xref: /openbmc/linux/arch/mips/kernel/time.c (revision 87c2ce3b)
1 /*
2  * Copyright 2001 MontaVista Software Inc.
3  * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
4  * Copyright (c) 2003, 2004  Maciej W. Rozycki
5  *
6  * Common time service routines for MIPS machines. See
7  * Documentation/mips/time.README.
8  *
9  * This program is free software; you can redistribute  it and/or modify it
10  * under  the terms of  the GNU General  Public License as published by the
11  * Free Software Foundation;  either version 2 of the  License, or (at your
12  * option) any later version.
13  */
14 #include <linux/config.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/param.h>
20 #include <linux/time.h>
21 #include <linux/timex.h>
22 #include <linux/smp.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/module.h>
27 
28 #include <asm/bootinfo.h>
29 #include <asm/cache.h>
30 #include <asm/compiler.h>
31 #include <asm/cpu.h>
32 #include <asm/cpu-features.h>
33 #include <asm/div64.h>
34 #include <asm/sections.h>
35 #include <asm/time.h>
36 
37 /*
38  * The integer part of the number of usecs per jiffy is taken from tick,
39  * but the fractional part is not recorded, so we calculate it using the
40  * initial value of HZ.  This aids systems where tick isn't really an
41  * integer (e.g. for HZ = 128).
42  */
43 #define USECS_PER_JIFFY		TICK_SIZE
44 #define USECS_PER_JIFFY_FRAC	((unsigned long)(u32)((1000000ULL << 32) / HZ))
45 
46 #define TICK_SIZE	(tick_nsec / 1000)
47 
48 /*
49  * forward reference
50  */
51 extern volatile unsigned long wall_jiffies;
52 
53 DEFINE_SPINLOCK(rtc_lock);
54 
55 /*
56  * By default we provide the null RTC ops
57  */
58 static unsigned long null_rtc_get_time(void)
59 {
60 	return mktime(2000, 1, 1, 0, 0, 0);
61 }
62 
63 static int null_rtc_set_time(unsigned long sec)
64 {
65 	return 0;
66 }
67 
68 unsigned long (*rtc_get_time)(void) = null_rtc_get_time;
69 int (*rtc_set_time)(unsigned long) = null_rtc_set_time;
70 int (*rtc_set_mmss)(unsigned long);
71 
72 
73 /* usecs per counter cycle, shifted to left by 32 bits */
74 static unsigned int sll32_usecs_per_cycle;
75 
76 /* how many counter cycles in a jiffy */
77 static unsigned long cycles_per_jiffy __read_mostly;
78 
79 /* Cycle counter value at the previous timer interrupt.. */
80 static unsigned int timerhi, timerlo;
81 
82 /* expirelo is the count value for next CPU timer interrupt */
83 static unsigned int expirelo;
84 
85 
86 /*
87  * Null timer ack for systems not needing one (e.g. i8254).
88  */
89 static void null_timer_ack(void) { /* nothing */ }
90 
91 /*
92  * Null high precision timer functions for systems lacking one.
93  */
94 static unsigned int null_hpt_read(void)
95 {
96 	return 0;
97 }
98 
99 static void null_hpt_init(unsigned int count)
100 {
101 	/* nothing */
102 }
103 
104 
105 /*
106  * Timer ack for an R4k-compatible timer of a known frequency.
107  */
108 static void c0_timer_ack(void)
109 {
110 	unsigned int count;
111 
112 #ifndef CONFIG_SOC_PNX8550	/* pnx8550 resets to zero */
113 	/* Ack this timer interrupt and set the next one.  */
114 	expirelo += cycles_per_jiffy;
115 #endif
116 	write_c0_compare(expirelo);
117 
118 	/* Check to see if we have missed any timer interrupts.  */
119 	count = read_c0_count();
120 	if ((count - expirelo) < 0x7fffffff) {
121 		/* missed_timer_count++; */
122 		expirelo = count + cycles_per_jiffy;
123 		write_c0_compare(expirelo);
124 	}
125 }
126 
127 /*
128  * High precision timer functions for a R4k-compatible timer.
