1 /* 2 * Copyright 2001 MontaVista Software Inc. 3 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net 4 * Copyright (c) 2003, 2004 Maciej W. Rozycki 5 * 6 * Common time service routines for MIPS machines. See 7 * Documentation/mips/time.README. 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 */ 14 #include <linux/config.h> 15 #include <linux/types.h> 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/sched.h> 19 #include <linux/param.h> 20 #include <linux/time.h> 21 #include <linux/timex.h> 22 #include <linux/smp.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/spinlock.h> 25 #include <linux/interrupt.h> 26 #include <linux/module.h> 27 28 #include <asm/bootinfo.h> 29 #include <asm/cache.h> 30 #include <asm/compiler.h> 31 #include <asm/cpu.h> 32 #include <asm/cpu-features.h> 33 #include <asm/div64.h> 34 #include <asm/sections.h> 35 #include <asm/time.h> 36 37 /* 38 * The integer part of the number of usecs per jiffy is taken from tick, 39 * but the fractional part is not recorded, so we calculate it using the 40 * initial value of HZ. This aids systems where tick isn't really an 41 * integer (e.g. for HZ = 128). 42 */ 43 #define USECS_PER_JIFFY TICK_SIZE 44 #define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ)) 45 46 #define TICK_SIZE (tick_nsec / 1000) 47 48 /* 49 * forward reference 50 */ 51 extern volatile unsigned long wall_jiffies; 52 53 DEFINE_SPINLOCK(rtc_lock); 54 55 /* 56 * By default we provide the null RTC ops 57 */ 58 static unsigned long null_rtc_get_time(void) 59 { 60 return mktime(2000, 1, 1, 0, 0, 0); 61 } 62 63 static int null_rtc_set_time(unsigned long sec) 64 { 65 return 0; 66 } 67 68 unsigned long (*rtc_get_time)(void) = null_rtc_get_time; 69 int (*rtc_set_time)(unsigned long) = null_rtc_set_time; 70 int (*rtc_set_mmss)(unsigned long); 71 72 73 /* usecs per counter cycle, shifted to left by 32 bits */ 74 static unsigned int sll32_usecs_per_cycle; 75 76 /* how many counter cycles in a jiffy */ 77 static unsigned long cycles_per_jiffy __read_mostly; 78 79 /* Cycle counter value at the previous timer interrupt.. */ 80 static unsigned int timerhi, timerlo; 81 82 /* expirelo is the count value for next CPU timer interrupt */ 83 static unsigned int expirelo; 84 85 86 /* 87 * Null timer ack for systems not needing one (e.g. i8254). 88 */ 89 static void null_timer_ack(void) { /* nothing */ } 90 91 /* 92 * Null high precision timer functions for systems lacking one. 93 */ 94 static unsigned int null_hpt_read(void) 95 { 96 return 0; 97 } 98 99 static void null_hpt_init(unsigned int count) 100 { 101 /* nothing */ 102 } 103 104 105 /* 106 * Timer ack for an R4k-compatible timer of a known frequency. 107 */ 108 static void c0_timer_ack(void) 109 { 110 unsigned int count; 111 112 #ifndef CONFIG_SOC_PNX8550 /* pnx8550 resets to zero */ 113 /* Ack this timer interrupt and set the next one. */ 114 expirelo += cycles_per_jiffy; 115 #endif 116 write_c0_compare(expirelo); 117 118 /* Check to see if we have missed any timer interrupts. */ 119 count = read_c0_count(); 120 if ((count - expirelo) < 0x7fffffff) { 121 /* missed_timer_count++; */ 122 expirelo = count + cycles_per_jiffy; 123 write_c0_compare(expirelo); 124 } 125 } 126 127 /* 128 * High precision timer functions for a R4k-compatible timer. 