1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 2 5 * of the License, or (at your option) any later version. 6 * 7 * This program is distributed in the hope that it will be useful, 8 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 10 * GNU General Public License for more details. 11 * 12 * You should have received a copy of the GNU General Public License 13 * along with this program; if not, write to the Free Software 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 15 * 16 * Copyright (C) 2000, 2001 Kanoj Sarcar 17 * Copyright (C) 2000, 2001 Ralf Baechle 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 20 */ 21 #include <linux/cache.h> 22 #include <linux/delay.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/smp.h> 26 #include <linux/spinlock.h> 27 #include <linux/threads.h> 28 #include <linux/export.h> 29 #include <linux/time.h> 30 #include <linux/timex.h> 31 #include <linux/sched/mm.h> 32 #include <linux/cpumask.h> 33 #include <linux/cpu.h> 34 #include <linux/err.h> 35 #include <linux/ftrace.h> 36 #include <linux/irqdomain.h> 37 #include <linux/of.h> 38 #include <linux/of_irq.h> 39 40 #include <linux/atomic.h> 41 #include <asm/cpu.h> 42 #include <asm/processor.h> 43 #include <asm/idle.h> 44 #include <asm/r4k-timer.h> 45 #include <asm/mips-cpc.h> 46 #include <asm/mmu_context.h> 47 #include <asm/time.h> 48 #include <asm/setup.h> 49 #include <asm/maar.h> 50 51 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 52 EXPORT_SYMBOL(__cpu_number_map); 53 54 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 55 EXPORT_SYMBOL(__cpu_logical_map); 56 57 /* Number of TCs (or siblings in Intel speak) per CPU core */ 58 int smp_num_siblings = 1; 59 EXPORT_SYMBOL(smp_num_siblings); 60 61 /* representing the TCs (or siblings in Intel speak) of each logical CPU */ 62 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; 63 EXPORT_SYMBOL(cpu_sibling_map); 64 65 /* representing the core map of multi-core chips of each logical CPU */ 66 cpumask_t cpu_core_map[NR_CPUS] __read_mostly; 67 EXPORT_SYMBOL(cpu_core_map); 68 69 static DECLARE_COMPLETION(cpu_running); 70 71 /* 72 * A logcal cpu mask containing only one VPE per core to 73 * reduce the number of IPIs on large MT systems. 74 */ 75 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly; 76 EXPORT_SYMBOL(cpu_foreign_map); 77 78 /* representing cpus for which sibling maps can be computed */ 79 static cpumask_t cpu_sibling_setup_map; 80 81 /* representing cpus for which core maps can be computed */ 82 static cpumask_t cpu_core_setup_map; 83 84 cpumask_t cpu_coherent_mask; 85 86 #ifdef CONFIG_GENERIC_IRQ_IPI 87 static struct irq_desc *call_desc; 88 static struct irq_desc *sched_desc; 89 #endif 90 91 static inline void set_cpu_sibling_map(int cpu) 92 { 93 int i; 94 95 cpumask_set_cpu(cpu, &cpu_sibling_setup_map); 96 97 if (smp_num_siblings > 1) { 98 for_each_cpu(i, &cpu_sibling_setup_map) { 99 if (cpus_are_siblings(cpu, i)) { 100 cpumask_set_cpu(i, &cpu_sibling_map[cpu]); 101 cpumask_set_cpu(cpu, &cpu_sibling_map[i]); 102 } 103 } 104 } else 105 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]); 106 } 107 108 static inline void set_cpu_core_map(int cpu) 109 { 110 int i; 111 112 cpumask_set_cpu(cpu, &cpu_core_setup_map); 113 114 for_each_cpu(i, &cpu_core_setup_map) { 115 if (cpu_data[cpu].package == cpu_data[i].package) { 116 cpumask_set_cpu(i, &cpu_core_map[cpu]); 117 cpumask_set_cpu(cpu, &cpu_core_map[i]); 118 } 119 } 120 } 121 122 /* 123 * Calculate a new cpu_foreign_map mask whenever a 124 * new cpu appears or disappears. 