xref: /openbmc/linux/arch/mips/kernel/smp.c (revision eb3fcf00)
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License
4  * as published by the Free Software Foundation; either version 2
5  * of the License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15  *
16  * Copyright (C) 2000, 2001 Kanoj Sarcar
17  * Copyright (C) 2000, 2001 Ralf Baechle
18  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20  */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/module.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 #include <linux/ftrace.h>
36 
37 #include <linux/atomic.h>
38 #include <asm/cpu.h>
39 #include <asm/processor.h>
40 #include <asm/idle.h>
41 #include <asm/r4k-timer.h>
42 #include <asm/mmu_context.h>
43 #include <asm/time.h>
44 #include <asm/setup.h>
45 
46 cpumask_t cpu_callin_map;		/* Bitmask of started secondaries */
47 
48 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
49 EXPORT_SYMBOL(__cpu_number_map);
50 
51 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
52 EXPORT_SYMBOL(__cpu_logical_map);
53 
54 /* Number of TCs (or siblings in Intel speak) per CPU core */
55 int smp_num_siblings = 1;
56 EXPORT_SYMBOL(smp_num_siblings);
57 
58 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
59 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
60 EXPORT_SYMBOL(cpu_sibling_map);
61 
62 /* representing the core map of multi-core chips of each logical CPU */
63 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
64 EXPORT_SYMBOL(cpu_core_map);
65 
66 /*
67  * A logcal cpu mask containing only one VPE per core to
68  * reduce the number of IPIs on large MT systems.
69  */
70 cpumask_t cpu_foreign_map __read_mostly;
71 EXPORT_SYMBOL(cpu_foreign_map);
72 
73 /* representing cpus for which sibling maps can be computed */
74 static cpumask_t cpu_sibling_setup_map;
75 
76 /* representing cpus for which core maps can be computed */
77 static cpumask_t cpu_core_setup_map;
78 
79 cpumask_t cpu_coherent_mask;
80 
81 static inline void set_cpu_sibling_map(int cpu)
82 {
83 	int i;
84 
85 	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
86 
87 	if (smp_num_siblings > 1) {
88 		for_each_cpu(i, &cpu_sibling_setup_map) {
89 			if (cpu_data[cpu].package == cpu_data[i].package &&
90 				    cpu_data[cpu].core == cpu_data[i].core) {
91 				cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
92 				cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
93 			}
94 		}
95 	} else
96 		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
97 }
98 
99 static inline void set_cpu_core_map(int cpu)
100 {
101 	int i;
102 
103 	cpumask_set_cpu(cpu, &cpu_core_setup_map);
104 
105 	for_each_cpu(i, &cpu_core_setup_map) {
106 		if (cpu_data[cpu].package == cpu_data[i].package) {
107 			cpumask_set_cpu(i, &cpu_core_map[cpu]);
108 			cpumask_set_cpu(cpu, &cpu_core_map[i]);
109 		}
110 	}
111 }
112 
113 /*
114  * Calculate a new cpu_foreign_map mask whenever a
115  * new cpu appears or disappears.
116  */
117 static inline void calculate_cpu_foreign_map(void)
118 {
119 	int i, k, core_present;
120 	cpumask_t temp_foreign_map;
121 
122 	/* Re-calculate the mask */
123 	for_each_online_cpu(i) {
124 		core_present = 0;
125 		for_each_cpu(k, &temp_foreign_map)
126 			if (cpu_data[i].package == cpu_data[k].package &&
127 			    cpu_data[i].core == cpu_data[k].core)
128 				core_present = 1;
129 		if (!core_present)
130 			cpumask_set_cpu(i, &temp_foreign_map);
131 	}
132 
133 	cpumask_copy(&cpu_foreign_map, &temp_foreign_map);
134 }
135 
136 struct plat_smp_ops *mp_ops;
137 EXPORT_SYMBOL(mp_ops);
138 
139 void register_smp_ops(struct plat_smp_ops *ops)
140 {
141 	if (mp_ops)
142 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
143 
144 	mp_ops = ops;
145 }
146 
147 /*
148  * First C code run on the secondary CPUs after being started up by
149  * the master.