129 */ 130 static unsigned int c0_hpt_read(void) 131 { 132 return read_c0_count(); 133 } 134 135 /* For use solely as a high precision timer. */ 136 static void c0_hpt_init(unsigned int count) 137 { 138 write_c0_count(read_c0_count() - count); 139 } 140 141 /* For use both as a high precision timer and an interrupt source. */ 142 static void c0_hpt_timer_init(unsigned int count) 143 { 144 count = read_c0_count() - count; 145 expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy; 146 write_c0_count(expirelo - cycles_per_jiffy); 147 write_c0_compare(expirelo); 148 write_c0_count(count); 149 } 150 151 int (*mips_timer_state)(void); 152 void (*mips_timer_ack)(void); 153 unsigned int (*mips_hpt_read)(void); 154 void (*mips_hpt_init)(unsigned int); 155 156 157 /* 158 * This version of gettimeofday has microsecond resolution and better than 159 * microsecond precision on fast machines with cycle counter. 160 */ 161 void do_gettimeofday(struct timeval *tv) 162 { 163 unsigned long seq; 164 unsigned long lost; 165 unsigned long usec, sec; 166 unsigned long max_ntp_tick = tick_usec - tickadj; 167 168 do { 169 seq = read_seqbegin(&xtime_lock); 170 171 usec = do_gettimeoffset(); 172 173 lost = jiffies - wall_jiffies; 174 175 /* 176 * If time_adjust is negative then NTP is slowing the clock 177 * so make sure not to go into next possible interval. 178 * Better to lose some accuracy than have time go backwards.. 179 */ 180 if (unlikely(time_adjust < 0)) { 181 usec = min(usec, max_ntp_tick); 182 183 if (lost) 184 usec += lost * max_ntp_tick; 185 } else if (unlikely(lost)) 186 usec += lost * tick_usec; 187 188 sec = xtime.tv_sec; 189 usec += (xtime.tv_nsec / 1000); 190 191 } while (read_seqretry(&xtime_lock, seq)); 192 193 while (usec >= 1000000) { 194 usec -= 1000000; 195 sec++; 196 } 197 198 tv->tv_sec = sec; 199 tv->tv_usec = usec; 200 } 201 202 EXPORT_SYMBOL(do_gettimeofday); 203 204 int do_settimeofday(struct timespec *tv) 205 { 206 time_t wtm_sec, sec = tv->tv_sec; 207 long wtm_nsec, nsec = tv->tv_nsec; 208 209 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) 210 return -EINVAL; 211 212 write_seqlock_irq(&xtime_lock); 213 214 /* 215 * This is revolting. We need to set "xtime" correctly. However, 216 * the value in this location is the value at the most recent update 217 * of wall time. Discover what correction gettimeofday() would have 218 * made, and then undo it! 219 */ 220 nsec -= do_gettimeoffset() * NSEC_PER_USEC; 221 nsec -= (jiffies - wall_jiffies) * tick_nsec; 222 223 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); 224 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); 225 226 set_normalized_timespec(&xtime, sec, nsec); 227 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); 228 229 ntp_clear(); 230 write_sequnlock_irq(&xtime_lock); 231 clock_was_set(); 232 return 0; 233 } 234 235 EXPORT_SYMBOL(do_settimeofday); 236 237 /* 238 * Gettimeoffset routines. These routines returns the time duration 239 * since last timer interrupt in usecs. 