129  */
130 static unsigned int c0_hpt_read(void)
131 {
132 	return read_c0_count();
133 }
134 
135 /* For use solely as a high precision timer.  */
136 static void c0_hpt_init(unsigned int count)
137 {
138 	write_c0_count(read_c0_count() - count);
139 }
140 
141 /* For use both as a high precision timer and an interrupt source.  */
142 static void c0_hpt_timer_init(unsigned int count)
143 {
144 	count = read_c0_count() - count;
145 	expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy;
146 	write_c0_count(expirelo - cycles_per_jiffy);
147 	write_c0_compare(expirelo);
148 	write_c0_count(count);
149 }
150 
151 int (*mips_timer_state)(void);
152 void (*mips_timer_ack)(void);
153 unsigned int (*mips_hpt_read)(void);
154 void (*mips_hpt_init)(unsigned int);
155 
156 
157 /*
158  * This version of gettimeofday has microsecond resolution and better than
159  * microsecond precision on fast machines with cycle counter.
160  */
161 void do_gettimeofday(struct timeval *tv)
162 {
163 	unsigned long seq;
164 	unsigned long lost;
165 	unsigned long usec, sec;
166 	unsigned long max_ntp_tick = tick_usec - tickadj;
167 
168 	do {
169 		seq = read_seqbegin(&xtime_lock);
170 
171 		usec = do_gettimeoffset();
172 
173 		lost = jiffies - wall_jiffies;
174 
175 		/*
176 		 * If time_adjust is negative then NTP is slowing the clock
177 		 * so make sure not to go into next possible interval.
178 		 * Better to lose some accuracy than have time go backwards..
179 		 */
180 		if (unlikely(time_adjust < 0)) {
181 			usec = min(usec, max_ntp_tick);
182 
183 			if (lost)
184 				usec += lost * max_ntp_tick;
185 		} else if (unlikely(lost))
186 			usec += lost * tick_usec;
187 
188 		sec = xtime.tv_sec;
189 		usec += (xtime.tv_nsec / 1000);
190 
191 	} while (read_seqretry(&xtime_lock, seq));
192 
193 	while (usec >= 1000000) {
194 		usec -= 1000000;
195 		sec++;
196 	}
197 
198 	tv->tv_sec = sec;
199 	tv->tv_usec = usec;
200 }
201 
202 EXPORT_SYMBOL(do_gettimeofday);
203 
204 int do_settimeofday(struct timespec *tv)
205 {
206 	time_t wtm_sec, sec = tv->tv_sec;
207 	long wtm_nsec, nsec = tv->tv_nsec;
208 
209 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
210 		return -EINVAL;
211 
212 	write_seqlock_irq(&xtime_lock);
213 
214 	/*
215 	 * This is revolting.  We need to set "xtime" correctly.  However,
216 	 * the value in this location is the value at the most recent update
217 	 * of wall time.  Discover what correction gettimeofday() would have
218 	 * made, and then undo it!
219 	 */
220 	nsec -= do_gettimeoffset() * NSEC_PER_USEC;
221 	nsec -= (jiffies - wall_jiffies) * tick_nsec;
222 
223 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
224 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
225 
226 	set_normalized_timespec(&xtime, sec, nsec);
227 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
228 
229 	ntp_clear();
230 	write_sequnlock_irq(&xtime_lock);
231 	clock_was_set();
232 	return 0;
233 }
234 
235 EXPORT_SYMBOL(do_settimeofday);
236 
237 /*
238  * Gettimeoffset routines.  These routines returns the time duration
239  * since last timer interrupt in usecs.
240  *
241  * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset.
242  * Otherwise use calibrate_gettimeoffset()
243  *
244  * If the CPU does not have the counter register, you can either supply
245  * your own gettimeoffset() routine, or use null_gettimeoffset(), which
246  * gives the same resolution as HZ.
247  */
248 
249 static unsigned long null_gettimeoffset(void)
250 {
251 	return 0;
252 }
253 
254 
255 /* The function pointer to one of the gettimeoffset funcs.  */
256 unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset;
257 
258 
259 static unsigned long fixed_rate_gettimeoffset(void)
260 {
261 	u32 count;
262 	unsigned long res;
263 
264 	/* Get last timer tick in absolute kernel time */
265 	count = mips_hpt_read();
266 
267 	/* .. relative to previous jiffy (32 bits is enough) */
268 	count -= timerlo;
269 
270 	__asm__("multu	%1,%2"
271 		: "=h" (res)
272 		: "r" (count), "r" (sll32_usecs_per_cycle)
273 		: "lo", GCC_REG_ACCUM);
274 
275 	/*
276 	 * Due to possible jiffies inconsistencies, we need to check
277 	 * the result so that we'll get a timer that is monotonic.
