xref: /openbmc/linux/arch/mips/kernel/smp.c (revision feac8c8b)
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License
4  * as published by the Free Software Foundation; either version 2
5  * of the License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15  *
16  * Copyright (C) 2000, 2001 Kanoj Sarcar
17  * Copyright (C) 2000, 2001 Ralf Baechle
18  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20  */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/export.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched/mm.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 #include <linux/ftrace.h>
36 #include <linux/irqdomain.h>
37 #include <linux/of.h>
38 #include <linux/of_irq.h>
39 
40 #include <linux/atomic.h>
41 #include <asm/cpu.h>
42 #include <asm/processor.h>
43 #include <asm/idle.h>
44 #include <asm/r4k-timer.h>
45 #include <asm/mips-cps.h>
46 #include <asm/mmu_context.h>
47 #include <asm/time.h>
48 #include <asm/setup.h>
49 #include <asm/maar.h>
50 
51 int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP];   /* Map physical to logical */
52 EXPORT_SYMBOL(__cpu_number_map);
53 
54 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
55 EXPORT_SYMBOL(__cpu_logical_map);
56 
57 /* Number of TCs (or siblings in Intel speak) per CPU core */
58 int smp_num_siblings = 1;
59 EXPORT_SYMBOL(smp_num_siblings);
60 
61 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
62 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
63 EXPORT_SYMBOL(cpu_sibling_map);
64 
65 /* representing the core map of multi-core chips of each logical CPU */
66 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
67 EXPORT_SYMBOL(cpu_core_map);
68 
69 static DECLARE_COMPLETION(cpu_starting);
70 static DECLARE_COMPLETION(cpu_running);
71 
72 /*
73  * A logcal cpu mask containing only one VPE per core to
74  * reduce the number of IPIs on large MT systems.
75  */
76 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
77 EXPORT_SYMBOL(cpu_foreign_map);
78 
79 /* representing cpus for which sibling maps can be computed */
80 static cpumask_t cpu_sibling_setup_map;
81 
82 /* representing cpus for which core maps can be computed */
83 static cpumask_t cpu_core_setup_map;
84 
85 cpumask_t cpu_coherent_mask;
86 
87 #ifdef CONFIG_GENERIC_IRQ_IPI
88 static struct irq_desc *call_desc;
89 static struct irq_desc *sched_desc;
90 #endif
91 
92 static inline void set_cpu_sibling_map(int cpu)
93 {
94 	int i;
95 
96 	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
97 
98 	if (smp_num_siblings > 1) {
99 		for_each_cpu(i, &cpu_sibling_setup_map) {
100 			if (cpus_are_siblings(cpu, i)) {
101 				cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
102 				cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
103 			}
104 		}
105 	} else
106 		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
107 }
108 
109 static inline void set_cpu_core_map(int cpu)
110 {
111 	int i;
112 
113 	cpumask_set_cpu(cpu, &cpu_core_setup_map);
114 
115 	for_each_cpu(i, &cpu_core_setup_map) {
116 		if (cpu_data[cpu].package == cpu_data[i].package) {
117 			cpumask_set_cpu(i, &cpu_core_map[cpu]);
118 			cpumask_set_cpu(cpu, &cpu_core_map[i]);
119 		}
120 	}
121 }
122 
123 /*
124  * Calculate a new cpu_foreign_map mask whenever a
125  * new cpu appears or disappears.
