xref: /openbmc/linux/arch/mips/kernel/smp.c (revision dea54fba)
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License
4  * as published by the Free Software Foundation; either version 2
5  * of the License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15  *
16  * Copyright (C) 2000, 2001 Kanoj Sarcar
17  * Copyright (C) 2000, 2001 Ralf Baechle
18  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20  */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/export.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched/mm.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 #include <linux/ftrace.h>
36 #include <linux/irqdomain.h>
37 #include <linux/of.h>
38 #include <linux/of_irq.h>
39 
40 #include <linux/atomic.h>
41 #include <asm/cpu.h>
42 #include <asm/processor.h>
43 #include <asm/idle.h>
44 #include <asm/r4k-timer.h>
45 #include <asm/mips-cpc.h>
46 #include <asm/mmu_context.h>
47 #include <asm/time.h>
48 #include <asm/setup.h>
49 #include <asm/maar.h>
50 
51 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
52 EXPORT_SYMBOL(__cpu_number_map);
53 
54 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
55 EXPORT_SYMBOL(__cpu_logical_map);
56 
57 /* Number of TCs (or siblings in Intel speak) per CPU core */
58 int smp_num_siblings = 1;
59 EXPORT_SYMBOL(smp_num_siblings);
60 
61 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
62 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
63 EXPORT_SYMBOL(cpu_sibling_map);
64 
65 /* representing the core map of multi-core chips of each logical CPU */
66 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
67 EXPORT_SYMBOL(cpu_core_map);
68 
69 static DECLARE_COMPLETION(cpu_running);
70 
71 /*
72  * A logcal cpu mask containing only one VPE per core to
73  * reduce the number of IPIs on large MT systems.
74  */
75 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
76 EXPORT_SYMBOL(cpu_foreign_map);
77 
78 /* representing cpus for which sibling maps can be computed */
79 static cpumask_t cpu_sibling_setup_map;
80 
81 /* representing cpus for which core maps can be computed */
82 static cpumask_t cpu_core_setup_map;
83 
84 cpumask_t cpu_coherent_mask;
85 
86 #ifdef CONFIG_GENERIC_IRQ_IPI
87 static struct irq_desc *call_desc;
88 static struct irq_desc *sched_desc;
89 #endif
90 
91 static inline void set_cpu_sibling_map(int cpu)
92 {
93 	int i;
94 
95 	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
96 
97 	if (smp_num_siblings > 1) {
98 		for_each_cpu(i, &cpu_sibling_setup_map) {
99 			if (cpus_are_siblings(cpu, i)) {
100 				cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
101 				cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
102 			}
103 		}
104 	} else
105 		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
106 }
107 
108 static inline void set_cpu_core_map(int cpu)
109 {
110 	int i;
111 
112 	cpumask_set_cpu(cpu, &cpu_core_setup_map);
113 
114 	for_each_cpu(i, &cpu_core_setup_map) {
115 		if (cpu_data[cpu].package == cpu_data[i].package) {
116 			cpumask_set_cpu(i, &cpu_core_map[cpu]);
117 			cpumask_set_cpu(cpu, &cpu_core_map[i]);
118 		}
119 	}
120 }
121 
122 /*
123  * Calculate a new cpu_foreign_map mask whenever a
124  * new cpu appears or disappears.
