 /* 249 * Saved main processor registers 250 */ 251 for (i = 0; i < 32; ) { 252 if ((i % 4) == 0) 253 printk("$%2d :", i); 254 if (i == 0) 255 printk(" %0*lx", field, 0UL); 256 else if (i == 26 || i == 27) 257 printk(" %*s", field, ""); 258 else 259 printk(" %0*lx", field, regs->regs[i]); 260 261 i++; 262 if ((i % 4) == 0) 263 printk("\n"); 264 } 265 266 #ifdef CONFIG_CPU_HAS_SMARTMIPS 267 printk("Acx : %0*lx\n", field, regs->acx); 268 #endif 269 printk("Hi : %0*lx\n", field, regs->hi); 270 printk("Lo : %0*lx\n", field, regs->lo); 271 272 /* 273 * Saved cp0 registers 274 */ 275 printk("epc : %0*lx %pS\n", field, regs->cp0_epc, 276 (void *) regs->cp0_epc); 277 printk(" %s\n", print_tainted()); 278 printk("ra : %0*lx %pS\n", field, regs->regs[31], 279 (void *) regs->regs[31]); 280 281 printk("Status: %08x ", (uint32_t) regs->cp0_status); 282 283 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) { 284 if (regs->cp0_status & ST0_KUO) 285 printk("KUo "); 286 if (regs->cp0_status & ST0_IEO) 287 printk("IEo "); 288 if (regs->cp0_status & ST0_KUP) 289 printk("KUp "); 290 if (regs->cp0_status & ST0_IEP) 291 printk("IEp "); 292 if (regs->cp0_status & ST0_KUC) 293 printk("KUc "); 294 if (regs->cp0_status & ST0_IEC) 295 printk("IEc "); 296 } else { 297 if (regs->cp0_status & ST0_KX) 298 printk("KX "); 299 if (regs->cp0_status & ST0_SX) 300 printk("SX "); 301 if (regs->cp0_status & ST0_UX) 302 printk("UX "); 303 switch (regs->cp0_status & ST0_KSU) { 304 case KSU_USER: 305 printk("USER "); 306 break; 307 case KSU_SUPERVISOR: 308 printk("SUPERVISOR "); 309 break; 310 case KSU_KERNEL: 311 printk("KERNEL "); 312 break; 313 default: 314 printk("BAD_MODE "); 315 break; 316 } 317 if (regs->cp0_status & ST0_ERL) 318 printk("ERL "); 319 if (regs->cp0_status & ST0_EXL) 320 printk("EXL "); 321 if (regs->cp0_status & ST0_IE) 322 printk("IE "); 323 } 324 printk("\n"); 325 326 printk("Cause : %08x\n", cause); 327 328 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; 329 if (1 <= cause && cause <= 5) 330 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); 331 332 printk("PrId : %08x (%s)\n", read_c0_prid(), 333 cpu_name_string()); 334 } 335 336 /* 337 * FIXME: really the generic show_regs should take a const pointer argument. 338 */ 339 void show_regs(struct pt_regs *regs) 340 { 341 __show_regs((struct pt_regs *)regs); 342 } 343 344 void show_registers(struct pt_regs *regs) 345 { 346 const int field = 2 * sizeof(unsigned long); 347 348 __show_regs(regs); 349 print_modules(); 350 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", 351 current->comm, current->pid, current_thread_info(), current, 352 field, current_thread_info()->tp_value); 353 if (cpu_has_userlocal) { 354 unsigned long tls; 355 356 tls = read_c0_userlocal(); 357 if (tls != current_thread_info()->tp_value) 358 printk("*HwTLS: %0*lx\n", field, tls); 359 } 360 361 show_stacktrace(current, regs); 362 show_code((unsigned int __user *) regs->cp0_epc); 363 printk("\n"); 364 } 365 366 static int regs_to_trapnr(struct pt_regs *regs) 367 { 368 return (regs->cp0_cause >> 2) & 0x1f; 369 } 370 371 static DEFINE_RAW_SPINLOCK(die_lock); 372 373 void __noreturn die(const char *str, struct pt_regs *regs) 374 { 375 static int die_counter; 376 int sig = SIGSEGV; 377 #ifdef CONFIG_MIPS_MT_SMTC 378 unsigned long dvpret; 379 #endif /* CONFIG_MIPS_MT_SMTC */ 380 381 oops_enter(); 382 383 if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV) == NOTIFY_STOP) 384 sig = 0; 385 386 console_verbose(); 387 raw_spin_lock_irq(&die_lock); 388 #ifdef CONFIG_MIPS_MT_SMTC 389 dvpret = dvpe(); 390 #endif /* CONFIG_MIPS_MT_SMTC */ 391 bust_spinlocks(1); 392 #ifdef CONFIG_MIPS_MT_SMTC 393 mips_mt_regdump(dvpret); 394 #endif /* CONFIG_MIPS_MT_SMTC */ 395 396 printk("%s[#%d]:\n", str, ++die_counter); 397 show_registers(regs); 398 add_taint(TAINT_DIE); 399 raw_spin_unlock_irq(&die_lock); 400 401 oops_exit(); 402 403 if (in_interrupt()) 404 panic("Fatal exception in interrupt"); 405 406 if (panic_on_oops) { 407 printk(KERN_EMERG "Fatal exception: panic in 5 seconds"); 408 ssleep(5); 409 panic("Fatal exception"); 410 } 411 412 do_exit(sig); 413 } 414 415 extern struct exception_table_entry __start___dbe_table[]; 416 extern struct exception_table_entry __stop___dbe_table[]; 417 418 __asm__( 419 " .section __dbe_table, \"a\"\n" 420 " .previous \n"); 421 422 /* Given an address, look for it in the exception tables. */ 423 static const struct exception_table_entry *search_dbe_tables(unsigned long addr) 424 { 425 const struct exception_table_entry *e; 426 427 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr); 428 if (!e) 429 e = search_module_dbetables(addr); 430 return e; 431 } 432 433 asmlinkage void do_be(struct pt_regs *regs) 434 { 435 const int field = 2 * sizeof(unsigned long); 436 const struct exception_table_entry *fixup = NULL; 437 int data = regs->cp0_cause & 4; 438 int action = MIPS_BE_FATAL; 439 440 /* XXX For now. Fixme, this searches the wrong table ... */ 441 if (data && !user_mode(regs)) 442 fixup = search_dbe_tables(exception_epc(regs)); 443 444 if (fixup) 445 action = MIPS_BE_FIXUP; 446 447 if (board_be_handler) 448 action = board_be_handler(regs, fixup != NULL); 449 450 switch (action) { 451 case MIPS_BE_DISCARD: 452 return; 453 case MIPS_BE_FIXUP: 454 if (fixup) { 455 regs->cp0_epc = fixup->nextinsn; 456 return; 457 } 458 break; 459 default: 460 break; 461 } 462 463 /* 464 * Assume it would be too dangerous to continue ... 