150  */
151 asmlinkage void start_secondary(void)
152 {
153 	unsigned int cpu;
154 
155 	cpu_probe();
156 	per_cpu_trap_init(false);
157 	mips_clockevent_init();
158 	mp_ops->init_secondary();
159 	cpu_report();
160 
161 	/*
162 	 * XXX parity protection should be folded in here when it's converted
163 	 * to an option instead of something based on .cputype
164 	 */
165 
166 	calibrate_delay();
167 	preempt_disable();
168 	cpu = smp_processor_id();
169 	cpu_data[cpu].udelay_val = loops_per_jiffy;
170 
171 	cpumask_set_cpu(cpu, &cpu_coherent_mask);
172 	notify_cpu_starting(cpu);
173 
174 	set_cpu_online(cpu, true);
175 
176 	set_cpu_sibling_map(cpu);
177 	set_cpu_core_map(cpu);
178 
179 	calculate_cpu_foreign_map();
180 
181 	cpumask_set_cpu(cpu, &cpu_callin_map);
182 
183 	synchronise_count_slave(cpu);
184 
185 	/*
186 	 * irq will be enabled in ->smp_finish(), enabling it too early
187 	 * is dangerous.
188 	 */
189 	WARN_ON_ONCE(!irqs_disabled());
190 	mp_ops->smp_finish();
191 
192 	cpu_startup_entry(CPUHP_ONLINE);
193 }
194 
195 static void stop_this_cpu(void *dummy)
196 {
197 	/*
198 	 * Remove this CPU. Be a bit slow here and
199 	 * set the bits for every online CPU so we don't miss
200 	 * any IPI whilst taking this VPE down.
201 	 */
202 
203 	cpumask_copy(&cpu_foreign_map, cpu_online_mask);
204 
205 	/* Make it visible to every other CPU */
206 	smp_mb();
207 
208 	set_cpu_online(smp_processor_id(), false);
209 	calculate_cpu_foreign_map();
210 	local_irq_disable();
211 	while (1);
212 }
213 
214 void smp_send_stop(void)
215 {
216 	smp_call_function(stop_this_cpu, NULL, 0);
217 }
218 
219 void __init smp_cpus_done(unsigned int max_cpus)
220 {
221 }
222 
223 /* called from main before smp_init() */
224 void __init smp_prepare_cpus(unsigned int max_cpus)
225 {
226 	init_new_context(current, &init_mm);
227 	current_thread_info()->cpu = 0;
228 	mp_ops->prepare_cpus(max_cpus);
229 	set_cpu_sibling_map(0);
230 	set_cpu_core_map(0);
231 	calculate_cpu_foreign_map();
232 #ifndef CONFIG_HOTPLUG_CPU
233 	init_cpu_present(cpu_possible_mask);
234 #endif
235 	cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
236 }
237 
238 /* preload SMP state for boot cpu */
239 void smp_prepare_boot_cpu(void)
240 {
241 	set_cpu_possible(0, true);
242 	set_cpu_online(0, true);
243 	cpumask_set_cpu(0, &cpu_callin_map);
244 }
245 
246 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
247 {
248 	mp_ops->boot_secondary(cpu, tidle);
249 
250 	/*
251 	 * Trust is futile.  We should really have timeouts ...
252 	 */
253 	while (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
254 		udelay(100);
255 		schedule();
256 	}
257 
258 	synchronise_count_master(cpu);
259 	return 0;
260 }
261 
262 /* Not really SMP stuff ... */
263 int setup_profiling_timer(unsigned int multiplier)
264 {
265 	return 0;
266 }
267 
268 static void flush_tlb_all_ipi(void *info)
269 {
270 	local_flush_tlb_all();
271 }
272 
273 void flush_tlb_all(void)
274 {
275 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
276 }
277 
278 static void flush_tlb_mm_ipi(void *mm)
279 {
280 	local_flush_tlb_mm((struct mm_struct *)mm);
281 }
282 
283 /*
284  * Special Variant of smp_call_function for use by TLB functions:
285  *
286  *  o No return value
287  *  o collapses to normal function call on UP kernels
288  *  o collapses to normal function call on systems with a single shared
289  *    primary cache.
290  */
291 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
292 {
293 	smp_call_function(func, info, 1);
294 }
295 
296 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
297 {
298 	preempt_disable();
299 
300 	smp_on_other_tlbs(func, info);
301 	func(info);
302 
303 	preempt_enable();
304 }
305 
306 /*
307  * The following tlb flush calls are invoked when old translations are
308  * being torn down, or pte attributes are changing. For single threaded
309  * address spaces, a new context is obtained on the current cpu, and tlb
310  * context on other cpus are invalidated to force a new context allocation
311  * at switch_mm time, should the mm ever be used on other cpus. For
312  * multithreaded address spaces, intercpu interrupts have to be sent.
313  * Another case where intercpu interrupts are required is when the target
314  * mm might be active on another cpu (eg debuggers doing the flushes on
315  * behalf of debugees, kswapd stealing pages from another process etc).