126  */
127 void calculate_cpu_foreign_map(void)
128 {
129 	int i, k, core_present;
130 	cpumask_t temp_foreign_map;
131 
132 	/* Re-calculate the mask */
133 	cpumask_clear(&temp_foreign_map);
134 	for_each_online_cpu(i) {
135 		core_present = 0;
136 		for_each_cpu(k, &temp_foreign_map)
137 			if (cpus_are_siblings(i, k))
138 				core_present = 1;
139 		if (!core_present)
140 			cpumask_set_cpu(i, &temp_foreign_map);
141 	}
142 
143 	for_each_online_cpu(i)
144 		cpumask_andnot(&cpu_foreign_map[i],
145 			       &temp_foreign_map, &cpu_sibling_map[i]);
146 }
147 
148 const struct plat_smp_ops *mp_ops;
149 EXPORT_SYMBOL(mp_ops);
150 
151 void register_smp_ops(const struct plat_smp_ops *ops)
152 {
153 	if (mp_ops)
154 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
155 
156 	mp_ops = ops;
157 }
158 
159 #ifdef CONFIG_GENERIC_IRQ_IPI
160 void mips_smp_send_ipi_single(int cpu, unsigned int action)
161 {
162 	mips_smp_send_ipi_mask(cpumask_of(cpu), action);
163 }
164 
165 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
166 {
167 	unsigned long flags;
168 	unsigned int core;
169 	int cpu;
170 
171 	local_irq_save(flags);
172 
173 	switch (action) {
174 	case SMP_CALL_FUNCTION:
175 		__ipi_send_mask(call_desc, mask);
176 		break;
177 
178 	case SMP_RESCHEDULE_YOURSELF:
179 		__ipi_send_mask(sched_desc, mask);
180 		break;
181 
182 	default:
183 		BUG();
184 	}
185 
186 	if (mips_cpc_present()) {
187 		for_each_cpu(cpu, mask) {
188 			if (cpus_are_siblings(cpu, smp_processor_id()))
189 				continue;
190 
191 			core = cpu_core(&cpu_data[cpu]);
192 
193 			while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
194 				mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
195 				mips_cpc_lock_other(core);
196 				write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
197 				mips_cpc_unlock_other();
198 				mips_cm_unlock_other();
199 			}
200 		}
201 	}
202 
203 	local_irq_restore(flags);
204 }
205 
206 
207 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
208 {
209 	scheduler_ipi();
210 
211 	return IRQ_HANDLED;
212 }
213 
214 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
215 {
216 	generic_smp_call_function_interrupt();
217 
218 	return IRQ_HANDLED;
219 }
220 
221 static struct irqaction irq_resched = {
222 	.handler	= ipi_resched_interrupt,
223 	.flags		= IRQF_PERCPU,
224 	.name		= "IPI resched"
225 };
226 
227 static struct irqaction irq_call = {
228 	.handler	= ipi_call_interrupt,
229 	.flags		= IRQF_PERCPU,
230 	.name		= "IPI call"
231 };
232 
233 static void smp_ipi_init_one(unsigned int virq,
234 				    struct irqaction *action)
235 {
236 	int ret;
237 
238 	irq_set_handler(virq, handle_percpu_irq);
239 	ret = setup_irq(virq, action);
240 	BUG_ON(ret);
241 }
242 
243 static unsigned int call_virq, sched_virq;
244 
245 int mips_smp_ipi_allocate(const struct cpumask *mask)
246 {
247 	int virq;
248 	struct irq_domain *ipidomain;
249 	struct device_node *node;
250 
251 	node = of_irq_find_parent(of_root);
252 	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
253 
254 	/*
255 	 * Some platforms have half DT setup. So if we found irq node but
256 	 * didn't find an ipidomain, try to search for one that is not in the
257 	 * DT.
258 	 */
259 	if (node && !ipidomain)
260 		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
261 
262 	/*
263 	 * There are systems which use IPI IRQ domains, but only have one
264 	 * registered when some runtime condition is met. For example a Malta
265 	 * kernel may include support for GIC & CPU interrupt controller IPI
266 	 * IRQ domains, but if run on a system with no GIC & no MT ASE then
267 	 * neither will be supported or registered.
268 	 *
269 	 * We only have a problem if we're actually using multiple CPUs so fail
270 	 * loudly if that is the case. Otherwise simply return, skipping IPI
271 	 * setup, if we're running with only a single CPU.