465 */ 466 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", 467 data ? "Data" : "Instruction", 468 field, regs->cp0_epc, field, regs->regs[31]); 469 if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), SIGBUS) 470 == NOTIFY_STOP) 471 return; 472 473 die_if_kernel("Oops", regs); 474 force_sig(SIGBUS, current); 475 } 476 477 /* 478 * ll/sc, rdhwr, sync emulation 479 */ 480 481 #define OPCODE 0xfc000000 482 #define BASE 0x03e00000 483 #define RT 0x001f0000 484 #define OFFSET 0x0000ffff 485 #define LL 0xc0000000 486 #define SC 0xe0000000 487 #define SPEC0 0x00000000 488 #define SPEC3 0x7c000000 489 #define RD 0x0000f800 490 #define FUNC 0x0000003f 491 #define SYNC 0x0000000f 492 #define RDHWR 0x0000003b 493 494 /* 495 * The ll_bit is cleared by r*_switch.S 496 */ 497 498 unsigned int ll_bit; 499 struct task_struct *ll_task; 500 501 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) 502 { 503 unsigned long value, __user *vaddr; 504 long offset; 505 506 /* 507 * analyse the ll instruction that just caused a ri exception 508 * and put the referenced address to addr. 509 */ 510 511 /* sign extend offset */ 512 offset = opcode & OFFSET; 513 offset <<= 16; 514 offset >>= 16; 515 516 vaddr = (unsigned long __user *) 517 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 518 519 if ((unsigned long)vaddr & 3) 520 return SIGBUS; 521 if (get_user(value, vaddr)) 522 return SIGSEGV; 523 524 preempt_disable(); 525 526 if (ll_task == NULL || ll_task == current) { 527 ll_bit = 1; 528 } else { 529 ll_bit = 0; 530 } 531 ll_task = current; 532 533 preempt_enable(); 534 535 regs->regs[(opcode & RT) >> 16] = value; 536 537 return 0; 538 } 539 540 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) 541 { 542 unsigned long __user *vaddr; 543 unsigned long reg; 544 long offset; 545 546 /* 547 * analyse the sc instruction that just caused a ri exception 548 * and put the referenced address to addr. 549 */ 550 551 /* sign extend offset */ 552 offset = opcode & OFFSET; 553 offset <<= 16; 554 offset >>= 16; 555 556 vaddr = (unsigned long __user *) 557 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 558 reg = (opcode & RT) >> 16; 559 560 if ((unsigned long)vaddr & 3) 561 return SIGBUS; 562 563 preempt_disable(); 564 565 if (ll_bit == 0 || ll_task != current) { 566 regs->regs[reg] = 0; 567 preempt_enable(); 568 return 0; 569 } 570 571 preempt_enable(); 572 573 if (put_user(regs->regs[reg], vaddr)) 574 return SIGSEGV; 575 576 regs->regs[reg] = 1; 577 578 return 0; 579 } 580 581 /* 582 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both 583 * opcodes are supposed to result in coprocessor unusable exceptions if 584 * executed on ll/sc-less processors. That's the theory. In practice a 585 * few processors such as NEC's VR4100 throw reserved instruction exceptions 586 * instead, so we're doing the emulation thing in both exception handlers. 587 */ 588 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) 589 { 590 if ((opcode & OPCODE) == LL) { 591 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 592 1, regs, 0); 593 return simulate_ll(regs, opcode); 594 } 595 if ((opcode & OPCODE) == SC) { 596 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 597 1, regs, 0); 598 return simulate_sc(regs, opcode); 599 } 600 601 return -1; /* Must be something else ... */ 602 } 603 604 /* 605 * Simulate trapping 'rdhwr' instructions to provide user accessible 606 * registers not implemented in hardware. 607 */ 608 static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode) 609 { 610 struct thread_info *ti = task_thread_info(current); 611 612 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { 613 int rd = (opcode & RD) >> 11; 614 int rt = (opcode & RT) >> 16; 615 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 616 1, regs, 0); 617 switch (rd) { 618 case 0: /* CPU number */ 619 regs->regs[rt] = smp_processor_id(); 620 return 0; 621 case 1: /* SYNCI length */ 622 regs->regs[rt] = min(current_cpu_data.dcache.linesz, 623 current_cpu_data.icache.linesz); 624 return 0; 625 case 2: /* Read count register */ 626 regs->regs[rt] = read_c0_count(); 627 return 0; 628 case 3: /* Count register resolution */ 629 switch (current_cpu_data.cputype) { 630 case CPU_20KC: 631 case CPU_25KF: 632 regs->regs[rt] = 1; 633 break; 634 default: 635 regs->regs[rt] = 2; 636 } 637 return 0; 638 case 29: 639 regs->regs[rt] = ti->tp_value; 640 return 0; 641 default: 642 return -1; 643 } 644 } 645 646 /* Not ours. */ 647 return -1; 648 } 649 650 static int simulate_sync(struct pt_regs *regs, unsigned int opcode) 651 { 652 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) { 653 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 654 1, regs, 0); 655 return 0; 656 } 657 658 return -1; /* Must be something else ... */ 659 } 660 661 asmlinkage void do_ov(struct pt_regs *regs) 662 { 663 siginfo_t info; 664 665 die_if_kernel("Integer overflow", regs); 666 667 info.si_code = FPE_INTOVF; 668 info.si_signo = SIGFPE; 669 info.si_errno = 0; 670 info.si_addr = (void __user *) regs->cp0_epc; 671 force_sig_info(SIGFPE, &info, current); 672 } 673 674 static int process_fpemu_return(int sig, void __user *fault_addr) 675 { 676 if (sig == SIGSEGV || sig == SIGBUS) { 677 struct siginfo si = {0}; 678 si.si_addr = fault_addr; 