240 * 241 * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset. 242 * Otherwise use calibrate_gettimeoffset() 243 * 244 * If the CPU does not have the counter register, you can either supply 245 * your own gettimeoffset() routine, or use null_gettimeoffset(), which 246 * gives the same resolution as HZ. 247 */ 248 249 static unsigned long null_gettimeoffset(void) 250 { 251 return 0; 252 } 253 254 255 /* The function pointer to one of the gettimeoffset funcs. */ 256 unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset; 257 258 259 static unsigned long fixed_rate_gettimeoffset(void) 260 { 261 u32 count; 262 unsigned long res; 263 264 /* Get last timer tick in absolute kernel time */ 265 count = mips_hpt_read(); 266 267 /* .. relative to previous jiffy (32 bits is enough) */ 268 count -= timerlo; 269 270 __asm__("multu %1,%2" 271 : "=h" (res) 272 : "r" (count), "r" (sll32_usecs_per_cycle) 273 : "lo", GCC_REG_ACCUM); 274 275 /* 276 * Due to possible jiffies inconsistencies, we need to check 277 * the result so that we'll get a timer that is monotonic. 278 */ 279 if (res >= USECS_PER_JIFFY) 280 res = USECS_PER_JIFFY - 1; 281 282 return res; 283 } 284 285 286 /* 287 * Cached "1/(clocks per usec) * 2^32" value. 288 * It has to be recalculated once each jiffy. 289 */ 290 static unsigned long cached_quotient; 291 292 /* Last jiffy when calibrate_divXX_gettimeoffset() was called. */ 293 static unsigned long last_jiffies; 294 295 /* 296 * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej. 297 */ 298 static unsigned long calibrate_div32_gettimeoffset(void) 299 { 300 u32 count; 301 unsigned long res, tmp; 302 unsigned long quotient; 303 304 tmp = jiffies; 305 306 quotient = cached_quotient; 307 308 if (last_jiffies != tmp) { 309 last_jiffies = tmp; 310 if (last_jiffies != 0) { 311 unsigned long r0; 312 do_div64_32(r0, timerhi, timerlo, tmp); 313 do_div64_32(quotient, USECS_PER_JIFFY, 314 USECS_PER_JIFFY_FRAC, r0); 315 cached_quotient = quotient; 316 } 317 } 318 319 /* Get last timer tick in absolute kernel time */ 320 count = mips_hpt_read(); 321 322 /* .. relative to previous jiffy (32 bits is enough) */ 323 count -= timerlo; 324 325 __asm__("multu %1,%2" 326 : "=h" (res) 327 : "r" (count), "r" (quotient) 328 : "lo", GCC_REG_ACCUM); 329 330 /* 331 * Due to possible jiffies inconsistencies, we need to check 332 * the result so that we'll get a timer that is monotonic. 333 */ 334 if (res >= USECS_PER_JIFFY) 335 res = USECS_PER_JIFFY - 1; 336 337 return res; 338 } 339 340 static unsigned long calibrate_div64_gettimeoffset(void) 341 { 342 u32 count; 343 unsigned long res, tmp; 344 unsigned long quotient; 345 346 tmp = jiffies; 347 348 quotient = cached_quotient; 349 350 if (last_jiffies != tmp) { 351 last_jiffies = tmp; 352 if (last_jiffies) { 353 unsigned long r0; 354 __asm__(".set push\n\t" 355 ".set mips3\n\t" 356 "lwu %0,%3\n\t" 357 "dsll32 %1,%2,0\n\t" 358 "or %1,%1,%0\n\t" 359 "ddivu $0,%1,%4\n\t" 360 "mflo %1\n\t" 361 "dsll32 %0,%5,0\n\t" 362 "or %0,%0,%6\n\t" 363 "ddivu $0,%0,%1\n\t" 364 "mflo %0\n\t" 365 ".set pop" 366 : "=&r" (quotient), "=&r" (r0) 367 : "r" (timerhi), "m" (timerlo), 368 "r" (tmp), "r" (USECS_PER_JIFFY), 369 "r" (USECS_PER_JIFFY_FRAC) 370 : "hi", "lo", GCC_REG_ACCUM); 371 cached_quotient = quotient; 372 } 373 } 374 375 /* Get last timer tick in absolute kernel time */ 376 count = mips_hpt_read(); 377 378 /* .. relative to previous jiffy (32 bits is enough) */ 379 count -= timerlo; 380 381 __asm__("multu %1,%2" 382 : "=h" (res) 383 : "r" (count), "r" (quotient) 384 : "lo", GCC_REG_ACCUM); 385 386 /* 387 * Due to possible jiffies inconsistencies, we need to check 388 * the result so that we'll get a timer that is monotonic. 389 */ 390 if (res >= USECS_PER_JIFFY) 391 res = USECS_PER_JIFFY - 1; 392 393 return res; 394 } 395 396 397 /* last time when xtime and rtc are sync'ed up */ 398 static long last_rtc_update; 399 400 /* 401 * local_timer_interrupt() does profiling and process accounting 402 * on a per-CPU basis. 