316  * Kanoj 07/00.
317  */
318 
319 void flush_tlb_mm(struct mm_struct *mm)
320 {
321 	preempt_disable();
322 
323 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
324 		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
325 	} else {
326 		unsigned int cpu;
327 
328 		for_each_online_cpu(cpu) {
329 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
330 				cpu_context(cpu, mm) = 0;
331 		}
332 	}
333 	local_flush_tlb_mm(mm);
334 
335 	preempt_enable();
336 }
337 
338 struct flush_tlb_data {
339 	struct vm_area_struct *vma;
340 	unsigned long addr1;
341 	unsigned long addr2;
342 };
343 
344 static void flush_tlb_range_ipi(void *info)
345 {
346 	struct flush_tlb_data *fd = info;
347 
348 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
349 }
350 
351 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
352 {
353 	struct mm_struct *mm = vma->vm_mm;
354 
355 	preempt_disable();
356 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
357 		struct flush_tlb_data fd = {
358 			.vma = vma,
359 			.addr1 = start,
360 			.addr2 = end,
361 		};
362 
363 		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
364 	} else {
365 		unsigned int cpu;
366 
367 		for_each_online_cpu(cpu) {
368 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
369 				cpu_context(cpu, mm) = 0;
370 		}
371 	}
372 	local_flush_tlb_range(vma, start, end);
373 	preempt_enable();
374 }
375 
376 static void flush_tlb_kernel_range_ipi(void *info)
377 {
378 	struct flush_tlb_data *fd = info;
379 
380 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
381 }
382 
383 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
384 {
385 	struct flush_tlb_data fd = {
386 		.addr1 = start,
387 		.addr2 = end,
388 	};
389 
390 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
391 }
392 
393 static void flush_tlb_page_ipi(void *info)
394 {
395 	struct flush_tlb_data *fd = info;
396 
397 	local_flush_tlb_page(fd->vma, fd->addr1);
398 }
399 
400 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
401 {
402 	preempt_disable();
403 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
404 		struct flush_tlb_data fd = {
405 			.vma = vma,
406 			.addr1 = page,
407 		};
408 
409 		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
410 	} else {
411 		unsigned int cpu;
412 
413 		for_each_online_cpu(cpu) {
414 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
415 				cpu_context(cpu, vma->vm_mm) = 0;
416 		}
417 	}
418 	local_flush_tlb_page(vma, page);
419 	preempt_enable();
420 }
421 
422 static void flush_tlb_one_ipi(void *info)
423 {
424 	unsigned long vaddr = (unsigned long) info;
425 
426 	local_flush_tlb_one(vaddr);
427 }
428 
429 void flush_tlb_one(unsigned long vaddr)
430 {
431 	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
432 }
433 
434 EXPORT_SYMBOL(flush_tlb_page);
435 EXPORT_SYMBOL(flush_tlb_one);
436 
437 #if defined(CONFIG_KEXEC)
438 void (*dump_ipi_function_ptr)(void *) = NULL;
439 void dump_send_ipi(void (*dump_ipi_callback)(void *))
440 {
441 	int i;
442 	int cpu = smp_processor_id();
443 
444 	dump_ipi_function_ptr = dump_ipi_callback;
445 	smp_mb();
446 	for_each_online_cpu(i)
447 		if (i != cpu)
448 			mp_ops->send_ipi_single(i, SMP_DUMP);
449 
450 }
451 EXPORT_SYMBOL(dump_send_ipi);
452 #endif
453 
454 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
455 
456 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
457 static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd);
458 
459 void tick_broadcast(const struct cpumask *mask)
460 {
461 	atomic_t *count;
462 	struct call_single_data *csd;
463 	int cpu;
464 
465 	for_each_cpu(cpu, mask) {
466 		count = &per_cpu(tick_broadcast_count, cpu);
467 		csd = &per_cpu(tick_broadcast_csd, cpu);
468 
469 		if (atomic_inc_return(count) == 1)
470 			smp_call_function_single_async(cpu, csd);
471 	}
472 }
473 
474 static void tick_broadcast_callee(void *info)
475 {
476 	int cpu = smp_processor_id();
477 	tick_receive_broadcast();
478 	atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
479 }
480 
481 static int __init tick_broadcast_init(void)
482 {
483 	struct call_single_data *csd;
484 	int cpu;
485 
486 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
487 		csd = &per_cpu(tick_broadcast_csd, cpu);
488 		csd->func = tick_broadcast_callee;
489 	}
490 
491 	return 0;
492 }
493 early_initcall(tick_broadcast_init);
494 
495 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
496