679 si.si_signo = sig; 680 if (sig == SIGSEGV) { 681 if (find_vma(current->mm, (unsigned long)fault_addr)) 682 si.si_code = SEGV_ACCERR; 683 else 684 si.si_code = SEGV_MAPERR; 685 } else { 686 si.si_code = BUS_ADRERR; 687 } 688 force_sig_info(sig, &si, current); 689 return 1; 690 } else if (sig) { 691 force_sig(sig, current); 692 return 1; 693 } else { 694 return 0; 695 } 696 } 697 698 /* 699 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX 700 */ 701 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) 702 { 703 siginfo_t info = {0}; 704 705 if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), SIGFPE) 706 == NOTIFY_STOP) 707 return; 708 die_if_kernel("FP exception in kernel code", regs); 709 710 if (fcr31 & FPU_CSR_UNI_X) { 711 int sig; 712 void __user *fault_addr = NULL; 713 714 /* 715 * Unimplemented operation exception. If we've got the full 716 * software emulator on-board, let's use it... 717 * 718 * Force FPU to dump state into task/thread context. We're 719 * moving a lot of data here for what is probably a single 720 * instruction, but the alternative is to pre-decode the FP 721 * register operands before invoking the emulator, which seems 722 * a bit extreme for what should be an infrequent event. 723 */ 724 /* Ensure 'resume' not overwrite saved fp context again. */ 725 lose_fpu(1); 726 727 /* Run the emulator */ 728 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 729 &fault_addr); 730 731 /* 732 * We can't allow the emulated instruction to leave any of 733 * the cause bit set in $fcr31. 734 */ 735 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 736 737 /* Restore the hardware register state */ 738 own_fpu(1); /* Using the FPU again. */ 739 740 /* If something went wrong, signal */ 741 process_fpemu_return(sig, fault_addr); 742 743 return; 744 } else if (fcr31 & FPU_CSR_INV_X) 745 info.si_code = FPE_FLTINV; 746 else if (fcr31 & FPU_CSR_DIV_X) 747 info.si_code = FPE_FLTDIV; 748 else if (fcr31 & FPU_CSR_OVF_X) 749 info.si_code = FPE_FLTOVF; 750 else if (fcr31 & FPU_CSR_UDF_X) 751 info.si_code = FPE_FLTUND; 752 else if (fcr31 & FPU_CSR_INE_X) 753 info.si_code = FPE_FLTRES; 754 else 755 info.si_code = __SI_FAULT; 756 info.si_signo = SIGFPE; 757 info.si_errno = 0; 758 info.si_addr = (void __user *) regs->cp0_epc; 759 force_sig_info(SIGFPE, &info, current); 760 } 761 762 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code, 763 const char *str) 764 { 765 siginfo_t info; 766 char b[40]; 767 768 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 769 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 770 return; 771 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 772 773 if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 774 return; 775 776 /* 777 * A short test says that IRIX 5.3 sends SIGTRAP for all trap 778 * insns, even for trap and break codes that indicate arithmetic 779 * failures. Weird ... 780 * But should we continue the brokenness??? --macro 781 */ 782 switch (code) { 783 case BRK_OVERFLOW: 784 case BRK_DIVZERO: 785 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 786 die_if_kernel(b, regs); 787 if (code == BRK_DIVZERO) 788 info.si_code = FPE_INTDIV; 789 else 790 info.si_code = FPE_INTOVF; 791 info.si_signo = SIGFPE; 792 info.si_errno = 0; 793 info.si_addr = (void __user *) regs->cp0_epc; 794 force_sig_info(SIGFPE, &info, current); 795 break; 796 case BRK_BUG: 797 die_if_kernel("Kernel bug detected", regs); 798 force_sig(SIGTRAP, current); 799 break; 800 case BRK_MEMU: 801 /* 802 * Address errors may be deliberately induced by the FPU 803 * emulator to retake control of the CPU after executing the 804 * instruction in the delay slot of an emulated branch. 805 * 806 * Terminate if exception was recognized as a delay slot return 807 * otherwise handle as normal. 808 */ 809 if (do_dsemulret(regs)) 810 return; 811 812 die_if_kernel("Math emu break/trap", regs); 813 force_sig(SIGTRAP, current); 814 break; 815 default: 816 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 817 die_if_kernel(b, regs); 818 force_sig(SIGTRAP, current); 819 } 820 } 821 822 asmlinkage void do_bp(struct pt_regs *regs) 823 { 824 unsigned int opcode, bcode; 825 826 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs))) 827 goto out_sigsegv; 828 829 /* 830 * There is the ancient bug in the MIPS assemblers that the break 831 * code starts left to bit 16 instead to bit 6 in the opcode. 832 * Gas is bug-compatible, but not always, grrr... 833 * We handle both cases with a simple heuristics. --macro 834 */ 835 bcode = ((opcode >> 6) & ((1 << 20) - 1)); 836 if (bcode >= (1 << 10)) 837 bcode >>= 10; 838 839 /* 840 * notify the kprobe handlers, if instruction is likely to 841 * pertain to them. 842 */ 843 switch (bcode) { 844 case BRK_KPROBE_BP: 845 if (notify_die(DIE_BREAK, "debug", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 846 return; 847 else 848 break; 849 case BRK_KPROBE_SSTEPBP: 850 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 851 return; 852 else 853 break; 854 default: 855 break; 856 } 857 858 do_trap_or_bp(regs, bcode, "Break"); 859 return; 860 861 out_sigsegv: 862 force_sig(SIGSEGV, current); 863 } 864 865 asmlinkage void do_tr(struct pt_regs *regs) 866 { 867 unsigned int opcode, tcode = 0; 868 869 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs))) 870 goto out_sigsegv; 871 872 /* Immediate versions don't provide a code. */ 873 if (!