125 */ 126 void calculate_cpu_foreign_map(void) 127 { 128 int i, k, core_present; 129 cpumask_t temp_foreign_map; 130 131 /* Re-calculate the mask */ 132 cpumask_clear(&temp_foreign_map); 133 for_each_online_cpu(i) { 134 core_present = 0; 135 for_each_cpu(k, &temp_foreign_map) 136 if (cpus_are_siblings(i, k)) 137 core_present = 1; 138 if (!core_present) 139 cpumask_set_cpu(i, &temp_foreign_map); 140 } 141 142 for_each_online_cpu(i) 143 cpumask_andnot(&cpu_foreign_map[i], 144 &temp_foreign_map, &cpu_sibling_map[i]); 145 } 146 147 const struct plat_smp_ops *mp_ops; 148 EXPORT_SYMBOL(mp_ops); 149 150 void register_smp_ops(const struct plat_smp_ops *ops) 151 { 152 if (mp_ops) 153 printk(KERN_WARNING "Overriding previously set SMP ops\n"); 154 155 mp_ops = ops; 156 } 157 158 #ifdef CONFIG_GENERIC_IRQ_IPI 159 void mips_smp_send_ipi_single(int cpu, unsigned int action) 160 { 161 mips_smp_send_ipi_mask(cpumask_of(cpu), action); 162 } 163 164 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action) 165 { 166 unsigned long flags; 167 unsigned int core; 168 int cpu; 169 170 local_irq_save(flags); 171 172 switch (action) { 173 case SMP_CALL_FUNCTION: 174 __ipi_send_mask(call_desc, mask); 175 break; 176 177 case SMP_RESCHEDULE_YOURSELF: 178 __ipi_send_mask(sched_desc, mask); 179 break; 180 181 default: 182 BUG(); 183 } 184 185 if (mips_cpc_present()) { 186 for_each_cpu(cpu, mask) { 187 if (cpus_are_siblings(cpu, smp_processor_id())) 188 continue; 189 190 core = cpu_core(&cpu_data[cpu]); 191 192 while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) { 193 mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL); 194 mips_cpc_lock_other(core); 195 write_cpc_co_cmd(CPC_Cx_CMD_PWRUP); 196 mips_cpc_unlock_other(); 197 mips_cm_unlock_other(); 198 } 199 } 200 } 201 202 local_irq_restore(flags); 203 } 204 205 206 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id) 207 { 208 scheduler_ipi(); 209 210 return IRQ_HANDLED; 211 } 212 213 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id) 214 { 215 generic_smp_call_function_interrupt(); 216 217 return IRQ_HANDLED; 218 } 219 220 static struct irqaction irq_resched = { 221 .handler = ipi_resched_interrupt, 222 .flags = IRQF_PERCPU, 223 .name = "IPI resched" 224 }; 225 226 static struct irqaction irq_call = { 227 .handler = ipi_call_interrupt, 228 .flags = IRQF_PERCPU, 229 .name = "IPI call" 230 }; 231 232 static void smp_ipi_init_one(unsigned int virq, 233 struct irqaction *action) 234 { 235 int ret; 236 237 irq_set_handler(virq, handle_percpu_irq); 238 ret = setup_irq(virq, action); 239 BUG_ON(ret); 240 } 241 242 static unsigned int call_virq, sched_virq; 243 244 int mips_smp_ipi_allocate(const struct cpumask *mask) 245 { 246 int virq; 247 struct irq_domain *ipidomain; 248 struct device_node *node; 249 250 node = of_irq_find_parent(of_root); 251 ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI); 252 253 /* 254 * Some platforms have half DT setup. So if we found irq node but 255 * didn't find an ipidomain, try to search for one that is not in the 256 * DT. 257 */ 258 if (node && !ipidomain) 259 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI); 260 261 /* 262 * There are systems which use IPI IRQ domains, but only have one 263 * registered when some runtime condition is met. For example a Malta 264 * kernel may include support for GIC & CPU interrupt controller IPI 265 * IRQ domains, but if run on a system with no GIC & no MT ASE then 266 * neither will be supported or registered. 