278 	 */
279 	if (res >= USECS_PER_JIFFY)
280 		res = USECS_PER_JIFFY - 1;
281 
282 	return res;
283 }
284 
285 
286 /*
287  * Cached "1/(clocks per usec) * 2^32" value.
288  * It has to be recalculated once each jiffy.
289  */
290 static unsigned long cached_quotient;
291 
292 /* Last jiffy when calibrate_divXX_gettimeoffset() was called. */
293 static unsigned long last_jiffies;
294 
295 /*
296  * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej.
297  */
298 static unsigned long calibrate_div32_gettimeoffset(void)
299 {
300 	u32 count;
301 	unsigned long res, tmp;
302 	unsigned long quotient;
303 
304 	tmp = jiffies;
305 
306 	quotient = cached_quotient;
307 
308 	if (last_jiffies != tmp) {
309 		last_jiffies = tmp;
310 		if (last_jiffies != 0) {
311 			unsigned long r0;
312 			do_div64_32(r0, timerhi, timerlo, tmp);
313 			do_div64_32(quotient, USECS_PER_JIFFY,
314 				    USECS_PER_JIFFY_FRAC, r0);
315 			cached_quotient = quotient;
316 		}
317 	}
318 
319 	/* Get last timer tick in absolute kernel time */
320 	count = mips_hpt_read();
321 
322 	/* .. relative to previous jiffy (32 bits is enough) */
323 	count -= timerlo;
324 
325 	__asm__("multu  %1,%2"
326 		: "=h" (res)
327 		: "r" (count), "r" (quotient)
328 		: "lo", GCC_REG_ACCUM);
329 
330 	/*
331 	 * Due to possible jiffies inconsistencies, we need to check
332 	 * the result so that we'll get a timer that is monotonic.
333 	 */
334 	if (res >= USECS_PER_JIFFY)
335 		res = USECS_PER_JIFFY - 1;
336 
337 	return res;
338 }
339 
340 static unsigned long calibrate_div64_gettimeoffset(void)
341 {
342 	u32 count;
343 	unsigned long res, tmp;
344 	unsigned long quotient;
345 
346 	tmp = jiffies;
347 
348 	quotient = cached_quotient;
349 
350 	if (last_jiffies != tmp) {
351 		last_jiffies = tmp;
352 		if (last_jiffies) {
353 			unsigned long r0;
354 			__asm__(".set	push\n\t"
355 				".set	mips3\n\t"
356 				"lwu	%0,%3\n\t"
357 				"dsll32	%1,%2,0\n\t"
358 				"or	%1,%1,%0\n\t"
359 				"ddivu	$0,%1,%4\n\t"
360 				"mflo	%1\n\t"
361 				"dsll32	%0,%5,0\n\t"
362 				"or	%0,%0,%6\n\t"
363 				"ddivu	$0,%0,%1\n\t"
364 				"mflo	%0\n\t"
365 				".set	pop"
366 				: "=&r" (quotient), "=&r" (r0)
367 				: "r" (timerhi), "m" (timerlo),
368 				  "r" (tmp), "r" (USECS_PER_JIFFY),
369 				  "r" (USECS_PER_JIFFY_FRAC)
370 				: "hi", "lo", GCC_REG_ACCUM);
371 			cached_quotient = quotient;
372 		}
373 	}
374 
375 	/* Get last timer tick in absolute kernel time */
376 	count = mips_hpt_read();
377 
378 	/* .. relative to previous jiffy (32 bits is enough) */
379 	count -= timerlo;
380 
381 	__asm__("multu	%1,%2"
382 		: "=h" (res)
383 		: "r" (count), "r" (quotient)
384 		: "lo", GCC_REG_ACCUM);
385 
386 	/*
387 	 * Due to possible jiffies inconsistencies, we need to check
388 	 * the result so that we'll get a timer that is monotonic.