(opcode & OPCODE)) 874 tcode = ((opcode >> 6) & ((1 << 10) - 1)); 875 876 do_trap_or_bp(regs, tcode, "Trap"); 877 return; 878 879 out_sigsegv: 880 force_sig(SIGSEGV, current); 881 } 882 883 asmlinkage void do_ri(struct pt_regs *regs) 884 { 885 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); 886 unsigned long old_epc = regs->cp0_epc; 887 unsigned int opcode = 0; 888 int status = -1; 889 890 if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), SIGILL) 891 == NOTIFY_STOP) 892 return; 893 894 die_if_kernel("Reserved instruction in kernel code", regs); 895 896 if (unlikely(compute_return_epc(regs) < 0)) 897 return; 898 899 if (unlikely(get_user(opcode, epc) < 0)) 900 status = SIGSEGV; 901 902 if (!cpu_has_llsc && status < 0) 903 status = simulate_llsc(regs, opcode); 904 905 if (status < 0) 906 status = simulate_rdhwr(regs, opcode); 907 908 if (status < 0) 909 status = simulate_sync(regs, opcode); 910 911 if (status < 0) 912 status = SIGILL; 913 914 if (unlikely(status > 0)) { 915 regs->cp0_epc = old_epc; /* Undo skip-over. */ 916 force_sig(status, current); 917 } 918 } 919 920 /* 921 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've 922 * emulated more than some threshold number of instructions, force migration to 923 * a "CPU" that has FP support. 924 */ 925 static void mt_ase_fp_affinity(void) 926 { 927 #ifdef CONFIG_MIPS_MT_FPAFF 928 if (mt_fpemul_threshold > 0 && 929 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { 930 /* 931 * If there's no FPU present, or if the application has already 932 * restricted the allowed set to exclude any CPUs with FPUs, 933 * we'll skip the procedure. 934 */ 935 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) { 936 cpumask_t tmask; 937 938 current->thread.user_cpus_allowed 939 = current->cpus_allowed; 940 cpus_and(tmask, current->cpus_allowed, 941 mt_fpu_cpumask); 942 set_cpus_allowed_ptr(current, &tmask); 943 set_thread_flag(TIF_FPUBOUND); 944 } 945 } 946 #endif /* CONFIG_MIPS_MT_FPAFF */ 947 } 948 949 /* 950 * No lock; only written during early bootup by CPU 0. 951 */ 952 static RAW_NOTIFIER_HEAD(cu2_chain); 953 954 int __ref register_cu2_notifier(struct notifier_block *nb) 955 { 956 return raw_notifier_chain_register(&cu2_chain, nb); 957 } 958 959 int cu2_notifier_call_chain(unsigned long val, void *v) 960 { 961 return raw_notifier_call_chain(&cu2_chain, val, v); 962 } 963 964 static int default_cu2_call(struct notifier_block *nfb, unsigned long action, 965 void *data) 966 { 967 struct pt_regs *regs = data; 968 969 switch (action) { 970 default: 971 die_if_kernel("Unhandled kernel unaligned access or invalid " 972 "instruction", regs); 973 /* Fall through */ 974 975 case CU2_EXCEPTION: 976 force_sig(SIGILL, current); 977 } 978 979 return NOTIFY_OK; 980 } 981 982 asmlinkage void do_cpu(struct pt_regs *regs) 983 { 984 unsigned int __user *epc; 985 unsigned long old_epc; 986 unsigned int opcode; 987 unsigned int cpid; 988 int status; 989 unsigned long __maybe_unused flags; 990 991 die_if_kernel("do_cpu invoked from kernel context!", regs); 992 993 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; 994 995 switch (cpid) { 996 case 0: 997 epc = (unsigned int __user *)exception_epc(regs); 998 old_epc = regs->cp0_epc; 999 opcode = 0; 1000 status = -1; 1001 1002 if (unlikely(compute_return_epc(regs) < 0)) 1003 return; 1004 1005 if (unlikely(get_user(opcode, epc) < 0)) 1006 status = SIGSEGV; 1007 1008 if (!cpu_has_llsc && status < 0) 1009 status = simulate_llsc(regs, opcode); 1010 1011 if (status < 0) 1012 status = simulate_rdhwr(regs, opcode); 1013 1014 if (status < 0) 1015 status = SIGILL; 1016 1017 if (unlikely(status > 0)) { 1018 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1019 force_sig(status, current); 1020 } 1021 1022 return; 1023 1024 case 1: 1025 if (used_math()) /* Using the FPU again. */ 1026 own_fpu(1); 1027 else { /* First time FPU user. */ 1028 init_fpu(); 1029 set_used_math(); 1030 } 1031 1032 if (!raw_cpu_has_fpu) { 1033 int sig; 1034 void __user *fault_addr = NULL; 1035 sig = fpu_emulator_cop1Handler(regs, 1036 ¤t->thread.fpu, 1037 0, &fault_addr); 1038 if (!process_fpemu_return(sig, fault_addr)) 1039 mt_ase_fp_affinity(); 1040 } 1041 1042 return; 1043 1044 case 2: 1045 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); 1046 return; 1047 1048 case 3: 1049 break; 1050 } 1051 1052 force_sig(SIGILL, current); 1053 } 1054 1055 asmlinkage void do_mdmx(struct pt_regs *regs) 1056 { 1057 force_sig(SIGILL, current); 1058 } 1059 1060 /* 1061 * Called with interrupts disabled. 1062 */ 1063 asmlinkage void do_watch(struct pt_regs *regs) 1064 { 1065 u32 cause; 1066 1067 /* 1068 * Clear WP (bit 22) bit of cause register so we don't loop 1069 * forever. 1070 */ 1071 cause = read_c0_cause(); 1072 cause &= ~(1 << 22); 1073 write_c0_cause(cause); 1074 1075 /* 1076 * If the current thread has the watch registers loaded, save 1077 * their values and send SIGTRAP. Otherwise another thread 1078 * left the registers set, clear them and continue. 