1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 2 5 * of the License, or (at your option) any later version. 6 * 7 * This program is distributed in the hope that it will be useful, 8 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 10 * GNU General Public License for more details. 11 * 12 * You should have received a copy of the GNU General Public License 13 * along with this program; if not, write to the Free Software 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 15 * 16 * Copyright (C) 2000, 2001 Kanoj Sarcar 17 * Copyright (C) 2000, 2001 Ralf Baechle 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 20 */ 21 #include <linux/cache.h> 22 #include <linux/delay.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/smp.h> 26 #include <linux/spinlock.h> 27 #include <linux/threads.h> 28 #include <linux/export.h> 29 #include <linux/time.h> 30 #include <linux/timex.h> 31 #include <linux/sched/mm.h> 32 #include <linux/cpumask.h> 33 #include <linux/cpu.h> 34 #include <linux/err.h> 35 #include <linux/ftrace.h> 36 #include <linux/irqdomain.h> 37 #include <linux/of.h> 38 #include <linux/of_irq.h> 39 40 #include <linux/atomic.h> 41 #include <asm/cpu.h> 42 #include <asm/processor.h> 43 #include <asm/idle.h> 44 #include <asm/r4k-timer.h> 45 #include <asm/mips-cps.h> 46 #include <asm/mmu_context.h> 47 #include <asm/time.h> 48 #include <asm/setup.h> 49 #include <asm/maar.h> 50 51 int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP]; /* Map physical to logical */ 52 EXPORT_SYMBOL(__cpu_number_map); 53 54 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 55 EXPORT_SYMBOL(__cpu_logical_map); 56 57 /* Number of TCs (or siblings in Intel speak) per CPU core */ 58 int smp_num_siblings = 1; 59 EXPORT_SYMBOL(smp_num_siblings); 60 61 /* representing the TCs (or siblings in Intel speak) of each logical CPU */ 62 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; 63 EXPORT_SYMBOL(cpu_sibling_map); 64 65 /* representing the core map of multi-core chips of each logical CPU */ 66 cpumask_t cpu_core_map[NR_CPUS] __read_mostly; 67 EXPORT_SYMBOL(cpu_core_map); 68 69 static DECLARE_COMPLETION(cpu_starting); 70 static DECLARE_COMPLETION(cpu_running); 71 72 /* 73 * A logcal cpu mask containing only one VPE per core to 74 * reduce the number of IPIs on large MT systems. 75 */ 76 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly; 77 EXPORT_SYMBOL(cpu_foreign_map); 78 79 /* representing cpus for which sibling maps can be computed */ 80 static cpumask_t cpu_sibling_setup_map; 81 82 /* representing cpus for which core maps can be computed */ 83 static cpumask_t cpu_core_setup_map; 84 85 cpumask_t cpu_coherent_mask; 86 87 #ifdef CONFIG_GENERIC_IRQ_IPI 88 static struct irq_desc *call_desc; 89 static struct irq_desc *sched_desc; 90 #endif 91 92 static inline void set_cpu_sibling_map(int cpu) 93 { 94 int i; 95 96 cpumask_set_cpu(cpu, &cpu_sibling_setup_map); 97 98 if (smp_num_siblings > 1) { 99 for_each_cpu(i, &cpu_sibling_setup_map) { 100 if (cpus_are_siblings(cpu, i)) { 101 cpumask_set_cpu(i, &cpu_sibling_map[cpu]); 102 cpumask_set_cpu(cpu, &cpu_sibling_map[i]); 103 } 104 } 105 } else 106 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]); 107 } 108 109 static inline void set_cpu_core_map(int cpu) 110 { 111 int i; 112 113 cpumask_set_cpu(cpu, &cpu_core_setup_map); 114 115 for_each_cpu(i, &cpu_core_setup_map) { 116 if (cpu_data[cpu].package == cpu_data[i].package) { 117 cpumask_set_cpu(i, &cpu_core_map[cpu]); 118 cpumask_set_cpu(cpu, &cpu_core_map[i]); 119 } 120 } 121 } 122 123 /* 124 * Calculate a new cpu_foreign_map mask whenever a 125 * new cpu appears or disappears. 