125  */
126 void calculate_cpu_foreign_map(void)
127 {
128 	int i, k, core_present;
129 	cpumask_t temp_foreign_map;
130 
131 	/* Re-calculate the mask */
132 	cpumask_clear(&temp_foreign_map);
133 	for_each_online_cpu(i) {
134 		core_present = 0;
135 		for_each_cpu(k, &temp_foreign_map)
136 			if (cpus_are_siblings(i, k))
137 				core_present = 1;
138 		if (!core_present)
139 			cpumask_set_cpu(i, &temp_foreign_map);
140 	}
141 
142 	for_each_online_cpu(i)
143 		cpumask_andnot(&cpu_foreign_map[i],
144 			       &temp_foreign_map, &cpu_sibling_map[i]);
145 }
146 
147 const struct plat_smp_ops *mp_ops;
148 EXPORT_SYMBOL(mp_ops);
149 
150 void register_smp_ops(const struct plat_smp_ops *ops)
151 {
152 	if (mp_ops)
153 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
154 
155 	mp_ops = ops;
156 }
157 
158 #ifdef CONFIG_GENERIC_IRQ_IPI
159 void mips_smp_send_ipi_single(int cpu, unsigned int action)
160 {
161 	mips_smp_send_ipi_mask(cpumask_of(cpu), action);
162 }
163 
164 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
165 {
166 	unsigned long flags;
167 	unsigned int core;
168 	int cpu;
169 
170 	local_irq_save(flags);
171 
172 	switch (action) {
173 	case SMP_CALL_FUNCTION:
174 		__ipi_send_mask(call_desc, mask);
175 		break;
176 
177 	case SMP_RESCHEDULE_YOURSELF:
178 		__ipi_send_mask(sched_desc, mask);
179 		break;
180 
181 	default:
182 		BUG();
183 	}
184 
185 	if (mips_cpc_present()) {
186 		for_each_cpu(cpu, mask) {
187 			if (cpus_are_siblings(cpu, smp_processor_id()))
188 				continue;
189 
190 			core = cpu_core(&cpu_data[cpu]);
191 
192 			while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
193 				mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
194 				mips_cpc_lock_other(core);
195 				write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
196 				mips_cpc_unlock_other();
197 				mips_cm_unlock_other();
198 			}
199 		}
200 	}
201 
202 	local_irq_restore(flags);
203 }
204 
205 
206 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
207 {
208 	scheduler_ipi();
209 
210 	return IRQ_HANDLED;
211 }
212 
213 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
214 {
215 	generic_smp_call_function_interrupt();
216 
217 	return IRQ_HANDLED;
218 }
219 
220 static struct irqaction irq_resched = {
221 	.handler	= ipi_resched_interrupt,
222 	.flags		= IRQF_PERCPU,
223 	.name		= "IPI resched"
224 };
225 
226 static struct irqaction irq_call = {
227 	.handler	= ipi_call_interrupt,
228 	.flags		= IRQF_PERCPU,
229 	.name		= "IPI call"
230 };
231 
232 static void smp_ipi_init_one(unsigned int virq,
233 				    struct irqaction *action)
234 {
235 	int ret;
236 
237 	irq_set_handler(virq, handle_percpu_irq);
238 	ret = setup_irq(virq, action);
239 	BUG_ON(ret);
240 }
241 
242 static unsigned int call_virq, sched_virq;
243 
244 int mips_smp_ipi_allocate(const struct cpumask *mask)
245 {
246 	int virq;
247 	struct irq_domain *ipidomain;
248 	struct device_node *node;
249 
250 	node = of_irq_find_parent(of_root);
251 	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
252 
253 	/*
254 	 * Some platforms have half DT setup. So if we found irq node but
255 	 * didn't find an ipidomain, try to search for one that is not in the
256 	 * DT.
257 	 */
258 	if (node && !ipidomain)
259 		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
260 
261 	/*
262 	 * There are systems which use IPI IRQ domains, but only have one
263 	 * registered when some runtime condition is met. For example a Malta
264 	 * kernel may include support for GIC & CPU interrupt controller IPI
265 	 * IRQ domains, but if run on a system with no GIC & no MT ASE then
266 	 * neither will be supported or registered.
267 	 *
268 	 * We only have a problem if we're actually using multiple CPUs so fail
269 	 * loudly if that is the case. Otherwise simply return, skipping IPI
270 	 * setup, if we're running with only a single CPU.