403 * 404 * In UP mode, it is invoked from the (global) timer_interrupt. 405 * 406 * In SMP mode, it might invoked by per-CPU timer interrupt, or 407 * a broadcasted inter-processor interrupt which itself is triggered 408 * by the global timer interrupt. 409 */ 410 void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) 411 { 412 if (current->pid) 413 profile_tick(CPU_PROFILING, regs); 414 update_process_times(user_mode(regs)); 415 } 416 417 /* 418 * High-level timer interrupt service routines. This function 419 * is set as irqaction->handler and is invoked through do_IRQ. 420 */ 421 irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) 422 { 423 unsigned long j; 424 unsigned int count; 425 426 count = mips_hpt_read(); 427 mips_timer_ack(); 428 429 /* Update timerhi/timerlo for intra-jiffy calibration. */ 430 timerhi += count < timerlo; /* Wrap around */ 431 timerlo = count; 432 433 /* 434 * call the generic timer interrupt handling 435 */ 436 do_timer(regs); 437 438 /* 439 * If we have an externally synchronized Linux clock, then update 440 * CMOS clock accordingly every ~11 minutes. rtc_set_time() has to be 441 * called as close as possible to 500 ms before the new second starts. 442 */ 443 write_seqlock(&xtime_lock); 444 if (ntp_synced() && 445 xtime.tv_sec > last_rtc_update + 660 && 446 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && 447 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) { 448 if (rtc_set_mmss(xtime.tv_sec) == 0) { 449 last_rtc_update = xtime.tv_sec; 450 } else { 451 /* do it again in 60 s */ 452 last_rtc_update = xtime.tv_sec - 600; 453 } 454 } 455 write_sequnlock(&xtime_lock); 456 457 /* 458 * If jiffies has overflown in this timer_interrupt, we must 459 * update the timer[hi]/[lo] to make fast gettimeoffset funcs 460 * quotient calc still valid. -arca 461 * 462 * The first timer interrupt comes late as interrupts are 463 * enabled long after timers are initialized. Therefore the 464 * high precision timer is fast, leading to wrong gettimeoffset() 465 * calculations. We deal with it by setting it based on the 466 * number of its ticks between the second and the third interrupt. 467 * That is still somewhat imprecise, but it's a good estimate. 468 * --macro 469 */ 470 j = jiffies; 471 if (j < 4) { 472 static unsigned int prev_count; 473 static int hpt_initialized; 474 475 switch (j) { 476 case 0: 477 timerhi = timerlo = 0; 478 mips_hpt_init(count); 479 break; 480 case 2: 481 prev_count = count; 482 break; 483 case 3: 484 if (!hpt_initialized) { 485 unsigned int c3 = 3 * (count - prev_count); 486 487 timerhi = 0; 488 timerlo = c3; 489 mips_hpt_init(count - c3); 490 hpt_initialized = 1; 491 } 492 break; 493 default: 494 break; 495 } 496 } 497 498 /* 499 * In UP mode, we call local_timer_interrupt() to do profiling 500 * and process accouting. 501 * 502 * In SMP mode, local_timer_interrupt() is invoked by appropriate 503 * low-level local timer interrupt handler. 504 */ 505 local_timer_interrupt(irq, dev_id, regs); 506 507 return IRQ_HANDLED; 508 } 509 510 asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs) 511 { 512 irq_enter(); 513 kstat_this_cpu.irqs[irq]++; 514 515 /* we keep interrupt disabled all the time */ 516 timer_interrupt(irq, NULL, regs); 517 518 irq_exit(); 519 } 520 521 asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs) 522 { 523 irq_enter(); 524 if (smp_processor_id() != 0) 525 kstat_this_cpu.irqs[irq]++; 526 527 /* we keep interrupt disabled all the time */ 528 local_timer_interrupt(irq, NULL, regs); 529 530 irq_exit(); 531 } 532 533 /* 534 * time_init() - it does the following things. 