126 */ 127 void calculate_cpu_foreign_map(void) 128 { 129 int i, k, core_present; 130 cpumask_t temp_foreign_map; 131 132 /* Re-calculate the mask */ 133 cpumask_clear(&temp_foreign_map); 134 for_each_online_cpu(i) { 135 core_present = 0; 136 for_each_cpu(k, &temp_foreign_map) 137 if (cpus_are_siblings(i, k)) 138 core_present = 1; 139 if (!core_present) 140 cpumask_set_cpu(i, &temp_foreign_map); 141 } 142 143 for_each_online_cpu(i) 144 cpumask_andnot(&cpu_foreign_map[i], 145 &temp_foreign_map, &cpu_sibling_map[i]); 146 } 147 148 const struct plat_smp_ops *mp_ops; 149 EXPORT_SYMBOL(mp_ops); 150 151 void register_smp_ops(const struct plat_smp_ops *ops) 152 { 153 if (mp_ops) 154 printk(KERN_WARNING "Overriding previously set SMP ops\n"); 155 156 mp_ops = ops; 157 } 158 159 #ifdef CONFIG_GENERIC_IRQ_IPI 160 void mips_smp_send_ipi_single(int cpu, unsigned int action) 161 { 162 mips_smp_send_ipi_mask(cpumask_of(cpu), action); 163 } 164 165 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action) 166 { 167 unsigned long flags; 168 unsigned int core; 169 int cpu; 170 171 local_irq_save(flags); 172 173 switch (action) { 174 case SMP_CALL_FUNCTION: 175 __ipi_send_mask(call_desc, mask); 176 break; 177 178 case SMP_RESCHEDULE_YOURSELF: 179 __ipi_send_mask(sched_desc, mask); 180 break; 181 182 default: 183 BUG(); 184 } 185 186 if (mips_cpc_present()) { 187 for_each_cpu(cpu, mask) { 188 if (cpus_are_siblings(cpu, smp_processor_id())) 189 continue; 190 191 core = cpu_core(&cpu_data[cpu]); 192 193 while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) { 194 mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL); 195 mips_cpc_lock_other(core); 196 write_cpc_co_cmd(CPC_Cx_CMD_PWRUP); 197 mips_cpc_unlock_other(); 198 mips_cm_unlock_other(); 199 } 200 } 201 } 202 203 local_irq_restore(flags); 204 } 205 206 207 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id) 208 { 209 scheduler_ipi(); 210 211 return IRQ_HANDLED; 212 } 213 214 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id) 215 { 216 generic_smp_call_function_interrupt(); 217 218 return IRQ_HANDLED; 219 } 220 221 static struct irqaction irq_resched = { 222 .handler = ipi_resched_interrupt, 223 .flags = IRQF_PERCPU, 224 .name = "IPI resched" 225 }; 226 227 static struct irqaction irq_call = { 228 .handler = ipi_call_interrupt, 229 .flags = IRQF_PERCPU, 230 .name = "IPI call" 231 }; 232 233 static void smp_ipi_init_one(unsigned int virq, 234 struct irqaction *action) 235 { 236 int ret; 237 238 irq_set_handler(virq, handle_percpu_irq); 239 ret = setup_irq(virq, action); 240 BUG_ON(ret); 241 } 242 243 static unsigned int call_virq, sched_virq; 244 245 int mips_smp_ipi_allocate(const struct cpumask *mask) 246 { 247 int virq; 248 struct irq_domain *ipidomain; 249 struct device_node *node; 250 251 node = of_irq_find_parent(of_root); 252 ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI); 253 254 /* 255 * Some platforms have half DT setup. So if we found irq node but 256 * didn't find an ipidomain, try to search for one that is not in the 257 * DT. 258 */ 259 if (node && !ipidomain) 260 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI); 261 262 /* 263 * There are systems which use IPI IRQ domains, but only have one 264 * registered when some runtime condition is met. For example a Malta 265 * kernel may include support for GIC & CPU interrupt controller IPI 266 * IRQ domains, but if run on a system with no GIC & no MT ASE then 267 * neither will be supported or registered. 