xref: /openbmc/linux/arch/mips/kernel/smp.c (revision e23feb16)
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License
4  * as published by the Free Software Foundation; either version 2
5  * of the License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15  *
16  * Copyright (C) 2000, 2001 Kanoj Sarcar
17  * Copyright (C) 2000, 2001 Ralf Baechle
18  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20  */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/module.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 #include <linux/ftrace.h>
36 
37 #include <linux/atomic.h>
38 #include <asm/cpu.h>
39 #include <asm/processor.h>
40 #include <asm/idle.h>
41 #include <asm/r4k-timer.h>
42 #include <asm/mmu_context.h>
43 #include <asm/time.h>
44 #include <asm/setup.h>
45 
46 #ifdef CONFIG_MIPS_MT_SMTC
47 #include <asm/mipsmtregs.h>
48 #endif /* CONFIG_MIPS_MT_SMTC */
49 
50 volatile cpumask_t cpu_callin_map;	/* Bitmask of started secondaries */
51 
52 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
53 EXPORT_SYMBOL(__cpu_number_map);
54 
55 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
56 EXPORT_SYMBOL(__cpu_logical_map);
57 
58 /* Number of TCs (or siblings in Intel speak) per CPU core */
59 int smp_num_siblings = 1;
60 EXPORT_SYMBOL(smp_num_siblings);
61 
62 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
63 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
64 EXPORT_SYMBOL(cpu_sibling_map);
65 
66 /* representing cpus for which sibling maps can be computed */
67 static cpumask_t cpu_sibling_setup_map;
68 
69 static inline void set_cpu_sibling_map(int cpu)
70 {
71 	int i;
72 
73 	cpu_set(cpu, cpu_sibling_setup_map);
74 
75 	if (smp_num_siblings > 1) {
76 		for_each_cpu_mask(i, cpu_sibling_setup_map) {
77 			if (cpu_data[cpu].core == cpu_data[i].core) {
78 				cpu_set(i, cpu_sibling_map[cpu]);
79 				cpu_set(cpu, cpu_sibling_map[i]);
80 			}
81 		}
82 	} else
83 		cpu_set(cpu, cpu_sibling_map[cpu]);
84 }
85 
86 struct plat_smp_ops *mp_ops;
87 EXPORT_SYMBOL(mp_ops);
88 
89 void register_smp_ops(struct plat_smp_ops *ops)
90 {
91 	if (mp_ops)
92 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
93 
94 	mp_ops = ops;
95 }
96 
97 /*
98  * First C code run on the secondary CPUs after being started up by
99  * the master.
100  */
101 asmlinkage void start_secondary(void)
102 {
103 	unsigned int cpu;
104 
105 #ifdef CONFIG_MIPS_MT_SMTC
106 	/* Only do cpu_probe for first TC of CPU */
107 	if ((read_c0_tcbind() & TCBIND_CURTC) != 0)
108 		__cpu_name[smp_processor_id()] = __cpu_name[0];
109 	else
110 #endif /* CONFIG_MIPS_MT_SMTC */
111 	cpu_probe();
112 	cpu_report();
113 	per_cpu_trap_init(false);
114 	mips_clockevent_init();
115 	mp_ops->init_secondary();
116 
117 	/*
118 	 * XXX parity protection should be folded in here when it's converted
119 	 * to an option instead of something based on .cputype
120 	 */
121 
122 	calibrate_delay();
123 	preempt_disable();
124 	cpu = smp_processor_id();
125 	cpu_data[cpu].udelay_val = loops_per_jiffy;
126 
127 	notify_cpu_starting(cpu);
128 
129 	set_cpu_online(cpu, true);
130 
131 	set_cpu_sibling_map(cpu);
132 
133 	cpu_set(cpu, cpu_callin_map);
134 
135 	synchronise_count_slave(cpu);
136 
137 	/*
138 	 * irq will be enabled in ->smp_finish(), enabling it too early
139 	 * is dangerous.
140 	 */
141 	WARN_ON_ONCE(!irqs_disabled());
142 	mp_ops->smp_finish();
143 
144 	cpu_startup_entry(CPUHP_ONLINE);
145 }
146 
147 /*
148  * Call into both interrupt handlers, as we share the IPI for them
149  */
150 void __irq_entry smp_call_function_interrupt(void)
151 {
152 	irq_enter();
153 	generic_smp_call_function_single_interrupt();
154 	generic_smp_call_function_interrupt();
155 	irq_exit();
156 }
157 
158 static void stop_this_cpu(void *dummy)
159 {
160 	/*
161 	 * Remove this CPU:
162 	 */
163 	set_cpu_online(smp_processor_id(), false);
164 	for (;;) {
165 		if (cpu_wait)
166 			(*cpu_wait)();		/* Wait if available. */
167 	}
168 }
169 
170 void smp_send_stop(void)
171 {
172 	smp_call_function(stop_this_cpu, NULL, 0);
173 }
174 
175 void __init smp_cpus_done(unsigned int max_cpus)
176 {
177 	mp_ops->cpus_done();
178 }
179 
180 /* called from main before smp_init() */
181 void __init smp_prepare_cpus(unsigned int max_cpus)
182 {
183 	init_new_context(current, &init_mm);
184 	current_thread_info()->cpu = 0;
185 	mp_ops->prepare_cpus(max_cpus);
186 	set_cpu_sibling_map(0);
187 #ifndef CONFIG_HOTPLUG_CPU
188 	init_cpu_present(cpu_possible_mask);
189 #endif
190 }
191 
192 /* preload SMP state for boot cpu */
193 void smp_prepare_boot_cpu(void)
194 {
195 	set_cpu_possible(0, true);
196 	set_cpu_online(0, true);
197 	cpu_set(0, cpu_callin_map);
198 }
199 
200 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
201 {
202 	mp_ops->boot_secondary(cpu, tidle);
203 
204 	/*
205 	 * Trust is futile.  We should really have timeouts ...