1079 */ 1080 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { 1081 mips_read_watch_registers(); 1082 local_irq_enable(); 1083 force_sig(SIGTRAP, current); 1084 } else { 1085 mips_clear_watch_registers(); 1086 local_irq_enable(); 1087 } 1088 } 1089 1090 asmlinkage void do_mcheck(struct pt_regs *regs) 1091 { 1092 const int field = 2 * sizeof(unsigned long); 1093 int multi_match = regs->cp0_status & ST0_TS; 1094 1095 show_regs(regs); 1096 1097 if (multi_match) { 1098 printk("Index : %0x\n", read_c0_index()); 1099 printk("Pagemask: %0x\n", read_c0_pagemask()); 1100 printk("EntryHi : %0*lx\n", field, read_c0_entryhi()); 1101 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0()); 1102 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1()); 1103 printk("\n"); 1104 dump_tlb_all(); 1105 } 1106 1107 show_code((unsigned int __user *) regs->cp0_epc); 1108 1109 /* 1110 * Some chips may have other causes of machine check (e.g. SB1 1111 * graduation timer) 1112 */ 1113 panic("Caught Machine Check exception - %scaused by multiple " 1114 "matching entries in the TLB.", 1115 (multi_match) ? "" : "not "); 1116 } 1117 1118 asmlinkage void do_mt(struct pt_regs *regs) 1119 { 1120 int subcode; 1121 1122 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) 1123 >> VPECONTROL_EXCPT_SHIFT; 1124 switch (subcode) { 1125 case 0: 1126 printk(KERN_DEBUG "Thread Underflow\n"); 1127 break; 1128 case 1: 1129 printk(KERN_DEBUG "Thread Overflow\n"); 1130 break; 1131 case 2: 1132 printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); 1133 break; 1134 case 3: 1135 printk(KERN_DEBUG "Gating Storage Exception\n"); 1136 break; 1137 case 4: 1138 printk(KERN_DEBUG "YIELD Scheduler Exception\n"); 1139 break; 1140 case 5: 1141 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n"); 1142 break; 1143 default: 1144 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", 1145 subcode); 1146 break; 1147 } 1148 die_if_kernel("MIPS MT Thread exception in kernel", regs); 1149 1150 force_sig(SIGILL, current); 1151 } 1152 1153 1154 asmlinkage void do_dsp(struct pt_regs *regs) 1155 { 1156 if (cpu_has_dsp) 1157 panic("Unexpected DSP exception"); 1158 1159 force_sig(SIGILL, current); 1160 } 1161 1162 asmlinkage void do_reserved(struct pt_regs *regs) 1163 { 1164 /* 1165 * Game over - no way to handle this if it ever occurs. Most probably 1166 * caused by a new unknown cpu type or after another deadly 1167 * hard/software error. 1168 */ 1169 show_regs(regs); 1170 panic("Caught reserved exception %ld - should not happen.", 1171 (regs->cp0_cause & 0x7f) >> 2); 1172 } 1173 1174 static int __initdata l1parity = 1; 1175 static int __init nol1parity(char *s) 1176 { 1177 l1parity = 0; 1178 return 1; 1179 } 1180 __setup("nol1par", nol1parity); 1181 static int __initdata l2parity = 1; 1182 static int __init nol2parity(char *s) 1183 { 1184 l2parity = 0; 1185 return 1; 1186 } 1187 __setup("nol2par", nol2parity); 1188 1189 /* 1190 * Some MIPS CPUs can enable/disable for cache parity detection, but do 1191 * it different ways. 1192 */ 1193 static inline void parity_protection_init(void) 1194 { 1195 switch (current_cpu_type()) { 1196 case CPU_24K: 1197 case CPU_34K: 1198 case CPU_74K: 1199 case CPU_1004K: 1200 { 1201 #define ERRCTL_PE 0x80000000 1202 #define ERRCTL_L2P 0x00800000 1203 unsigned long errctl; 1204 unsigned int l1parity_present, l2parity_present; 1205 1206 errctl = read_c0_ecc(); 1207 errctl &= ~(ERRCTL_PE|ERRCTL_L2P); 1208 1209 /* probe L1 parity support */ 1210 write_c0_ecc(errctl | ERRCTL_PE); 1211 back_to_back_c0_hazard(); 1212 l1parity_present = (read_c0_ecc() & ERRCTL_PE); 1213 1214 /* probe L2 parity support */ 1215 write_c0_ecc(errctl|ERRCTL_L2P); 1216 back_to_back_c0_hazard(); 1217 l2parity_present = (read_c0_ecc() & ERRCTL_L2P); 1218 1219 if (l1parity_present && l2parity_present) { 1220 if (l1parity) 1221 errctl |= ERRCTL_PE; 1222 if (l1parity ^ l2parity) 1223 errctl |= ERRCTL_L2P; 1224 } else if (l1parity_present) { 1225 if (l1parity) 1226 errctl |= ERRCTL_PE; 1227 } else if (l2parity_present) { 1228 if (l2parity) 1229 errctl |= ERRCTL_L2P; 1230 } else { 1231 /* No parity available */ 1232 } 1233 1234 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); 1235 1236 write_c0_ecc(errctl); 1237 back_to_back_c0_hazard(); 1238 errctl = read_c0_ecc(); 1239 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); 1240 1241 if (l1parity_present) 1242 printk(KERN_INFO "Cache parity protection %sabled\n", 1243 (errctl & ERRCTL_PE) ? "en" : "dis"); 1244 1245 if (l2parity_present) { 1246 if (l1parity_present && l1parity) 1247 errctl ^= ERRCTL_L2P; 1248 printk(KERN_INFO "L2 cache parity protection %sabled\n", 1249 (errctl & ERRCTL_L2P) ? "en" : "dis"); 1250 } 1251 } 1252 break; 1253 1254 case CPU_5KC: 1255 case CPU_5KE: 1256 case CPU_LOONGSON1: 1257 write_c0_ecc(0x80000000); 1258 back_to_back_c0_hazard(); 1259 /* Set the PE bit (bit 31) in the c0_errctl register. */ 1260 printk(KERN_INFO "Cache parity protection %sabled\n", 1261 (read_c0_ecc() & 0x80000000) ? "en" : "dis"); 1262 break; 1263 case CPU_20KC: 1264 case CPU_25KF: 1265 /* Clear the DE bit (bit 16) in the c0_status register. */ 1266 printk(KERN_INFO "Enable cache parity protection for " 1267 "MIPS 20KC/25KF CPUs.