268 * 269 * We only have a problem if we're actually using multiple CPUs so fail 270 * loudly if that is the case. Otherwise simply return, skipping IPI 271 * setup, if we're running with only a single CPU. 272 */ 273 if (!ipidomain) { 274 BUG_ON(num_present_cpus() > 1); 275 return 0; 276 } 277 278 virq = irq_reserve_ipi(ipidomain, mask); 279 BUG_ON(!virq); 280 if (!call_virq) 281 call_virq = virq; 282 283 virq = irq_reserve_ipi(ipidomain, mask); 284 BUG_ON(!virq); 285 if (!sched_virq) 286 sched_virq = virq; 287 288 if (irq_domain_is_ipi_per_cpu(ipidomain)) { 289 int cpu; 290 291 for_each_cpu(cpu, mask) { 292 smp_ipi_init_one(call_virq + cpu, &irq_call); 293 smp_ipi_init_one(sched_virq + cpu, &irq_resched); 294 } 295 } else { 296 smp_ipi_init_one(call_virq, &irq_call); 297 smp_ipi_init_one(sched_virq, &irq_resched); 298 } 299 300 return 0; 301 } 302 303 int mips_smp_ipi_free(const struct cpumask *mask) 304 { 305 struct irq_domain *ipidomain; 306 struct device_node *node; 307 308 node = of_irq_find_parent(of_root); 309 ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI); 310 311 /* 312 * Some platforms have half DT setup. So if we found irq node but 313 * didn't find an ipidomain, try to search for one that is not in the 314 * DT. 315 */ 316 if (node && !ipidomain) 317 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI); 318 319 BUG_ON(!ipidomain); 320 321 if (irq_domain_is_ipi_per_cpu(ipidomain)) { 322 int cpu; 323 324 for_each_cpu(cpu, mask) { 325 remove_irq(call_virq + cpu, &irq_call); 326 remove_irq(sched_virq + cpu, &irq_resched); 327 } 328 } 329 irq_destroy_ipi(call_virq, mask); 330 irq_destroy_ipi(sched_virq, mask); 331 return 0; 332 } 333 334 335 static int __init mips_smp_ipi_init(void) 336 { 337 if (num_possible_cpus() == 1) 338 return 0; 339 340 mips_smp_ipi_allocate(cpu_possible_mask); 341 342 call_desc = irq_to_desc(call_virq); 343 sched_desc = irq_to_desc(sched_virq); 344 345 return 0; 346 } 347 early_initcall(mips_smp_ipi_init); 348 #endif 349 350 /* 351 * First C code run on the secondary CPUs after being started up by 352 * the master. 353 */ 354 asmlinkage void start_secondary(void) 355 { 356 unsigned int cpu; 357 358 cpu_probe(); 359 per_cpu_trap_init(false); 360 mips_clockevent_init(); 361 mp_ops->init_secondary(); 362 cpu_report(); 363 maar_init(); 364 365 /* 366 * XXX parity protection should be folded in here when it's converted 367 * to an option instead of something based on .cputype 368 */ 369 370 calibrate_delay(); 371 preempt_disable(); 372 cpu = smp_processor_id(); 373 cpu_data[cpu].udelay_val = loops_per_jiffy; 374 375 cpumask_set_cpu(cpu, &cpu_coherent_mask); 376 notify_cpu_starting(cpu); 377 378 /* Notify boot CPU that we're starting & ready to sync counters */ 379 complete(&cpu_starting); 380 381 synchronise_count_slave(cpu); 382 383 /* The CPU is running and counters synchronised, now mark it online */ 384 set_cpu_online(cpu, true); 385 386 set_cpu_sibling_map(cpu); 387 set_cpu_core_map(cpu); 388 389 calculate_cpu_foreign_map(); 390 391 /* 392 * Notify boot CPU that we're up & online and it can safely return 393 * from __cpu_up 394 */ 395 complete(&cpu_running); 396 397 /* 398 * irq will be enabled in ->smp_finish(), enabling it too early 399 * is dangerous. 