535 * 536 * 1) board_time_init() - 537 * a) (optional) set up RTC routines, 538 * b) (optional) calibrate and set the mips_hpt_frequency 539 * (only needed if you intended to use fixed_rate_gettimeoffset 540 * or use cpu counter as timer interrupt source) 541 * 2) setup xtime based on rtc_get_time(). 542 * 3) choose a appropriate gettimeoffset routine. 543 * 4) calculate a couple of cached variables for later usage 544 * 5) board_timer_setup() - 545 * a) (optional) over-write any choices made above by time_init(). 546 * b) machine specific code should setup the timer irqaction. 547 * c) enable the timer interrupt 548 */ 549 550 void (*board_time_init)(void); 551 void (*board_timer_setup)(struct irqaction *irq); 552 553 unsigned int mips_hpt_frequency; 554 555 static struct irqaction timer_irqaction = { 556 .handler = timer_interrupt, 557 .flags = SA_INTERRUPT, 558 .name = "timer", 559 }; 560 561 static unsigned int __init calibrate_hpt(void) 562 { 563 u64 frequency; 564 u32 hpt_start, hpt_end, hpt_count, hz; 565 566 const int loops = HZ / 10; 567 int log_2_loops = 0; 568 int i; 569 570 /* 571 * We want to calibrate for 0.1s, but to avoid a 64-bit 572 * division we round the number of loops up to the nearest 573 * power of 2. 574 */ 575 while (loops > 1 << log_2_loops) 576 log_2_loops++; 577 i = 1 << log_2_loops; 578 579 /* 580 * Wait for a rising edge of the timer interrupt. 581 */ 582 while (mips_timer_state()); 583 while (!mips_timer_state()); 584 585 /* 586 * Now see how many high precision timer ticks happen 587 * during the calculated number of periods between timer 588 * interrupts. 589 */ 590 hpt_start = mips_hpt_read(); 591 do { 592 while (mips_timer_state()); 593 while (!mips_timer_state()); 594 } while (--i); 595 hpt_end = mips_hpt_read(); 596 597 hpt_count = hpt_end - hpt_start; 598 hz = HZ; 599 frequency = (u64)hpt_count * (u64)hz; 600 601 return frequency >> log_2_loops; 602 } 603 604 void __init time_init(void) 605 { 606 if (board_time_init) 607 board_time_init(); 608 609 if (!rtc_set_mmss) 610 rtc_set_mmss = rtc_set_time; 611 612 xtime.tv_sec = rtc_get_time(); 613 xtime.tv_nsec = 0; 614 615 set_normalized_timespec(&wall_to_monotonic, 616 -xtime.tv_sec, -xtime.tv_nsec); 617 618 /* Choose appropriate high precision timer routines. */ 619 if (!cpu_has_counter && !mips_hpt_read) { 620 /* No high precision timer -- sorry. */ 621 mips_hpt_read = null_hpt_read; 622 mips_hpt_init = null_hpt_init; 623 } else if (!mips_hpt_frequency && !mips_timer_state) { 624 /* A high precision timer of unknown frequency. */ 625 if (!mips_hpt_read) { 626 /* No external high precision timer -- use R4k. */ 627 mips_hpt_read = c0_hpt_read; 628 mips_hpt_init = c0_hpt_init; 629 } 630 631 if ((current_cpu_data.isa_level == MIPS_CPU_ISA_M32) || 632 (current_cpu_data.isa_level == MIPS_CPU_ISA_I) || 633 (current_cpu_data.isa_level == MIPS_CPU_ISA_II)) 634 /* 635 * We need to calibrate the counter but we don't have 636 * 64-bit division. 637 */ 638 do_gettimeoffset = calibrate_div32_gettimeoffset; 639 else 640 /* 641 * We need to calibrate the counter but we *do* have 642 * 64-bit division. 