389 	 */
390 	if (res >= USECS_PER_JIFFY)
391 		res = USECS_PER_JIFFY - 1;
392 
393 	return res;
394 }
395 
396 
397 /* last time when xtime and rtc are sync'ed up */
398 static long last_rtc_update;
399 
400 /*
401  * local_timer_interrupt() does profiling and process accounting
402  * on a per-CPU basis.
403  *
404  * In UP mode, it is invoked from the (global) timer_interrupt.
405  *
406  * In SMP mode, it might invoked by per-CPU timer interrupt, or
407  * a broadcasted inter-processor interrupt which itself is triggered
408  * by the global timer interrupt.
409  */
410 void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
411 {
412 	if (current->pid)
413 		profile_tick(CPU_PROFILING, regs);
414 	update_process_times(user_mode(regs));
415 }
416 
417 /*
418  * High-level timer interrupt service routines.  This function
419  * is set as irqaction->handler and is invoked through do_IRQ.
420  */
421 irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
422 {
423 	unsigned long j;
424 	unsigned int count;
425 
426 	count = mips_hpt_read();
427 	mips_timer_ack();
428 
429 	/* Update timerhi/timerlo for intra-jiffy calibration. */
430 	timerhi += count < timerlo;			/* Wrap around */
431 	timerlo = count;
432 
433 	/*
434 	 * call the generic timer interrupt handling
435 	 */
436 	do_timer(regs);
437 
438 	/*
439 	 * If we have an externally synchronized Linux clock, then update
440 	 * CMOS clock accordingly every ~11 minutes. rtc_set_time() has to be
441 	 * called as close as possible to 500 ms before the new second starts.
442 	 */
443 	write_seqlock(&xtime_lock);
444 	if (ntp_synced() &&
445 	    xtime.tv_sec > last_rtc_update + 660 &&
446 	    (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
447 	    (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
448 		if (rtc_set_mmss(xtime.tv_sec) == 0) {
449 			last_rtc_update = xtime.tv_sec;
450 		} else {
451 			/* do it again in 60 s */
452 			last_rtc_update = xtime.tv_sec - 600;
453 		}
454 	}
455 	write_sequnlock(&xtime_lock);
456 
457 	/*
458 	 * If jiffies has overflown in this timer_interrupt, we must
459 	 * update the timer[hi]/[lo] to make fast gettimeoffset funcs
460 	 * quotient calc still valid. -arca
461 	 *
462 	 * The first timer interrupt comes late as interrupts are
463 	 * enabled long after timers are initialized.  Therefore the
464 	 * high precision timer is fast, leading to wrong gettimeoffset()
465 	 * calculations.  We deal with it by setting it based on the
466 	 * number of its ticks between the second and the third interrupt.
467 	 * That is still somewhat imprecise, but it's a good estimate.
468 	 * --macro
469 	 */
470 	j = jiffies;
471 	if (j < 4) {
472 		static unsigned int prev_count;
473 		static int hpt_initialized;
474 
475 		switch (j) {
476 		case 0:
477 			timerhi = timerlo = 0;
478 			mips_hpt_init(count);
479 			break;
480 		case 2:
481 			prev_count = count;
482 			break;
483 		case 3:
484 			if (!hpt_initialized) {
485 				unsigned int c3 = 3 * (count - prev_count);
486 
487 				timerhi = 0;
488 				timerlo = c3;
489 				mips_hpt_init(count - c3);
490 				hpt_initialized = 1;
491 			}
492 			break;
493 		default:
494 			break;
495 		}
496 	}
497 
498 	/*
499 	 * In UP mode, we call local_timer_interrupt() to do profiling
500 	 * and process accouting.
501 	 *
502 	 * In SMP mode, local_timer_interrupt() is invoked by appropriate
503 	 * low-level local timer interrupt handler.
504 	 */
505 	local_timer_interrupt(irq, dev_id, regs);
506 
507 	return IRQ_HANDLED;
508 }
509 
510 asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs)
511 {
512 	irq_enter();
513 	kstat_this_cpu.irqs[irq]++;
514 
515 	/* we keep interrupt disabled all the time */
516 	timer_interrupt(irq, NULL, regs);
517 
518 	irq_exit();
519 }
520 
521 asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs)
522 {
523 	irq_enter();
524 	if (smp_processor_id() != 0)
525 		kstat_this_cpu.irqs[irq]++;
526 
527 	/* we keep interrupt disabled all the time */
528 	local_timer_interrupt(irq, NULL, regs);
529 
530 	irq_exit();
531 }
532 
533 /*
534  * time_init() - it does the following things.