400 */ 401 WARN_ON_ONCE(!irqs_disabled()); 402 mp_ops->smp_finish(); 403 404 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 405 } 406 407 static void stop_this_cpu(void *dummy) 408 { 409 /* 410 * Remove this CPU: 411 */ 412 413 set_cpu_online(smp_processor_id(), false); 414 calculate_cpu_foreign_map(); 415 local_irq_disable(); 416 while (1); 417 } 418 419 void smp_send_stop(void) 420 { 421 smp_call_function(stop_this_cpu, NULL, 0); 422 } 423 424 void __init smp_cpus_done(unsigned int max_cpus) 425 { 426 } 427 428 /* called from main before smp_init() */ 429 void __init smp_prepare_cpus(unsigned int max_cpus) 430 { 431 init_new_context(current, &init_mm); 432 current_thread_info()->cpu = 0; 433 mp_ops->prepare_cpus(max_cpus); 434 set_cpu_sibling_map(0); 435 set_cpu_core_map(0); 436 calculate_cpu_foreign_map(); 437 #ifndef CONFIG_HOTPLUG_CPU 438 init_cpu_present(cpu_possible_mask); 439 #endif 440 cpumask_copy(&cpu_coherent_mask, cpu_possible_mask); 441 } 442 443 /* preload SMP state for boot cpu */ 444 void smp_prepare_boot_cpu(void) 445 { 446 set_cpu_possible(0, true); 447 set_cpu_online(0, true); 448 } 449 450 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 451 { 452 int err; 453 454 err = mp_ops->boot_secondary(cpu, tidle); 455 if (err) 456 return err; 457 458 /* Wait for CPU to start and be ready to sync counters */ 459 if (!wait_for_completion_timeout(&cpu_starting, 460 msecs_to_jiffies(1000))) { 461 pr_crit("CPU%u: failed to start\n", cpu); 462 return -EIO; 463 } 464 465 synchronise_count_master(cpu); 466 467 /* Wait for CPU to finish startup & mark itself online before return */ 468 wait_for_completion(&cpu_running); 469 return 0; 470 } 471 472 /* Not really SMP stuff ... */ 473 int setup_profiling_timer(unsigned int multiplier) 474 { 475 return 0; 476 } 477 478 static void flush_tlb_all_ipi(void *info) 479 { 480 local_flush_tlb_all(); 481 } 482 483 void flush_tlb_all(void) 484 { 485 on_each_cpu(flush_tlb_all_ipi, NULL, 1); 486 } 487 488 static void flush_tlb_mm_ipi(void *mm) 489 { 490 local_flush_tlb_mm((struct mm_struct *)mm); 491 } 492 493 /* 494 * Special Variant of smp_call_function for use by TLB functions: 495 * 496 * o No return value 497 * o collapses to normal function call on UP kernels 498 * o collapses to normal function call on systems with a single shared 499 * primary cache. 500 */ 501 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info) 502 { 503 smp_call_function(func, info, 1); 504 } 505 506 static inline void smp_on_each_tlb(void (*func) (void *info), void *info) 507 { 508 preempt_disable(); 509 510 smp_on_other_tlbs(func, info); 511 func(info); 512 513 preempt_enable(); 514 } 515 516 /* 517 * The following tlb flush calls are invoked when old translations are 518 * being torn down, or pte attributes are changing. For single threaded 519 * address spaces, a new context is obtained on the current cpu, and tlb 520 * context on other cpus are invalidated to force a new context allocation 521 * at switch_mm time, should the mm ever be used on other cpus. For 522 * multithreaded address spaces, intercpu interrupts have to be sent. 523 * Another case where intercpu interrupts are required is when the target 524 * mm might be active on another cpu (eg debuggers doing the flushes on 525 * behalf of debugees, kswapd stealing pages from another process etc). 526 * Kanoj 07/00. 527 */ 528 529 void flush_tlb_mm(struct mm_struct *mm) 530 { 531 preempt_disable(); 532 533 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 534 smp_on_other_tlbs(flush_tlb_mm_ipi, mm); 535 } else { 536 unsigned int cpu; 537 538 for_each_online_cpu(cpu) { 539 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 540 cpu_context(cpu, mm) = 0; 541 } 542 } 543 local_flush_tlb_mm(mm); 544 545 preempt_enable(); 546 } 547 548 struct flush_tlb_data { 549 struct vm_area_struct *vma; 550 unsigned long addr1; 551 unsigned long addr2; 552 }; 553 554 static void flush_tlb_range_ipi(void *info) 555 { 556 struct flush_tlb_data *fd = info; 557 558 