643 */ 644 do_gettimeoffset = calibrate_div64_gettimeoffset; 645 } else { 646 /* We know counter frequency. Or we can get it. */ 647 if (!mips_hpt_read) { 648 /* No external high precision timer -- use R4k. */ 649 mips_hpt_read = c0_hpt_read; 650 651 if (mips_timer_state) 652 mips_hpt_init = c0_hpt_init; 653 else { 654 /* No external timer interrupt -- use R4k. */ 655 mips_hpt_init = c0_hpt_timer_init; 656 mips_timer_ack = c0_timer_ack; 657 } 658 } 659 if (!mips_hpt_frequency) 660 mips_hpt_frequency = calibrate_hpt(); 661 662 do_gettimeoffset = fixed_rate_gettimeoffset; 663 664 /* Calculate cache parameters. */ 665 cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ; 666 667 /* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq */ 668 do_div64_32(sll32_usecs_per_cycle, 669 1000000, mips_hpt_frequency / 2, 670 mips_hpt_frequency); 671 672 /* Report the high precision timer rate for a reference. */ 673 printk("Using %u.%03u MHz high precision timer.\n", 674 ((mips_hpt_frequency + 500) / 1000) / 1000, 675 ((mips_hpt_frequency + 500) / 1000) % 1000); 676 } 677 678 if (!mips_timer_ack) 679 /* No timer interrupt ack (e.g. i8254). */ 680 mips_timer_ack = null_timer_ack; 681 682 /* This sets up the high precision timer for the first interrupt. */ 683 mips_hpt_init(mips_hpt_read()); 684 685 /* 686 * Call board specific timer interrupt setup. 687 * 688 * this pointer must be setup in machine setup routine. 689 * 690 * Even if a machine chooses to use a low-level timer interrupt, 691 * it still needs to setup the timer_irqaction. 692 * In that case, it might be better to set timer_irqaction.handler 693 * to be NULL function so that we are sure the high-level code 694 * is not invoked accidentally. 695 */ 696 board_timer_setup(&timer_irqaction); 697 } 698 699 #define FEBRUARY 2 700 #define STARTOFTIME 1970 701 #define SECDAY 86400L 702 #define SECYR (SECDAY * 365) 703 #define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400)) 704 #define days_in_year(y) (leapyear(y) ? 366 : 365) 705 #define days_in_month(m) (month_days[(m) - 1]) 706 707 static int month_days[12] = { 708 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 709 }; 710 711 void to_tm(unsigned long tim, struct rtc_time *tm) 712 { 713 long hms, day, gday; 714 int i; 715 716 gday = day = tim / SECDAY; 717 hms = tim % SECDAY; 718 719 /* Hours, minutes, seconds are easy */ 720 tm->tm_hour = hms / 3600; 721 tm->tm_min = (hms % 3600) / 60; 722 tm->tm_sec = (hms % 3600) % 60; 723 724 /* Number of years in days */ 725 for (i = STARTOFTIME; day >= days_in_year(i); i++) 726 day -= days_in_year(i); 727 tm->tm_year = i; 728 729 /* Number of months in days left */ 730 if (leapyear(tm->tm_year)) 731 days_in_month(FEBRUARY) = 29; 732 for (i = 1; day >= days_in_month(i); i++) 733 day -= days_in_month(i); 734 days_in_month(FEBRUARY) = 28; 735 tm->tm_mon = i - 1; /* tm_mon starts from 0 to 11 */ 736 737 /* Days are what is left over (+1) from all that. */ 738 tm->tm_mday = day + 1; 739 740 /* 741 * Determine the day of week 742 */ 743 tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */ 744 } 745 746 EXPORT_SYMBOL(rtc_lock); 747 EXPORT_SYMBOL(to_tm); 748 EXPORT_SYMBOL(rtc_set_time); 749 EXPORT_SYMBOL(rtc_get_time); 750 751 unsigned long long sched_clock(void) 752 { 753 return (unsigned long long)jiffies*(1000000000/HZ); 754 } 755