535  *
536  * 1) board_time_init() -
537  * 	a) (optional) set up RTC routines,
538  *      b) (optional) calibrate and set the mips_hpt_frequency
539  *	    (only needed if you intended to use fixed_rate_gettimeoffset
540  *	     or use cpu counter as timer interrupt source)
541  * 2) setup xtime based on rtc_get_time().
542  * 3) choose a appropriate gettimeoffset routine.
543  * 4) calculate a couple of cached variables for later usage
544  * 5) board_timer_setup() -
545  *	a) (optional) over-write any choices made above by time_init().
546  *	b) machine specific code should setup the timer irqaction.
547  *	c) enable the timer interrupt
548  */
549 
550 void (*board_time_init)(void);
551 void (*board_timer_setup)(struct irqaction *irq);
552 
553 unsigned int mips_hpt_frequency;
554 
555 static struct irqaction timer_irqaction = {
556 	.handler = timer_interrupt,
557 	.flags = SA_INTERRUPT,
558 	.name = "timer",
559 };
560 
561 static unsigned int __init calibrate_hpt(void)
562 {
563 	u64 frequency;
564 	u32 hpt_start, hpt_end, hpt_count, hz;
565 
566 	const int loops = HZ / 10;
567 	int log_2_loops = 0;
568 	int i;
569 
570 	/*
571 	 * We want to calibrate for 0.1s, but to avoid a 64-bit
572 	 * division we round the number of loops up to the nearest
573 	 * power of 2.
574 	 */
575 	while (loops > 1 << log_2_loops)
576 		log_2_loops++;
577 	i = 1 << log_2_loops;
578 
579 	/*
580 	 * Wait for a rising edge of the timer interrupt.
581 	 */
582 	while (mips_timer_state());
583 	while (!mips_timer_state());
584 
585 	/*
586 	 * Now see how many high precision timer ticks happen
587 	 * during the calculated number of periods between timer
588 	 * interrupts.
589 	 */
590 	hpt_start = mips_hpt_read();
591 	do {
592 		while (mips_timer_state());
593 		while (!mips_timer_state());
594 	} while (--i);
595 	hpt_end = mips_hpt_read();
596 
597 	hpt_count = hpt_end - hpt_start;
598 	hz = HZ;
599 	frequency = (u64)hpt_count * (u64)hz;
600 
601 	return frequency >> log_2_loops;
602 }
603 
604 void __init time_init(void)
605 {
606 	if (board_time_init)
607 		board_time_init();
608 
609 	if (!rtc_set_mmss)
610 		rtc_set_mmss = rtc_set_time;
611 
612 	xtime.tv_sec = rtc_get_time();
613 	xtime.tv_nsec = 0;
614 
615 	set_normalized_timespec(&wall_to_monotonic,
616 	                        -xtime.tv_sec, -xtime.tv_nsec);
617 
618 	/* Choose appropriate high precision timer routines.  */
619 	if (!cpu_has_counter && !mips_hpt_read) {
620 		/* No high precision timer -- sorry.  */
621 		mips_hpt_read = null_hpt_read;
622 		mips_hpt_init = null_hpt_init;
623 	} else if (!mips_hpt_frequency && !mips_timer_state) {
624 		/* A high precision timer of unknown frequency.  */
625 		if (!mips_hpt_read) {
626 			/* No external high precision timer -- use R4k.  */
627 			mips_hpt_read = c0_hpt_read;
628 			mips_hpt_init = c0_hpt_init;
629 		}
630 
631 		if ((current_cpu_data.isa_level == MIPS_CPU_ISA_M32) ||
632 			 (current_cpu_data.isa_level == MIPS_CPU_ISA_I) ||
633 			 (current_cpu_data.isa_level == MIPS_CPU_ISA_II))
634 			/*
635 			 * We need to calibrate the counter but we don't have
636 			 * 64-bit division.
637 			 */
638 			do_gettimeoffset = calibrate_div32_gettimeoffset;
639 		else
640 			/*
641 			 * We need to calibrate the counter but we *do* have
642 			 * 64-bit division.