\n"); 1268 clear_c0_status(ST0_DE); 1269 break; 1270 default: 1271 break; 1272 } 1273 } 1274 1275 asmlinkage void cache_parity_error(void) 1276 { 1277 const int field = 2 * sizeof(unsigned long); 1278 unsigned int reg_val; 1279 1280 /* For the moment, report the problem and hang. */ 1281 printk("Cache error exception:\n"); 1282 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1283 reg_val = read_c0_cacheerr(); 1284 printk("c0_cacheerr == %08x\n", reg_val); 1285 1286 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1287 reg_val & (1<<30) ? "secondary" : "primary", 1288 reg_val & (1<<31) ? "data" : "insn"); 1289 printk("Error bits: %s%s%s%s%s%s%s\n", 1290 reg_val & (1<<29) ? "ED " : "", 1291 reg_val & (1<<28) ? "ET " : "", 1292 reg_val & (1<<26) ? "EE " : "", 1293 reg_val & (1<<25) ? "EB " : "", 1294 reg_val & (1<<24) ? "EI " : "", 1295 reg_val & (1<<23) ? "E1 " : "", 1296 reg_val & (1<<22) ? "E0 " : ""); 1297 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); 1298 1299 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) 1300 if (reg_val & (1<<22)) 1301 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); 1302 1303 if (reg_val & (1<<23)) 1304 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); 1305 #endif 1306 1307 panic("Can't handle the cache error!"); 1308 } 1309 1310 /* 1311 * SDBBP EJTAG debug exception handler. 1312 * We skip the instruction and return to the next instruction. 1313 */ 1314 void ejtag_exception_handler(struct pt_regs *regs) 1315 { 1316 const int field = 2 * sizeof(unsigned long); 1317 unsigned long depc, old_epc; 1318 unsigned int debug; 1319 1320 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); 1321 depc = read_c0_depc(); 1322 debug = read_c0_debug(); 1323 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); 1324 if (debug & 0x80000000) { 1325 /* 1326 * In branch delay slot. 1327 * We cheat a little bit here and use EPC to calculate the 1328 * debug return address (DEPC). EPC is restored after the 1329 * calculation. 1330 */ 1331 old_epc = regs->cp0_epc; 1332 regs->cp0_epc = depc; 1333 __compute_return_epc(regs); 1334 depc = regs->cp0_epc; 1335 regs->cp0_epc = old_epc; 1336 } else 1337 depc += 4; 1338 write_c0_depc(depc); 1339 1340 #if 0 1341 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); 1342 write_c0_debug(debug | 0x100); 1343 #endif 1344 } 1345 1346 /* 1347 * NMI exception handler. 1348 * No lock; only written during early bootup by CPU 0. 1349 */ 1350 static RAW_NOTIFIER_HEAD(nmi_chain); 1351 1352 int register_nmi_notifier(struct notifier_block *nb) 1353 { 1354 return raw_notifier_chain_register(&nmi_chain, nb); 1355 } 1356 1357 void __noreturn nmi_exception_handler(struct pt_regs *regs) 1358 { 1359 raw_notifier_call_chain(&nmi_chain, 0, regs); 1360 bust_spinlocks(1); 1361 printk("NMI taken!!!!\n"); 1362 die("NMI", regs); 1363 } 1364 1365 #define VECTORSPACING 0x100 /* for EI/VI mode */ 1366 1367 unsigned long ebase; 1368 unsigned long exception_handlers[32]; 1369 unsigned long vi_handlers[64]; 1370 1371 void __init *set_except_vector(int n, void *addr) 1372 { 1373 unsigned long handler = (unsigned long) addr; 1374 unsigned long old_handler = exception_handlers[n]; 1375 1376 exception_handlers[n] = handler; 1377 if (n == 0 && cpu_has_divec) { 1378 unsigned long jump_mask = ~((1 << 28) - 1); 1379 u32 *buf = (u32 *)(ebase + 0x200); 1380 unsigned int k0 = 26; 1381 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { 1382 uasm_i_j(&buf, handler & ~jump_mask); 1383 uasm_i_nop(&buf); 1384 } else { 1385 UASM_i_LA(&buf, k0, handler); 1386 uasm_i_jr(&buf, k0); 1387 uasm_i_nop(&buf); 1388 } 1389 local_flush_icache_range(ebase + 0x200, (unsigned long)buf); 1390 } 1391 return (void *)old_handler; 1392 } 1393 1394 static asmlinkage void do_default_vi(void) 1395 { 1396 show_regs(get_irq_regs()); 1397 panic("Caught unexpected vectored interrupt."); 1398 } 1399 1400 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) 1401 { 1402 unsigned long handler; 1403 unsigned long old_handler = vi_handlers[n]; 1404 int srssets = current_cpu_data.srsets; 1405 u32 *w; 1406 unsigned char *b; 1407 1408 BUG_ON(!cpu_has_veic && !cpu_has_vint); 1409 1410 if (addr == NULL) { 1411 handler = (unsigned long) do_default_vi; 1412 srs = 0; 1413 } else 1414 handler = (unsigned long) addr; 1415 vi_handlers[n] = (unsigned long) addr; 1416 1417 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); 1418 1419 if (srs >= srssets) 1420 panic("Shadow register set %d not supported", srs); 1421 1422 if (cpu_has_veic) { 1423 if (board_bind_eic_interrupt) 1424 board_bind_eic_interrupt(n, srs); 1425 } else if (cpu_has_vint) { 1426 /* SRSMap is only defined if shadow sets are implemented */ 1427 if (srssets > 1) 1428 change_c0_srsmap(0xf << n*4, srs << n*4); 1429 } 1430 1431 if (srs == 0) { 1432 /* 1433 * If no shadow set is selected then use the default handler 1434 * that does normal register saving and a standard interrupt exit 1435 */ 1436 1437 extern char except_vec_vi, except_vec_vi_lui; 1438 extern char except_vec_vi_ori, except_vec_vi_end; 1439 extern char rollback_except_vec_vi; 1440 char *vec_start = (cpu_wait == r4k_wait) ? 1441 &rollback_except_vec_vi : &except_vec_vi; 1442 #ifdef CONFIG_MIPS_MT_SMTC 1443 /* 1444 * We need to provide the SMTC vectored interrupt handler 1445 * not only with the address of the handler, but with the 1446 * Status.IM bit to be masked before going there. 