271 	 */
272 	if (!ipidomain) {
273 		BUG_ON(num_present_cpus() > 1);
274 		return 0;
275 	}
276 
277 	virq = irq_reserve_ipi(ipidomain, mask);
278 	BUG_ON(!virq);
279 	if (!call_virq)
280 		call_virq = virq;
281 
282 	virq = irq_reserve_ipi(ipidomain, mask);
283 	BUG_ON(!virq);
284 	if (!sched_virq)
285 		sched_virq = virq;
286 
287 	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
288 		int cpu;
289 
290 		for_each_cpu(cpu, mask) {
291 			smp_ipi_init_one(call_virq + cpu, &irq_call);
292 			smp_ipi_init_one(sched_virq + cpu, &irq_resched);
293 		}
294 	} else {
295 		smp_ipi_init_one(call_virq, &irq_call);
296 		smp_ipi_init_one(sched_virq, &irq_resched);
297 	}
298 
299 	return 0;
300 }
301 
302 int mips_smp_ipi_free(const struct cpumask *mask)
303 {
304 	struct irq_domain *ipidomain;
305 	struct device_node *node;
306 
307 	node = of_irq_find_parent(of_root);
308 	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
309 
310 	/*
311 	 * Some platforms have half DT setup. So if we found irq node but
312 	 * didn't find an ipidomain, try to search for one that is not in the
313 	 * DT.
314 	 */
315 	if (node && !ipidomain)
316 		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
317 
318 	BUG_ON(!ipidomain);
319 
320 	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
321 		int cpu;
322 
323 		for_each_cpu(cpu, mask) {
324 			remove_irq(call_virq + cpu, &irq_call);
325 			remove_irq(sched_virq + cpu, &irq_resched);
326 		}
327 	}
328 	irq_destroy_ipi(call_virq, mask);
329 	irq_destroy_ipi(sched_virq, mask);
330 	return 0;
331 }
332 
333 
334 static int __init mips_smp_ipi_init(void)
335 {
336 	if (num_possible_cpus() == 1)
337 		return 0;
338 
339 	mips_smp_ipi_allocate(cpu_possible_mask);
340 
341 	call_desc = irq_to_desc(call_virq);
342 	sched_desc = irq_to_desc(sched_virq);
343 
344 	return 0;
345 }
346 early_initcall(mips_smp_ipi_init);
347 #endif
348 
349 /*
350  * First C code run on the secondary CPUs after being started up by
351  * the master.
352  */
353 asmlinkage void start_secondary(void)
354 {
355 	unsigned int cpu;
356 
357 	cpu_probe();
358 	per_cpu_trap_init(false);
359 	mips_clockevent_init();
360 	mp_ops->init_secondary();
361 	cpu_report();
362 	maar_init();
363 
364 	/*
365 	 * XXX parity protection should be folded in here when it's converted
366 	 * to an option instead of something based on .cputype
367 	 */
368 
369 	calibrate_delay();
370 	preempt_disable();
371 	cpu = smp_processor_id();
372 	cpu_data[cpu].udelay_val = loops_per_jiffy;
373 
374 	cpumask_set_cpu(cpu, &cpu_coherent_mask);
375 	notify_cpu_starting(cpu);
376 
377 	set_cpu_online(cpu, true);
378 
379 	set_cpu_sibling_map(cpu);
380 	set_cpu_core_map(cpu);
381 
382 	calculate_cpu_foreign_map();
383 
384 	complete(&cpu_running);
385 	synchronise_count_slave(cpu);
386 
387 	/*
388 	 * irq will be enabled in ->smp_finish(), enabling it too early
389 	 * is dangerous.