272 	 */
273 	if (!ipidomain) {
274 		BUG_ON(num_present_cpus() > 1);
275 		return 0;
276 	}
277 
278 	virq = irq_reserve_ipi(ipidomain, mask);
279 	BUG_ON(!virq);
280 	if (!call_virq)
281 		call_virq = virq;
282 
283 	virq = irq_reserve_ipi(ipidomain, mask);
284 	BUG_ON(!virq);
285 	if (!sched_virq)
286 		sched_virq = virq;
287 
288 	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
289 		int cpu;
290 
291 		for_each_cpu(cpu, mask) {
292 			smp_ipi_init_one(call_virq + cpu, &irq_call);
293 			smp_ipi_init_one(sched_virq + cpu, &irq_resched);
294 		}
295 	} else {
296 		smp_ipi_init_one(call_virq, &irq_call);
297 		smp_ipi_init_one(sched_virq, &irq_resched);
298 	}
299 
300 	return 0;
301 }
302 
303 int mips_smp_ipi_free(const struct cpumask *mask)
304 {
305 	struct irq_domain *ipidomain;
306 	struct device_node *node;
307 
308 	node = of_irq_find_parent(of_root);
309 	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
310 
311 	/*
312 	 * Some platforms have half DT setup. So if we found irq node but
313 	 * didn't find an ipidomain, try to search for one that is not in the
314 	 * DT.
315 	 */
316 	if (node && !ipidomain)
317 		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
318 
319 	BUG_ON(!ipidomain);
320 
321 	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
322 		int cpu;
323 
324 		for_each_cpu(cpu, mask) {
325 			remove_irq(call_virq + cpu, &irq_call);
326 			remove_irq(sched_virq + cpu, &irq_resched);
327 		}
328 	}
329 	irq_destroy_ipi(call_virq, mask);
330 	irq_destroy_ipi(sched_virq, mask);
331 	return 0;
332 }
333 
334 
335 static int __init mips_smp_ipi_init(void)
336 {
337 	if (num_possible_cpus() == 1)
338 		return 0;
339 
340 	mips_smp_ipi_allocate(cpu_possible_mask);
341 
342 	call_desc = irq_to_desc(call_virq);
343 	sched_desc = irq_to_desc(sched_virq);
344 
345 	return 0;
346 }
347 early_initcall(mips_smp_ipi_init);
348 #endif
349 
350 /*
351  * First C code run on the secondary CPUs after being started up by
352  * the master.
353  */
354 asmlinkage void start_secondary(void)
355 {
356 	unsigned int cpu;
357 
358 	cpu_probe();
359 	per_cpu_trap_init(false);
360 	mips_clockevent_init();
361 	mp_ops->init_secondary();
362 	cpu_report();
363 	maar_init();
364 
365 	/*
366 	 * XXX parity protection should be folded in here when it's converted
367 	 * to an option instead of something based on .cputype
368 	 */
369 
370 	calibrate_delay();
371 	preempt_disable();
372 	cpu = smp_processor_id();
373 	cpu_data[cpu].udelay_val = loops_per_jiffy;
374 
375 	cpumask_set_cpu(cpu, &cpu_coherent_mask);
376 	notify_cpu_starting(cpu);
377 
378 	/* Notify boot CPU that we're starting & ready to sync counters */
379 	complete(&cpu_starting);
380 
381 	synchronise_count_slave(cpu);
382 
383 	/* The CPU is running and counters synchronised, now mark it online */
384 	set_cpu_online(cpu, true);
385 
386 	set_cpu_sibling_map(cpu);
387 	set_cpu_core_map(cpu);
388 
389 	calculate_cpu_foreign_map();
390 
391 	/*
392 	 * Notify boot CPU that we're up & online and it can safely return
393 	 * from __cpu_up
394 	 */
395 	complete(&cpu_running);
396 
397 	/*
398 	 * irq will be enabled in ->smp_finish(), enabling it too early
399 	 * is dangerous.