643 			 */
644 			do_gettimeoffset = calibrate_div64_gettimeoffset;
645 	} else {
646 		/* We know counter frequency.  Or we can get it.  */
647 		if (!mips_hpt_read) {
648 			/* No external high precision timer -- use R4k.  */
649 			mips_hpt_read = c0_hpt_read;
650 
651 			if (mips_timer_state)
652 				mips_hpt_init = c0_hpt_init;
653 			else {
654 				/* No external timer interrupt -- use R4k.  */
655 				mips_hpt_init = c0_hpt_timer_init;
656 				mips_timer_ack = c0_timer_ack;
657 			}
658 		}
659 		if (!mips_hpt_frequency)
660 			mips_hpt_frequency = calibrate_hpt();
661 
662 		do_gettimeoffset = fixed_rate_gettimeoffset;
663 
664 		/* Calculate cache parameters.  */
665 		cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ;
666 
667 		/* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq  */
668 		do_div64_32(sll32_usecs_per_cycle,
669 			    1000000, mips_hpt_frequency / 2,
670 			    mips_hpt_frequency);
671 
672 		/* Report the high precision timer rate for a reference.  */
673 		printk("Using %u.%03u MHz high precision timer.\n",
674 		       ((mips_hpt_frequency + 500) / 1000) / 1000,
675 		       ((mips_hpt_frequency + 500) / 1000) % 1000);
676 	}
677 
678 	if (!mips_timer_ack)
679 		/* No timer interrupt ack (e.g. i8254).  */
680 		mips_timer_ack = null_timer_ack;
681 
682 	/* This sets up the high precision timer for the first interrupt.  */
683 	mips_hpt_init(mips_hpt_read());
684 
685 	/*
686 	 * Call board specific timer interrupt setup.
687 	 *
688 	 * this pointer must be setup in machine setup routine.
689 	 *
690 	 * Even if a machine chooses to use a low-level timer interrupt,
691 	 * it still needs to setup the timer_irqaction.
692 	 * In that case, it might be better to set timer_irqaction.handler
693 	 * to be NULL function so that we are sure the high-level code
694 	 * is not invoked accidentally.
695 	 */
696 	board_timer_setup(&timer_irqaction);
697 }
698 
699 #define FEBRUARY		2
700 #define STARTOFTIME		1970
701 #define SECDAY			86400L
702 #define SECYR			(SECDAY * 365)
703 #define leapyear(y)		((!((y) % 4) && ((y) % 100)) || !((y) % 400))
704 #define days_in_year(y)		(leapyear(y) ? 366 : 365)
705 #define days_in_month(m)	(month_days[(m) - 1])
706 
707 static int month_days[12] = {
708 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
709 };
710 
711 void to_tm(unsigned long tim, struct rtc_time *tm)
712 {
713 	long hms, day, gday;
714 	int i;
715 
716 	gday = day = tim / SECDAY;
717 	hms = tim % SECDAY;
718 
719 	/* Hours, minutes, seconds are easy */
720 	tm->tm_hour = hms / 3600;
721 	tm->tm_min = (hms % 3600) / 60;
722 	tm->tm_sec = (hms % 3600) % 60;
723 
724 	/* Number of years in days */
725 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
726 		day -= days_in_year(i);
727 	tm->tm_year = i;
728 
729 	/* Number of months in days left */
730 	if (leapyear(tm->tm_year))
731 		days_in_month(FEBRUARY) = 29;
732 	for (i = 1; day >= days_in_month(i); i++)
733 		day -= days_in_month(i);
734 	days_in_month(FEBRUARY) = 28;
735 	tm->tm_mon = i - 1;		/* tm_mon starts from 0 to 11 */
736 
737 	/* Days are what is left over (+1) from all that. */
738 	tm->tm_mday = day + 1;
739 
740 	/*
741 	 * Determine the day of week
742 	 */
743 	tm->tm_wday = (gday + 4) % 7;	/* 1970/1/1 was Thursday */
744 }
745 
746 EXPORT_SYMBOL(rtc_lock);
747 EXPORT_SYMBOL(to_tm);
748 EXPORT_SYMBOL(rtc_set_time);
749 EXPORT_SYMBOL(rtc_get_time);
750 
751 unsigned long long sched_clock(void)
752 {
753 	return (unsigned long long)jiffies*(1000000000/HZ);
754 }
755