390 	 */
391 	WARN_ON_ONCE(!irqs_disabled());
392 	mp_ops->smp_finish();
393 
394 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
395 }
396 
397 static void stop_this_cpu(void *dummy)
398 {
399 	/*
400 	 * Remove this CPU:
401 	 */
402 
403 	set_cpu_online(smp_processor_id(), false);
404 	calculate_cpu_foreign_map();
405 	local_irq_disable();
406 	while (1);
407 }
408 
409 void smp_send_stop(void)
410 {
411 	smp_call_function(stop_this_cpu, NULL, 0);
412 }
413 
414 void __init smp_cpus_done(unsigned int max_cpus)
415 {
416 }
417 
418 /* called from main before smp_init() */
419 void __init smp_prepare_cpus(unsigned int max_cpus)
420 {
421 	init_new_context(current, &init_mm);
422 	current_thread_info()->cpu = 0;
423 	mp_ops->prepare_cpus(max_cpus);
424 	set_cpu_sibling_map(0);
425 	set_cpu_core_map(0);
426 	calculate_cpu_foreign_map();
427 #ifndef CONFIG_HOTPLUG_CPU
428 	init_cpu_present(cpu_possible_mask);
429 #endif
430 	cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
431 }
432 
433 /* preload SMP state for boot cpu */
434 void smp_prepare_boot_cpu(void)
435 {
436 	set_cpu_possible(0, true);
437 	set_cpu_online(0, true);
438 }
439 
440 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
441 {
442 	int err;
443 
444 	err = mp_ops->boot_secondary(cpu, tidle);
445 	if (err)
446 		return err;
447 
448 	/*
449 	 * We must check for timeout here, as the CPU will not be marked
450 	 * online until the counters are synchronised.
451 	 */
452 	if (!wait_for_completion_timeout(&cpu_running,
453 					 msecs_to_jiffies(1000))) {
454 		pr_crit("CPU%u: failed to start\n", cpu);
455 		return -EIO;
456 	}
457 
458 	synchronise_count_master(cpu);
459 	return 0;
460 }
461 
462 /* Not really SMP stuff ... */
463 int setup_profiling_timer(unsigned int multiplier)
464 {
465 	return 0;
466 }
467 
468 static void flush_tlb_all_ipi(void *info)
469 {
470 	local_flush_tlb_all();
471 }
472 
473 void flush_tlb_all(void)
474 {
475 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
476 }
477 
478 static void flush_tlb_mm_ipi(void *mm)
479 {
480 	local_flush_tlb_mm((struct mm_struct *)mm);
481 }
482 
483 /*
484  * Special Variant of smp_call_function for use by TLB functions:
485  *
486  *  o No return value
487  *  o collapses to normal function call on UP kernels
488  *  o collapses to normal function call on systems with a single shared
489  *    primary cache.
490  */
491 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
492 {
493 	smp_call_function(func, info, 1);
494 }
495 
496 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
497 {
498 	preempt_disable();
499 
500 	smp_on_other_tlbs(func, info);
501 	func(info);
502 
503 	preempt_enable();
504 }
505 
506 /*
507  * The following tlb flush calls are invoked when old translations are
508  * being torn down, or pte attributes are changing. For single threaded
509  * address spaces, a new context is obtained on the current cpu, and tlb
510  * context on other cpus are invalidated to force a new context allocation
511  * at switch_mm time, should the mm ever be used on other cpus. For
512  * multithreaded address spaces, intercpu interrupts have to be sent.
513  * Another case where intercpu interrupts are required is when the target
514  * mm might be active on another cpu (eg debuggers doing the flushes on
515  * behalf of debugees, kswapd stealing pages from another process etc).
516  * Kanoj 07/00.