400 	 */
401 	WARN_ON_ONCE(!irqs_disabled());
402 	mp_ops->smp_finish();
403 
404 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
405 }
406 
407 static void stop_this_cpu(void *dummy)
408 {
409 	/*
410 	 * Remove this CPU:
411 	 */
412 
413 	set_cpu_online(smp_processor_id(), false);
414 	calculate_cpu_foreign_map();
415 	local_irq_disable();
416 	while (1);
417 }
418 
419 void smp_send_stop(void)
420 {
421 	smp_call_function(stop_this_cpu, NULL, 0);
422 }
423 
424 void __init smp_cpus_done(unsigned int max_cpus)
425 {
426 }
427 
428 /* called from main before smp_init() */
429 void __init smp_prepare_cpus(unsigned int max_cpus)
430 {
431 	init_new_context(current, &init_mm);
432 	current_thread_info()->cpu = 0;
433 	mp_ops->prepare_cpus(max_cpus);
434 	set_cpu_sibling_map(0);
435 	set_cpu_core_map(0);
436 	calculate_cpu_foreign_map();
437 #ifndef CONFIG_HOTPLUG_CPU
438 	init_cpu_present(cpu_possible_mask);
439 #endif
440 	cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
441 }
442 
443 /* preload SMP state for boot cpu */
444 void smp_prepare_boot_cpu(void)
445 {
446 	set_cpu_possible(0, true);
447 	set_cpu_online(0, true);
448 }
449 
450 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
451 {
452 	int err;
453 
454 	err = mp_ops->boot_secondary(cpu, tidle);
455 	if (err)
456 		return err;
457 
458 	/* Wait for CPU to start and be ready to sync counters */
459 	if (!wait_for_completion_timeout(&cpu_starting,
460 					 msecs_to_jiffies(1000))) {
461 		pr_crit("CPU%u: failed to start\n", cpu);
462 		return -EIO;
463 	}
464 
465 	synchronise_count_master(cpu);
466 
467 	/* Wait for CPU to finish startup & mark itself online before return */
468 	wait_for_completion(&cpu_running);
469 	return 0;
470 }
471 
472 /* Not really SMP stuff ... */
473 int setup_profiling_timer(unsigned int multiplier)
474 {
475 	return 0;
476 }
477 
478 static void flush_tlb_all_ipi(void *info)
479 {
480 	local_flush_tlb_all();
481 }
482 
483 void flush_tlb_all(void)
484 {
485 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
486 }
487 
488 static void flush_tlb_mm_ipi(void *mm)
489 {
490 	local_flush_tlb_mm((struct mm_struct *)mm);
491 }
492 
493 /*
494  * Special Variant of smp_call_function for use by TLB functions:
495  *
496  *  o No return value
497  *  o collapses to normal function call on UP kernels
498  *  o collapses to normal function call on systems with a single shared
499  *    primary cache.
500  */
501 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
502 {
503 	smp_call_function(func, info, 1);
504 }
505 
506 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
507 {
508 	preempt_disable();
509 
510 	smp_on_other_tlbs(func, info);
511 	func(info);
512 
513 	preempt_enable();
514 }
515 
516 /*
517  * The following tlb flush calls are invoked when old translations are
518  * being torn down, or pte attributes are changing. For single threaded
519  * address spaces, a new context is obtained on the current cpu, and tlb
520  * context on other cpus are invalidated to force a new context allocation
521  * at switch_mm time, should the mm ever be used on other cpus. For
522  * multithreaded address spaces, intercpu interrupts have to be sent.
523  * Another case where intercpu interrupts are required is when the target
524  * mm might be active on another cpu (eg debuggers doing the flushes on
525  * behalf of debugees, kswapd stealing pages from another process etc).
526  * Kanoj 07/00.