1447 */ 1448 extern char except_vec_vi_mori; 1449 const int mori_offset = &except_vec_vi_mori - vec_start; 1450 #endif /* CONFIG_MIPS_MT_SMTC */ 1451 const int handler_len = &except_vec_vi_end - vec_start; 1452 const int lui_offset = &except_vec_vi_lui - vec_start; 1453 const int ori_offset = &except_vec_vi_ori - vec_start; 1454 1455 if (handler_len > VECTORSPACING) { 1456 /* 1457 * Sigh... panicing won't help as the console 1458 * is probably not configured :( 1459 */ 1460 panic("VECTORSPACING too small"); 1461 } 1462 1463 memcpy(b, vec_start, handler_len); 1464 #ifdef CONFIG_MIPS_MT_SMTC 1465 BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */ 1466 1467 w = (u32 *)(b + mori_offset); 1468 *w = (*w & 0xffff0000) | (0x100 << n); 1469 #endif /* CONFIG_MIPS_MT_SMTC */ 1470 w = (u32 *)(b + lui_offset); 1471 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff); 1472 w = (u32 *)(b + ori_offset); 1473 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff); 1474 local_flush_icache_range((unsigned long)b, 1475 (unsigned long)(b+handler_len)); 1476 } 1477 else { 1478 /* 1479 * In other cases jump directly to the interrupt handler 1480 * 1481 * It is the handlers responsibility to save registers if required 1482 * (eg hi/lo) and return from the exception using "eret" 1483 */ 1484 w = (u32 *)b; 1485 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */ 1486 *w = 0; 1487 local_flush_icache_range((unsigned long)b, 1488 (unsigned long)(b+8)); 1489 } 1490 1491 return (void *)old_handler; 1492 } 1493 1494 void *set_vi_handler(int n, vi_handler_t addr) 1495 { 1496 return set_vi_srs_handler(n, addr, 0); 1497 } 1498 1499 extern void tlb_init(void); 1500 extern void flush_tlb_handlers(void); 1501 1502 /* 1503 * Timer interrupt 1504 */ 1505 int cp0_compare_irq; 1506 EXPORT_SYMBOL_GPL(cp0_compare_irq); 1507 int cp0_compare_irq_shift; 1508 1509 /* 1510 * Performance counter IRQ or -1 if shared with timer 1511 */ 1512 int cp0_perfcount_irq; 1513 EXPORT_SYMBOL_GPL(cp0_perfcount_irq); 1514 1515 static int __cpuinitdata noulri; 1516 1517 static int __init ulri_disable(char *s) 1518 { 1519 pr_info("Disabling ulri\n"); 1520 noulri = 1; 1521 1522 return 1; 1523 } 1524 __setup("noulri", ulri_disable); 1525 1526 void __cpuinit per_cpu_trap_init(bool is_boot_cpu) 1527 { 1528 unsigned int cpu = smp_processor_id(); 1529 unsigned int status_set = ST0_CU0; 1530 unsigned int hwrena = cpu_hwrena_impl_bits; 1531 #ifdef CONFIG_MIPS_MT_SMTC 1532 int secondaryTC = 0; 1533 int bootTC = (cpu == 0); 1534 1535 /* 1536 * Only do per_cpu_trap_init() for first TC of Each VPE. 1537 * Note that this hack assumes that the SMTC init code 1538 * assigns TCs consecutively and in ascending order. 1539 */ 1540 1541 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) && 1542 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id)) 1543 secondaryTC = 1; 1544 #endif /* CONFIG_MIPS_MT_SMTC */ 1545 1546 /* 1547 * Disable coprocessors and select 32-bit or 64-bit addressing 1548 * and the 16/32 or 32/32 FPR register model. Reset the BEV 1549 * flag that some firmware may have left set and the TS bit (for 1550 * IP27). Set XX for ISA IV code to work. 1551 */ 1552 #ifdef CONFIG_64BIT 1553 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; 1554 #endif 1555 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV) 1556 status_set |= ST0_XX; 1557 if (cpu_has_dsp) 1558 status_set |= ST0_MX; 1559 1560 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, 1561 status_set); 1562 1563 if (cpu_has_mips_r2) 1564 hwrena |= 0x0000000f; 1565 1566 if (!noulri && cpu_has_userlocal) 1567 hwrena |= (1 << 29); 1568 1569 if (hwrena) 1570 write_c0_hwrena(hwrena); 1571 1572 #ifdef CONFIG_MIPS_MT_SMTC 1573 if (!secondaryTC) { 1574 #endif /* CONFIG_MIPS_MT_SMTC */ 1575 1576 if (cpu_has_veic || cpu_has_vint) { 1577 unsigned long sr = set_c0_status(ST0_BEV); 1578 write_c0_ebase(ebase); 1579 write_c0_status(sr); 1580 /* Setting vector spacing enables EI/VI mode */ 1581 change_c0_intctl(0x3e0, VECTORSPACING); 1582 } 1583 if (cpu_has_divec) { 1584 if (cpu_has_mipsmt) { 1585 unsigned int vpflags = dvpe(); 1586 set_c0_cause(CAUSEF_IV); 1587 evpe(vpflags); 1588 } else 1589 set_c0_cause(CAUSEF_IV); 1590 } 1591 1592 /* 1593 * Before R2 both interrupt numbers were fixed to 7, so on R2 only: 1594 * 1595 * o read IntCtl.IPTI to determine the timer interrupt 1596 * o read IntCtl.IPPCI to determine the performance counter interrupt 1597 */ 1598 if (cpu_has_mips_r2) { 1599 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; 1600 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; 1601 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; 1602 if (cp0_perfcount_irq == cp0_compare_irq) 1603 cp0_perfcount_irq = -1; 1604 } else { 1605 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; 1606 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ; 1607 cp0_perfcount_irq = -1; 1608 } 1609 1610 #ifdef CONFIG_MIPS_MT_SMTC 1611 } 1612 #endif /* CONFIG_MIPS_MT_SMTC */ 1613 1614 if (!cpu_data[cpu].asid_cache) 1615 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION; 1616 1617 atomic_inc(&init_mm.mm_count); 1618 current->active_mm = &init_mm; 1619 BUG_ON(current->mm); 1620 enter_lazy_tlb(&init_mm, current); 1621 1622 #ifdef CONFIG_MIPS_MT_SMTC 1623 if (bootTC) { 1624 #endif /* CONFIG_MIPS_MT_SMTC */ 1625 /* Boot CPU's cache setup in setup_arch(). */ 1626 if (!is_boot_cpu) 1627 cpu_cache_init(); 1628 tlb_init(); 1629 #ifdef CONFIG_MIPS_MT_SMTC 1630 } else if (!secondaryTC) { 1631 /* 1632 * First TC in non-boot VPE must do subset of tlb_init() 1633 * for MMU countrol registers. 