517  */
518 
519 void flush_tlb_mm(struct mm_struct *mm)
520 {
521 	preempt_disable();
522 
523 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
524 		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
525 	} else {
526 		unsigned int cpu;
527 
528 		for_each_online_cpu(cpu) {
529 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
530 				cpu_context(cpu, mm) = 0;
531 		}
532 	}
533 	local_flush_tlb_mm(mm);
534 
535 	preempt_enable();
536 }
537 
538 struct flush_tlb_data {
539 	struct vm_area_struct *vma;
540 	unsigned long addr1;
541 	unsigned long addr2;
542 };
543 
544 static void flush_tlb_range_ipi(void *info)
545 {
546 	struct flush_tlb_data *fd = info;
547 
548 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
549 }
550 
551 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
552 {
553 	struct mm_struct *mm = vma->vm_mm;
554 
555 	preempt_disable();
556 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
557 		struct flush_tlb_data fd = {
558 			.vma = vma,
559 			.addr1 = start,
560 			.addr2 = end,
561 		};
562 
563 		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
564 	} else {
565 		unsigned int cpu;
566 		int exec = vma->vm_flags & VM_EXEC;
567 
568 		for_each_online_cpu(cpu) {
569 			/*
570 			 * flush_cache_range() will only fully flush icache if
571 			 * the VMA is executable, otherwise we must invalidate
572 			 * ASID without it appearing to has_valid_asid() as if
573 			 * mm has been completely unused by that CPU.
574 			 */
575 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
576 				cpu_context(cpu, mm) = !exec;
577 		}
578 	}
579 	local_flush_tlb_range(vma, start, end);
580 	preempt_enable();
581 }
582 
583 static void flush_tlb_kernel_range_ipi(void *info)
584 {
585 	struct flush_tlb_data *fd = info;
586 
587 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
588 }
589 
590 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
591 {
592 	struct flush_tlb_data fd = {
593 		.addr1 = start,
594 		.addr2 = end,
595 	};
596 
597 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
598 }
599 
600 static void flush_tlb_page_ipi(void *info)
601 {
602 	struct flush_tlb_data *fd = info;
603 
604 	local_flush_tlb_page(fd->vma, fd->addr1);
605 }
606 
607 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
608 {
609 	preempt_disable();
610 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
611 		struct flush_tlb_data fd = {
612 			.vma = vma,
613 			.addr1 = page,
614 		};
615 
616 		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
617 	} else {
618 		unsigned int cpu;
619 
620 		for_each_online_cpu(cpu) {
621 			/*
622 			 * flush_cache_page() only does partial flushes, so
623 			 * invalidate ASID without it appearing to
624 			 * has_valid_asid() as if mm has been completely unused
625 			 * by that CPU.
626 			 */
627 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
628 				cpu_context(cpu, vma->vm_mm) = 1;
629 		}
630 	}
631 	local_flush_tlb_page(vma, page);
632 	preempt_enable();
633 }
634 
635 static void flush_tlb_one_ipi(void *info)
636 {
637 	unsigned long vaddr = (unsigned long) info;
638 
639 	local_flush_tlb_one(vaddr);
640 }
641 
642 void flush_tlb_one(unsigned long vaddr)
643 {
644 	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
645 }
646 
647 EXPORT_SYMBOL(flush_tlb_page);
648 EXPORT_SYMBOL(flush_tlb_one);
649 
650 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
651 
652 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
653 static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd);
654 
655 void tick_broadcast(const struct cpumask *mask)
656 {
657 	atomic_t *count;
658 	struct call_single_data *csd;
659 	int cpu;
660 
661 	for_each_cpu(cpu, mask) {
662 		count = &per_cpu(tick_broadcast_count, cpu);
663 		csd = &per_cpu(tick_broadcast_csd, cpu);
664 
665 		if (atomic_inc_return(count) == 1)
666 			smp_call_function_single_async(cpu, csd);
667 	}
668 }
669 
670 static void tick_broadcast_callee(void *info)
671 {
672 	int cpu = smp_processor_id();
673 	tick_receive_broadcast();
674 	atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
675 }
676 
677 static int __init tick_broadcast_init(void)
678 {
679 	struct call_single_data *csd;
680 	int cpu;
681 
682 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
683 		csd = &per_cpu(tick_broadcast_csd, cpu);
684 		csd->func = tick_broadcast_callee;
685 	}
686 
687 	return 0;
688 }
689 early_initcall(tick_broadcast_init);
690 
691 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
692