527  */
528 
529 void flush_tlb_mm(struct mm_struct *mm)
530 {
531 	preempt_disable();
532 
533 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
534 		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
535 	} else {
536 		unsigned int cpu;
537 
538 		for_each_online_cpu(cpu) {
539 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
540 				cpu_context(cpu, mm) = 0;
541 		}
542 	}
543 	local_flush_tlb_mm(mm);
544 
545 	preempt_enable();
546 }
547 
548 struct flush_tlb_data {
549 	struct vm_area_struct *vma;
550 	unsigned long addr1;
551 	unsigned long addr2;
552 };
553 
554 static void flush_tlb_range_ipi(void *info)
555 {
556 	struct flush_tlb_data *fd = info;
557 
558 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
559 }
560 
561 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
562 {
563 	struct mm_struct *mm = vma->vm_mm;
564 
565 	preempt_disable();
566 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
567 		struct flush_tlb_data fd = {
568 			.vma = vma,
569 			.addr1 = start,
570 			.addr2 = end,
571 		};
572 
573 		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
574 	} else {
575 		unsigned int cpu;
576 		int exec = vma->vm_flags & VM_EXEC;
577 
578 		for_each_online_cpu(cpu) {
579 			/*
580 			 * flush_cache_range() will only fully flush icache if
581 			 * the VMA is executable, otherwise we must invalidate
582 			 * ASID without it appearing to has_valid_asid() as if
583 			 * mm has been completely unused by that CPU.
584 			 */
585 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
586 				cpu_context(cpu, mm) = !exec;
587 		}
588 	}
589 	local_flush_tlb_range(vma, start, end);
590 	preempt_enable();
591 }
592 
593 static void flush_tlb_kernel_range_ipi(void *info)
594 {
595 	struct flush_tlb_data *fd = info;
596 
597 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
598 }
599 
600 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
601 {
602 	struct flush_tlb_data fd = {
603 		.addr1 = start,
604 		.addr2 = end,
605 	};
606 
607 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
608 }
609 
610 static void flush_tlb_page_ipi(void *info)
611 {
612 	struct flush_tlb_data *fd = info;
613 
614 	local_flush_tlb_page(fd->vma, fd->addr1);
615 }
616 
617 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
618 {
619 	preempt_disable();
620 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
621 		struct flush_tlb_data fd = {
622 			.vma = vma,
623 			.addr1 = page,
624 		};
625 
626 		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
627 	} else {
628 		unsigned int cpu;
629 
630 		for_each_online_cpu(cpu) {
631 			/*
632 			 * flush_cache_page() only does partial flushes, so
633 			 * invalidate ASID without it appearing to
634 			 * has_valid_asid() as if mm has been completely unused
635 			 * by that CPU.
636 			 */
637 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
638 				cpu_context(cpu, vma->vm_mm) = 1;
639 		}
640 	}
641 	local_flush_tlb_page(vma, page);
642 	preempt_enable();
643 }
644 
645 static void flush_tlb_one_ipi(void *info)
646 {
647 	unsigned long vaddr = (unsigned long) info;
648 
649 	local_flush_tlb_one(vaddr);
650 }
651 
652 void flush_tlb_one(unsigned long vaddr)
653 {
654 	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
655 }
656 
657 EXPORT_SYMBOL(flush_tlb_page);
658 EXPORT_SYMBOL(flush_tlb_one);
659 
660 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
661 
662 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
663 static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd);
664 
665 void tick_broadcast(const struct cpumask *mask)
666 {
667 	atomic_t *count;
668 	call_single_data_t *csd;
669 	int cpu;
670 
671 	for_each_cpu(cpu, mask) {
672 		count = &per_cpu(tick_broadcast_count, cpu);
673 		csd = &per_cpu(tick_broadcast_csd, cpu);
674 
675 		if (atomic_inc_return(count) == 1)
676 			smp_call_function_single_async(cpu, csd);
677 	}
678 }
679 
680 static void tick_broadcast_callee(void *info)
681 {
682 	int cpu = smp_processor_id();
683 	tick_receive_broadcast();
684 	atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
685 }
686 
687 static int __init tick_broadcast_init(void)
688 {
689 	call_single_data_t *csd;
690 	int cpu;
691 
692 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
693 		csd = &per_cpu(tick_broadcast_csd, cpu);
694 		csd->func = tick_broadcast_callee;
695 	}
696 
697 	return 0;
698 }
699 early_initcall(tick_broadcast_init);
700 
701 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
702