267 * 268 * We only have a problem if we're actually using multiple CPUs so fail 269 * loudly if that is the case. Otherwise simply return, skipping IPI 270 * setup, if we're running with only a single CPU. 271 */ 272 if (!ipidomain) { 273 BUG_ON(num_present_cpus() > 1); 274 return 0; 275 } 276 277 virq = irq_reserve_ipi(ipidomain, mask); 278 BUG_ON(!virq); 279 if (!call_virq) 280 call_virq = virq; 281 282 virq = irq_reserve_ipi(ipidomain, mask); 283 BUG_ON(!virq); 284 if (!sched_virq) 285 sched_virq = virq; 286 287 if (irq_domain_is_ipi_per_cpu(ipidomain)) { 288 int cpu; 289 290 for_each_cpu(cpu, mask) { 291 smp_ipi_init_one(call_virq + cpu, &irq_call); 292 smp_ipi_init_one(sched_virq + cpu, &irq_resched); 293 } 294 } else { 295 smp_ipi_init_one(call_virq, &irq_call); 296 smp_ipi_init_one(sched_virq, &irq_resched); 297 } 298 299 return 0; 300 } 301 302 int mips_smp_ipi_free(const struct cpumask *mask) 303 { 304 struct irq_domain *ipidomain; 305 struct device_node *node; 306 307 node = of_irq_find_parent(of_root); 308 ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI); 309 310 /* 311 * Some platforms have half DT setup. So if we found irq node but 312 * didn't find an ipidomain, try to search for one that is not in the 313 * DT. 314 */ 315 if (node && !ipidomain) 316 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI); 317 318 BUG_ON(!ipidomain); 319 320 if (irq_domain_is_ipi_per_cpu(ipidomain)) { 321 int cpu; 322 323 for_each_cpu(cpu, mask) { 324 remove_irq(call_virq + cpu, &irq_call); 325 remove_irq(sched_virq + cpu, &irq_resched); 326 } 327 } 328 irq_destroy_ipi(call_virq, mask); 329 irq_destroy_ipi(sched_virq, mask); 330 return 0; 331 } 332 333 334 static int __init mips_smp_ipi_init(void) 335 { 336 if (num_possible_cpus() == 1) 337 return 0; 338 339 mips_smp_ipi_allocate(cpu_possible_mask); 340 341 call_desc = irq_to_desc(call_virq); 342 sched_desc = irq_to_desc(sched_virq); 343 344 return 0; 345 } 346 early_initcall(mips_smp_ipi_init); 347 #endif 348 349 /* 350 * First C code run on the secondary CPUs after being started up by 351 * the master. 352 */ 353 asmlinkage void start_secondary(void) 354 { 355 unsigned int cpu; 356 357 cpu_probe(); 358 per_cpu_trap_init(false); 359 mips_clockevent_init(); 360 mp_ops->init_secondary(); 361 cpu_report(); 362 maar_init(); 363 364 /* 365 * XXX parity protection should be folded in here when it's converted 366 * to an option instead of something based on .cputype 367 */ 368 369 calibrate_delay(); 370 preempt_disable(); 371 cpu = smp_processor_id(); 372 cpu_data[cpu].udelay_val = loops_per_jiffy; 373 374 cpumask_set_cpu(cpu, &cpu_coherent_mask); 375 notify_cpu_starting(cpu); 376 377 set_cpu_online(cpu, true); 378 379 set_cpu_sibling_map(cpu); 380 set_cpu_core_map(cpu); 381 382 calculate_cpu_foreign_map(); 383 384 complete(&cpu_running); 385 synchronise_count_slave(cpu); 386 387 /* 388 * irq will be enabled in ->smp_finish(), enabling it too early 389 * is dangerous. 390 */ 391 WARN_ON_ONCE(!irqs_disabled()); 392 mp_ops->smp_finish(); 393 394 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 395 } 396 397 static void stop_this_cpu(void *dummy) 398 { 399 /* 400 * Remove this CPU: 401 */ 402 403 set_cpu_online(smp_processor_id(), false); 404 calculate_cpu_foreign_map(); 405 local_irq_disable(); 406 while (1); 407 } 408 409 void smp_send_stop(void) 410 { 411 smp_call_function(stop_this_cpu, NULL, 0); 412 } 413 414 void __init smp_cpus_done(unsigned int max_cpus) 415 { 416 } 417 418 /* called from main