206 	 */
207 	while (!cpu_isset(cpu, cpu_callin_map))
208 		udelay(100);
209 
210 	synchronise_count_master(cpu);
211 	return 0;
212 }
213 
214 /* Not really SMP stuff ... */
215 int setup_profiling_timer(unsigned int multiplier)
216 {
217 	return 0;
218 }
219 
220 static void flush_tlb_all_ipi(void *info)
221 {
222 	local_flush_tlb_all();
223 }
224 
225 void flush_tlb_all(void)
226 {
227 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
228 }
229 
230 static void flush_tlb_mm_ipi(void *mm)
231 {
232 	local_flush_tlb_mm((struct mm_struct *)mm);
233 }
234 
235 /*
236  * Special Variant of smp_call_function for use by TLB functions:
237  *
238  *  o No return value
239  *  o collapses to normal function call on UP kernels
240  *  o collapses to normal function call on systems with a single shared
241  *    primary cache.
242  *  o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core.
243  */
244 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
245 {
246 #ifndef CONFIG_MIPS_MT_SMTC
247 	smp_call_function(func, info, 1);
248 #endif
249 }
250 
251 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
252 {
253 	preempt_disable();
254 
255 	smp_on_other_tlbs(func, info);
256 	func(info);
257 
258 	preempt_enable();
259 }
260 
261 /*
262  * The following tlb flush calls are invoked when old translations are
263  * being torn down, or pte attributes are changing. For single threaded
264  * address spaces, a new context is obtained on the current cpu, and tlb
265  * context on other cpus are invalidated to force a new context allocation
266  * at switch_mm time, should the mm ever be used on other cpus. For
267  * multithreaded address spaces, intercpu interrupts have to be sent.
268  * Another case where intercpu interrupts are required is when the target
269  * mm might be active on another cpu (eg debuggers doing the flushes on
270  * behalf of debugees, kswapd stealing pages from another process etc).
271  * Kanoj 07/00.
272  */
273 
274 void flush_tlb_mm(struct mm_struct *mm)
275 {
276 	preempt_disable();
277 
278 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
279 		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
280 	} else {
281 		unsigned int cpu;
282 
283 		for_each_online_cpu(cpu) {
284 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
285 				cpu_context(cpu, mm) = 0;
286 		}
287 	}
288 	local_flush_tlb_mm(mm);
289 
290 	preempt_enable();
291 }
292 
293 struct flush_tlb_data {
294 	struct vm_area_struct *vma;
295 	unsigned long addr1;
296 	unsigned long addr2;
297 };
298 
299 static void flush_tlb_range_ipi(void *info)
300 {
301 	struct flush_tlb_data *fd = info;
302 
303 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
304 }
305 
306 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
307 {
308 	struct mm_struct *mm = vma->vm_mm;
309 
310 	preempt_disable();
311 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
312 		struct flush_tlb_data fd = {
313 			.vma = vma,
314 			.addr1 = start,
315 			.addr2 = end,
316 		};
317 
318 		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
319 	} else {
320 		unsigned int cpu;
321 
322 		for_each_online_cpu(cpu) {
323 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
324 				cpu_context(cpu, mm) = 0;
325 		}
326 	}
327 	local_flush_tlb_range(vma, start, end);
328 	preempt_enable();
329 }
330 
331 static void flush_tlb_kernel_range_ipi(void *info)
332 {
333 	struct flush_tlb_data *fd = info;
334 
335 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
336 }
337 
338 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
339 {
340 	struct flush_tlb_data fd = {
341 		.addr1 = start,
342 		.addr2 = end,
343 	};
344 
345 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
346 }
347 
348 static void flush_tlb_page_ipi(void *info)
349 {
350 	struct flush_tlb_data *fd = info;
351 
352 	local_flush_tlb_page(fd->vma, fd->addr1);
353 }
354 
355 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
356 {
357 	preempt_disable();
358 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
359 		struct flush_tlb_data fd = {
360 			.vma = vma,
361 			.addr1 = page,
362 		};
363 
364 		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
365 	} else {
366 		unsigned int cpu;
367 
368 		for_each_online_cpu(cpu) {
369 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
370 				cpu_context(cpu, vma->vm_mm) = 0;
371 		}
372 	}
373 	local_flush_tlb_page(vma, page);
374 	preempt_enable();
375 }
376 
377 static void flush_tlb_one_ipi(void *info)
378 {
379 	unsigned long vaddr = (unsigned long) info;
380 
381 	local_flush_tlb_one(vaddr);
382 }
383 
384 void flush_tlb_one(unsigned long vaddr)
385 {
386 	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
387 }
388 
389 EXPORT_SYMBOL(flush_tlb_page);
390 EXPORT_SYMBOL(flush_tlb_one);
391 
392 #if defined(CONFIG_KEXEC)
393 void (*dump_ipi_function_ptr)(void *) = NULL;
394 void dump_send_ipi(void (*dump_ipi_callback)(void *))
395 {
396 	int i;
397 	int cpu = smp_processor_id();
398 
399 	dump_ipi_function_ptr = dump_ipi_callback;
400 	smp_mb();
401 	for_each_online_cpu(i)
402 		if (i != cpu)
403 			mp_ops->send_ipi_single(i, SMP_DUMP);
404 
405 }
406 EXPORT_SYMBOL(dump_send_ipi);
407 #endif
408