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 559 } 560 561 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 562 { 563 struct mm_struct *mm = vma->vm_mm; 564 565 preempt_disable(); 566 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 567 struct flush_tlb_data fd = { 568 .vma = vma, 569 .addr1 = start, 570 .addr2 = end, 571 }; 572 573 smp_on_other_tlbs(flush_tlb_range_ipi, &fd); 574 } else { 575 unsigned int cpu; 576 int exec = vma->vm_flags & VM_EXEC; 577 578 for_each_online_cpu(cpu) { 579 /* 580 * flush_cache_range() will only fully flush icache if 581 * the VMA is executable, otherwise we must invalidate 582 * ASID without it appearing to has_valid_asid() as if 583 * mm has been completely unused by that CPU. 584 */ 585 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 586 cpu_context(cpu, mm) = !exec; 587 } 588 } 589 local_flush_tlb_range(vma, start, end); 590 preempt_enable(); 591 } 592 593 static void flush_tlb_kernel_range_ipi(void *info) 594 { 595 struct flush_tlb_data *fd = info; 596 597 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 598 } 599 600 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 601 { 602 struct flush_tlb_data fd = { 603 .addr1 = start, 604 .addr2 = end, 605 }; 606 607 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); 608 } 609 610 static void flush_tlb_page_ipi(void *info) 611 { 612 struct flush_tlb_data *fd = info; 613 614 local_flush_tlb_page(fd->vma, fd->addr1); 615 } 616 617 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 618 { 619 preempt_disable(); 620 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { 621 struct flush_tlb_data fd = { 622 .vma = vma, 623 .addr1 = page, 624 }; 625 626 smp_on_other_tlbs(flush_tlb_page_ipi, &fd); 627 } else { 628 unsigned int cpu; 629 630 for_each_online_cpu(cpu) { 631 /* 632 * flush_cache_page() only does partial flushes, so 633 * invalidate ASID without it appearing to 634 * has_valid_asid() as if mm has been completely unused 635 * by that CPU. 636 */ 637 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm)) 638 cpu_context(cpu, vma->vm_mm) = 1; 639 } 640 } 641 local_flush_tlb_page(vma, page); 642 preempt_enable(); 643 } 644 645 static void flush_tlb_one_ipi(void *info) 646 { 647 unsigned long vaddr = (unsigned long) info; 648 649 local_flush_tlb_one(vaddr); 650 } 651 652 void flush_tlb_one(unsigned long vaddr) 653 { 654 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr); 655 } 656 657 EXPORT_SYMBOL(flush_tlb_page); 658 EXPORT_SYMBOL(flush_tlb_one); 659 660 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 661 662 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count); 663 static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd); 664 665 void tick_broadcast(const struct cpumask *mask) 666 { 667 atomic_t *count; 668 call_single_data_t *csd; 669 int cpu; 670 671 for_each_cpu(cpu, mask) { 672 count = &per_cpu(tick_broadcast_count, cpu); 673 csd = &per_cpu(tick_broadcast_csd, cpu); 674 675 if (atomic_inc_return(count) == 1) 676 smp_call_function_single_async(cpu, csd); 677 } 678 } 679 680 static void tick_broadcast_callee(void *info) 681 { 682 int cpu = smp_processor_id(); 683 tick_receive_broadcast(); 684 atomic_set(&per_cpu(tick_broadcast_count, cpu), 0); 685 } 686 687 static int __init tick_broadcast_init(void) 688 { 689 call_single_data_t *csd; 690 int cpu; 691 692 for (cpu = 0; cpu < NR_CPUS; cpu++) { 693 csd = &per_cpu(tick_broadcast_csd, cpu); 694 csd->func = tick_broadcast_callee; 695 } 696 697 return 0; 698 } 699 early_initcall(tick_broadcast_init); 700 701 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */ 702