before smp_init() */ 419 void __init smp_prepare_cpus(unsigned int max_cpus) 420 { 421 init_new_context(current, &init_mm); 422 current_thread_info()->cpu = 0; 423 mp_ops->prepare_cpus(max_cpus); 424 set_cpu_sibling_map(0); 425 set_cpu_core_map(0); 426 calculate_cpu_foreign_map(); 427 #ifndef CONFIG_HOTPLUG_CPU 428 init_cpu_present(cpu_possible_mask); 429 #endif 430 cpumask_copy(&cpu_coherent_mask, cpu_possible_mask); 431 } 432 433 /* preload SMP state for boot cpu */ 434 void smp_prepare_boot_cpu(void) 435 { 436 set_cpu_possible(0, true); 437 set_cpu_online(0, true); 438 } 439 440 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 441 { 442 int err; 443 444 err = mp_ops->boot_secondary(cpu, tidle); 445 if (err) 446 return err; 447 448 /* 449 * We must check for timeout here, as the CPU will not be marked 450 * online until the counters are synchronised. 451 */ 452 if (!wait_for_completion_timeout(&cpu_running, 453 msecs_to_jiffies(1000))) { 454 pr_crit("CPU%u: failed to start\n", cpu); 455 return -EIO; 456 } 457 458 synchronise_count_master(cpu); 459 return 0; 460 } 461 462 /* Not really SMP stuff ... */ 463 int setup_profiling_timer(unsigned int multiplier) 464 { 465 return 0; 466 } 467 468 static void flush_tlb_all_ipi(void *info) 469 { 470 local_flush_tlb_all(); 471 } 472 473 void flush_tlb_all(void) 474 { 475 on_each_cpu(flush_tlb_all_ipi, NULL, 1); 476 } 477 478 static void flush_tlb_mm_ipi(void *mm) 479 { 480 local_flush_tlb_mm((struct mm_struct *)mm); 481 } 482 483 /* 484 * Special Variant of smp_call_function for use by TLB functions: 485 * 486 * o No return value 487 * o collapses to normal function call on UP kernels 488 * o collapses to normal function call on systems with a single shared 489 * primary cache. 490 */ 491 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info) 492 { 493 smp_call_function(func, info, 1); 494 } 495 496 static inline void smp_on_each_tlb(void (*func) (void *info), void *info) 497 { 498 preempt_disable(); 499 500 smp_on_other_tlbs(func, info); 501 func(info); 502 503 preempt_enable(); 504 } 505 506 /* 507 * The following tlb flush calls are invoked when old translations are 508 * being torn down, or pte attributes are changing. For single threaded 509 * address spaces, a new context is obtained on the current cpu, and tlb 510 * context on other cpus are invalidated to force a new context allocation 511 * at switch_mm time, should the mm ever be used on other cpus. For 512 * multithreaded address spaces, intercpu interrupts have to be sent. 513 * Another case where intercpu interrupts are required is when the target 514 * mm might be active on another cpu (eg debuggers doing the flushes on 515 * behalf of debugees, kswapd stealing pages from another process etc). 516 * Kanoj 07/00. 517 */ 518 519 void flush_tlb_mm(struct mm_struct *mm) 520 { 521 preempt_disable(); 522 523 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 524 smp_on_other_tlbs(flush_tlb_mm_ipi, mm); 525 } else { 526 unsigned int cpu; 527 528 for_each_online_cpu(cpu) { 529 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 530 cpu_context(cpu, mm) = 0; 531 } 532 } 533 local_flush_tlb_mm(mm); 534 535 preempt_enable(); 536 } 537 538 struct flush_tlb_data { 539 struct vm_area_struct *vma; 540 unsigned long addr1; 541 unsigned long addr2; 542 }; 543 544 static void flush_tlb_range_ipi(void *info) 545 { 546 struct flush_tlb_data *fd = info; 547 548 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 549 } 550 551 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 