1634 */ 1635 write_c0_pagemask(PM_DEFAULT_MASK); 1636 write_c0_wired(0); 1637 } 1638 #endif /* CONFIG_MIPS_MT_SMTC */ 1639 TLBMISS_HANDLER_SETUP(); 1640 } 1641 1642 /* Install CPU exception handler */ 1643 void __cpuinit set_handler(unsigned long offset, void *addr, unsigned long size) 1644 { 1645 memcpy((void *)(ebase + offset), addr, size); 1646 local_flush_icache_range(ebase + offset, ebase + offset + size); 1647 } 1648 1649 static char panic_null_cerr[] __cpuinitdata = 1650 "Trying to set NULL cache error exception handler"; 1651 1652 /* 1653 * Install uncached CPU exception handler. 1654 * This is suitable only for the cache error exception which is the only 1655 * exception handler that is being run uncached. 1656 */ 1657 void __cpuinit set_uncached_handler(unsigned long offset, void *addr, 1658 unsigned long size) 1659 { 1660 unsigned long uncached_ebase = CKSEG1ADDR(ebase); 1661 1662 if (!addr) 1663 panic(panic_null_cerr); 1664 1665 memcpy((void *)(uncached_ebase + offset), addr, size); 1666 } 1667 1668 static int __initdata rdhwr_noopt; 1669 static int __init set_rdhwr_noopt(char *str) 1670 { 1671 rdhwr_noopt = 1; 1672 return 1; 1673 } 1674 1675 __setup("rdhwr_noopt", set_rdhwr_noopt); 1676 1677 void __init trap_init(void) 1678 { 1679 extern char except_vec3_generic, except_vec3_r4000; 1680 extern char except_vec4; 1681 unsigned long i; 1682 int rollback; 1683 1684 check_wait(); 1685 rollback = (cpu_wait == r4k_wait); 1686 1687 #if defined(CONFIG_KGDB) 1688 if (kgdb_early_setup) 1689 return; /* Already done */ 1690 #endif 1691 1692 if (cpu_has_veic || cpu_has_vint) { 1693 unsigned long size = 0x200 + VECTORSPACING*64; 1694 ebase = (unsigned long) 1695 __alloc_bootmem(size, 1 << fls(size), 0); 1696 } else { 1697 ebase = CKSEG0; 1698 if (cpu_has_mips_r2) 1699 ebase += (read_c0_ebase() & 0x3ffff000); 1700 } 1701 1702 if (board_ebase_setup) 1703 board_ebase_setup(); 1704 per_cpu_trap_init(true); 1705 1706 /* 1707 * Copy the generic exception handlers to their final destination. 1708 * This will be overriden later as suitable for a particular 1709 * configuration. 1710 */ 1711 set_handler(0x180, &except_vec3_generic, 0x80); 1712 1713 /* 1714 * Setup default vectors 1715 */ 1716 for (i = 0; i <= 31; i++) 1717 set_except_vector(i, handle_reserved); 1718 1719 /* 1720 * Copy the EJTAG debug exception vector handler code to it's final 1721 * destination. 1722 */ 1723 if (cpu_has_ejtag && board_ejtag_handler_setup) 1724 board_ejtag_handler_setup(); 1725 1726 /* 1727 * Only some CPUs have the watch exceptions. 1728 */ 1729 if (cpu_has_watch) 1730 set_except_vector(23, handle_watch); 1731 1732 /* 1733 * Initialise interrupt handlers 1734 */ 1735 if (cpu_has_veic || cpu_has_vint) { 1736 int nvec = cpu_has_veic ? 64 : 8; 1737 for (i = 0; i < nvec; i++) 1738 set_vi_handler(i, NULL); 1739 } 1740 else if (cpu_has_divec) 1741 set_handler(0x200, &except_vec4, 0x8); 1742 1743 /* 1744 * Some CPUs can enable/disable for cache parity detection, but does 1745 * it different ways. 1746 */ 1747 parity_protection_init(); 1748 1749 /* 1750 * The Data Bus Errors / Instruction Bus Errors are signaled 1751 * by external hardware. Therefore these two exceptions 1752 * may have board specific handlers. 1753 */ 1754 if (board_be_init) 1755 board_be_init(); 1756 1757 set_except_vector(0, rollback ? rollback_handle_int : handle_int); 1758 set_except_vector(1, handle_tlbm); 1759 set_except_vector(2, handle_tlbl); 1760 set_except_vector(3, handle_tlbs); 1761 1762 set_except_vector(4, handle_adel); 1763 set_except_vector(5, handle_ades); 1764 1765 set_except_vector(6, handle_ibe); 1766 set_except_vector(7, handle_dbe); 1767 1768 set_except_vector(8, handle_sys); 1769 set_except_vector(9, handle_bp); 1770 set_except_vector(10, rdhwr_noopt ? handle_ri : 1771 (cpu_has_vtag_icache ? 1772 handle_ri_rdhwr_vivt : handle_ri_rdhwr)); 1773 set_except_vector(11, handle_cpu); 1774 set_except_vector(12, handle_ov); 1775 set_except_vector(13, handle_tr); 1776 1777 if (current_cpu_type() == CPU_R6000 || 1778 current_cpu_type() == CPU_R6000A) { 1779 /* 1780 * The R6000 is the only R-series CPU that features a machine 1781 * check exception (similar to the R4000 cache error) and 1782 * unaligned ldc1/sdc1 exception. The handlers have not been 1783 * written yet. Well, anyway there is no R6000 machine on the 1784 * current list of targets for Linux/MIPS. 1785 * (Duh, crap, there is someone with a triple R6k machine) 1786 */ 1787 //set_except_vector(14, handle_mc); 1788 //set_except_vector(15, handle_ndc); 1789 } 1790 1791 1792 if (board_nmi_handler_setup) 1793 board_nmi_handler_setup(); 1794 1795 if (cpu_has_fpu && !cpu_has_nofpuex) 1796 set_except_vector(15, handle_fpe); 1797 1798 set_except_vector(22, handle_mdmx); 1799 1800 if (cpu_has_mcheck) 1801 set_except_vector(24, handle_mcheck); 1802 1803 if (cpu_has_mipsmt) 1804 set_except_vector(25, handle_mt); 1805 1806 set_except_vector(26, handle_dsp); 1807 1808 if (board_cache_error_setup) 1809 board_cache_error_setup(); 1810 1811 if (cpu_has_vce) 1812 /* Special exception: R4[04]00 uses also the divec space. */ 1813 memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100); 1814 else if (cpu_has_4kex) 1815 memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80); 1816 else 1817 memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80); 1818 1819 local_flush_icache_range(ebase, ebase + 0x400); 1820 flush_tlb_handlers(); 1821 1822 sort_extable(__start___dbe_table, __stop___dbe_table); 1823 1824 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */ 1825 } 1826