552 { 553 struct mm_struct *mm = vma->vm_mm; 554 555 preempt_disable(); 556 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 557 struct flush_tlb_data fd = { 558 .vma = vma, 559 .addr1 = start, 560 .addr2 = end, 561 }; 562 563 smp_on_other_tlbs(flush_tlb_range_ipi, &fd); 564 } else { 565 unsigned int cpu; 566 int exec = vma->vm_flags & VM_EXEC; 567 568 for_each_online_cpu(cpu) { 569 /* 570 * flush_cache_range() will only fully flush icache if 571 * the VMA is executable, otherwise we must invalidate 572 * ASID without it appearing to has_valid_asid() as if 573 * mm has been completely unused by that CPU. 574 */ 575 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 576 cpu_context(cpu, mm) = !exec; 577 } 578 } 579 local_flush_tlb_range(vma, start, end); 580 preempt_enable(); 581 } 582 583 static void flush_tlb_kernel_range_ipi(void *info) 584 { 585 struct flush_tlb_data *fd = info; 586 587 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 588 } 589 590 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 591 { 592 struct flush_tlb_data fd = { 593 .addr1 = start, 594 .addr2 = end, 595 }; 596 597 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); 598 } 599 600 static void flush_tlb_page_ipi(void *info) 601 { 602 struct flush_tlb_data *fd = info; 603 604 local_flush_tlb_page(fd->vma, fd->addr1); 605 } 606 607 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 608 { 609 preempt_disable(); 610 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { 611 struct flush_tlb_data fd = { 612 .vma = vma, 613 .addr1 = page, 614 }; 615 616 smp_on_other_tlbs(flush_tlb_page_ipi, &fd); 617 } else { 618 unsigned int cpu; 619 620 for_each_online_cpu(cpu) { 621 /* 622 * flush_cache_page() only does partial flushes, so 623 * invalidate ASID without it appearing to 624 * has_valid_asid() as if mm has been completely unused 625 * by that CPU. 626 */ 627 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm)) 628 cpu_context(cpu, vma->vm_mm) = 1; 629 } 630 } 631 local_flush_tlb_page(vma, page); 632 preempt_enable(); 633 } 634 635 static void flush_tlb_one_ipi(void *info) 636 { 637 unsigned long vaddr = (unsigned long) info; 638 639 local_flush_tlb_one(vaddr); 640 } 641 642 void flush_tlb_one(unsigned long vaddr) 643 { 644 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr); 645 } 646 647 EXPORT_SYMBOL(flush_tlb_page); 648 EXPORT_SYMBOL(flush_tlb_one); 649 650 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 651 652 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count); 653 static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd); 654 655 void tick_broadcast(const struct cpumask *mask) 656 { 657 atomic_t *count; 658 struct call_single_data *csd; 659 int cpu; 660 661 for_each_cpu(cpu, mask) { 662 count = &per_cpu(tick_broadcast_count, cpu); 663 csd = &per_cpu(tick_broadcast_csd, cpu); 664 665 if (atomic_inc_return(count) == 1) 666 smp_call_function_single_async(cpu, csd); 667 } 668 } 669 670 static void tick_broadcast_callee(void *info) 671 { 672 int cpu = smp_processor_id(); 673 tick_receive_broadcast(); 674 atomic_set(&per_cpu(tick_broadcast_count, cpu), 0); 675 } 676 677 static int __init tick_broadcast_init(void) 678 { 679 struct call_single_data *csd; 680 int cpu; 681 682 for (cpu = 0; cpu < NR_CPUS; cpu++) { 683 csd = &per_cpu(tick_broadcast_csd, cpu); 684 csd->func = tick_broadcast_callee; 685 } 686 687 return 0; 688 } 689 early_initcall(tick_broadcast_init); 690 691 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */ 692